|  line  | 
 stmt  | 
 bran  | 
 cond  | 
 sub  | 
 pod  | 
 time  | 
 code  | 
| 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 package Statistics::Reproducibility;  | 
| 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
3
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
40041
 | 
 use 5.006;  | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
4
 | 
    | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
245
 | 
    | 
| 
4
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
6
 | 
 use strict;  | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
    | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
43
 | 
    | 
| 
5
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
6
 | 
 use warnings FATAL => 'all';  | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
14
 | 
    | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
56
 | 
    | 
| 
6
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
5
 | 
 use Carp;  | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
    | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
1697
 | 
    | 
| 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #use Math::Geometry::Multidimensional qw/distanceToLineN diagonalComponentsN diagonalDistancesFromOriginN/;  | 
| 
9
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
1637
 | 
 use Statistics::TheilSenEstimator qw/theilsen/;  | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3869
 | 
    | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
67
 | 
    | 
| 
10
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
8
 | 
 use Statistics::QuickMedian qw/qmedian/;  | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
    | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
36
 | 
    | 
| 
11
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
1122
 | 
 use Statistics::Distributions;  | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5815
 | 
    | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
7738
 | 
    | 
| 
12
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
13
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 NAME  | 
| 
14
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
15
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Statistics::Reproducibility - Reproducibility measurement between multiple replicate experiments  | 
| 
16
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
17
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 VERSION  | 
| 
18
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
19
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Version 0.09  | 
| 
20
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
21
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
22
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
23
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 our $VERSION = '0.09';  | 
| 
24
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
25
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
26
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 SYNOPSIS  | 
| 
27
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
28
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This module facilitates investigation of reproducbility between multiple replicates of  | 
| 
29
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 quantitative experiments e.g. SILAC or microarray.  Scatter plots are great, but  | 
| 
30
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 only 2d.  Some people use correlation as a proxy for reproducibility, but it's not right.  | 
| 
31
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This module helps you through the following items...  | 
| 
32
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
33
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 1) Summarize reproducibility across the replicates  | 
| 
34
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 2) Pick out replicates that agree more or less  | 
| 
35
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 3) Summarize reproducibility for individual proteins/genes/whatever  | 
| 
36
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 4) Set a cutoff for what you can call significant, based on precision  | 
| 
37
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 5) Deal with missing values (common in SILAC)  | 
| 
38
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
39
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This works by going through the following steps:  | 
| 
40
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
41
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (0) Choose a dataset to compare everything else to (the middlemost)  | 
| 
42
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 1) Put the middle of the data at (0,0,0,0...) by subtracting the median ... report the median  | 
| 
43
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 2) Rotate the data so the line x=y=z=... lies on a single axis.  The data should be spread along this axis.  | 
| 
44
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 3) Do regression on the data and work out "wrongness" of each replicate (!)  | 
| 
45
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 4) Calculate and report ratio variance and imprecision variance  | 
| 
46
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 5) Report combined ratio and error for each protein/gene/whatever  | 
| 
47
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
48
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Perhaps a little code snippet.  | 
| 
49
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
50
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     use Statistics::Reproducibility;  | 
| 
51
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
52
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $r = Statistics::Reproducibility->new();  | 
| 
53
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
54
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 SUBROUTINES/METHODS  | 
| 
55
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
56
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 new  | 
| 
57
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
58
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
59
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
60
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub new {  | 
| 
61
 | 
0
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
 
 | 
     my $p = shift;  | 
| 
62
 | 
0
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
     my $c = ref $p || $p;  | 
| 
63
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $o = {  | 
| 
64
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         # scalars:  | 
| 
65
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         comparatorIndex  => 0,            # index of column used to compare  | 
| 
66
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         k => '',                     # number of columns  | 
| 
67
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         n => '',                    # number of rows  | 
| 
68
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         vE => '',                  # variance of "error" (imprecision)  | 
| 
69
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         vS => '',                  # variable of experimental spread  | 
| 
70
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         sdE => '',                # s.d. error  | 
| 
71
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         sdS => '',                # s.d. spread  | 
| 
72
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         derivedFrom => '',     # the object derived from  | 
| 
73
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         derivedReason => '', # the reason the object was derived (e.g. deDiagonalize)  | 
| 
74
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
           | 
| 
75
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         # arrays (foreach column)  | 
| 
76
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         'm'  => [],                 # regression denominator   | 
| 
77
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         'c'  => [],                 # regression constant   | 
| 
78
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         # arrays (foreach row)  | 
| 
79
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         pee => '',                # p-value of error   | 
| 
80
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         pss => '',                # p-value of spread  | 
| 
81
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         pes => '',                # p-value of error over spread (??)  | 
| 
82
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         pse => '',                # p-value of spread over error  | 
| 
83
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
           | 
| 
84
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         # 2D array (LoL)  | 
| 
85
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         data => [],  | 
| 
86
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
           | 
| 
87
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         #meta info  | 
| 
88
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         copyOnDerive => [qw/comparatorIndex k n vE vS sdE sdS m c pee pss pes pse copyOnDerive obs/]  | 
| 
89
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     };  | 
| 
90
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     bless $o, $c;  | 
| 
91
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     return $o;      | 
| 
92
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
93
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
94
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 derive  | 
| 
95
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
96
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 derives a new object from an old one... some fields are conserved.  | 
| 
97
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Warning: references are copied, so m and c point to the same arrays!  | 
| 
98
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 However, if you run regression() again, they will point to new arrays.  | 
| 
99
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Data is set up with k empty columns.  | 
| 
100
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
101
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
102
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
103
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub derive {  | 
| 
104
 | 
0
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
 
 | 
     my ($o,$reason) = @_;  | 
| 
105
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $r = $o->new;  | 
| 
106
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     foreach (@{$o->{copyOnDerive}}){  | 
| 
 
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
107
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         $r->{$_} = $o->{$_};  | 
| 
108
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
109
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $r->{derivedFrom} = $o;  | 
| 
110
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $r->{derivedReason} = $reason;  | 
| 
111
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $r->{data} = [map {[]} (0..$o->{k}-1)];  | 
| 
 
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
112
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     return $r;  | 
| 
113
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
114
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
115
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 data  | 
| 
116
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
117
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Set the data.  Should be rectangular, i.e. all columns the same length, and   | 
| 
118
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 we'll check it is and croak if not...   | 
| 
119
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 but can contain "empty" cells (empty string), which represent missing values  | 
| 
120
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 in the data.  | 
| 
121
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
122
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 returns the object for chaining.  | 
| 
123
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
124
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
125
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
126
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub data {  | 
| 
127
 | 
0
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
 
 | 
     my ($o,@columns) = @_;  | 
| 
128
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $o->{data} = [@columns];  | 
| 
129
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $o->{k} = @columns;  | 
| 
130
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $o->{n} = @{$columns[0]};  | 
| 
 
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
131
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     foreach (1 .. $o->{k}-1){  | 
| 
132
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         croak "columns different lengths!"  | 
| 
133
 | 
0
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         unless @{$columns[$_]} == $o->{n};  | 
| 
134
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
135
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     return $o;  | 
| 
136
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
137
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
138
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 run  | 
| 
139
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
140
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 runs a recommended workflow.  it's a shortcut for:  | 
| 
141
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
142
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
143
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $m = $r->subtractMedian();  | 
| 
144
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $m->middlemostColumn();  | 
| 
145
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $d = $m->deDiagonalize();  | 
| 
146
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $d -> regression();  | 
| 
147
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $e = $d->rotateToRegressionLine();  | 
| 
148
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $e->variances();  | 
| 
149
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
150
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 It returns the last object. So you could do:  | 
| 
151
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
152
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $results = Statistics::Reproducibility  | 
| 
153
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         ->new()  | 
| 
154
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         ->data($mydata)  | 
| 
155
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         ->run()  | 
| 
156
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         ->printableTable($depth);  | 
| 
157
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
158
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
159
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
160
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub run {  | 
| 
161
 | 
0
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
 
 | 
     my $r = shift;  | 
| 
162
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #    $r->data([qw/1 2 3 4 5 6 7 8/],[qw/0 1 2 3 4 5 6 7/],[qw/2.1 3.2 4.3 5.4 6.5 7.6 8.7 9.8/]);  | 
| 
163
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         $r->countObservations();  | 
| 
164
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $r->regression();  | 
| 
165
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $m = $r->subtractMedian();  | 
| 
166
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         $m->applyMinimumObservations(2);  | 
| 
167
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $m->middlemostColumn();  | 
| 
168
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $d = $m->deDiagonalize();  | 
| 
169
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         $d->applyMinimumObservations(2);  | 
| 
170
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $d->regression();  | 
| 
171
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $e = $d->rotateToRegressionLine();  | 
| 
172
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         $e->applyMinimumObservations(2);  | 
| 
173
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $e->variances();  | 
| 
174
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     return $e;  | 
| 
175
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
176
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
177
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 subtractMedian  | 
| 
178
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
179
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 calculates the median for each column, substracts from each column and  | 
| 
180
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 returns the new object.  | 
| 
181
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
182
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
183
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
184
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub subtractMedian {  | 
| 
185
 | 
0
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
 
 | 
     my $o = shift;  | 
| 
186
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $r = $o->derive('subtractMedian');  | 
| 
187
 | 
0
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my @medians = map {qmedian([map {$_ eq '' ? () : $_} @$_])} @{$o->{data}};  | 
| 
 
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
 
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
 
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
188
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     foreach my $i(0..$#medians){  | 
| 
189
 | 
0
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         $r->{data}->[$i] = [map {$_ eq '' ? '' : $_ - $medians[$i]} @{$o->{data}->[$i]}];  | 
| 
 
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
 
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
190
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
191
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $r->{medians} = \@medians;  | 
| 
192
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     return $r;  | 
| 
193
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
194
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
195
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 middlemostColumn  | 
| 
196
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
197
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Calculates which of the columns is middlemost and remembers it so all   | 
| 
198
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 others are compared to it.  This can be done instead of using a constructed  | 
| 
199
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 median dataset as the comparator so that the constructed one does not add to  | 
| 
200
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 the spread, and does not contribute to the observation count.  | 
| 
201
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
202
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Note: the method of scoring the columns involves counting which has  | 
| 
203
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 the most middlemost values. For two columns only, the result will always  | 
| 
204
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 be the one with the least missing values.  I don't think there's anything  | 
| 
205
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 wrong with that, but just so you know!  | 
| 
206
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
207
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
208
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
209
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub middlemostColumn {  | 
| 
210
 | 
0
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
 
 | 
     my $o = shift;  | 
| 
211
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # which is the middle most column? i.e. who has the most medians?  | 
| 
212
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
213
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my @medianCounts = map {0} (1..$o->{k}); # stash counts  | 
| 
 
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
214
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
215
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     foreach my $i(0..$o->{n}-1){ # each row  | 
| 
216
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         my @row = ();  | 
| 
217
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         foreach my $j(0..$o->{k}-1){  | 
| 
218
 | 
0
 | 
  
  0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
             if(defined $o->{data}->[$j]->[$i]  | 
| 
219
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                     && $o->{data}->[$j]->[$i] ne ''){  | 
| 
220
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 push @row, $o->{data}->[$j]->[$i];  | 
| 
221
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             }  | 
| 
222
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         }  | 
| 
223
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         # who's in the middle?  | 
| 
224
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         foreach(medianI(@row)){  | 
| 
225
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             $medianCounts[$_] ++;  | 
| 
226
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         }  | 
| 
227
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
228
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
229
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # which has the most middlemost values?  | 
| 
230
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $imax = 0;  | 
| 
231
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $max = 0;  | 
| 
232
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     foreach my $i(0..$o->{k}-1){  | 
| 
233
 | 
0
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         if($medianCounts[$i] > $max){  | 
| 
234
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             $imax = $i;  | 
| 
235
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             $max = $medianCounts[$i];  | 
| 
236
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         }  | 
| 
237
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
238
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
239
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # so now we want to put this column on the left?  Or should we just  | 
| 
240
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # store that we're going to use this one as the comparator?  | 
| 
241
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $o->{comparatorIndex} = $imax;  | 
| 
242
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     return $imax;  | 
| 
243
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
244
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
245
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 constructMedianLeft  | 
| 
246
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
247
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Make a median column and pop it on the left. Note that the  | 
| 
248
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 regular median is used here, not the Quick Median estimator.  This means  | 
| 
249
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 that for an even number of observations, the mean of the two middlemost is   | 
| 
250
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 used, which is not the case for Quick Median.  | 
| 
251
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
252
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
253
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
254
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub constructMedianLeft {  | 
| 
255
 | 
0
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
 
 | 
     my $o = shift;  | 
| 
256
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my @newcol = ();  | 
| 
257
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     foreach my $i(0..$o->{n}-1){  | 
| 
258
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         my @row = ();  | 
| 
259
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         foreach my $j(0..$o->{k}-1){  | 
| 
260
 | 
0
 | 
  
  0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
             if(defined $o->{data}->[$i]->[$j]  | 
| 
261
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                     && $o->{data}->[$i]->[$j] ne ''){  | 
| 
262
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 push @row, $o->{data}->[$i]->[$j];  | 
| 
263
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             }  | 
| 
264
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         }  | 
| 
265
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         push @newcol, median(@row);  | 
| 
266
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
267
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     unshift @{$o->{data}}, \@newcol;  | 
| 
 
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
268
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     return \@newcol;  | 
| 
269
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
270
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
271
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 deDiagonalize  | 
| 
272
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
273
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Replicated data with some spread will naturally lie along the diagonal line,  | 
| 
274
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 y=x (in 2 dimensions, or z=y=x... in more).  This function aligns the data   | 
| 
275
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 along one axis by rotation.  This is done so that (a) errors are measured  | 
| 
276
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 approximately perpendicular to the spread of data and (b) unspread data   | 
| 
277
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (a ball of points) gives a gradient of zero in Theil Sen estimator, which is  | 
| 
278
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 correct because if there's no experimental spread then there can be no  | 
| 
279
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 evidence that the replicates disagree.  | 
| 
280
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
281
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Note: at this point, any missing values are REPLACED BY ZEROS!  This means  | 
| 
282
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 that these data point will not disagree with any "unchanging" data, but they  | 
| 
283
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 will not support the reproducibility of "changed" data (data for proteins/genes)  | 
| 
284
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 that are regulated).  The effect of this is that those points will not appear as  | 
| 
285
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 extreme in the output and will also have a larger error associated with them.  | 
| 
286
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
287
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 A NEW object is returned! comparatorIndex is honoured and conserved,  | 
| 
288
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 meaning that if you ran middlemostColumn, the result is the column used  | 
| 
289
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 as the Y axis in all comparisons, and the column itself will contain the  | 
| 
290
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 experimental variance.  | 
| 
291
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
292
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut   | 
| 
293
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
294
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub deDiagonalize {  | 
| 
295
 | 
0
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
 
 | 
     my $o = shift;  | 
| 
296
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $r = $o->derive('deDiagonalize');  | 
| 
297
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
298
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $ic = $o->{comparatorIndex};  | 
| 
299
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
300
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $a = atan2(1,1);  | 
| 
301
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
302
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     foreach my $i(0..$o->{k}-1){  | 
| 
303
 | 
0
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         next if $i == $ic;  | 
| 
304
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         foreach my $j(0..$o->{n}-1){  | 
| 
305
 | 
0
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
             my $y = $o->{data}->[$i]->[$j] || 0;  | 
| 
306
 | 
0
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
             my $x = $o->{data}->[$ic]->[$j] || 0;  | 
| 
307
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
308
 | 
0
 | 
  
  0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
             if($y || $x){  | 
| 
309
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 my $t = atan2($y,$x) - $a;  | 
| 
310
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 my $r = sqrt($x**2 + $y**2);  | 
| 
311
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 ($x,$y) = ($r*cos($t), $r*sin($t));  | 
| 
312
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             }  | 
| 
313
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
314
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             $r->{data}->[$i]->[$j] = $y;  | 
| 
315
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             $r->{data}->[$ic]->[$j] = $x;  | 
| 
316
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         }  | 
| 
317
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
318
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
        # $r->{data}->[$i] = diagonalComponentsN(  | 
| 
319
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
        #     $o->{data}->[$i], $o->{data}->[$ic]  | 
| 
320
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
        # )  | 
| 
321
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
322
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
323
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     #$r->{data}->[$ic] = diagonalDistancesFromOriginN(  | 
| 
324
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     #    $o->{k}, $o->{n}, @{$o->{data}}  | 
| 
325
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     #);  | 
| 
326
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     return $r;  | 
| 
327
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
328
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
329
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 countObservations  | 
| 
330
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
331
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Counts the number of observations present in each point and stores in obs.  | 
| 
332
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The result is used by applyMinimumObservations to check for unwanted data  | 
| 
333
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 before a processing event which turns empties into zeros (like deDiagonalize).  | 
| 
334
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
335
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
336
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
337
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub countObservations {  | 
| 
338
 | 
0
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
 
 | 
     my ($o) = @_;  | 
| 
339
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my @obs = ();  | 
| 
340
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     foreach my $j(0..$o->{n}-1){  | 
| 
341
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         my $c = 0;  | 
| 
342
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         foreach my $i(0..$o->{k}-1){  | 
| 
343
 | 
0
 | 
  
  0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
             $c++ if defined $o->{data}->[$i]->[$j] && $o->{data}->[$i]->[$j] ne '';  | 
| 
344
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         }  | 
| 
345
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         push @obs, $c;  | 
| 
346
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
347
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $o->{obs} = \@obs;  | 
| 
348
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
349
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
350
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 applyMinimumObservations  | 
| 
351
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
352
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 A method that blanks any data that does not have a minimum number of  | 
| 
353
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 values, e.g. if the minimum were 2, the point [2,3,undef] would be fine  | 
| 
354
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 but [2,undef,undef] would become [undef,undef,undef]  | 
| 
355
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
356
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
357
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
358
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub applyMinimumObservations {  | 
| 
359
 | 
0
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
 
 | 
     my ($o,$min) = @_;  | 
| 
360
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     foreach my $j(0..$o->{n}-1){  | 
| 
361
 | 
0
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         if($o->{obs}->[$j] < $min){  | 
| 
362
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             foreach my $i(0..$o->{k}-1){  | 
| 
363
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 $o->{data}->[$i]->[$j] = '';  | 
| 
364
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             }  | 
| 
365
 | 
0
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             $o->{d}->[$j] = '' if exists $o->{d};  | 
| 
366
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         }  | 
| 
367
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
368
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
369
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
370
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 regression  | 
| 
371
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
372
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Perform Theil Sen Estimator regression on the data.  The regression is  | 
| 
373
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 done with the comparator on the x axis, but the symmetric parameters  | 
| 
374
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 are returned for the comparator on the y-axis.  | 
| 
375
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
376
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
377
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
378
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub regression {  | 
| 
379
 | 
0
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
 
 | 
     my $o = shift;  | 
| 
380
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my @m = map {1} (0..$o->{k}-1);  | 
| 
 
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
381
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my @c = map {0} (0..$o->{k}-1);  | 
| 
 
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
382
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     foreach my $i(0..$o->{k}-1){  | 
| 
383
 | 
0
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         next if $i == $o->{comparatorIndex};  | 
| 
384
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         my ($m,$c) = theilsen(  | 
| 
385
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             $o->{data}->[$i],  | 
| 
386
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             $o->{data}->[$o->{comparatorIndex}]  | 
| 
387
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         );  | 
| 
388
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         $m[$i] = $m;  | 
| 
389
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         $c[$i] = -$c; # - because we're converting to the inverse symmetric  | 
| 
390
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
391
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $o->{m} = \@m;  | 
| 
392
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $o->{c} = \@c;  | 
| 
393
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     return ($o->{m}, $o->{c});  | 
| 
394
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
395
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
396
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 rotateToRegressionLine  | 
| 
397
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
398
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 do we need this?  | 
| 
399
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
400
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
401
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
402
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub rotateToRegressionLine {  | 
| 
403
 | 
0
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
 
 | 
     my $o = shift;  | 
| 
404
 | 
0
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     croak "looks like regression() has not been called on this object"  | 
| 
405
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         unless defined $o->{c};  | 
| 
406
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
407
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # use distanceToLineN([0,0,0],...) to get middle point of line for distance :-)  | 
| 
408
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     #my $O = [map {0} (1..$o->{k})]; # the origin  | 
| 
409
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     #my @MC = ($o->{m},$o->{c}); # we'll be using this a lot, maybe  | 
| 
410
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
411
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     #my ($dO,$X) = distanceToLineN($O,@MC); # $X is the "centre" of the line  | 
| 
412
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
413
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     ####  | 
| 
414
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $r = $o->derive('rotateToRegressionLine');  | 
| 
415
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
416
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $ic = $o->{comparatorIndex};  | 
| 
417
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
418
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $r->{d} = [];  | 
| 
419
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
420
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     foreach my $j(0..$o->{n}-1){  | 
| 
421
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         foreach my $i(0..$o->{k}-1){  | 
| 
422
 | 
0
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             next if $i == $ic;  | 
| 
423
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
424
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             my $m = $o->{m}->[$i];  | 
| 
425
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             my $c = $o->{c}->[$i];  | 
| 
426
 | 
0
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
             my $y = $o->{data}->[$i]->[$j] || $c;  | 
| 
427
 | 
0
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
             my $x = $o->{data}->[$ic]->[$j] || 0;  | 
| 
428
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             $y -= $c;  | 
| 
429
 | 
0
 | 
  
  0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
             if($y || $x){  | 
| 
430
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 my $a = atan2($m,1);  | 
| 
431
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 my $t = atan2($y,$x) - $a;  | 
| 
432
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 my $r = sqrt($x**2 + $y**2);  | 
| 
433
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 ($x,$y) = ($r*cos($t), $r*sin($t));  | 
| 
434
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             }  | 
| 
435
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
436
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             $r->{data}->[$i]->[$j] = $y;  | 
| 
437
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             $r->{data}->[$ic]->[$j] = $x;  | 
| 
438
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
439
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             #my ($d,$x) = distanceToLineN(  | 
| 
440
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             #    [$o->{data}->[$i]->[$j],$o->{data}->[$ic]->[$j]],  | 
| 
441
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             #    [$o->{m}->[$i], $o->{m}->[$ic]],  | 
| 
442
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             #    [$o->{c}->[$i], $o->{c}->[$ic]]  | 
| 
443
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             #);  | 
| 
444
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             #my $icv = $o->{data}->[$ic]->[$j] || 0;  | 
| 
445
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             #my $iv = $o->{data}->[$i]->[$j] || 0;  | 
| 
446
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             #if($icv < $iv){  | 
| 
447
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             #    $d *= -1;  | 
| 
448
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             #}  | 
| 
449
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             #$r->{data}->[$i]->[$j] = $d;  | 
| 
450
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         }  | 
| 
451
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
           | 
| 
452
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         my $sumOfSquares = 0;  | 
| 
453
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         my $sumOfValues = 0;  | 
| 
454
 | 
0
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         $sumOfSquares += $_ foreach map {$_ == $ic ? () : $r->{data}->[$_]->[$j] ** 2} (0..$o->{k}-1);  | 
| 
 
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
455
 | 
0
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         $sumOfValues += $_ foreach map {$_ == $ic ? () : $r->{data}->[$_]->[$j]} (0..$o->{k}-1);  | 
| 
 
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
456
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         my $rootsumsquares = sqrt($sumOfSquares);  | 
| 
457
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         #my ($d,$x) = distanceToLineN(  | 
| 
458
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         #    [@coords], @MC  | 
| 
459
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         #);  | 
| 
460
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         # give the distance a sign too!  | 
| 
461
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         #my $ss = 0;  | 
| 
462
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         #foreach my $i(0..$r->{k}-1){  | 
| 
463
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         #    $ss += $r->{data}->[$i]->[$j] * $r->{m}->[$i];  | 
| 
464
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         #}  | 
| 
465
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
466
 | 
0
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         $rootsumsquares *= -1 if $sumOfValues < 0;  | 
| 
467
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
468
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         push @{$r->{d}}, $rootsumsquares; # distance to line  | 
| 
 
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
469
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
           | 
| 
470
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         #my $ss = 0; # sum of squares  | 
| 
471
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         #foreach my $i(0..$o->{k}-1){  | 
| 
472
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         #    my $xi = $X->[$i] || 0;  | 
| 
473
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         #    my $di = $o->{data}->[$i]->[$j] || 0;  | 
| 
474
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         #    $ss += ($xi - $di)**2  | 
| 
475
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         #}  | 
| 
476
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         #  | 
| 
477
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         #$r->{data}->[$ic]->[$j] = sqrt($ss); # distance to center of line  | 
| 
478
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
           | 
| 
479
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
480
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
481
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
482
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     return $r;  | 
| 
483
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
484
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
485
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 variances  | 
| 
486
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
487
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Calculate variances... i.e. distances from the origin along the line of   | 
| 
488
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 regression, and distances from the line of regression.  This is just like  | 
| 
489
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 deDiagonalise, except that only two columns are returned.    | 
| 
490
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
491
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
492
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
493
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub variances {  | 
| 
494
 | 
0
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
 
 | 
     my $o = shift;  | 
| 
495
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $S; # experimental spread  | 
| 
496
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $E; # imprecision  | 
| 
497
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $df = 0;  | 
| 
498
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $ic = $o->{comparatorIndex};  | 
| 
499
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # we can give a value for how likely a point is to be there by imprecision alone  | 
| 
500
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     foreach my $j(0..$o->{n}-1){  | 
| 
501
 | 
0
 | 
  
  0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
         if($o->{d}->[$j] ne '' && $o->{data}->[$ic]->[$j] ne ''){  | 
| 
502
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             $E += $o->{d}->[$j] ** 2;  | 
| 
503
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             $S += $o->{data}->[$ic]->[$j] ** 2;  | 
| 
504
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             $df ++;  | 
| 
505
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         }  | 
| 
506
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
507
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $E /= $df;  | 
| 
508
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $S /= $df;  | 
| 
509
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $sdE = sqrt($E);  | 
| 
510
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $sdS = sqrt($S);  | 
| 
511
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $o->{vE} = $E;  | 
| 
512
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $o->{vS} = $S;  | 
| 
513
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $o->{sdE} = $sdE;  | 
| 
514
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $o->{sdS} = $sdS;  | 
| 
515
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
516
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $o->{pee} = [];  | 
| 
517
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $o->{pss} = [];  | 
| 
518
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $o->{pes} = [];  | 
| 
519
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $o->{pse} = [];  | 
| 
520
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     foreach my $j(0..$o->{n}-1){  | 
| 
521
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         my ($pee,$pes,$pss,$pse) = ('','','','');  | 
| 
522
 | 
0
 | 
  
  0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
         if($o->{d}->[$j] ne '' && $o->{data}->[$ic]->[$j] ne ''){  | 
| 
523
 | 
0
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             $pee = $sdE ?  | 
| 
524
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 Statistics::Distributions::tprob ($df,$o->{d}->[$j] / $sdE)  | 
| 
525
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 : 1;  | 
| 
526
 | 
0
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             $pes = $sdS ?  | 
| 
527
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 Statistics::Distributions::tprob ($df,$o->{d}->[$j] / $sdS)  | 
| 
528
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 : 1;  | 
| 
529
 | 
0
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             $pss = $sdS ?  | 
| 
530
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 Statistics::Distributions::tprob ($df,$o->{data}->[$ic]->[$j] / $sdS)  | 
| 
531
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 : 1;  | 
| 
532
 | 
0
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             $pse = $sdE ?  | 
| 
533
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 Statistics::Distributions::tprob ($df,$o->{data}->[$ic]->[$j] / $sdE)  | 
| 
534
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 : 1;  | 
| 
535
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         }  | 
| 
536
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         push @{$o->{pee}}, $pee;  | 
| 
 
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
537
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         push @{$o->{pes}}, $pes;  | 
| 
 
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
538
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         push @{$o->{pss}}, $pss;  | 
| 
 
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
539
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         push @{$o->{pse}}, $pse;  | 
| 
 
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
540
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
541
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     return ($S,$E);  | 
| 
542
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
543
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
544
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 printableTable, printTable  | 
| 
545
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
546
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 printableTable returns all available relevant info in a table  | 
| 
547
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 printTable prints all available relevant info in a table  | 
| 
548
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
549
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 the firts element returned is a list of columns.  the rest are the columns.  | 
| 
550
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
551
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 data stored are:  | 
| 
552
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
553
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # scalars:  | 
| 
554
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     comparatorIndex             # index of column used to compare  | 
| 
555
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     k  | 
| 
556
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     n  | 
| 
557
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     vE                          # variance of "error" (imprecision)  | 
| 
558
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     vS                          # variable of experimental spread  | 
| 
559
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     sdE                         # s.d. error  | 
| 
560
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     sdS                         # s.d. spread  | 
| 
561
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
562
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # arrays (foreach column)  | 
| 
563
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     m                           # regression denominator   | 
| 
564
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     c                           # regression constant   | 
| 
565
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # arrays (foreach row)  | 
| 
566
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     d                           # distance from regression line  | 
| 
567
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     pee                         # p-value of error   | 
| 
568
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     pss                         # p-value of spread  | 
| 
569
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     pes                         # p-value of error over spread (??)  | 
| 
570
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     pse                         # p-value of spread over error  | 
| 
571
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
572
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # 2D array (LoL)  | 
| 
573
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     data  | 
| 
574
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
575
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     note that the distance from the center of the distribution  | 
| 
576
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     is given by the values in data[comparatorIndex]  | 
| 
577
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
578
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 These methods take a single argumen: depth.  Every time an object is  | 
| 
579
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 derived from another (subtractMedian, deDiagonalize and   | 
| 
580
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 rotateToRegressionLine all do this) the old object is referenced, and  | 
| 
581
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 you can include the last $depth objects in the output.  Set depth to -1  | 
| 
582
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 to include all objects.  | 
| 
583
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
584
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
585
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
586
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub printableTable {  | 
| 
587
 | 
0
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
 
 | 
     my ($o,$deep) = @_;  | 
| 
588
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my @header = (qw/Statistic Value/, map {"Column $_"} (1..$o->{k}));  | 
| 
 
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
589
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
590
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my @statistics = ();  | 
| 
591
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my @values = ();  | 
| 
592
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
593
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my @statkeys = qw/comparatorIndex k n vE vS sdE sdS/;  | 
| 
594
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my @statnames = qw/CompareColumn Columns Rows ErrorVariance SpreadVariance ErrorSD SpreadSD/;  | 
| 
595
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     foreach (0..$#statkeys){  | 
| 
596
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         my $statkey = $statkeys[$_];  | 
| 
597
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         my $statname = $statnames[$_];  | 
| 
598
 | 
0
 | 
  
  0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
         if(defined $o->{$statkey} && $o->{$statkey} ne ''){  | 
| 
599
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             push @statistics, $statname;  | 
| 
600
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             push @values, $o->{$statkey};  | 
| 
601
 | 
0
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             if($statkey eq 'comparatorIndex'){  | 
| 
602
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 $values[$#values] ++; # 1-based!  | 
| 
603
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             }  | 
| 
604
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         }  | 
| 
605
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
606
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
607
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my @printData = (\@statistics, \@values, @{$o->{data}});  | 
| 
 
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
608
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
609
 | 
0
 | 
  
  0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
     if(ref $o->{m} && @{$o->{m}} ){  | 
| 
 
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
610
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         push @header, 'Regression','M','C';  | 
| 
611
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         push @printData, [map {"Column $_"} (1..$o->{k})];  | 
| 
 
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
612
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         push @printData, $o->{m}, $o->{c};  | 
| 
613
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
614
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
615
 | 
0
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     if(ref $o->{d}){  | 
| 
616
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         push @header, 'DistanceToRegressionLine';  | 
| 
617
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         push @printData, $o->{d};  | 
| 
618
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
619
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
620
 | 
0
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     if(ref $o->{pee}){  | 
| 
621
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         push @header, 'ErrorPvalue';  | 
| 
622
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         push @printData, $o->{pee};  | 
| 
623
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
           | 
| 
624
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         push @header, 'SpreadPvalue';  | 
| 
625
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         push @printData, $o->{pss};  | 
| 
626
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
           | 
| 
627
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         push @header, 'ErrorOverSpreadPvalue';  | 
| 
628
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         push @printData, $o->{pes};  | 
| 
629
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
           | 
| 
630
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         push @header, 'SpreadOverErrorPvalue';  | 
| 
631
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         push @printData, $o->{pse};  | 
| 
632
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
633
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
634
 | 
0
 | 
  
  0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
     if($deep && ref($o->{derivedFrom})){  | 
| 
635
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         push @header, 'DerivedFrom';  | 
| 
636
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         push @printData, [$o->{derivedReason}];  | 
| 
637
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         my $d = $o->{derivedFrom}->printableTable($deep-1);  | 
| 
638
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         my ($dh,@dcols) = @$d;  | 
| 
639
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         push @header, @$dh;  | 
| 
640
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         push @printData, @dcols;  | 
| 
641
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
642
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
643
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     return [\@header, @printData];  | 
| 
644
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
645
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
646
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub printTable {  | 
| 
647
 | 
0
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
 
 | 
     my ($o,$deep) = @_;  | 
| 
648
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $pt = $o->printableTable($deep);  | 
| 
649
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # lets assume that n > number of statistics!  | 
| 
650
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $n = $o->{n};  | 
| 
651
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $w = @$pt;  | 
| 
652
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     print join("\t", @{$pt->[0]})."\n";  | 
| 
 
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
653
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     foreach my $j(0..$n-1){  | 
| 
654
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         my @row = ();  | 
| 
655
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         foreach my $i(1..$w-1){  | 
| 
656
 | 
0
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             my $val = defined $pt->[$i]->[$j] ? $pt->[$i]->[$j] : '';  | 
| 
657
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             push @row, $val;  | 
| 
658
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         }  | 
| 
659
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         print join("\t", @row)."\n";  | 
| 
660
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
661
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
662
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
663
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 just some wee helper functions...  | 
| 
664
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
665
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 median  | 
| 
666
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
667
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 yes this probably exists in other modules, but I didn't want to pull in a whole  | 
| 
668
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 module for just one funciton.  Anyway, this is an inefficient version for small  | 
| 
669
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 numbers of data.  It sorts the list and then uses middle() to find the middle of  | 
| 
670
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 the sorted list.  | 
| 
671
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
672
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
673
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
674
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub median {  | 
| 
675
 | 
0
 | 
  
  0
  
 | 
  
  0
  
 | 
  
0
  
 | 
  
1
  
 | 
 
 | 
 	my @r = sort {$a<=>$b} map {defined && /\d/ ? $_ : ()} @_;  | 
| 
 
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
 
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
676
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	return middle(@r);  | 
| 
677
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
678
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
679
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 medianN  | 
| 
680
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
681
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Like median, but for an even list is returns the two middlemost values.  | 
| 
682
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This version is used in medianI.  | 
| 
683
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
684
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
685
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
686
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub medianN {  | 
| 
687
 | 
0
 | 
  
  0
  
 | 
  
  0
  
 | 
  
0
  
 | 
  
1
  
 | 
 
 | 
 	my @r = sort {$a<=>$b} map {defined && /\d/ ? $_ : ()} @_;  | 
| 
 
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
 
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
688
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	return middleN(@r);  | 
| 
689
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
690
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
691
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 medianI  | 
| 
692
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
693
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This uses medianN to get the middlemost value(s) and then returns a list  | 
| 
694
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 of column indices indicating which columns had a middlemost value.  | 
| 
695
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This is used in the medianLeft method when deciding which   | 
| 
696
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 column is middlemost.  | 
| 
697
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
698
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
699
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
700
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub medianI {  | 
| 
701
 | 
0
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
 
 | 
     my @N = medianN(@_);  | 
| 
702
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my @I = ();  | 
| 
703
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     foreach my $i(0..$#_){  | 
| 
704
 | 
0
 | 
  
  0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
         if(defined $_[$i] && $_[$i] ne ''){  | 
| 
705
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             foreach my $n(@N){  | 
| 
706
 | 
0
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 if($n == $_[$i]){  | 
| 
707
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                     push @I, $i;  | 
| 
708
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 }  | 
| 
709
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             }  | 
| 
710
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         }  | 
| 
711
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
712
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     return @I;  | 
| 
713
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
714
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
715
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 middle  | 
| 
716
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
717
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 middle returns the middlemost item in a list, or the mean average of the two  | 
| 
718
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 middlemost items.  It doesn't sort the list first.  | 
| 
719
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
720
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
721
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
722
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub middle {  | 
| 
723
 | 
0
 | 
  
  0
  
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
 
 | 
 	if(@_ % 2){  | 
| 
724
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		return $_[$#_/2];  | 
| 
725
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}  | 
| 
726
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	else {  | 
| 
727
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		return $_[($#_+1)/2]/2 + $_[($#_-1)/2]/2;  | 
| 
728
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}  | 
| 
729
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
730
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
731
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 middleN  | 
| 
732
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
733
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 middleN does like middle, but for even lists, it returns the two middlemost  | 
| 
734
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 items as a list.  This is used by medianN.  | 
| 
735
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
736
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
737
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
738
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub middleN {  | 
| 
739
 | 
0
 | 
  
  0
  
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
 
 | 
     if(@_ % 2){  | 
| 
740
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		return $_[$#_/2];  | 
| 
741
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
742
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	else {  | 
| 
743
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		return ($_[($#_+1)/2], $_[($#_-1)/2]);  | 
| 
744
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}  | 
| 
745
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
746
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
747
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
748
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 AUTHOR  | 
| 
749
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
750
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Jimi Wills, C<<  >>  | 
| 
751
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
752
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 BUGS  | 
| 
753
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
754
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Please report any bugs or feature requests to C, or through  | 
| 
755
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 the web interface at L.  I will be notified, and then you'll  | 
| 
756
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 automatically be notified of progress on your bug as I make changes.  | 
| 
757
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
758
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
759
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
760
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
761
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 SUPPORT  | 
| 
762
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
763
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 You can find documentation for this module with the perldoc command.  | 
| 
764
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
765
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     perldoc Statistics::Reproducibility  | 
| 
766
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
767
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
768
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 You can also look for information at:  | 
| 
769
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
770
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over 4  | 
| 
771
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
772
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item * RT: CPAN's request tracker (report bugs here)  | 
| 
773
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
774
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 L  | 
| 
775
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
776
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item * AnnoCPAN: Annotated CPAN documentation  | 
| 
777
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
778
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 L  | 
| 
779
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
780
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item * CPAN Ratings  | 
| 
781
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
782
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 L  | 
| 
783
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
784
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item * Search CPAN  | 
| 
785
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
786
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 L  | 
| 
787
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
788
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
789
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
790
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
791
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 ACKNOWLEDGEMENTS  | 
| 
792
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
793
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
794
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 LICENSE AND COPYRIGHT  | 
| 
795
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
796
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Copyright 2013 Jimi Wills.  | 
| 
797
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
798
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This program is free software; you can redistribute it and/or modify it  | 
| 
799
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 under the terms of the the Artistic License (2.0). You may obtain a  | 
| 
800
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 copy of the full license at:  | 
| 
801
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
802
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 L  | 
| 
803
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
804
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Any use, modification, and distribution of the Standard or Modified  | 
| 
805
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Versions is governed by this Artistic License. By using, modifying or  | 
| 
806
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 distributing the Package, you accept this license. Do not use, modify,  | 
| 
807
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 or distribute the Package, if you do not accept this license.  | 
| 
808
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
809
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 If your Modified Version has been derived from a Modified Version made  | 
| 
810
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 by someone other than you, you are nevertheless required to ensure that  | 
| 
811
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 your Modified Version complies with the requirements of this license.  | 
| 
812
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
813
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This license does not grant you the right to use any trademark, service  | 
| 
814
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 mark, tradename, or logo of the Copyright Holder.  | 
| 
815
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
816
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This license includes the non-exclusive, worldwide, free-of-charge  | 
| 
817
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 patent license to make, have made, use, offer to sell, sell, import and  | 
| 
818
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 otherwise transfer the Package with respect to any patent claims  | 
| 
819
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 licensable by the Copyright Holder that are necessarily infringed by the  | 
| 
820
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Package. If you institute patent litigation (including a cross-claim or  | 
| 
821
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 counterclaim) against any party alleging that the Package constitutes  | 
| 
822
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 direct or contributory patent infringement, then this Artistic License  | 
| 
823
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 to you shall terminate on the date that such litigation is filed.  | 
| 
824
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
825
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Disclaimer of Warranty: THE PACKAGE IS PROVIDED BY THE COPYRIGHT HOLDER  | 
| 
826
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 AND CONTRIBUTORS "AS IS' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES.  | 
| 
827
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  | 
| 
828
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 PURPOSE, OR NON-INFRINGEMENT ARE DISCLAIMED TO THE EXTENT PERMITTED BY  | 
| 
829
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 YOUR LOCAL LAW. UNLESS REQUIRED BY LAW, NO COPYRIGHT HOLDER OR  | 
| 
830
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 CONTRIBUTOR WILL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, OR  | 
| 
831
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 CONSEQUENTIAL DAMAGES ARISING IN ANY WAY OUT OF THE USE OF THE PACKAGE,  | 
| 
832
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  | 
| 
833
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
834
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
835
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
836
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
837
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 1; # End of Statistics::Reproducibility  |