| blib/lib/Statistics/ANOVA/EffectSize.pm | |||
|---|---|---|---|
| Criterion | Covered | Total | % |
| statement | 34 | 47 | 72.3 |
| branch | 4 | 14 | 28.5 |
| condition | n/a | ||
| subroutine | 14 | 20 | 70.0 |
| pod | 7 | 7 | 100.0 |
| total | 59 | 88 | 67.0 |
| line | stmt | bran | cond | sub | pod | time | code |
|---|---|---|---|---|---|---|---|
| 1 | package Statistics::ANOVA::EffectSize; | ||||||
| 2 | |||||||
| 3 | 2 | 2 | 27869 | use 5.006; | |||
| 2 | 5 | ||||||
| 4 | 2 | 2 | 6 | use strict; | |||
| 2 | 2 | ||||||
| 2 | 42 | ||||||
| 5 | 2 | 2 | 7 | use warnings; | |||
| 2 | 1 | ||||||
| 2 | 54 | ||||||
| 6 | 2 | 2 | 7 | use base qw(Statistics::Data); | |||
| 2 | 2 | ||||||
| 2 | 1074 | ||||||
| 7 | 2 | 2 | 45978 | use Carp qw(croak); | |||
| 2 | 2 | ||||||
| 2 | 99 | ||||||
| 8 | 2 | 2 | 11 | use List::AllUtils qw(any); | |||
| 2 | 2 | ||||||
| 2 | 1019 | ||||||
| 9 | $Statistics::ANOVA::EffectSize::VERSION = '0.01'; | ||||||
| 10 | |||||||
| 11 | =head1 NAME | ||||||
| 12 | |||||||
| 13 | Statistics::ANOVA::EffectSize - Calculate effect-sizes from ANOVAs incl. eta-squared and omega-squared | ||||||
| 14 | |||||||
| 15 | =head1 VERSION | ||||||
| 16 | |||||||
| 17 | This is documentation for B |
||||||
| 18 | |||||||
| 19 | =head1 SYNOPSIS | ||||||
| 20 | |||||||
| 21 | use Statistics::ANOVA::EffectSize; | ||||||
| 22 | my $es = Statistics::ANOVA::EffectSize->new(); | ||||||
| 23 | $es->load(HOA); # a hash of arefs, or other, as in Statistics::Data | ||||||
| 24 | my $etasq = $es->eta_squared(independent => BOOL, partial => 1); # or give data => HOA here | ||||||
| 25 | my $omgsq = $es->omega_squared(independent => BOOL); | ||||||
| 26 | # or calculate not from loaded data but directly: | ||||||
| 27 | |||||||
| 28 | =head2 DESCRIPTION | ||||||
| 29 | |||||||
| 30 | Calculates effect-sizes from ANOVAs. | ||||||
| 31 | |||||||
| 32 | For I |
||||||
| 33 | |||||||
| 34 | For I |
||||||
| 35 | |||||||
| 36 | =head1 SUBROUTINES/METHODS | ||||||
| 37 | |||||||
| 38 | Rather than working from raw data, these methods are given the statistics, like sums-of-squares, needed to calculate the effect-sizes. | ||||||
| 39 | |||||||
| 40 | =head2 eta_sq_partial_by_ss, r_squared | ||||||
| 41 | |||||||
| 42 | $es->eta_sq_partial_by_ss(ss_b => NUM, ss_w => NUM); | ||||||
| 43 | |||||||
| 44 | Returns partial I |
||||||
| 45 | |||||||
| 46 | =for html η2P = SSb / ( SSb + SSw ) |
||||||
| 47 | |||||||
| 48 | This is also what is commonly designated as I |
||||||
| 49 | |||||||
| 50 | =cut | ||||||
| 51 | |||||||
| 52 | sub eta_sq_partial_by_ss { | ||||||
| 53 | 1 | 1 | 1 | 40 | my ($self, %args) = @_; | ||
| 54 | 1 | 50 | 2 | 14 | croak 'Undefined values needed to calculate partial eta-squared by sums-of-squares' if any { ! defined $args{$_} } (qw/ss_b ss_w/); | ||
| 2 | 6 | ||||||
| 55 | 1 | 5 | return $args{'ss_b'} / ( $args{'ss_b'} + $args{'ss_w'} ); | ||||
| 56 | } | ||||||
| 57 | *r_squared = \&eta_sq_partial_by_ss; | ||||||
| 58 | |||||||
| 59 | =head2 r_squared_adj | ||||||
| 60 | |||||||
| 61 | $es->r_squared_adj(ss_b => NUM, ss_w => NUM, df_b => NUM, df_w => NUM); | ||||||
| 62 | |||||||
| 63 | Returns adjusted I |
||||||
| 64 | |||||||
| 65 | =cut | ||||||
| 66 | |||||||
| 67 | sub r_squared_adj { | ||||||
| 68 | 0 | 0 | 1 | 0 | my ($self, %args) = @_; | ||
| 69 | 0 | 0 | my $r_squared = $self->r_squared(%args); # will check for ss_b and ss_w | ||||
| 70 | 0 | 0 | 0 | 0 | croak 'Could not obtain values to calculate adjusted r-squared' if any { ! defined $args{$_} } (qw/df_b df_w/); | ||
| 0 | 0 | ||||||
| 71 | 0 | 0 | return 1 - ( ($args{'df_b'} + $args{'df_w'}) / $args{'df_w'} ) * ( 1 - $r_squared ); | ||||
| 72 | } | ||||||
| 73 | |||||||
| 74 | =head2 eta_sq_partial_by_f | ||||||
| 75 | |||||||
| 76 | $es->eta_sq_partial_by_f(f_value => NUM , df_b => NUM, df_w => NUM); | ||||||
| 77 | |||||||
| 78 | Returns partial I |
||||||
| 79 | |||||||
| 80 | =for html η2P = ( dfb . F ) / ( dfb . F + dfw ) |
||||||
| 81 | |||||||
| 82 | =cut | ||||||
| 83 | |||||||
| 84 | sub eta_sq_partial_by_f { | ||||||
| 85 | 1 | 1 | 1 | 377 | my ($self, %args) = @_; | ||
| 86 | 1 | 50 | 3 | 6 | croak 'Could not obtain values to calculate partial eta-squared by F-value' if any { ! defined $args{$_} } (qw/df_b df_w f_value/); | ||
| 3 | 6 | ||||||
| 87 | 1 | 7 | return ( $args{'df_b'} * $args{'f_value'} ) / ( $args{'df_b'} * $args{'f_value'} + $args{'df_w'} ); | ||||
| 88 | } | ||||||
| 89 | |||||||
| 90 | =head2 omega_sq_partial_by_ss | ||||||
| 91 | |||||||
| 92 | $es->omega_sq_partial_by_ss(df_b => NUM, df_w => NUM, ss_b => NUM, ss_w => NUM); | ||||||
| 93 | |||||||
| 94 | Returns partial I |
||||||
| 95 | |||||||
| 96 | Essentially as given by Maxwell & Delaney (1990), Eq. 92: | ||||||
| 97 | |||||||
| 98 | =for html ω2P = ( ssb — (dfb . SSw / dfb) ) / (( SSb + SSw ) + SSw / dfw ) |
||||||
| 99 | |||||||
| 100 | =cut | ||||||
| 101 | |||||||
| 102 | sub omega_sq_partial_by_ss { | ||||||
| 103 | 0 | 0 | 1 | 0 | my ($self, %args) = @_; | ||
| 104 | 0 | 0 | 0 | 0 | croak 'Undefined values for calculating partial omega-squared by sums-of-squares' if any { ! defined $args{$_} } (qw/ss_b ss_w df_b df_w/); | ||
| 0 | 0 | ||||||
| 105 | 0 | 0 | return ( $args{'ss_b'} - ( $args{'df_b'} * $args{'ss_w'} / $args{'df_w'} ) ) / ( ( $args{'ss_b'} + $args{'ss_w'} ) + $args{'ss_w'} / $args{'df_w'} ); | ||||
| 106 | } | ||||||
| 107 | |||||||
| 108 | =head2 omega_sq_partial_by_ms | ||||||
| 109 | |||||||
| 110 | $es->omega_sq_partial_by_ms(df_b => NUM, ms_b => NUM, ms_w => NUM, count => NUM); | ||||||
| 111 | |||||||
| 112 | Returns partial I |
||||||
| 113 | |||||||
| 114 | =for html ω2P = dfb ( MSb – MSw ) / ( dfb . MSb + ( N – dfb ) MSw ) |
||||||
| 115 | |||||||
| 116 | =cut | ||||||
| 117 | |||||||
| 118 | sub omega_sq_partial_by_ms { | ||||||
| 119 | 1 | 1 | 1 | 175 | my ($self, %args) = @_; | ||
| 120 | 1 | 50 | 4 | 6 | croak 'Could not obtain values to calculate partial omega-squared by mean sums-of-squares' if any { ! defined $_ } values %args; | ||
| 4 | 6 | ||||||
| 121 | 1 | 8 | return $args{'df_b'} * ( $args{'ms_b'} - $args{'ms_w'} ) / ( $args{'df_b'} * $args{'ms_b'} + ( $args{'count'} - $args{'df_b'} ) * $args{'ms_w'} ); | ||||
| 122 | } | ||||||
| 123 | |||||||
| 124 | =head2 omega_sq_partial_by_f | ||||||
| 125 | |||||||
| 126 | $es->omega_sq_partial_by_ms(f_value => NUM, df_b => NUM, df_w => NUM); | ||||||
| 127 | |||||||
| 128 | Returns partial I |
||||||
| 129 | |||||||
| 130 | =for html ω2P(est.) = ( F - 1 ) / ( F + ( dfw + 1 ) / dfb ) |
||||||
| 131 | |||||||
| 132 | This is an estimate formulated by L |
||||||
| 133 | |||||||
| 134 | =cut | ||||||
| 135 | |||||||
| 136 | sub omega_sq_partial_by_f { | ||||||
| 137 | 0 | 0 | 1 | 0 | my ($self, %args) = @_; | ||
| 138 | 0 | 0 | 0 | 0 | croak 'Could not obtain values to calculate partial omega-squared by mean sums-of-squares' if any { ! defined $_ } values %args; | ||
| 0 | 0 | ||||||
| 139 | 0 | 0 | return ( $args{'f_value'} - 1 ) / ( $args{'f_value'} + ( $args{'df_w'} + 1)/$args{'df_b'} ); | ||||
| 140 | } | ||||||
| 141 | |||||||
| 142 | =head2 eta_to_omega | ||||||
| 143 | |||||||
| 144 | $es->eta_to_omega(df_b => NUM, df_w => NUM, eta_sq => NUM); | ||||||
| 145 | |||||||
| 146 | Returns I |
||||||
| 147 | |||||||
| 148 | =for html ω2P = ( η2P(dfb + dfw) – dfb ) / ( η2P(dfb + dfw) – dfb ) + ( (dfw + 1)(1 – η2P) ) ) |
||||||
| 149 | |||||||
| 150 | =cut | ||||||
| 151 | |||||||
| 152 | sub eta_to_omega { | ||||||
| 153 | 1 | 1 | 1 | 180 | my ($self, %args) = @_; | ||
| 154 | 1 | 50 | 3 | 6 | croak 'Could not obtain values to calculate partial omega-squared by mean sums-of-squares' if any { ! defined $_ } values %args; | ||
| 3 | 5 | ||||||
| 155 | 1 | 4 | my $num = $args{'eta_sq'} * ( $args{'df_b'} + $args{'df_w'} ) - $args{'df_b'}; | ||||
| 156 | 1 | 4 | return $num / ( $num + ( ( $args{'df_w'} + 1) * ( 1 - $args{'eta_sq'} ) ) ); | ||||
| 157 | } | ||||||
| 158 | |||||||
| 159 | =head1 DEPENDENCIES | ||||||
| 160 | |||||||
| 161 | L |
||||||
| 162 | |||||||
| 163 | L |
||||||
| 164 | |||||||
| 165 | =head1 DIAGNOSTICS | ||||||
| 166 | |||||||
| 167 | =over 4 | ||||||
| 168 | |||||||
| 169 | =item Could not obtain values to calculate ... | ||||||
| 170 | |||||||
| 171 | C |
||||||
| 172 | |||||||
| 173 | =back | ||||||
| 174 | |||||||
| 175 | =head1 REFERENCES | ||||||
| 176 | |||||||
| 177 | Cohen, J. (1969). I |
||||||
| 178 | |||||||
| 179 | Lakens, D. (2015). Why you should use omega-squared instead of eta-squared, I |
||||||
| 180 | |||||||
| 181 | Maxwell, S. E., & Delaney, H. D. (1990). I |
||||||
| 182 | |||||||
| 183 | Olejnik, S., & Algina, J. (2003). Generalized eta and omega squared statistics: Measures of effect size for some common research designs. I |
||||||
| 184 | |||||||
| 185 | =head1 AUTHOR | ||||||
| 186 | |||||||
| 187 | Roderick Garton, C<< |
||||||
| 188 | |||||||
| 189 | =head1 BUGS | ||||||
| 190 | |||||||
| 191 | Please report any bugs or feature requests to C |
||||||
| 192 | the web interface at L |
||||||
| 193 | automatically be notified of progress on your bug as I make changes. | ||||||
| 194 | |||||||
| 195 | =head1 NOTES | ||||||
| 196 | |||||||
| 197 | |||||||
| 198 | For independent variables only, omega-square (raw): | ||||||
| 199 | |||||||
| 200 | w2 = (SSeffect - (dfeffect)(MSerror)) / MSerror + SStotal | ||||||
| 201 | |||||||
| 202 | =head1 SUPPORT | ||||||
| 203 | |||||||
| 204 | You can find documentation for this module with the perldoc command. | ||||||
| 205 | |||||||
| 206 | perldoc Statistics::ANOVA::EffectSize | ||||||
| 207 | |||||||
| 208 | |||||||
| 209 | You can also look for information at: | ||||||
| 210 | |||||||
| 211 | =over 4 | ||||||
| 212 | |||||||
| 213 | =item * RT: CPAN's request tracker (report bugs here) | ||||||
| 214 | |||||||
| 215 | L |
||||||
| 216 | |||||||
| 217 | =item * AnnoCPAN: Annotated CPAN documentation | ||||||
| 218 | |||||||
| 219 | L |
||||||
| 220 | |||||||
| 221 | =item * CPAN Ratings | ||||||
| 222 | |||||||
| 223 | L |
||||||
| 224 | |||||||
| 225 | =item * Search CPAN | ||||||
| 226 | |||||||
| 227 | L |
||||||
| 228 | |||||||
| 229 | =back | ||||||
| 230 | |||||||
| 231 | =head1 LICENSE AND COPYRIGHT | ||||||
| 232 | |||||||
| 233 | Copyright 2015 Roderick Garton. | ||||||
| 234 | |||||||
| 235 | This program is free software; you can redistribute it and/or modify it | ||||||
| 236 | under the terms of either: the GNU General Public License as published | ||||||
| 237 | by the Free Software Foundation; or the Artistic License. | ||||||
| 238 | |||||||
| 239 | See L |
||||||
| 240 | |||||||
| 241 | =cut | ||||||
| 242 | |||||||
| 243 | 1; # End of Statistics::ANOVA::EffectSize |