| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package bigrat; |
|
2
|
|
|
|
|
|
|
require "bigint.pl"; |
|
3
|
|
|
|
|
|
|
# |
|
4
|
|
|
|
|
|
|
# This library is no longer being maintained, and is included for backward |
|
5
|
|
|
|
|
|
|
# compatibility with Perl 4 programs which may require it. |
|
6
|
|
|
|
|
|
|
# |
|
7
|
|
|
|
|
|
|
# In particular, this should not be used as an example of modern Perl |
|
8
|
|
|
|
|
|
|
# programming techniques. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Arbitrary size rational math package |
|
11
|
|
|
|
|
|
|
# |
|
12
|
|
|
|
|
|
|
# by Mark Biggar |
|
13
|
|
|
|
|
|
|
# |
|
14
|
|
|
|
|
|
|
# Input values to these routines consist of strings of the form |
|
15
|
|
|
|
|
|
|
# m|^\s*[+-]?[\d\s]+(/[\d\s]+)?$|. |
|
16
|
|
|
|
|
|
|
# Examples: |
|
17
|
|
|
|
|
|
|
# "+0/1" canonical zero value |
|
18
|
|
|
|
|
|
|
# "3" canonical value "+3/1" |
|
19
|
|
|
|
|
|
|
# " -123/123 123" canonical value "-1/1001" |
|
20
|
|
|
|
|
|
|
# "123 456/7890" canonical value "+20576/1315" |
|
21
|
|
|
|
|
|
|
# Output values always include a sign and no leading zeros or |
|
22
|
|
|
|
|
|
|
# white space. |
|
23
|
|
|
|
|
|
|
# This package makes use of the bigint package. |
|
24
|
|
|
|
|
|
|
# The string 'NaN' is used to represent the result when input arguments |
|
25
|
|
|
|
|
|
|
# that are not numbers, as well as the result of dividing by zero and |
|
26
|
|
|
|
|
|
|
# the sqrt of a negative number. |
|
27
|
|
|
|
|
|
|
# Extreamly naive algorthims are used. |
|
28
|
|
|
|
|
|
|
# |
|
29
|
|
|
|
|
|
|
# Routines provided are: |
|
30
|
|
|
|
|
|
|
# |
|
31
|
|
|
|
|
|
|
# rneg(RAT) return RAT negation |
|
32
|
|
|
|
|
|
|
# rabs(RAT) return RAT absolute value |
|
33
|
|
|
|
|
|
|
# rcmp(RAT,RAT) return CODE compare numbers (undef,<0,=0,>0) |
|
34
|
|
|
|
|
|
|
# radd(RAT,RAT) return RAT addition |
|
35
|
|
|
|
|
|
|
# rsub(RAT,RAT) return RAT subtraction |
|
36
|
|
|
|
|
|
|
# rmul(RAT,RAT) return RAT multiplication |
|
37
|
|
|
|
|
|
|
# rdiv(RAT,RAT) return RAT division |
|
38
|
|
|
|
|
|
|
# rmod(RAT) return (RAT,RAT) integer and fractional parts |
|
39
|
|
|
|
|
|
|
# rnorm(RAT) return RAT normalization |
|
40
|
|
|
|
|
|
|
# rsqrt(RAT, cycles) return RAT square root |
|
41
|
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
# Convert a number to the canonical string form m|^[+-]\d+/\d+|. |
|
43
|
|
|
|
|
|
|
sub main::rnorm { #(string) return rat_num |
|
44
|
0
|
|
|
0
|
|
|
local($_) = @_; |
|
45
|
0
|
|
|
|
|
|
s/\s+//g; |
|
46
|
0
|
0
|
|
|
|
|
if (m#^([+-]?\d+)(/(\d*[1-9]0*))?$#) { |
|
47
|
0
|
0
|
|
|
|
|
&norm($1, $3 ? $3 : '+1'); |
|
48
|
|
|
|
|
|
|
} else { |
|
49
|
0
|
|
|
|
|
|
'NaN'; |
|
50
|
|
|
|
|
|
|
} |
|
51
|
|
|
|
|
|
|
} |
|
52
|
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
# Normalize by reducing to lowest terms |
|
54
|
|
|
|
|
|
|
sub norm { #(bint, bint) return rat_num |
|
55
|
0
|
|
|
0
|
0
|
|
local($num,$dom) = @_; |
|
56
|
0
|
0
|
|
|
|
|
if ($num eq 'NaN') { |
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
57
|
0
|
|
|
|
|
|
'NaN'; |
|
58
|
|
|
|
|
|
|
} elsif ($dom eq 'NaN') { |
|
59
|
0
|
|
|
|
|
|
'NaN'; |
|
60
|
|
|
|
|
|
|
} elsif ($dom =~ /^[+-]?0+$/) { |
|
61
|
0
|
|
|
|
|
|
'NaN'; |
|
62
|
|
|
|
|
|
|
} else { |
|
63
|
0
|
|
|
|
|
|
local($gcd) = &::bgcd($num,$dom); |
|
64
|
0
|
|
|
|
|
|
$gcd =~ s/^-/+/; |
|
65
|
0
|
0
|
|
|
|
|
if ($gcd ne '+1') { |
|
66
|
0
|
|
|
|
|
|
$num = &::bdiv($num,$gcd); |
|
67
|
0
|
|
|
|
|
|
$dom = &::bdiv($dom,$gcd); |
|
68
|
|
|
|
|
|
|
} else { |
|
69
|
0
|
|
|
|
|
|
$num = &::bnorm($num); |
|
70
|
0
|
|
|
|
|
|
$dom = &::bnorm($dom); |
|
71
|
|
|
|
|
|
|
} |
|
72
|
0
|
|
|
|
|
|
substr($dom,0,1) = ''; |
|
73
|
0
|
|
|
|
|
|
"$num/$dom"; |
|
74
|
|
|
|
|
|
|
} |
|
75
|
|
|
|
|
|
|
} |
|
76
|
|
|
|
|
|
|
|
|
77
|
|
|
|
|
|
|
# negation |
|
78
|
|
|
|
|
|
|
sub main::rneg { #(rat_num) return rat_num |
|
79
|
0
|
|
|
0
|
|
|
local($_) = &::rnorm(@_); |
|
80
|
0
|
0
|
|
|
|
|
tr/-+/+-/ if ($_ ne '+0/1'); |
|
81
|
0
|
|
|
|
|
|
$_; |
|
82
|
|
|
|
|
|
|
} |
|
83
|
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
# absolute value |
|
85
|
|
|
|
|
|
|
sub main::rabs { #(rat_num) return $rat_num |
|
86
|
0
|
|
|
0
|
|
|
local($_) = &::rnorm(@_); |
|
87
|
0
|
0
|
|
|
|
|
substr($_,0,1) = '+' unless $_ eq 'NaN'; |
|
88
|
0
|
|
|
|
|
|
$_; |
|
89
|
|
|
|
|
|
|
} |
|
90
|
|
|
|
|
|
|
|
|
91
|
|
|
|
|
|
|
# multipication |
|
92
|
|
|
|
|
|
|
sub main::rmul { #(rat_num, rat_num) return rat_num |
|
93
|
0
|
|
|
0
|
|
|
local($xn,$xd) = split('/',&::rnorm($_[0])); |
|
94
|
0
|
|
|
|
|
|
local($yn,$yd) = split('/',&::rnorm($_[1])); |
|
95
|
0
|
|
|
|
|
|
&norm(&::bmul($xn,$yn),&::bmul($xd,$yd)); |
|
96
|
|
|
|
|
|
|
} |
|
97
|
|
|
|
|
|
|
|
|
98
|
|
|
|
|
|
|
# division |
|
99
|
|
|
|
|
|
|
sub main::rdiv { #(rat_num, rat_num) return rat_num |
|
100
|
0
|
|
|
0
|
|
|
local($xn,$xd) = split('/',&::rnorm($_[0])); |
|
101
|
0
|
|
|
|
|
|
local($yn,$yd) = split('/',&::rnorm($_[1])); |
|
102
|
0
|
|
|
|
|
|
&norm(&::bmul($xn,$yd),&::bmul($xd,$yn)); |
|
103
|
|
|
|
|
|
|
} |
|
104
|
|
|
|
|
|
|
|
|
105
|
|
|
|
|
|
|
# addition |
|
106
|
|
|
|
|
|
|
sub main::radd { #(rat_num, rat_num) return rat_num |
|
107
|
0
|
|
|
0
|
|
|
local($xn,$xd) = split('/',&::rnorm($_[0])); |
|
108
|
0
|
|
|
|
|
|
local($yn,$yd) = split('/',&::rnorm($_[1])); |
|
109
|
0
|
|
|
|
|
|
&norm(&::badd(&::bmul($xn,$yd),&::bmul($yn,$xd)),&::bmul($xd,$yd)); |
|
110
|
|
|
|
|
|
|
} |
|
111
|
|
|
|
|
|
|
|
|
112
|
|
|
|
|
|
|
# subtraction |
|
113
|
|
|
|
|
|
|
sub main::rsub { #(rat_num, rat_num) return rat_num |
|
114
|
0
|
|
|
0
|
|
|
local($xn,$xd) = split('/',&::rnorm($_[0])); |
|
115
|
0
|
|
|
|
|
|
local($yn,$yd) = split('/',&::rnorm($_[1])); |
|
116
|
0
|
|
|
|
|
|
&norm(&::bsub(&::bmul($xn,$yd),&::bmul($yn,$xd)),&::bmul($xd,$yd)); |
|
117
|
|
|
|
|
|
|
} |
|
118
|
|
|
|
|
|
|
|
|
119
|
|
|
|
|
|
|
# comparison |
|
120
|
|
|
|
|
|
|
sub main::rcmp { #(rat_num, rat_num) return cond_code |
|
121
|
0
|
|
|
0
|
|
|
local($xn,$xd) = split('/',&::rnorm($_[0])); |
|
122
|
0
|
|
|
|
|
|
local($yn,$yd) = split('/',&::rnorm($_[1])); |
|
123
|
0
|
|
|
|
|
|
&bigint::cmp(&::bmul($xn,$yd),&::bmul($yn,$xd)); |
|
124
|
|
|
|
|
|
|
} |
|
125
|
|
|
|
|
|
|
|
|
126
|
|
|
|
|
|
|
# int and frac parts |
|
127
|
|
|
|
|
|
|
sub main::rmod { #(rat_num) return (rat_num,rat_num) |
|
128
|
0
|
|
|
0
|
|
|
local($xn,$xd) = split('/',&::rnorm(@_)); |
|
129
|
0
|
|
|
|
|
|
local($i,$f) = &::bdiv($xn,$xd); |
|
130
|
0
|
0
|
|
|
|
|
if (wantarray) { |
|
131
|
0
|
|
|
|
|
|
("$i/1", "$f/$xd"); |
|
132
|
|
|
|
|
|
|
} else { |
|
133
|
0
|
|
|
|
|
|
"$i/1"; |
|
134
|
|
|
|
|
|
|
} |
|
135
|
|
|
|
|
|
|
} |
|
136
|
|
|
|
|
|
|
|
|
137
|
|
|
|
|
|
|
# square root by Newtons method. |
|
138
|
|
|
|
|
|
|
# cycles specifies the number of iterations default: 5 |
|
139
|
|
|
|
|
|
|
sub main::rsqrt { #(fnum_str[, cycles]) return fnum_str |
|
140
|
0
|
|
|
0
|
|
|
local($x, $scale) = (&::rnorm($_[0]), $_[1]); |
|
141
|
0
|
0
|
|
|
|
|
if ($x eq 'NaN') { |
|
|
|
0
|
|
|
|
|
|
|
142
|
0
|
|
|
|
|
|
'NaN'; |
|
143
|
|
|
|
|
|
|
} elsif ($x =~ /^-/) { |
|
144
|
0
|
|
|
|
|
|
'NaN'; |
|
145
|
|
|
|
|
|
|
} else { |
|
146
|
0
|
|
|
|
|
|
local($gscale, $guess) = (0, '+1/1'); |
|
147
|
0
|
0
|
|
|
|
|
$scale = 5 if (!$scale); |
|
148
|
0
|
|
|
|
|
|
while ($gscale++ < $scale) { |
|
149
|
0
|
|
|
|
|
|
$guess = &::rmul(&::radd($guess,&::rdiv($x,$guess)),"+1/2"); |
|
150
|
|
|
|
|
|
|
} |
|
151
|
0
|
|
|
|
|
|
"$guess"; # quotes necessary due to perl bug |
|
152
|
|
|
|
|
|
|
} |
|
153
|
|
|
|
|
|
|
} |
|
154
|
|
|
|
|
|
|
|
|
155
|
|
|
|
|
|
|
1; |