| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Math::Geometry::Planar::Offset; |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
require 5.006; |
|
4
|
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
our $VERSION = '1.05'; |
|
6
|
|
|
|
|
|
|
|
|
7
|
3
|
|
|
3
|
|
73418
|
use strict; |
|
|
3
|
|
|
|
|
7
|
|
|
|
3
|
|
|
|
|
115
|
|
|
8
|
3
|
|
|
3
|
|
16
|
use warnings; |
|
|
3
|
|
|
|
|
4
|
|
|
|
3
|
|
|
|
|
75
|
|
|
9
|
|
|
|
|
|
|
|
|
10
|
3
|
|
|
3
|
|
16
|
use Carp; |
|
|
3
|
|
|
|
|
8
|
|
|
|
3
|
|
|
|
|
10830
|
|
|
11
|
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
our $debug = 0; |
|
13
|
|
|
|
|
|
|
our $precision = 7; |
|
14
|
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
require Exporter; |
|
16
|
|
|
|
|
|
|
our @ISA = qw(Exporter); |
|
17
|
|
|
|
|
|
|
our @EXPORT = qw(); |
|
18
|
|
|
|
|
|
|
our @EXPORT_OK = qw( |
|
19
|
|
|
|
|
|
|
OffsetPolygon |
|
20
|
|
|
|
|
|
|
$precision |
|
21
|
|
|
|
|
|
|
$debug |
|
22
|
|
|
|
|
|
|
); |
|
23
|
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
=pod |
|
25
|
|
|
|
|
|
|
|
|
26
|
|
|
|
|
|
|
=head1 NAME |
|
27
|
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
Math::Geometry::Planar::Offset - Calculate offset polygons |
|
29
|
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
=head1 SYNOPSIS |
|
31
|
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
use Math::Geometry::Planar::Offset; |
|
33
|
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
my (@results) = OffsetPolygon(\@points, $distance); |
|
35
|
|
|
|
|
|
|
foreach my $polygon (@results) { |
|
36
|
|
|
|
|
|
|
# do something with @$polygon |
|
37
|
|
|
|
|
|
|
} |
|
38
|
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
=head1 AUTHOR |
|
40
|
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
Eric Wilhelm @ |
|
42
|
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
=head1 COPYRIGHT NOTICE |
|
44
|
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
Copyright (C) 2003-2007 Eric L. Wilhelm. All rights reserved. |
|
46
|
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
=head1 NO WARRANTY |
|
48
|
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
Absolutely, positively NO WARRANTY, neither express or implied, is |
|
50
|
|
|
|
|
|
|
offered with this software. You use this software at your own risk. In |
|
51
|
|
|
|
|
|
|
case of loss, neither Eric Wilhelm, nor anyone else, owes you anything |
|
52
|
|
|
|
|
|
|
whatseover. You have been warned. |
|
53
|
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
Note that this includes NO GUARANTEE of MATHEMATICAL CORRECTNESS. If |
|
55
|
|
|
|
|
|
|
you are going to use this code in a production environment, it is YOUR |
|
56
|
|
|
|
|
|
|
RESPONSIBILITY to verify that the methods return the correct values. |
|
57
|
|
|
|
|
|
|
|
|
58
|
|
|
|
|
|
|
=head1 LICENSE |
|
59
|
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
You may use this software under one of the following licenses: |
|
61
|
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
(1) GNU General Public License |
|
63
|
|
|
|
|
|
|
(found at http://www.gnu.org/copyleft/gpl.html) |
|
64
|
|
|
|
|
|
|
(2) Artistic License |
|
65
|
|
|
|
|
|
|
(found at http://www.perl.com/pub/language/misc/Artistic.html) |
|
66
|
|
|
|
|
|
|
|
|
67
|
|
|
|
|
|
|
=head1 BUGS |
|
68
|
|
|
|
|
|
|
|
|
69
|
|
|
|
|
|
|
There are currently some problems with concurrent edge events on outward |
|
70
|
|
|
|
|
|
|
(and maybe inward) offsets. Some significant changes need to be made. |
|
71
|
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
=cut |
|
73
|
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
=head1 METHODS |
|
75
|
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
These methods are actually defined in Math::Geometry::Planar, which uses |
|
77
|
|
|
|
|
|
|
this module. |
|
78
|
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
=head2 offset_polygon |
|
80
|
|
|
|
|
|
|
|
|
81
|
|
|
|
|
|
|
Returns reference to an array of polygons representing the original polygon |
|
82
|
|
|
|
|
|
|
offsetted by $distance |
|
83
|
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
$polygon->offset_polygon($distance); |
|
85
|
|
|
|
|
|
|
|
|
86
|
|
|
|
|
|
|
=cut |
|
87
|
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
my $delta = 10 ** (-$precision); |
|
89
|
|
|
|
|
|
|
|
|
90
|
|
|
|
|
|
|
my $offset_depth = 0; |
|
91
|
|
|
|
|
|
|
my $screen_height = 600; |
|
92
|
|
|
|
|
|
|
my $flag; |
|
93
|
|
|
|
|
|
|
my @bisectors; |
|
94
|
|
|
|
|
|
|
|
|
95
|
|
|
|
|
|
|
=head1 Functions |
|
96
|
|
|
|
|
|
|
|
|
97
|
|
|
|
|
|
|
Only OffsetPolygon is exported. |
|
98
|
|
|
|
|
|
|
|
|
99
|
|
|
|
|
|
|
=head2 pi |
|
100
|
|
|
|
|
|
|
|
|
101
|
|
|
|
|
|
|
Returns the constant pi |
|
102
|
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
=cut |
|
104
|
|
|
|
|
|
|
sub pi { |
|
105
|
148
|
|
|
148
|
1
|
318
|
atan2(1,1) * 4; |
|
106
|
|
|
|
|
|
|
} |
|
107
|
|
|
|
|
|
|
|
|
108
|
|
|
|
|
|
|
=head2 OffsetPolygon |
|
109
|
|
|
|
|
|
|
|
|
110
|
|
|
|
|
|
|
Make offset polygon subroutine. |
|
111
|
|
|
|
|
|
|
|
|
112
|
|
|
|
|
|
|
Call with offset distance and ref to array of points for original |
|
113
|
|
|
|
|
|
|
polygon polygon input must be pre-wrapped so point[n]=point[0] |
|
114
|
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
Will return a list of polygons (as refs.) The number of polygons in the |
|
116
|
|
|
|
|
|
|
output depends on the shape of your input polygon. It may split into |
|
117
|
|
|
|
|
|
|
several pieces during the offset. |
|
118
|
|
|
|
|
|
|
|
|
119
|
|
|
|
|
|
|
my (@results) = OffsetPolygon(\@points, $distance); |
|
120
|
|
|
|
|
|
|
foreach my $polygon (@results) { |
|
121
|
|
|
|
|
|
|
# do something with @$polygon |
|
122
|
|
|
|
|
|
|
} |
|
123
|
|
|
|
|
|
|
|
|
124
|
|
|
|
|
|
|
=cut |
|
125
|
|
|
|
|
|
|
sub OffsetPolygon { |
|
126
|
6
|
|
|
6
|
1
|
4293
|
my ($points, $offset, $canvas) = @_; |
|
127
|
6
|
|
|
|
|
10
|
my %intersects; |
|
128
|
6
|
|
|
|
|
9
|
my ($count,$n,$n2); |
|
129
|
0
|
|
|
|
|
0
|
my ($time, $time_static); |
|
130
|
|
|
|
|
|
|
# my $key1,$key2; |
|
131
|
0
|
|
|
|
|
0
|
my @angles; |
|
132
|
0
|
|
|
|
|
0
|
my @directions; |
|
133
|
0
|
|
|
|
|
0
|
my @phi; |
|
134
|
0
|
|
|
|
|
0
|
my @bis_dir; |
|
135
|
0
|
|
|
|
|
0
|
my @bis_end; |
|
136
|
0
|
|
|
|
|
0
|
my @bis_scale; |
|
137
|
0
|
|
|
|
|
0
|
my @result1; |
|
138
|
0
|
|
|
|
|
0
|
my @result2; |
|
139
|
0
|
|
|
|
|
0
|
my @outlist; |
|
140
|
0
|
|
|
|
|
0
|
my ($cut1,$cut2,$cut); |
|
141
|
6
|
|
|
|
|
21
|
$#outlist = 0; |
|
142
|
6
|
|
|
|
|
9
|
my @newpoints; |
|
143
|
|
|
|
|
|
|
my @newpoints1; |
|
144
|
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
# set limit on number of recursions |
|
146
|
|
|
|
|
|
|
# does perl have its own limit to the number of scopes generated? |
|
147
|
6
|
50
|
|
|
|
16
|
if($offset_depth > 100){ |
|
148
|
0
|
|
|
|
|
0
|
print "reached recursion depth_limit\n"; |
|
149
|
0
|
|
|
|
|
0
|
return(); |
|
150
|
|
|
|
|
|
|
} |
|
151
|
|
|
|
|
|
|
#ew: $offset_depth would have had to be reset by calling script |
|
152
|
|
|
|
|
|
|
# (now is incremented and decremented on each side of recursive call) |
|
153
|
6
|
|
|
|
|
7
|
my $npoints = @{$points}; |
|
|
6
|
|
|
|
|
9
|
|
|
154
|
6
|
50
|
|
|
|
15
|
$debug && print "points: ", $npoints, "\n"; |
|
155
|
6
|
50
|
|
|
|
18
|
$debug && print "number of points $npoints\n"; |
|
156
|
|
|
|
|
|
|
# print "points: @{$points->[0]}\n"; |
|
157
|
|
|
|
|
|
|
# exit; |
|
158
|
|
|
|
|
|
|
# my $bis_length = 15; |
|
159
|
|
|
|
|
|
|
# All polygons should be counter-clockwise !!! |
|
160
|
6
|
|
|
|
|
19
|
_find_direction($points,\@angles,\@directions); |
|
161
|
6
|
50
|
|
|
|
13
|
$debug and print "starting recurse: ",$offset_depth -1,"\n"; |
|
162
|
6
|
50
|
|
|
|
13
|
$debug and print "offset: $offset\n"; |
|
163
|
|
|
|
|
|
|
# ew removed junk related to null points |
|
164
|
|
|
|
|
|
|
# bail out if not at least a triangle |
|
165
|
6
|
50
|
|
|
|
19
|
if($npoints < 3) { |
|
166
|
0
|
|
|
|
|
0
|
carp("Need at least 3 non-colinear points to offset"); |
|
167
|
0
|
|
|
|
|
0
|
return; |
|
168
|
|
|
|
|
|
|
} |
|
169
|
|
|
|
|
|
|
# Now to make the bisectors |
|
170
|
6
|
|
|
|
|
17
|
for($n = 0;$n < $npoints; $n++) { |
|
171
|
37
|
|
|
|
|
48
|
$phi[$n] = ((pi) - $angles[$n]) / 2; |
|
172
|
37
|
|
|
|
|
86
|
$bis_scale[$n] = abs(1 / sin($phi[$n])); |
|
173
|
37
|
|
|
|
|
54
|
$bis_dir[$n] = $directions[$n] + $phi[$n]; |
|
174
|
37
|
|
|
|
|
130
|
$bis_end[$n][0] = $points->[$n][0] + $offset * $bis_scale[$n] * cos($bis_dir[$n]); # X-coordinate |
|
175
|
37
|
|
|
|
|
112
|
$bis_end[$n][1] = $points->[$n][1] + $offset * $bis_scale[$n] * sin($bis_dir[$n]); # Y-coordinate |
|
176
|
|
|
|
|
|
|
} |
|
177
|
|
|
|
|
|
|
|
|
178
|
|
|
|
|
|
|
# Draw bisectors |
|
179
|
6
|
50
|
|
|
|
20
|
if ($canvas) { |
|
180
|
|
|
|
|
|
|
# first delete existing bisectors |
|
181
|
0
|
|
|
|
|
0
|
for($n = 0; $n<@bisectors;$n++) { |
|
182
|
0
|
|
|
|
|
0
|
$canvas ->delete($bisectors[$n]); |
|
183
|
|
|
|
|
|
|
} |
|
184
|
0
|
|
|
|
|
0
|
@bisectors = (); |
|
185
|
|
|
|
|
|
|
# then draw the bisector points from the vertices. |
|
186
|
0
|
|
|
|
|
0
|
for($n = 0; $n < $npoints; $n++) { |
|
187
|
0
|
|
|
|
|
0
|
my $x1 = $points->[$n][0]; |
|
188
|
0
|
|
|
|
|
0
|
my $y1 = $screen_height - $points->[$n][1]; |
|
189
|
0
|
|
|
|
|
0
|
my $x2 = $bis_end[$n][0]; |
|
190
|
0
|
|
|
|
|
0
|
my $y2 = $screen_height-$bis_end[$n][1]; |
|
191
|
0
|
|
|
|
|
0
|
$bisectors[$n] = $canvas->create('line', $x1,$y1,$x2,$y2, '-fill' => 'blue','-arrow'=>'last'); |
|
192
|
|
|
|
|
|
|
} |
|
193
|
|
|
|
|
|
|
} |
|
194
|
|
|
|
|
|
|
|
|
195
|
|
|
|
|
|
|
# Need to find whether a bisector first intersects a bisector, |
|
196
|
|
|
|
|
|
|
# or a bisector first intersects a "ghost" edge. Also, must know |
|
197
|
|
|
|
|
|
|
# which one and at what time: |
|
198
|
6
|
|
|
|
|
9
|
my ($Ax1,$Ay1,$Ax2,$Ay2,$Bx1,$By1,$Bx2,$By2); |
|
199
|
0
|
|
|
|
|
0
|
my ($delAx,$delAy,$delBx,$delBy,$Am,$Ab,$Bm,$Bb); |
|
200
|
0
|
|
|
|
|
0
|
my ($x_int,$y_int); |
|
201
|
0
|
|
|
|
|
0
|
my ($first_join,$first_split,$split_seg); |
|
202
|
6
|
|
|
|
|
11
|
my $first_event = ""; |
|
203
|
6
|
|
|
|
|
9
|
my $first_time = abs($offset)+1; |
|
204
|
6
|
|
|
|
|
10
|
my $time_dir = $offset / abs($offset); # +1 or -1 to give direction |
|
205
|
6
|
|
|
|
|
6
|
my $new_offset; |
|
206
|
6
|
|
|
|
|
8
|
my $join_time = $first_time; |
|
207
|
6
|
|
|
|
|
7
|
my $split_time = $first_time; |
|
208
|
|
|
|
|
|
|
|
|
209
|
|
|
|
|
|
|
# first find intersections of adjacent bisectors (if any) |
|
210
|
6
|
|
|
|
|
16
|
for($n = 0;$n <$npoints;$n++) { |
|
211
|
37
|
|
|
|
|
47
|
$Ax1 = $points->[$n][0]; |
|
212
|
37
|
|
|
|
|
43
|
$Ay1 = $points->[$n][1]; |
|
213
|
37
|
|
|
|
|
38
|
$Ax2 = $bis_end[$n][0]; |
|
214
|
37
|
|
|
|
|
39
|
$Ay2 = $bis_end[$n][1]; |
|
215
|
37
|
|
|
|
|
34
|
$delAx = $Ax2 - $Ax1; |
|
216
|
37
|
|
|
|
|
31
|
$delAy = $Ay2 - $Ay1; |
|
217
|
|
|
|
|
|
|
# elw: what amateur wrote this! |
|
218
|
37
|
50
|
|
|
|
63
|
if($delAx) { |
|
219
|
37
|
|
|
|
|
34
|
$Am = $delAy / $delAx; $Ab = $Ay1 - $Ax1 * $Am; |
|
|
37
|
|
|
|
|
42
|
|
|
220
|
|
|
|
|
|
|
} |
|
221
|
|
|
|
|
|
|
else { |
|
222
|
0
|
|
|
|
|
0
|
$Am = "inf"; |
|
223
|
|
|
|
|
|
|
} |
|
224
|
|
|
|
|
|
|
# Check against the next bisector: |
|
225
|
37
|
|
|
|
|
50
|
$Bx1 = $points->[$n+1-$npoints][0]; |
|
226
|
37
|
|
|
|
|
47
|
$By1 = $points->[$n+1-$npoints][1]; |
|
227
|
37
|
|
|
|
|
595
|
$Bx2 = $bis_end[$n+1-$npoints][0]; |
|
228
|
37
|
|
|
|
|
577
|
$By2 = $bis_end[$n+1-$npoints][1]; |
|
229
|
37
|
|
|
|
|
35
|
$delBx = $Bx2 - $Bx1; |
|
230
|
37
|
|
|
|
|
35
|
$delBy = $By2 - $By1; |
|
231
|
|
|
|
|
|
|
# elw: maybe you are getting closer to zen now:) |
|
232
|
37
|
50
|
|
|
|
48
|
if($delBx) { |
|
233
|
37
|
|
|
|
|
39
|
$Bm = $delBy / $delBx;$Bb = $By1 - $Bx1 * $Bm; |
|
|
37
|
|
|
|
|
41
|
|
|
234
|
|
|
|
|
|
|
} |
|
235
|
|
|
|
|
|
|
else{ |
|
236
|
0
|
|
|
|
|
0
|
$Bm = "inf"; |
|
237
|
|
|
|
|
|
|
} |
|
238
|
37
|
50
|
33
|
|
|
252
|
if( ($Am == $Bm) || ($Am eq $Bm) ) { |
|
239
|
0
|
|
|
|
|
0
|
next; |
|
240
|
|
|
|
|
|
|
} |
|
241
|
|
|
|
|
|
|
# Calculate determinants to find if intersection is within the bisector segment. |
|
242
|
37
|
100
|
|
|
|
67
|
if (! _do_cross($Ax1,$Ay1,$Ax2,$Ay2,$Bx1,$By1,$Bx2,$By2) ){ |
|
243
|
35
|
|
|
|
|
75
|
next; |
|
244
|
|
|
|
|
|
|
} |
|
245
|
|
|
|
|
|
|
# if we have an intersection of the skeleton and only a triangle, |
|
246
|
|
|
|
|
|
|
# then it has collapsed to a point: |
|
247
|
2
|
50
|
|
|
|
6
|
if($npoints < 4) { |
|
248
|
0
|
0
|
|
|
|
0
|
$debug && print "collapsed\n"; |
|
249
|
0
|
|
|
|
|
0
|
return(); |
|
250
|
|
|
|
|
|
|
} |
|
251
|
2
|
50
|
|
|
|
19
|
if($Am eq "inf") { # Slope of first line is infinite, so use Ax1. |
|
|
|
50
|
|
|
|
|
|
|
252
|
0
|
|
|
|
|
0
|
$x_int = $Ax1; # Will always be on vertical line. |
|
253
|
0
|
|
|
|
|
0
|
$y_int = $Bm * $x_int + $Bb; |
|
254
|
|
|
|
|
|
|
} |
|
255
|
|
|
|
|
|
|
elsif($Bm eq "inf") { # Slope of second line is infinite, so use Bx1. |
|
256
|
0
|
|
|
|
|
0
|
$x_int = $Bx1;$y_int = $Am * $x_int + $Ab; |
|
|
0
|
|
|
|
|
0
|
|
|
257
|
|
|
|
|
|
|
} |
|
258
|
|
|
|
|
|
|
else { |
|
259
|
2
|
|
|
|
|
3
|
$x_int = ($Bb - $Ab) / ($Am - $Bm);$y_int = $Am *$x_int + $Ab; |
|
|
2
|
|
|
|
|
3
|
|
|
260
|
|
|
|
|
|
|
} |
|
261
|
|
|
|
|
|
|
# Now, if the lines are not parallel, and the intersection |
|
262
|
|
|
|
|
|
|
# happens on the line segments, we are here with |
|
263
|
|
|
|
|
|
|
# the x and y coordinates of the intersection of the two lines. |
|
264
|
|
|
|
|
|
|
## $debug and printf ("intersection: %6.0f,%6.0f\n",$x_int, $y_int); |
|
265
|
|
|
|
|
|
|
|
|
266
|
|
|
|
|
|
|
# Let's find the time of intersect. |
|
267
|
|
|
|
|
|
|
# distance formula with adjustment for speed |
|
268
|
2
|
|
|
|
|
7
|
$time = sqrt( ($x_int - $points->[$n][0])**2 + ($y_int - $points->[$n][1])**2 ) / $bis_scale[$n]; |
|
269
|
2
|
100
|
|
|
|
7
|
if( (abs($time) < $first_time) ) |
|
270
|
|
|
|
|
|
|
# && ( $time / abs($time)== $offset / abs($offset) ) ) |
|
271
|
|
|
|
|
|
|
{ |
|
272
|
|
|
|
|
|
|
# note that none of the times loaded here have a sign |
|
273
|
1
|
|
|
|
|
2
|
$first_time = abs($time); |
|
274
|
1
|
|
|
|
|
1
|
$join_time = $first_time; |
|
275
|
1
|
|
|
|
|
2
|
$first_join=$n; |
|
276
|
1
|
|
|
|
|
3
|
$first_event="join"; |
|
277
|
|
|
|
|
|
|
} |
|
278
|
|
|
|
|
|
|
|
|
279
|
|
|
|
|
|
|
|
|
280
|
|
|
|
|
|
|
} # end for n (for each bisector vs next neighbor) |
|
281
|
|
|
|
|
|
|
# Time is smallest relevant offset distance before first join. |
|
282
|
|
|
|
|
|
|
# first join is address of point to be joined. |
|
283
|
|
|
|
|
|
|
# first event is "join" if controlling (could be over-ridden by split) |
|
284
|
|
|
|
|
|
|
# If this is the controlling case, create the joined polygon at that offset time |
|
285
|
|
|
|
|
|
|
# and make a recursive call. |
|
286
|
|
|
|
|
|
|
# |
|
287
|
|
|
|
|
|
|
# |
|
288
|
|
|
|
|
|
|
# Now to check for intersections of bisectors with edges |
|
289
|
|
|
|
|
|
|
# Have to check against all segments except adjacent ones. |
|
290
|
|
|
|
|
|
|
# Nothing will happen if it is a triangle. |
|
291
|
6
|
50
|
|
|
|
14
|
if($npoints > 3) { |
|
292
|
6
|
|
|
|
|
14
|
for($n = 0; $n < $npoints; $n++) { |
|
293
|
37
|
|
|
|
|
91
|
$Ax1 = $points->[$n][0]; # Get bisector endpoints |
|
294
|
37
|
|
|
|
|
44
|
$Ay1 = $points->[$n][1]; |
|
295
|
37
|
|
|
|
|
42
|
$Ax2 = $bis_end[$n][0]; |
|
296
|
37
|
|
|
|
|
39
|
$Ay2 = $bis_end[$n][1]; |
|
297
|
37
|
50
|
|
|
|
63
|
$debug && print "starting at $Ax1 $Ay1\n"; |
|
298
|
37
|
50
|
|
|
|
53
|
$debug && print "bisector toward $Ax2 $Ay2\n"; |
|
299
|
|
|
|
|
|
|
# I need it to be a ray, so I am just making a really long segment here. |
|
300
|
37
|
|
|
|
|
45
|
$delAx = 1000* $offset* ($Ax2 - $Ax1); |
|
301
|
37
|
|
|
|
|
46
|
$delAy = 1000* $offset* ($Ay2 - $Ay1); |
|
302
|
37
|
|
|
|
|
29
|
$Ax2 = $Ax1+ $delAx; |
|
303
|
37
|
|
|
|
|
37
|
$Ay2 = $Ay1 + $delAy; |
|
304
|
37
|
50
|
|
|
|
51
|
if($delAx) {$Am = $delAy / $delAx; $Ab = $Ay1 - $Ax1 * $Am;}else{$Am = "inf";}; |
|
|
37
|
|
|
|
|
35
|
|
|
|
37
|
|
|
|
|
45
|
|
|
|
0
|
|
|
|
|
0
|
|
|
305
|
|
|
|
|
|
|
# this loop has to compare to all of the polygon sides except the adjacent ones |
|
306
|
37
|
|
|
|
|
79
|
for($n2 = 0; $n2 < $npoints; $n2++) { |
|
307
|
249
|
|
|
|
|
265
|
$time = abs($offset) +1; |
|
308
|
|
|
|
|
|
|
# Can't split adjacent segments |
|
309
|
249
|
100
|
100
|
|
|
1141
|
if( ($n2 == $n) || ($n2 == $n-1) || ( ($n==0)&&($n2 == $npoints-1) ) ){ |
|
|
|
|
100
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
310
|
74
|
|
|
|
|
156
|
next; |
|
311
|
|
|
|
|
|
|
} |
|
312
|
175
|
50
|
|
|
|
286
|
$debug && print "inner loop at n2 = $n2\n"; |
|
313
|
175
|
|
|
|
|
209
|
$Bx1 = $points->[$n2][0]; # Get edge endpoints |
|
314
|
175
|
|
|
|
|
184
|
$By1 = $points->[$n2][1]; |
|
315
|
175
|
|
|
|
|
260
|
$Bx2 = $points->[$n2 + 1 - $npoints][0]; |
|
316
|
175
|
|
|
|
|
214
|
$By2 = $points->[$n2+1-$npoints][1]; |
|
317
|
175
|
|
|
|
|
172
|
$delBx = $Bx2 - $Bx1; |
|
318
|
175
|
|
|
|
|
149
|
$delBy = $By2 - $By1; |
|
319
|
175
|
100
|
|
|
|
249
|
if($delBx) { |
|
320
|
89
|
|
|
|
|
87
|
$Bm = $delBy / $delBx;$Bb = $By1 - $Bx1 * $Bm; |
|
|
89
|
|
|
|
|
106
|
|
|
321
|
|
|
|
|
|
|
} |
|
322
|
|
|
|
|
|
|
else { |
|
323
|
86
|
|
|
|
|
113
|
$Bm = "inf"; |
|
324
|
|
|
|
|
|
|
} |
|
325
|
175
|
50
|
33
|
|
|
1136
|
if( ($Am == $Bm) || ($Am eq $Bm) ){ |
|
326
|
0
|
|
|
|
|
0
|
next; |
|
327
|
|
|
|
|
|
|
} |
|
328
|
|
|
|
|
|
|
# Note that I am not using the dot product here (it |
|
329
|
|
|
|
|
|
|
# shows up below. I need to know where the infinite ray |
|
330
|
|
|
|
|
|
|
# of the bisector crosses the infinite line of the |
|
331
|
|
|
|
|
|
|
# polygon edge (but this may cause problems as well) |
|
332
|
175
|
50
|
|
|
|
643
|
if($Am eq "inf") { |
|
|
|
100
|
|
|
|
|
|
|
333
|
|
|
|
|
|
|
# Slope of first line is infinite, so use Ax1. |
|
334
|
0
|
|
|
|
|
0
|
$x_int = $Ax1;$y_int = $Bm * $x_int + $Bb; |
|
|
0
|
|
|
|
|
0
|
|
|
335
|
|
|
|
|
|
|
} |
|
336
|
|
|
|
|
|
|
elsif($Bm eq "inf") { |
|
337
|
|
|
|
|
|
|
# Slope of second line is infinite, so use Bx1. |
|
338
|
86
|
|
|
|
|
90
|
$x_int = $Bx1;$y_int = $Am * $x_int + $Ab; |
|
|
86
|
|
|
|
|
102
|
|
|
339
|
|
|
|
|
|
|
} |
|
340
|
|
|
|
|
|
|
else { |
|
341
|
89
|
|
|
|
|
118
|
$x_int = ($Bb - $Ab) / ($Am - $Bm);$y_int = $Am *$x_int + $Ab; |
|
|
89
|
|
|
|
|
108
|
|
|
342
|
|
|
|
|
|
|
} |
|
343
|
|
|
|
|
|
|
# now make sure that the intersection happened on the right side |
|
344
|
|
|
|
|
|
|
# (point the ray in the offset direction) |
|
345
|
175
|
|
|
|
|
188
|
my $delxto_int = $x_int - $Ax1; |
|
346
|
175
|
|
|
|
|
167
|
my $delyto_int = $y_int - $Ay1; |
|
347
|
175
|
|
|
|
|
183
|
my $next = $n2+1; |
|
348
|
175
|
100
|
|
|
|
367
|
if ($next == $npoints) { |
|
349
|
25
|
|
|
|
|
29
|
$next = 0; |
|
350
|
|
|
|
|
|
|
} |
|
351
|
|
|
|
|
|
|
# This method is not handling the split which happens to edges terminating |
|
352
|
|
|
|
|
|
|
# at a concave point. This event is a third case because the time calculated |
|
353
|
|
|
|
|
|
|
# below will be smaller for the extension of the edge before the concavity than |
|
354
|
|
|
|
|
|
|
# for the edge after the concavity, which is the one to properly split. |
|
355
|
|
|
|
|
|
|
|
|
356
|
|
|
|
|
|
|
|
|
357
|
|
|
|
|
|
|
# I have suspicions about the accuracy here: |
|
358
|
|
|
|
|
|
|
# Original intent was to make sure that the ray was properly treated |
|
359
|
|
|
|
|
|
|
# now handled by using a really long segment (1000*offset) for the ray. |
|
360
|
|
|
|
|
|
|
# if( $bis_dir[$n] == (atan2($delyto_int,$delxto_int))) |
|
361
|
|
|
|
|
|
|
{ |
|
362
|
|
|
|
|
|
|
# direction is good, calculate distance |
|
363
|
|
|
|
|
|
|
# note that the int_scale should be naturally signed |
|
364
|
|
|
|
|
|
|
# to prevent strangeness on internal offsets. |
|
365
|
|
|
|
|
|
|
# dvdp: |
|
366
|
|
|
|
|
|
|
# $int_scale = 1 / (sin( $directions[$n2] - $bis_dir[$n])) ; |
|
367
|
|
|
|
|
|
|
# This could lead to a devision by 0 so we calculate the reverse and check first |
|
368
|
175
|
|
|
|
|
155
|
my $int_scale = (sin( $directions[$n2] - $bis_dir[$n])) ; |
|
|
175
|
|
|
|
|
263
|
|
|
369
|
175
|
50
|
|
|
|
267
|
$debug && print "bisector scale: $bis_scale[$n]\n"; |
|
370
|
175
|
50
|
|
|
|
252
|
$debug && print "intersection scale: 1 / $int_scale\n"; |
|
371
|
175
|
50
|
|
|
|
210
|
if ($int_scale) { |
|
372
|
175
|
|
|
|
|
184
|
$int_scale = 1 / $int_scale; |
|
373
|
175
|
100
|
|
|
|
286
|
if($bis_scale[$n]+$int_scale) { |
|
374
|
167
|
|
|
|
|
420
|
$time_static = sqrt( ($x_int - $points->[$n][0])**2 + |
|
375
|
|
|
|
|
|
|
($y_int - $points->[$n][1])**2 ) / ($bis_scale[$n]+$int_scale); |
|
376
|
|
|
|
|
|
|
} |
|
377
|
|
|
|
|
|
|
else { |
|
378
|
|
|
|
|
|
|
# intersection happens only at infinite offset time |
|
379
|
|
|
|
|
|
|
# die "PGON offset dying at 281 with $bis_scale[$n] and $int_scale\n"; |
|
380
|
|
|
|
|
|
|
} |
|
381
|
|
|
|
|
|
|
} |
|
382
|
|
|
|
|
|
|
else { |
|
383
|
|
|
|
|
|
|
# 1 / $int_scale is arbitrary large so division reduces to 0 |
|
384
|
0
|
|
|
|
|
0
|
$time_static = 0; |
|
385
|
|
|
|
|
|
|
} |
|
386
|
|
|
|
|
|
|
# once you have calculated the time, you need to see if the |
|
387
|
|
|
|
|
|
|
# intersected segment is still in that place at that time to be struck by the ray |
|
388
|
|
|
|
|
|
|
# Does time_dir belong here? (yes for test case A) |
|
389
|
175
|
|
|
|
|
299
|
$Bx1 = $points->[$n2][0] + $time_static * $bis_scale[$n2] * cos($bis_dir[$n2]); |
|
390
|
175
|
|
|
|
|
259
|
$By1 = $points->[$n2][1] + $time_static * $bis_scale[$n2] * sin($bis_dir[$n2]); |
|
391
|
175
|
|
|
|
|
302
|
$Bx2 = $points->[$n2 + 1 - $npoints][0] + $time_static * $bis_scale[$next] * cos($bis_dir[$next]); |
|
392
|
175
|
|
|
|
|
277
|
$By2 = $points->[$n2 + 1 - $npoints][1] + $time_static * $bis_scale[$next] * sin($bis_dir[$next]); |
|
393
|
175
|
100
|
|
|
|
278
|
if(! _do_cross($Ax1,$Ay1,$Ax2,$Ay2,$Bx1,$By1,$Bx2,$By2) ) { |
|
394
|
125
|
|
|
|
|
402
|
next; |
|
395
|
|
|
|
|
|
|
} |
|
396
|
50
|
|
|
|
|
57
|
$time = $time_static; |
|
397
|
|
|
|
|
|
|
# make sure the case controls and is in the right direction. (required for case A) |
|
398
|
|
|
|
|
|
|
# dvdp: replaced division by abs($time) by a multiplication to overcome |
|
399
|
|
|
|
|
|
|
# potential divide by 0 |
|
400
|
50
|
100
|
66
|
|
|
196
|
if( (abs($time)<$first_time) and ( $time == $time_dir * abs($time) ) ) { |
|
401
|
|
|
|
|
|
|
# note that none of the times loaded here have a sign |
|
402
|
4
|
|
|
|
|
5
|
$first_time = abs($time); |
|
403
|
4
|
|
|
|
|
13
|
$split_time = $first_time; |
|
404
|
4
|
|
|
|
|
39
|
$first_split=$n; |
|
405
|
4
|
|
|
|
|
6
|
$split_seg = $n2; |
|
406
|
4
|
|
|
|
|
15
|
$first_event="split"; |
|
407
|
|
|
|
|
|
|
} |
|
408
|
|
|
|
|
|
|
} |
|
409
|
|
|
|
|
|
|
} # end for n2 |
|
410
|
|
|
|
|
|
|
} # end for n (each bisector verses each edge) |
|
411
|
|
|
|
|
|
|
} # End if not triangle |
|
412
|
|
|
|
|
|
|
|
|
413
|
|
|
|
|
|
|
# Time is the smallest relavent split time (unless join controls) |
|
414
|
|
|
|
|
|
|
# first_split is address of point to be split. |
|
415
|
|
|
|
|
|
|
# first_event is "split" if controlling (could be controlled by join)(or nothing) |
|
416
|
|
|
|
|
|
|
# If this is the controlling case, create the split polygons at that offset time |
|
417
|
|
|
|
|
|
|
# and make a recursive call. |
|
418
|
|
|
|
|
|
|
|
|
419
|
6
|
100
|
|
|
|
18
|
if($first_time <= abs($offset)) { |
|
420
|
2
|
50
|
|
|
|
4
|
if($debug) { |
|
421
|
0
|
0
|
|
|
|
0
|
if($first_event eq "join") { |
|
422
|
0
|
|
|
|
|
0
|
printf("join vertex %d at time %6.2f\n",$first_join,$first_time); |
|
423
|
|
|
|
|
|
|
} |
|
424
|
0
|
0
|
|
|
|
0
|
if($first_event eq "split") { |
|
425
|
0
|
|
|
|
|
0
|
printf( |
|
426
|
|
|
|
|
|
|
"split segment %d with vertex %d at time %6.2f\n", |
|
427
|
|
|
|
|
|
|
$split_seg,$first_split,$first_time |
|
428
|
|
|
|
|
|
|
); |
|
429
|
|
|
|
|
|
|
} |
|
430
|
0
|
|
|
|
|
0
|
print "\ttime: $first_time\n"; |
|
431
|
|
|
|
|
|
|
} |
|
432
|
|
|
|
|
|
|
# get a list of points for the offset polygon at first_time |
|
433
|
|
|
|
|
|
|
|
|
434
|
2
|
100
|
|
|
|
8
|
if($first_event eq "join") { |
|
|
|
50
|
|
|
|
|
|
|
435
|
|
|
|
|
|
|
# How are coincident events handled? |
|
436
|
|
|
|
|
|
|
# remove the offending point and call yourself with time adjusted. |
|
437
|
1
|
|
|
|
|
2
|
@newpoints = (); |
|
438
|
1
|
|
|
|
|
4
|
for($n = 0; $n<$npoints; $n++) { |
|
439
|
5
|
|
|
|
|
13
|
$newpoints[$n][0] = $points->[$n][0] + $first_time * |
|
440
|
|
|
|
|
|
|
$time_dir* $bis_scale[$n] * cos($bis_dir[$n]); |
|
441
|
5
|
|
|
|
|
21
|
$newpoints[$n][1] = $points->[$n][1] + $first_time * |
|
442
|
|
|
|
|
|
|
$time_dir* $bis_scale[$n] * sin($bis_dir[$n]); |
|
443
|
|
|
|
|
|
|
} |
|
444
|
|
|
|
|
|
|
# keep the one with the smaller scale. |
|
445
|
1
|
50
|
|
|
|
3
|
if($bis_scale[$first_join]<$bis_scale[$first_join+1]) { |
|
446
|
1
|
|
|
|
|
2
|
splice(@newpoints, $first_join + 1, 1); |
|
447
|
|
|
|
|
|
|
} |
|
448
|
|
|
|
|
|
|
else { |
|
449
|
0
|
|
|
|
|
0
|
splice(@newpoints, $first_join , 1); |
|
450
|
|
|
|
|
|
|
} |
|
451
|
1
|
|
|
|
|
2
|
$npoints--; |
|
452
|
1
|
|
|
|
|
2
|
$new_offset = $offset - $first_time * $time_dir; # put a direction on it. |
|
453
|
1
|
|
|
|
|
1
|
$offset_depth++; |
|
454
|
1
|
|
|
|
|
26
|
@outlist = OffsetPolygon(\@newpoints,$new_offset) ; |
|
455
|
1
|
|
|
|
|
3
|
$offset_depth--; |
|
456
|
1
|
|
|
|
|
8
|
return(@outlist); |
|
457
|
|
|
|
|
|
|
} |
|
458
|
|
|
|
|
|
|
elsif ($first_event eq "split") { |
|
459
|
|
|
|
|
|
|
# make two polygons and call yourself with time adjusted. |
|
460
|
1
|
|
|
|
|
2
|
@newpoints = (); |
|
461
|
1
|
|
|
|
|
1
|
my @split_check; |
|
462
|
|
|
|
|
|
|
my @split_check1; |
|
463
|
1
|
|
|
|
|
4
|
for($n = 0; $n<$npoints; $n++) { |
|
464
|
8
|
|
|
|
|
24
|
$newpoints[$n][0] = $points->[$n][0] + $first_time * |
|
465
|
|
|
|
|
|
|
$time_dir * $bis_scale[$n] * cos($bis_dir[$n]); |
|
466
|
8
|
|
|
|
|
20
|
$newpoints[$n][1] = $points->[$n][1] + $first_time * |
|
467
|
|
|
|
|
|
|
$time_dir * $bis_scale[$n] * sin($bis_dir[$n]); |
|
468
|
8
|
|
|
|
|
19
|
$split_check[$n] = $n; |
|
469
|
|
|
|
|
|
|
} |
|
470
|
1
|
|
|
|
|
2
|
$new_offset = $offset - $first_time * $time_dir; |
|
471
|
1
|
|
|
|
|
1
|
@newpoints1 = (); |
|
472
|
1
|
|
|
|
|
3
|
@newpoints1 = @newpoints; |
|
473
|
1
|
|
|
|
|
1
|
@split_check1 = (); |
|
474
|
1
|
|
|
|
|
2
|
@split_check1 = @split_check; |
|
475
|
|
|
|
|
|
|
# have first_split and split_seg, must find a way to wrap around. |
|
476
|
1
|
|
|
|
|
2
|
my $cut_startA; |
|
477
|
|
|
|
|
|
|
my $cut_startB; |
|
478
|
0
|
|
|
|
|
0
|
my $cutB; |
|
479
|
1
|
50
|
|
|
|
2
|
if($split_seg < $first_split) { |
|
480
|
0
|
|
|
|
|
0
|
$cut1 = $#newpoints - $first_split; |
|
481
|
0
|
|
|
|
|
0
|
$cut2 = $split_seg+1; |
|
482
|
0
|
|
|
|
|
0
|
$cut_startA=$first_split+1; |
|
483
|
0
|
|
|
|
|
0
|
$cut_startB = $split_seg+1; |
|
484
|
0
|
|
|
|
|
0
|
$cutB = $first_split - $split_seg -1; |
|
485
|
|
|
|
|
|
|
} |
|
486
|
|
|
|
|
|
|
else { |
|
487
|
1
|
|
|
|
|
2
|
$cut1 = $#newpoints - $split_seg; |
|
488
|
1
|
|
|
|
|
2
|
$cut2 = $first_split; |
|
489
|
1
|
|
|
|
|
1
|
$cut_startA = $split_seg +1; |
|
490
|
1
|
|
|
|
|
1
|
$cut_startB = $first_split + 1; |
|
491
|
1
|
|
|
|
|
2
|
$cutB = $split_seg - $first_split; |
|
492
|
|
|
|
|
|
|
} |
|
493
|
1
|
|
|
|
|
2
|
splice(@newpoints,$cut_startA,$cut1); |
|
494
|
1
|
|
|
|
|
2
|
splice(@newpoints,0,$cut2); |
|
495
|
1
|
|
|
|
|
11
|
splice(@split_check,$cut_startA,$cut1); |
|
496
|
1
|
|
|
|
|
1
|
splice(@split_check,0,$cut2); |
|
497
|
1
|
|
|
|
|
2
|
splice(@newpoints1,$cut_startB,$cutB); |
|
498
|
1
|
|
|
|
|
2
|
splice(@split_check1,$cut_startB,$cutB); |
|
499
|
1
|
|
|
|
|
1
|
my $num = @newpoints; |
|
500
|
1
|
|
|
|
|
2
|
my $num1 = @newpoints1; |
|
501
|
|
|
|
|
|
|
|
|
502
|
1
|
50
|
|
|
|
3
|
if($debug) { |
|
503
|
0
|
|
|
|
|
0
|
print "split was:\n@split_check\n@split_check1\n"; |
|
504
|
0
|
|
|
|
|
0
|
print "first splitted:\n"; |
|
505
|
0
|
|
|
|
|
0
|
for($n = 0; $n<$num;$n++) { |
|
506
|
0
|
|
|
|
|
0
|
printf ("point: %d (%6.2f,%6.2f)\n",$n,@{$newpoints[$n]}); |
|
|
0
|
|
|
|
|
0
|
|
|
507
|
|
|
|
|
|
|
} |
|
508
|
0
|
|
|
|
|
0
|
print "second splitted:\n"; |
|
509
|
0
|
|
|
|
|
0
|
for($n = 0; $n < $num1;$n++) { |
|
510
|
0
|
|
|
|
|
0
|
printf ("point: %d (%6.2f,%6.2f)\n",$n,@{$newpoints1[$n]}); |
|
|
0
|
|
|
|
|
0
|
|
|
511
|
|
|
|
|
|
|
} |
|
512
|
|
|
|
|
|
|
} |
|
513
|
1
|
|
|
|
|
3
|
$#result1 = 0; |
|
514
|
1
|
|
|
|
|
2
|
shift(@result1); |
|
515
|
1
|
|
|
|
|
2
|
$#result2 = 0; |
|
516
|
1
|
|
|
|
|
1
|
shift(@result2); |
|
517
|
1
|
50
|
|
|
|
2
|
if($num>2) { |
|
518
|
1
|
|
|
|
|
2
|
$offset_depth++; |
|
519
|
1
|
|
|
|
|
34
|
@result1 = OffsetPolygon(\@newpoints,$new_offset); |
|
520
|
1
|
|
|
|
|
2
|
$offset_depth--; |
|
521
|
|
|
|
|
|
|
} |
|
522
|
|
|
|
|
|
|
else { |
|
523
|
0
|
0
|
|
|
|
0
|
$debug and print "too few on first\n"; |
|
524
|
|
|
|
|
|
|
} |
|
525
|
1
|
50
|
|
|
|
5
|
if($num1>2) { |
|
526
|
1
|
|
|
|
|
1
|
$offset_depth++; |
|
527
|
1
|
|
|
|
|
2
|
@result2 = OffsetPolygon(\@newpoints1,$new_offset); |
|
528
|
1
|
|
|
|
|
2
|
$offset_depth--; |
|
529
|
|
|
|
|
|
|
} |
|
530
|
|
|
|
|
|
|
else { |
|
531
|
0
|
0
|
|
|
|
0
|
$debug and print "too few on second\n"; |
|
532
|
|
|
|
|
|
|
} |
|
533
|
1
|
|
|
|
|
14
|
return(@result1, @result2); # This concatenates the list. |
|
534
|
|
|
|
|
|
|
} # end elsif split |
|
535
|
|
|
|
|
|
|
} # end if time <= offset |
|
536
|
|
|
|
|
|
|
else { |
|
537
|
|
|
|
|
|
|
# No splits or joins needed, so offset the thing. |
|
538
|
|
|
|
|
|
|
# Bisector endpoints should be available. |
|
539
|
4
|
|
|
|
|
7
|
@newpoints = (); |
|
540
|
4
|
|
|
|
|
57
|
for($n = 0; $n<$npoints; $n++) { |
|
541
|
24
|
|
|
|
|
82
|
$newpoints[$n][0] = $points->[$n][0] + $offset * $bis_scale[$n] * cos($bis_dir[$n]); |
|
542
|
24
|
|
|
|
|
79
|
$newpoints[$n][1] = $points->[$n][1] + $offset * $bis_scale[$n] * sin($bis_dir[$n]); |
|
543
|
|
|
|
|
|
|
} |
|
544
|
4
|
|
|
|
|
49
|
return( \@newpoints); |
|
545
|
|
|
|
|
|
|
} |
|
546
|
|
|
|
|
|
|
} # End offset polygon subroutine definition |
|
547
|
|
|
|
|
|
|
######################################################################### |
|
548
|
|
|
|
|
|
|
# Find direction subroutine. |
|
549
|
|
|
|
|
|
|
# Called with (,, ). |
|
550
|
|
|
|
|
|
|
# Returns total change in angle (as radians (everything is as radians)). |
|
551
|
|
|
|
|
|
|
# Second two array refs are optional. |
|
552
|
|
|
|
|
|
|
# Forcing counter-clockwise currently not done here, but maybe should. |
|
553
|
|
|
|
|
|
|
sub _find_direction { |
|
554
|
6
|
|
|
6
|
|
11
|
my($coords,$del_theta,$thetas) = @_; |
|
555
|
6
|
|
|
|
|
6
|
my $sum_theta=0; |
|
556
|
6
|
|
|
|
|
9
|
my $sum_delta_theta = 0; |
|
557
|
6
|
|
|
|
|
8
|
@{$del_theta} = (); # Clear arrays referenced for in-place modification. |
|
|
6
|
|
|
|
|
11
|
|
|
558
|
6
|
|
|
|
|
7
|
@{$thetas} = (); |
|
|
6
|
|
|
|
|
8
|
|
|
559
|
6
|
|
|
|
|
10
|
my $n = 0; |
|
560
|
6
|
|
|
|
|
8
|
for(;;) { |
|
561
|
43
|
100
|
|
|
|
40
|
last if ($n == @{$coords}); |
|
|
43
|
|
|
|
|
83
|
|
|
562
|
|
|
|
|
|
|
# dvdp: take advantage of negative indexing in Perl |
|
563
|
37
|
|
|
|
|
35
|
my $n2 = $n - @{$coords} + 1; |
|
|
37
|
|
|
|
|
46
|
|
|
564
|
37
|
|
|
|
|
56
|
my $n3 = $n - 1; |
|
565
|
37
|
|
|
|
|
44
|
my $Ax1 = ${$coords}[$n][0]; # Line leaving point |
|
|
37
|
|
|
|
|
51
|
|
|
566
|
37
|
|
|
|
|
107
|
my $Ay1 = ${$coords}[$n][1]; # this is the one belonging to the point |
|
|
37
|
|
|
|
|
44
|
|
|
567
|
37
|
|
|
|
|
32
|
my $Ax2 = ${$coords}[$n2][0]; |
|
|
37
|
|
|
|
|
47
|
|
|
568
|
37
|
|
|
|
|
35
|
my $Ay2 = ${$coords}[$n2][1]; |
|
|
37
|
|
|
|
|
43
|
|
|
569
|
37
|
|
|
|
|
40
|
my $delAx = $Ax2 - $Ax1; |
|
570
|
37
|
|
|
|
|
38
|
my $delAy = $Ay2 - $Ay1; |
|
571
|
37
|
|
|
|
|
30
|
my $Bx1 = ${$coords}[$n3][0]; # Line coming to point n |
|
|
37
|
|
|
|
|
88
|
|
|
572
|
37
|
|
|
|
|
32
|
my $By1 = ${$coords}[$n3][1]; |
|
|
37
|
|
|
|
|
46
|
|
|
573
|
37
|
|
|
|
|
35
|
my $Bx2 = ${$coords}[$n][0]; |
|
|
37
|
|
|
|
|
41
|
|
|
574
|
37
|
|
|
|
|
31
|
my $By2 = ${$coords}[$n][1]; |
|
|
37
|
|
|
|
|
43
|
|
|
575
|
37
|
|
|
|
|
44
|
my $delBx = $Bx2 - $Bx1; |
|
576
|
37
|
|
|
|
|
34
|
my $delBy = $By2 - $By1; |
|
577
|
|
|
|
|
|
|
# dvdp remove coinciding points |
|
578
|
37
|
50
|
66
|
|
|
223
|
if ( ((abs($delAx) < $delta) && (abs($delAy) < $delta)) || |
|
|
|
|
66
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
579
|
|
|
|
|
|
|
((abs($delBx) < $delta) && (abs($delBy) < $delta)) ) { |
|
580
|
0
|
|
|
|
|
0
|
splice @{$coords},$n,1; |
|
|
0
|
|
|
|
|
0
|
|
|
581
|
0
|
|
|
|
|
0
|
next; |
|
582
|
|
|
|
|
|
|
} |
|
583
|
37
|
|
|
|
|
57
|
my $theta_A = atan2($delAy,$delAx); # Angle of leaving line |
|
584
|
37
|
|
|
|
|
58
|
my $theta_B = atan2($delBy,$delBx); # Angle of coming line |
|
585
|
37
|
|
|
|
|
41
|
my $theta_AB = $theta_A - $theta_B; |
|
586
|
37
|
100
|
|
|
|
56
|
if ($theta_AB < -(pi)) { |
|
|
|
50
|
|
|
|
|
|
|
587
|
6
|
|
|
|
|
9
|
$theta_AB += 2 * (pi); |
|
588
|
|
|
|
|
|
|
} |
|
589
|
|
|
|
|
|
|
elsif ($theta_AB > (pi)) { |
|
590
|
0
|
|
|
|
|
0
|
$theta_AB -= 2 * (pi); |
|
591
|
|
|
|
|
|
|
} |
|
592
|
37
|
50
|
|
|
|
63
|
if( (abs($theta_AB - (pi)) < $delta) ) { |
|
593
|
0
|
|
|
|
|
0
|
splice @{$coords},$n,1; |
|
|
0
|
|
|
|
|
0
|
|
|
594
|
0
|
0
|
|
|
|
0
|
$n and $n--; # need to recalc thetas if spike removed ! |
|
595
|
0
|
|
|
|
|
0
|
next; |
|
596
|
|
|
|
|
|
|
} |
|
597
|
37
|
|
|
|
|
37
|
${$thetas}[$n] = $theta_A; |
|
|
37
|
|
|
|
|
56
|
|
|
598
|
37
|
|
|
|
|
41
|
${$del_theta}[$n] = $theta_AB; |
|
|
37
|
|
|
|
|
47
|
|
|
599
|
37
|
|
|
|
|
47
|
$n++ |
|
600
|
|
|
|
|
|
|
} |
|
601
|
|
|
|
|
|
|
} # End _find_direction sub |
|
602
|
|
|
|
|
|
|
######################################################################### |
|
603
|
|
|
|
|
|
|
# Determines if a pair of line segments have an intersection. |
|
604
|
|
|
|
|
|
|
sub _do_cross { |
|
605
|
212
|
|
|
212
|
|
314
|
my ($Ax1,$Ay1,$Ax2,$Ay2,$Bx1,$By1,$Bx2,$By2) = @_; |
|
606
|
|
|
|
|
|
|
# Calculate four relevant minor determinants |
|
607
|
212
|
|
|
|
|
308
|
my $det_123=($Ax2 - $Ax1)*($By1 - $Ay1) - ($Bx1 - $Ax1)*($Ay2 - $Ay1); |
|
608
|
212
|
|
|
|
|
292
|
my $det_124=($Ax2 - $Ax1)*($By2 - $Ay1) - ($Bx2 - $Ax1)*($Ay2 - $Ay1); |
|
609
|
212
|
|
|
|
|
262
|
my $det_341=($Bx1 - $Ax1)*($By2 - $Ay1) - ($Bx2 - $Ax1)*($By1 - $Ay1); |
|
610
|
212
|
|
|
|
|
227
|
my $det_342 =$det_123-$det_124+$det_341; |
|
611
|
212
|
100
|
100
|
|
|
648
|
if( ($det_123*$det_124 > 0) || ($det_341*$det_342 > 0) ) { |
|
612
|
160
|
|
|
|
|
373
|
return(0); # segments only intersect if the above two products are both negative |
|
613
|
|
|
|
|
|
|
} |
|
614
|
|
|
|
|
|
|
else { |
|
615
|
52
|
|
|
|
|
121
|
return(1); |
|
616
|
|
|
|
|
|
|
} |
|
617
|
|
|
|
|
|
|
} # End _do_cross subroutine definition |
|
618
|
|
|
|
|
|
|
######################################################################## |
|
619
|
|
|
|
|
|
|
|
|
620
|
|
|
|
|
|
|
1; |