| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Paws::MachineLearning; |
|
2
|
1
|
|
|
1
|
|
7164
|
use Moose; |
|
|
1
|
|
|
1
|
|
4
|
|
|
|
1
|
|
|
|
|
13
|
|
|
|
1
|
|
|
|
|
379
|
|
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
6
|
|
|
3
|
1
|
|
|
1
|
0
|
3
|
sub service { 'machinelearning' } |
|
4
|
0
|
|
|
0
|
0
|
0
|
sub version { '2014-12-12' } |
|
5
|
0
|
|
|
0
|
0
|
0
|
sub target_prefix { 'AmazonML_20141212' } |
|
6
|
0
|
|
|
0
|
0
|
0
|
sub json_version { "1.1" } |
|
7
|
|
|
|
|
|
|
has max_attempts => (is => 'ro', isa => 'Int', default => 5); |
|
8
|
|
|
|
|
|
|
has retry => (is => 'ro', isa => 'HashRef', default => sub { |
|
9
|
|
|
|
|
|
|
{ base => 'rand', type => 'exponential', growth_factor => 2 } |
|
10
|
|
|
|
|
|
|
}); |
|
11
|
|
|
|
|
|
|
has retriables => (is => 'ro', isa => 'ArrayRef', default => sub { [ |
|
12
|
|
|
|
|
|
|
] }); |
|
13
|
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
with 'Paws::API::Caller', 'Paws::API::EndpointResolver', 'Paws::Net::V4Signature', 'Paws::Net::JsonCaller', 'Paws::Net::JsonResponse'; |
|
15
|
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
|
|
17
|
|
|
|
|
|
|
sub AddTags { |
|
18
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
19
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::AddTags', @_); |
|
20
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
|
21
|
|
|
|
|
|
|
} |
|
22
|
|
|
|
|
|
|
sub CreateBatchPrediction { |
|
23
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
24
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::CreateBatchPrediction', @_); |
|
25
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
|
26
|
|
|
|
|
|
|
} |
|
27
|
|
|
|
|
|
|
sub CreateDataSourceFromRDS { |
|
28
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
29
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::CreateDataSourceFromRDS', @_); |
|
30
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
|
31
|
|
|
|
|
|
|
} |
|
32
|
|
|
|
|
|
|
sub CreateDataSourceFromRedshift { |
|
33
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
34
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::CreateDataSourceFromRedshift', @_); |
|
35
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
|
36
|
|
|
|
|
|
|
} |
|
37
|
|
|
|
|
|
|
sub CreateDataSourceFromS3 { |
|
38
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
39
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::CreateDataSourceFromS3', @_); |
|
40
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
|
41
|
|
|
|
|
|
|
} |
|
42
|
|
|
|
|
|
|
sub CreateEvaluation { |
|
43
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
44
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::CreateEvaluation', @_); |
|
45
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
|
46
|
|
|
|
|
|
|
} |
|
47
|
|
|
|
|
|
|
sub CreateMLModel { |
|
48
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
49
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::CreateMLModel', @_); |
|
50
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
|
51
|
|
|
|
|
|
|
} |
|
52
|
|
|
|
|
|
|
sub CreateRealtimeEndpoint { |
|
53
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
54
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::CreateRealtimeEndpoint', @_); |
|
55
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
|
56
|
|
|
|
|
|
|
} |
|
57
|
|
|
|
|
|
|
sub DeleteBatchPrediction { |
|
58
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
59
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::DeleteBatchPrediction', @_); |
|
60
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
|
61
|
|
|
|
|
|
|
} |
|
62
|
|
|
|
|
|
|
sub DeleteDataSource { |
|
63
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
64
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::DeleteDataSource', @_); |
|
65
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
|
66
|
|
|
|
|
|
|
} |
|
67
|
|
|
|
|
|
|
sub DeleteEvaluation { |
|
68
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
69
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::DeleteEvaluation', @_); |
|
70
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
|
71
|
|
|
|
|
|
|
} |
|
72
|
|
|
|
|
|
|
sub DeleteMLModel { |
|
73
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
74
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::DeleteMLModel', @_); |
|
75
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
|
76
|
|
|
|
|
|
|
} |
|
77
|
|
|
|
|
|
|
sub DeleteRealtimeEndpoint { |
|
78
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
79
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::DeleteRealtimeEndpoint', @_); |
|
80
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
|
81
|
|
|
|
|
|
|
} |
|
82
|
|
|
|
|
|
|
sub DeleteTags { |
|
83
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
84
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::DeleteTags', @_); |
|
85
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
|
86
|
|
|
|
|
|
|
} |
|
87
|
|
|
|
|
|
|
sub DescribeBatchPredictions { |
|
88
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
89
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::DescribeBatchPredictions', @_); |
|
90
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
|
91
|
|
|
|
|
|
|
} |
|
92
|
|
|
|
|
|
|
sub DescribeDataSources { |
|
93
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
94
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::DescribeDataSources', @_); |
|
95
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
|
96
|
|
|
|
|
|
|
} |
|
97
|
|
|
|
|
|
|
sub DescribeEvaluations { |
|
98
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
99
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::DescribeEvaluations', @_); |
|
100
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
|
101
|
|
|
|
|
|
|
} |
|
102
|
|
|
|
|
|
|
sub DescribeMLModels { |
|
103
|
1
|
|
|
1
|
1
|
470
|
my $self = shift; |
|
104
|
1
|
|
|
|
|
4
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::DescribeMLModels', @_); |
|
105
|
1
|
|
|
|
|
1311
|
return $self->caller->do_call($self, $call_object); |
|
106
|
|
|
|
|
|
|
} |
|
107
|
|
|
|
|
|
|
sub DescribeTags { |
|
108
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
|
109
|
0
|
|
|
|
|
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::DescribeTags', @_); |
|
110
|
0
|
|
|
|
|
|
return $self->caller->do_call($self, $call_object); |
|
111
|
|
|
|
|
|
|
} |
|
112
|
|
|
|
|
|
|
sub GetBatchPrediction { |
|
113
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
|
114
|
0
|
|
|
|
|
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::GetBatchPrediction', @_); |
|
115
|
0
|
|
|
|
|
|
return $self->caller->do_call($self, $call_object); |
|
116
|
|
|
|
|
|
|
} |
|
117
|
|
|
|
|
|
|
sub GetDataSource { |
|
118
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
|
119
|
0
|
|
|
|
|
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::GetDataSource', @_); |
|
120
|
0
|
|
|
|
|
|
return $self->caller->do_call($self, $call_object); |
|
121
|
|
|
|
|
|
|
} |
|
122
|
|
|
|
|
|
|
sub GetEvaluation { |
|
123
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
|
124
|
0
|
|
|
|
|
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::GetEvaluation', @_); |
|
125
|
0
|
|
|
|
|
|
return $self->caller->do_call($self, $call_object); |
|
126
|
|
|
|
|
|
|
} |
|
127
|
|
|
|
|
|
|
sub GetMLModel { |
|
128
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
|
129
|
0
|
|
|
|
|
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::GetMLModel', @_); |
|
130
|
0
|
|
|
|
|
|
return $self->caller->do_call($self, $call_object); |
|
131
|
|
|
|
|
|
|
} |
|
132
|
|
|
|
|
|
|
sub Predict { |
|
133
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
|
134
|
0
|
|
|
|
|
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::Predict', @_); |
|
135
|
0
|
|
|
|
|
|
return $self->caller->do_call($self, $call_object); |
|
136
|
|
|
|
|
|
|
} |
|
137
|
|
|
|
|
|
|
sub UpdateBatchPrediction { |
|
138
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
|
139
|
0
|
|
|
|
|
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::UpdateBatchPrediction', @_); |
|
140
|
0
|
|
|
|
|
|
return $self->caller->do_call($self, $call_object); |
|
141
|
|
|
|
|
|
|
} |
|
142
|
|
|
|
|
|
|
sub UpdateDataSource { |
|
143
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
|
144
|
0
|
|
|
|
|
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::UpdateDataSource', @_); |
|
145
|
0
|
|
|
|
|
|
return $self->caller->do_call($self, $call_object); |
|
146
|
|
|
|
|
|
|
} |
|
147
|
|
|
|
|
|
|
sub UpdateEvaluation { |
|
148
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
|
149
|
0
|
|
|
|
|
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::UpdateEvaluation', @_); |
|
150
|
0
|
|
|
|
|
|
return $self->caller->do_call($self, $call_object); |
|
151
|
|
|
|
|
|
|
} |
|
152
|
|
|
|
|
|
|
sub UpdateMLModel { |
|
153
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
|
154
|
0
|
|
|
|
|
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::UpdateMLModel', @_); |
|
155
|
0
|
|
|
|
|
|
return $self->caller->do_call($self, $call_object); |
|
156
|
|
|
|
|
|
|
} |
|
157
|
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
sub DescribeAllBatchPredictions { |
|
159
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
|
160
|
|
|
|
|
|
|
|
|
161
|
0
|
0
|
|
|
|
|
my $callback = shift @_ if (ref($_[0]) eq 'CODE'); |
|
162
|
0
|
|
|
|
|
|
my $result = $self->DescribeBatchPredictions(@_); |
|
163
|
0
|
|
|
|
|
|
my $next_result = $result; |
|
164
|
|
|
|
|
|
|
|
|
165
|
0
|
0
|
|
|
|
|
if (not defined $callback) { |
|
166
|
0
|
|
|
|
|
|
while ($next_result->NextToken) { |
|
167
|
0
|
|
|
|
|
|
$next_result = $self->DescribeBatchPredictions(@_, NextToken => $next_result->NextToken); |
|
168
|
0
|
|
|
|
|
|
push @{ $result->Results }, @{ $next_result->Results }; |
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
169
|
|
|
|
|
|
|
} |
|
170
|
0
|
|
|
|
|
|
return $result; |
|
171
|
|
|
|
|
|
|
} else { |
|
172
|
0
|
|
|
|
|
|
while ($result->NextToken) { |
|
173
|
0
|
|
|
|
|
|
$callback->($_ => 'Results') foreach (@{ $result->Results }); |
|
|
0
|
|
|
|
|
|
|
|
174
|
0
|
|
|
|
|
|
$result = $self->DescribeBatchPredictions(@_, NextToken => $result->NextToken); |
|
175
|
|
|
|
|
|
|
} |
|
176
|
0
|
|
|
|
|
|
$callback->($_ => 'Results') foreach (@{ $result->Results }); |
|
|
0
|
|
|
|
|
|
|
|
177
|
|
|
|
|
|
|
} |
|
178
|
|
|
|
|
|
|
|
|
179
|
|
|
|
|
|
|
return undef |
|
180
|
0
|
|
|
|
|
|
} |
|
181
|
|
|
|
|
|
|
sub DescribeAllDataSources { |
|
182
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
|
183
|
|
|
|
|
|
|
|
|
184
|
0
|
0
|
|
|
|
|
my $callback = shift @_ if (ref($_[0]) eq 'CODE'); |
|
185
|
0
|
|
|
|
|
|
my $result = $self->DescribeDataSources(@_); |
|
186
|
0
|
|
|
|
|
|
my $next_result = $result; |
|
187
|
|
|
|
|
|
|
|
|
188
|
0
|
0
|
|
|
|
|
if (not defined $callback) { |
|
189
|
0
|
|
|
|
|
|
while ($next_result->NextToken) { |
|
190
|
0
|
|
|
|
|
|
$next_result = $self->DescribeDataSources(@_, NextToken => $next_result->NextToken); |
|
191
|
0
|
|
|
|
|
|
push @{ $result->Results }, @{ $next_result->Results }; |
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
} |
|
193
|
0
|
|
|
|
|
|
return $result; |
|
194
|
|
|
|
|
|
|
} else { |
|
195
|
0
|
|
|
|
|
|
while ($result->NextToken) { |
|
196
|
0
|
|
|
|
|
|
$callback->($_ => 'Results') foreach (@{ $result->Results }); |
|
|
0
|
|
|
|
|
|
|
|
197
|
0
|
|
|
|
|
|
$result = $self->DescribeDataSources(@_, NextToken => $result->NextToken); |
|
198
|
|
|
|
|
|
|
} |
|
199
|
0
|
|
|
|
|
|
$callback->($_ => 'Results') foreach (@{ $result->Results }); |
|
|
0
|
|
|
|
|
|
|
|
200
|
|
|
|
|
|
|
} |
|
201
|
|
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
return undef |
|
203
|
0
|
|
|
|
|
|
} |
|
204
|
|
|
|
|
|
|
sub DescribeAllEvaluations { |
|
205
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
|
206
|
|
|
|
|
|
|
|
|
207
|
0
|
0
|
|
|
|
|
my $callback = shift @_ if (ref($_[0]) eq 'CODE'); |
|
208
|
0
|
|
|
|
|
|
my $result = $self->DescribeEvaluations(@_); |
|
209
|
0
|
|
|
|
|
|
my $next_result = $result; |
|
210
|
|
|
|
|
|
|
|
|
211
|
0
|
0
|
|
|
|
|
if (not defined $callback) { |
|
212
|
0
|
|
|
|
|
|
while ($next_result->NextToken) { |
|
213
|
0
|
|
|
|
|
|
$next_result = $self->DescribeEvaluations(@_, NextToken => $next_result->NextToken); |
|
214
|
0
|
|
|
|
|
|
push @{ $result->Results }, @{ $next_result->Results }; |
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
215
|
|
|
|
|
|
|
} |
|
216
|
0
|
|
|
|
|
|
return $result; |
|
217
|
|
|
|
|
|
|
} else { |
|
218
|
0
|
|
|
|
|
|
while ($result->NextToken) { |
|
219
|
0
|
|
|
|
|
|
$callback->($_ => 'Results') foreach (@{ $result->Results }); |
|
|
0
|
|
|
|
|
|
|
|
220
|
0
|
|
|
|
|
|
$result = $self->DescribeEvaluations(@_, NextToken => $result->NextToken); |
|
221
|
|
|
|
|
|
|
} |
|
222
|
0
|
|
|
|
|
|
$callback->($_ => 'Results') foreach (@{ $result->Results }); |
|
|
0
|
|
|
|
|
|
|
|
223
|
|
|
|
|
|
|
} |
|
224
|
|
|
|
|
|
|
|
|
225
|
|
|
|
|
|
|
return undef |
|
226
|
0
|
|
|
|
|
|
} |
|
227
|
|
|
|
|
|
|
sub DescribeAllMLModels { |
|
228
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
|
229
|
|
|
|
|
|
|
|
|
230
|
0
|
0
|
|
|
|
|
my $callback = shift @_ if (ref($_[0]) eq 'CODE'); |
|
231
|
0
|
|
|
|
|
|
my $result = $self->DescribeMLModels(@_); |
|
232
|
0
|
|
|
|
|
|
my $next_result = $result; |
|
233
|
|
|
|
|
|
|
|
|
234
|
0
|
0
|
|
|
|
|
if (not defined $callback) { |
|
235
|
0
|
|
|
|
|
|
while ($next_result->NextToken) { |
|
236
|
0
|
|
|
|
|
|
$next_result = $self->DescribeMLModels(@_, NextToken => $next_result->NextToken); |
|
237
|
0
|
|
|
|
|
|
push @{ $result->Results }, @{ $next_result->Results }; |
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
238
|
|
|
|
|
|
|
} |
|
239
|
0
|
|
|
|
|
|
return $result; |
|
240
|
|
|
|
|
|
|
} else { |
|
241
|
0
|
|
|
|
|
|
while ($result->NextToken) { |
|
242
|
0
|
|
|
|
|
|
$callback->($_ => 'Results') foreach (@{ $result->Results }); |
|
|
0
|
|
|
|
|
|
|
|
243
|
0
|
|
|
|
|
|
$result = $self->DescribeMLModels(@_, NextToken => $result->NextToken); |
|
244
|
|
|
|
|
|
|
} |
|
245
|
0
|
|
|
|
|
|
$callback->($_ => 'Results') foreach (@{ $result->Results }); |
|
|
0
|
|
|
|
|
|
|
|
246
|
|
|
|
|
|
|
} |
|
247
|
|
|
|
|
|
|
|
|
248
|
|
|
|
|
|
|
return undef |
|
249
|
0
|
|
|
|
|
|
} |
|
250
|
|
|
|
|
|
|
|
|
251
|
|
|
|
|
|
|
|
|
252
|
0
|
|
|
0
|
0
|
|
sub operations { qw/AddTags CreateBatchPrediction CreateDataSourceFromRDS CreateDataSourceFromRedshift CreateDataSourceFromS3 CreateEvaluation CreateMLModel CreateRealtimeEndpoint DeleteBatchPrediction DeleteDataSource DeleteEvaluation DeleteMLModel DeleteRealtimeEndpoint DeleteTags DescribeBatchPredictions DescribeDataSources DescribeEvaluations DescribeMLModels DescribeTags GetBatchPrediction GetDataSource GetEvaluation GetMLModel Predict UpdateBatchPrediction UpdateDataSource UpdateEvaluation UpdateMLModel / } |
|
253
|
|
|
|
|
|
|
|
|
254
|
|
|
|
|
|
|
1; |
|
255
|
|
|
|
|
|
|
|
|
256
|
|
|
|
|
|
|
### main pod documentation begin ### |
|
257
|
|
|
|
|
|
|
|
|
258
|
|
|
|
|
|
|
=head1 NAME |
|
259
|
|
|
|
|
|
|
|
|
260
|
|
|
|
|
|
|
Paws::MachineLearning - Perl Interface to AWS Amazon Machine Learning |
|
261
|
|
|
|
|
|
|
|
|
262
|
|
|
|
|
|
|
=head1 SYNOPSIS |
|
263
|
|
|
|
|
|
|
|
|
264
|
|
|
|
|
|
|
use Paws; |
|
265
|
|
|
|
|
|
|
|
|
266
|
|
|
|
|
|
|
my $obj = Paws->service('MachineLearning'); |
|
267
|
|
|
|
|
|
|
my $res = $obj->Method( |
|
268
|
|
|
|
|
|
|
Arg1 => $val1, |
|
269
|
|
|
|
|
|
|
Arg2 => [ 'V1', 'V2' ], |
|
270
|
|
|
|
|
|
|
# if Arg3 is an object, the HashRef will be used as arguments to the constructor |
|
271
|
|
|
|
|
|
|
# of the arguments type |
|
272
|
|
|
|
|
|
|
Arg3 => { Att1 => 'Val1' }, |
|
273
|
|
|
|
|
|
|
# if Arg4 is an array of objects, the HashRefs will be passed as arguments to |
|
274
|
|
|
|
|
|
|
# the constructor of the arguments type |
|
275
|
|
|
|
|
|
|
Arg4 => [ { Att1 => 'Val1' }, { Att1 => 'Val2' } ], |
|
276
|
|
|
|
|
|
|
); |
|
277
|
|
|
|
|
|
|
|
|
278
|
|
|
|
|
|
|
=head1 DESCRIPTION |
|
279
|
|
|
|
|
|
|
|
|
280
|
|
|
|
|
|
|
Definition of the public APIs exposed by Amazon Machine Learning |
|
281
|
|
|
|
|
|
|
|
|
282
|
|
|
|
|
|
|
=head1 METHODS |
|
283
|
|
|
|
|
|
|
|
|
284
|
|
|
|
|
|
|
=head2 AddTags(ResourceId => Str, ResourceType => Str, Tags => ArrayRef[L<Paws::MachineLearning::Tag>]) |
|
285
|
|
|
|
|
|
|
|
|
286
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::AddTags> |
|
287
|
|
|
|
|
|
|
|
|
288
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::AddTagsOutput> instance |
|
289
|
|
|
|
|
|
|
|
|
290
|
|
|
|
|
|
|
Adds one or more tags to an object, up to a limit of 10. Each tag |
|
291
|
|
|
|
|
|
|
consists of a key and an optional value. If you add a tag using a key |
|
292
|
|
|
|
|
|
|
that is already associated with the ML object, C<AddTags> updates the |
|
293
|
|
|
|
|
|
|
tag's value. |
|
294
|
|
|
|
|
|
|
|
|
295
|
|
|
|
|
|
|
|
|
296
|
|
|
|
|
|
|
=head2 CreateBatchPrediction(BatchPredictionDataSourceId => Str, BatchPredictionId => Str, MLModelId => Str, OutputUri => Str, [BatchPredictionName => Str]) |
|
297
|
|
|
|
|
|
|
|
|
298
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::CreateBatchPrediction> |
|
299
|
|
|
|
|
|
|
|
|
300
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::CreateBatchPredictionOutput> instance |
|
301
|
|
|
|
|
|
|
|
|
302
|
|
|
|
|
|
|
Generates predictions for a group of observations. The observations to |
|
303
|
|
|
|
|
|
|
process exist in one or more data files referenced by a C<DataSource>. |
|
304
|
|
|
|
|
|
|
This operation creates a new C<BatchPrediction>, and uses an C<MLModel> |
|
305
|
|
|
|
|
|
|
and the data files referenced by the C<DataSource> as information |
|
306
|
|
|
|
|
|
|
sources. |
|
307
|
|
|
|
|
|
|
|
|
308
|
|
|
|
|
|
|
C<CreateBatchPrediction> is an asynchronous operation. In response to |
|
309
|
|
|
|
|
|
|
C<CreateBatchPrediction>, Amazon Machine Learning (Amazon ML) |
|
310
|
|
|
|
|
|
|
immediately returns and sets the C<BatchPrediction> status to |
|
311
|
|
|
|
|
|
|
C<PENDING>. After the C<BatchPrediction> completes, Amazon ML sets the |
|
312
|
|
|
|
|
|
|
status to C<COMPLETED>. |
|
313
|
|
|
|
|
|
|
|
|
314
|
|
|
|
|
|
|
You can poll for status updates by using the GetBatchPrediction |
|
315
|
|
|
|
|
|
|
operation and checking the C<Status> parameter of the result. After the |
|
316
|
|
|
|
|
|
|
C<COMPLETED> status appears, the results are available in the location |
|
317
|
|
|
|
|
|
|
specified by the C<OutputUri> parameter. |
|
318
|
|
|
|
|
|
|
|
|
319
|
|
|
|
|
|
|
|
|
320
|
|
|
|
|
|
|
=head2 CreateDataSourceFromRDS(DataSourceId => Str, RDSData => L<Paws::MachineLearning::RDSDataSpec>, RoleARN => Str, [ComputeStatistics => Bool, DataSourceName => Str]) |
|
321
|
|
|
|
|
|
|
|
|
322
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::CreateDataSourceFromRDS> |
|
323
|
|
|
|
|
|
|
|
|
324
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::CreateDataSourceFromRDSOutput> instance |
|
325
|
|
|
|
|
|
|
|
|
326
|
|
|
|
|
|
|
Creates a C<DataSource> object from an Amazon Relational Database |
|
327
|
|
|
|
|
|
|
Service (Amazon RDS). A C<DataSource> references data that can be used |
|
328
|
|
|
|
|
|
|
to perform C<CreateMLModel>, C<CreateEvaluation>, or |
|
329
|
|
|
|
|
|
|
C<CreateBatchPrediction> operations. |
|
330
|
|
|
|
|
|
|
|
|
331
|
|
|
|
|
|
|
C<CreateDataSourceFromRDS> is an asynchronous operation. In response to |
|
332
|
|
|
|
|
|
|
C<CreateDataSourceFromRDS>, Amazon Machine Learning (Amazon ML) |
|
333
|
|
|
|
|
|
|
immediately returns and sets the C<DataSource> status to C<PENDING>. |
|
334
|
|
|
|
|
|
|
After the C<DataSource> is created and ready for use, Amazon ML sets |
|
335
|
|
|
|
|
|
|
the C<Status> parameter to C<COMPLETED>. C<DataSource> in the |
|
336
|
|
|
|
|
|
|
C<COMPLETED> or C<PENDING> state can be used only to perform |
|
337
|
|
|
|
|
|
|
C<E<gt>CreateMLModel>E<gt>, C<CreateEvaluation>, or |
|
338
|
|
|
|
|
|
|
C<CreateBatchPrediction> operations. |
|
339
|
|
|
|
|
|
|
|
|
340
|
|
|
|
|
|
|
If Amazon ML cannot accept the input source, it sets the C<Status> |
|
341
|
|
|
|
|
|
|
parameter to C<FAILED> and includes an error message in the C<Message> |
|
342
|
|
|
|
|
|
|
attribute of the C<GetDataSource> operation response. |
|
343
|
|
|
|
|
|
|
|
|
344
|
|
|
|
|
|
|
|
|
345
|
|
|
|
|
|
|
=head2 CreateDataSourceFromRedshift(DataSourceId => Str, DataSpec => L<Paws::MachineLearning::RedshiftDataSpec>, RoleARN => Str, [ComputeStatistics => Bool, DataSourceName => Str]) |
|
346
|
|
|
|
|
|
|
|
|
347
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::CreateDataSourceFromRedshift> |
|
348
|
|
|
|
|
|
|
|
|
349
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::CreateDataSourceFromRedshiftOutput> instance |
|
350
|
|
|
|
|
|
|
|
|
351
|
|
|
|
|
|
|
Creates a C<DataSource> from a database hosted on an Amazon Redshift |
|
352
|
|
|
|
|
|
|
cluster. A C<DataSource> references data that can be used to perform |
|
353
|
|
|
|
|
|
|
either C<CreateMLModel>, C<CreateEvaluation>, or |
|
354
|
|
|
|
|
|
|
C<CreateBatchPrediction> operations. |
|
355
|
|
|
|
|
|
|
|
|
356
|
|
|
|
|
|
|
C<CreateDataSourceFromRedshift> is an asynchronous operation. In |
|
357
|
|
|
|
|
|
|
response to C<CreateDataSourceFromRedshift>, Amazon Machine Learning |
|
358
|
|
|
|
|
|
|
(Amazon ML) immediately returns and sets the C<DataSource> status to |
|
359
|
|
|
|
|
|
|
C<PENDING>. After the C<DataSource> is created and ready for use, |
|
360
|
|
|
|
|
|
|
Amazon ML sets the C<Status> parameter to C<COMPLETED>. C<DataSource> |
|
361
|
|
|
|
|
|
|
in C<COMPLETED> or C<PENDING> states can be used to perform only |
|
362
|
|
|
|
|
|
|
C<CreateMLModel>, C<CreateEvaluation>, or C<CreateBatchPrediction> |
|
363
|
|
|
|
|
|
|
operations. |
|
364
|
|
|
|
|
|
|
|
|
365
|
|
|
|
|
|
|
If Amazon ML can't accept the input source, it sets the C<Status> |
|
366
|
|
|
|
|
|
|
parameter to C<FAILED> and includes an error message in the C<Message> |
|
367
|
|
|
|
|
|
|
attribute of the C<GetDataSource> operation response. |
|
368
|
|
|
|
|
|
|
|
|
369
|
|
|
|
|
|
|
The observations should be contained in the database hosted on an |
|
370
|
|
|
|
|
|
|
Amazon Redshift cluster and should be specified by a C<SelectSqlQuery> |
|
371
|
|
|
|
|
|
|
query. Amazon ML executes an C<Unload> command in Amazon Redshift to |
|
372
|
|
|
|
|
|
|
transfer the result set of the C<SelectSqlQuery> query to |
|
373
|
|
|
|
|
|
|
C<S3StagingLocation>. |
|
374
|
|
|
|
|
|
|
|
|
375
|
|
|
|
|
|
|
After the C<DataSource> has been created, it's ready for use in |
|
376
|
|
|
|
|
|
|
evaluations and batch predictions. If you plan to use the C<DataSource> |
|
377
|
|
|
|
|
|
|
to train an C<MLModel>, the C<DataSource> also requires a recipe. A |
|
378
|
|
|
|
|
|
|
recipe describes how each input variable will be used in training an |
|
379
|
|
|
|
|
|
|
C<MLModel>. Will the variable be included or excluded from training? |
|
380
|
|
|
|
|
|
|
Will the variable be manipulated; for example, will it be combined with |
|
381
|
|
|
|
|
|
|
another variable or will it be split apart into word combinations? The |
|
382
|
|
|
|
|
|
|
recipe provides answers to these questions. |
|
383
|
|
|
|
|
|
|
|
|
384
|
|
|
|
|
|
|
You can't change an existing datasource, but you can copy and modify |
|
385
|
|
|
|
|
|
|
the settings from an existing Amazon Redshift datasource to create a |
|
386
|
|
|
|
|
|
|
new datasource. To do so, call C<GetDataSource> for an existing |
|
387
|
|
|
|
|
|
|
datasource and copy the values to a C<CreateDataSource> call. Change |
|
388
|
|
|
|
|
|
|
the settings that you want to change and make sure that all required |
|
389
|
|
|
|
|
|
|
fields have the appropriate values. |
|
390
|
|
|
|
|
|
|
|
|
391
|
|
|
|
|
|
|
|
|
392
|
|
|
|
|
|
|
=head2 CreateDataSourceFromS3(DataSourceId => Str, DataSpec => L<Paws::MachineLearning::S3DataSpec>, [ComputeStatistics => Bool, DataSourceName => Str]) |
|
393
|
|
|
|
|
|
|
|
|
394
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::CreateDataSourceFromS3> |
|
395
|
|
|
|
|
|
|
|
|
396
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::CreateDataSourceFromS3Output> instance |
|
397
|
|
|
|
|
|
|
|
|
398
|
|
|
|
|
|
|
Creates a C<DataSource> object. A C<DataSource> references data that |
|
399
|
|
|
|
|
|
|
can be used to perform C<CreateMLModel>, C<CreateEvaluation>, or |
|
400
|
|
|
|
|
|
|
C<CreateBatchPrediction> operations. |
|
401
|
|
|
|
|
|
|
|
|
402
|
|
|
|
|
|
|
C<CreateDataSourceFromS3> is an asynchronous operation. In response to |
|
403
|
|
|
|
|
|
|
C<CreateDataSourceFromS3>, Amazon Machine Learning (Amazon ML) |
|
404
|
|
|
|
|
|
|
immediately returns and sets the C<DataSource> status to C<PENDING>. |
|
405
|
|
|
|
|
|
|
After the C<DataSource> has been created and is ready for use, Amazon |
|
406
|
|
|
|
|
|
|
ML sets the C<Status> parameter to C<COMPLETED>. C<DataSource> in the |
|
407
|
|
|
|
|
|
|
C<COMPLETED> or C<PENDING> state can be used to perform only |
|
408
|
|
|
|
|
|
|
C<CreateMLModel>, C<CreateEvaluation> or C<CreateBatchPrediction> |
|
409
|
|
|
|
|
|
|
operations. |
|
410
|
|
|
|
|
|
|
|
|
411
|
|
|
|
|
|
|
If Amazon ML can't accept the input source, it sets the C<Status> |
|
412
|
|
|
|
|
|
|
parameter to C<FAILED> and includes an error message in the C<Message> |
|
413
|
|
|
|
|
|
|
attribute of the C<GetDataSource> operation response. |
|
414
|
|
|
|
|
|
|
|
|
415
|
|
|
|
|
|
|
The observation data used in a C<DataSource> should be ready to use; |
|
416
|
|
|
|
|
|
|
that is, it should have a consistent structure, and missing data values |
|
417
|
|
|
|
|
|
|
should be kept to a minimum. The observation data must reside in one or |
|
418
|
|
|
|
|
|
|
more .csv files in an Amazon Simple Storage Service (Amazon S3) |
|
419
|
|
|
|
|
|
|
location, along with a schema that describes the data items by name and |
|
420
|
|
|
|
|
|
|
type. The same schema must be used for all of the data files referenced |
|
421
|
|
|
|
|
|
|
by the C<DataSource>. |
|
422
|
|
|
|
|
|
|
|
|
423
|
|
|
|
|
|
|
After the C<DataSource> has been created, it's ready to use in |
|
424
|
|
|
|
|
|
|
evaluations and batch predictions. If you plan to use the C<DataSource> |
|
425
|
|
|
|
|
|
|
to train an C<MLModel>, the C<DataSource> also needs a recipe. A recipe |
|
426
|
|
|
|
|
|
|
describes how each input variable will be used in training an |
|
427
|
|
|
|
|
|
|
C<MLModel>. Will the variable be included or excluded from training? |
|
428
|
|
|
|
|
|
|
Will the variable be manipulated; for example, will it be combined with |
|
429
|
|
|
|
|
|
|
another variable or will it be split apart into word combinations? The |
|
430
|
|
|
|
|
|
|
recipe provides answers to these questions. |
|
431
|
|
|
|
|
|
|
|
|
432
|
|
|
|
|
|
|
|
|
433
|
|
|
|
|
|
|
=head2 CreateEvaluation(EvaluationDataSourceId => Str, EvaluationId => Str, MLModelId => Str, [EvaluationName => Str]) |
|
434
|
|
|
|
|
|
|
|
|
435
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::CreateEvaluation> |
|
436
|
|
|
|
|
|
|
|
|
437
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::CreateEvaluationOutput> instance |
|
438
|
|
|
|
|
|
|
|
|
439
|
|
|
|
|
|
|
Creates a new C<Evaluation> of an C<MLModel>. An C<MLModel> is |
|
440
|
|
|
|
|
|
|
evaluated on a set of observations associated to a C<DataSource>. Like |
|
441
|
|
|
|
|
|
|
a C<DataSource> for an C<MLModel>, the C<DataSource> for an |
|
442
|
|
|
|
|
|
|
C<Evaluation> contains values for the C<Target Variable>. The |
|
443
|
|
|
|
|
|
|
C<Evaluation> compares the predicted result for each observation to the |
|
444
|
|
|
|
|
|
|
actual outcome and provides a summary so that you know how effective |
|
445
|
|
|
|
|
|
|
the C<MLModel> functions on the test data. Evaluation generates a |
|
446
|
|
|
|
|
|
|
relevant performance metric, such as BinaryAUC, RegressionRMSE or |
|
447
|
|
|
|
|
|
|
MulticlassAvgFScore based on the corresponding C<MLModelType>: |
|
448
|
|
|
|
|
|
|
C<BINARY>, C<REGRESSION> or C<MULTICLASS>. |
|
449
|
|
|
|
|
|
|
|
|
450
|
|
|
|
|
|
|
C<CreateEvaluation> is an asynchronous operation. In response to |
|
451
|
|
|
|
|
|
|
C<CreateEvaluation>, Amazon Machine Learning (Amazon ML) immediately |
|
452
|
|
|
|
|
|
|
returns and sets the evaluation status to C<PENDING>. After the |
|
453
|
|
|
|
|
|
|
C<Evaluation> is created and ready for use, Amazon ML sets the status |
|
454
|
|
|
|
|
|
|
to C<COMPLETED>. |
|
455
|
|
|
|
|
|
|
|
|
456
|
|
|
|
|
|
|
You can use the C<GetEvaluation> operation to check progress of the |
|
457
|
|
|
|
|
|
|
evaluation during the creation operation. |
|
458
|
|
|
|
|
|
|
|
|
459
|
|
|
|
|
|
|
|
|
460
|
|
|
|
|
|
|
=head2 CreateMLModel(MLModelId => Str, MLModelType => Str, TrainingDataSourceId => Str, [MLModelName => Str, Parameters => L<Paws::MachineLearning::TrainingParameters>, Recipe => Str, RecipeUri => Str]) |
|
461
|
|
|
|
|
|
|
|
|
462
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::CreateMLModel> |
|
463
|
|
|
|
|
|
|
|
|
464
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::CreateMLModelOutput> instance |
|
465
|
|
|
|
|
|
|
|
|
466
|
|
|
|
|
|
|
Creates a new C<MLModel> using the C<DataSource> and the recipe as |
|
467
|
|
|
|
|
|
|
information sources. |
|
468
|
|
|
|
|
|
|
|
|
469
|
|
|
|
|
|
|
An C<MLModel> is nearly immutable. Users can update only the |
|
470
|
|
|
|
|
|
|
C<MLModelName> and the C<ScoreThreshold> in an C<MLModel> without |
|
471
|
|
|
|
|
|
|
creating a new C<MLModel>. |
|
472
|
|
|
|
|
|
|
|
|
473
|
|
|
|
|
|
|
C<CreateMLModel> is an asynchronous operation. In response to |
|
474
|
|
|
|
|
|
|
C<CreateMLModel>, Amazon Machine Learning (Amazon ML) immediately |
|
475
|
|
|
|
|
|
|
returns and sets the C<MLModel> status to C<PENDING>. After the |
|
476
|
|
|
|
|
|
|
C<MLModel> has been created and ready is for use, Amazon ML sets the |
|
477
|
|
|
|
|
|
|
status to C<COMPLETED>. |
|
478
|
|
|
|
|
|
|
|
|
479
|
|
|
|
|
|
|
You can use the C<GetMLModel> operation to check the progress of the |
|
480
|
|
|
|
|
|
|
C<MLModel> during the creation operation. |
|
481
|
|
|
|
|
|
|
|
|
482
|
|
|
|
|
|
|
C<CreateMLModel> requires a C<DataSource> with computed statistics, |
|
483
|
|
|
|
|
|
|
which can be created by setting C<ComputeStatistics> to C<true> in |
|
484
|
|
|
|
|
|
|
C<CreateDataSourceFromRDS>, C<CreateDataSourceFromS3>, or |
|
485
|
|
|
|
|
|
|
C<CreateDataSourceFromRedshift> operations. |
|
486
|
|
|
|
|
|
|
|
|
487
|
|
|
|
|
|
|
|
|
488
|
|
|
|
|
|
|
=head2 CreateRealtimeEndpoint(MLModelId => Str) |
|
489
|
|
|
|
|
|
|
|
|
490
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::CreateRealtimeEndpoint> |
|
491
|
|
|
|
|
|
|
|
|
492
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::CreateRealtimeEndpointOutput> instance |
|
493
|
|
|
|
|
|
|
|
|
494
|
|
|
|
|
|
|
Creates a real-time endpoint for the C<MLModel>. The endpoint contains |
|
495
|
|
|
|
|
|
|
the URI of the C<MLModel>; that is, the location to send real-time |
|
496
|
|
|
|
|
|
|
prediction requests for the specified C<MLModel>. |
|
497
|
|
|
|
|
|
|
|
|
498
|
|
|
|
|
|
|
|
|
499
|
|
|
|
|
|
|
=head2 DeleteBatchPrediction(BatchPredictionId => Str) |
|
500
|
|
|
|
|
|
|
|
|
501
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::DeleteBatchPrediction> |
|
502
|
|
|
|
|
|
|
|
|
503
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::DeleteBatchPredictionOutput> instance |
|
504
|
|
|
|
|
|
|
|
|
505
|
|
|
|
|
|
|
Assigns the DELETED status to a C<BatchPrediction>, rendering it |
|
506
|
|
|
|
|
|
|
unusable. |
|
507
|
|
|
|
|
|
|
|
|
508
|
|
|
|
|
|
|
After using the C<DeleteBatchPrediction> operation, you can use the |
|
509
|
|
|
|
|
|
|
GetBatchPrediction operation to verify that the status of the |
|
510
|
|
|
|
|
|
|
C<BatchPrediction> changed to DELETED. |
|
511
|
|
|
|
|
|
|
|
|
512
|
|
|
|
|
|
|
B<Caution:> The result of the C<DeleteBatchPrediction> operation is |
|
513
|
|
|
|
|
|
|
irreversible. |
|
514
|
|
|
|
|
|
|
|
|
515
|
|
|
|
|
|
|
|
|
516
|
|
|
|
|
|
|
=head2 DeleteDataSource(DataSourceId => Str) |
|
517
|
|
|
|
|
|
|
|
|
518
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::DeleteDataSource> |
|
519
|
|
|
|
|
|
|
|
|
520
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::DeleteDataSourceOutput> instance |
|
521
|
|
|
|
|
|
|
|
|
522
|
|
|
|
|
|
|
Assigns the DELETED status to a C<DataSource>, rendering it unusable. |
|
523
|
|
|
|
|
|
|
|
|
524
|
|
|
|
|
|
|
After using the C<DeleteDataSource> operation, you can use the |
|
525
|
|
|
|
|
|
|
GetDataSource operation to verify that the status of the C<DataSource> |
|
526
|
|
|
|
|
|
|
changed to DELETED. |
|
527
|
|
|
|
|
|
|
|
|
528
|
|
|
|
|
|
|
B<Caution:> The results of the C<DeleteDataSource> operation are |
|
529
|
|
|
|
|
|
|
irreversible. |
|
530
|
|
|
|
|
|
|
|
|
531
|
|
|
|
|
|
|
|
|
532
|
|
|
|
|
|
|
=head2 DeleteEvaluation(EvaluationId => Str) |
|
533
|
|
|
|
|
|
|
|
|
534
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::DeleteEvaluation> |
|
535
|
|
|
|
|
|
|
|
|
536
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::DeleteEvaluationOutput> instance |
|
537
|
|
|
|
|
|
|
|
|
538
|
|
|
|
|
|
|
Assigns the C<DELETED> status to an C<Evaluation>, rendering it |
|
539
|
|
|
|
|
|
|
unusable. |
|
540
|
|
|
|
|
|
|
|
|
541
|
|
|
|
|
|
|
After invoking the C<DeleteEvaluation> operation, you can use the |
|
542
|
|
|
|
|
|
|
C<GetEvaluation> operation to verify that the status of the |
|
543
|
|
|
|
|
|
|
C<Evaluation> changed to C<DELETED>. |
|
544
|
|
|
|
|
|
|
|
|
545
|
|
|
|
|
|
|
The results of the C<DeleteEvaluation> operation are irreversible. |
|
546
|
|
|
|
|
|
|
|
|
547
|
|
|
|
|
|
|
|
|
548
|
|
|
|
|
|
|
=head2 DeleteMLModel(MLModelId => Str) |
|
549
|
|
|
|
|
|
|
|
|
550
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::DeleteMLModel> |
|
551
|
|
|
|
|
|
|
|
|
552
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::DeleteMLModelOutput> instance |
|
553
|
|
|
|
|
|
|
|
|
554
|
|
|
|
|
|
|
Assigns the C<DELETED> status to an C<MLModel>, rendering it unusable. |
|
555
|
|
|
|
|
|
|
|
|
556
|
|
|
|
|
|
|
After using the C<DeleteMLModel> operation, you can use the |
|
557
|
|
|
|
|
|
|
C<GetMLModel> operation to verify that the status of the C<MLModel> |
|
558
|
|
|
|
|
|
|
changed to DELETED. |
|
559
|
|
|
|
|
|
|
|
|
560
|
|
|
|
|
|
|
B<Caution:> The result of the C<DeleteMLModel> operation is |
|
561
|
|
|
|
|
|
|
irreversible. |
|
562
|
|
|
|
|
|
|
|
|
563
|
|
|
|
|
|
|
|
|
564
|
|
|
|
|
|
|
=head2 DeleteRealtimeEndpoint(MLModelId => Str) |
|
565
|
|
|
|
|
|
|
|
|
566
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::DeleteRealtimeEndpoint> |
|
567
|
|
|
|
|
|
|
|
|
568
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::DeleteRealtimeEndpointOutput> instance |
|
569
|
|
|
|
|
|
|
|
|
570
|
|
|
|
|
|
|
Deletes a real time endpoint of an C<MLModel>. |
|
571
|
|
|
|
|
|
|
|
|
572
|
|
|
|
|
|
|
|
|
573
|
|
|
|
|
|
|
=head2 DeleteTags(ResourceId => Str, ResourceType => Str, TagKeys => ArrayRef[Str|Undef]) |
|
574
|
|
|
|
|
|
|
|
|
575
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::DeleteTags> |
|
576
|
|
|
|
|
|
|
|
|
577
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::DeleteTagsOutput> instance |
|
578
|
|
|
|
|
|
|
|
|
579
|
|
|
|
|
|
|
Deletes the specified tags associated with an ML object. After this |
|
580
|
|
|
|
|
|
|
operation is complete, you can't recover deleted tags. |
|
581
|
|
|
|
|
|
|
|
|
582
|
|
|
|
|
|
|
If you specify a tag that doesn't exist, Amazon ML ignores it. |
|
583
|
|
|
|
|
|
|
|
|
584
|
|
|
|
|
|
|
|
|
585
|
|
|
|
|
|
|
=head2 DescribeBatchPredictions([EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str]) |
|
586
|
|
|
|
|
|
|
|
|
587
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::DescribeBatchPredictions> |
|
588
|
|
|
|
|
|
|
|
|
589
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::DescribeBatchPredictionsOutput> instance |
|
590
|
|
|
|
|
|
|
|
|
591
|
|
|
|
|
|
|
Returns a list of C<BatchPrediction> operations that match the search |
|
592
|
|
|
|
|
|
|
criteria in the request. |
|
593
|
|
|
|
|
|
|
|
|
594
|
|
|
|
|
|
|
|
|
595
|
|
|
|
|
|
|
=head2 DescribeDataSources([EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str]) |
|
596
|
|
|
|
|
|
|
|
|
597
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::DescribeDataSources> |
|
598
|
|
|
|
|
|
|
|
|
599
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::DescribeDataSourcesOutput> instance |
|
600
|
|
|
|
|
|
|
|
|
601
|
|
|
|
|
|
|
Returns a list of C<DataSource> that match the search criteria in the |
|
602
|
|
|
|
|
|
|
request. |
|
603
|
|
|
|
|
|
|
|
|
604
|
|
|
|
|
|
|
|
|
605
|
|
|
|
|
|
|
=head2 DescribeEvaluations([EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str]) |
|
606
|
|
|
|
|
|
|
|
|
607
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::DescribeEvaluations> |
|
608
|
|
|
|
|
|
|
|
|
609
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::DescribeEvaluationsOutput> instance |
|
610
|
|
|
|
|
|
|
|
|
611
|
|
|
|
|
|
|
Returns a list of C<DescribeEvaluations> that match the search criteria |
|
612
|
|
|
|
|
|
|
in the request. |
|
613
|
|
|
|
|
|
|
|
|
614
|
|
|
|
|
|
|
|
|
615
|
|
|
|
|
|
|
=head2 DescribeMLModels([EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str]) |
|
616
|
|
|
|
|
|
|
|
|
617
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::DescribeMLModels> |
|
618
|
|
|
|
|
|
|
|
|
619
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::DescribeMLModelsOutput> instance |
|
620
|
|
|
|
|
|
|
|
|
621
|
|
|
|
|
|
|
Returns a list of C<MLModel> that match the search criteria in the |
|
622
|
|
|
|
|
|
|
request. |
|
623
|
|
|
|
|
|
|
|
|
624
|
|
|
|
|
|
|
|
|
625
|
|
|
|
|
|
|
=head2 DescribeTags(ResourceId => Str, ResourceType => Str) |
|
626
|
|
|
|
|
|
|
|
|
627
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::DescribeTags> |
|
628
|
|
|
|
|
|
|
|
|
629
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::DescribeTagsOutput> instance |
|
630
|
|
|
|
|
|
|
|
|
631
|
|
|
|
|
|
|
Describes one or more of the tags for your Amazon ML object. |
|
632
|
|
|
|
|
|
|
|
|
633
|
|
|
|
|
|
|
|
|
634
|
|
|
|
|
|
|
=head2 GetBatchPrediction(BatchPredictionId => Str) |
|
635
|
|
|
|
|
|
|
|
|
636
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::GetBatchPrediction> |
|
637
|
|
|
|
|
|
|
|
|
638
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::GetBatchPredictionOutput> instance |
|
639
|
|
|
|
|
|
|
|
|
640
|
|
|
|
|
|
|
Returns a C<BatchPrediction> that includes detailed metadata, status, |
|
641
|
|
|
|
|
|
|
and data file information for a C<Batch Prediction> request. |
|
642
|
|
|
|
|
|
|
|
|
643
|
|
|
|
|
|
|
|
|
644
|
|
|
|
|
|
|
=head2 GetDataSource(DataSourceId => Str, [Verbose => Bool]) |
|
645
|
|
|
|
|
|
|
|
|
646
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::GetDataSource> |
|
647
|
|
|
|
|
|
|
|
|
648
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::GetDataSourceOutput> instance |
|
649
|
|
|
|
|
|
|
|
|
650
|
|
|
|
|
|
|
Returns a C<DataSource> that includes metadata and data file |
|
651
|
|
|
|
|
|
|
information, as well as the current status of the C<DataSource>. |
|
652
|
|
|
|
|
|
|
|
|
653
|
|
|
|
|
|
|
C<GetDataSource> provides results in normal or verbose format. The |
|
654
|
|
|
|
|
|
|
verbose format adds the schema description and the list of files |
|
655
|
|
|
|
|
|
|
pointed to by the DataSource to the normal format. |
|
656
|
|
|
|
|
|
|
|
|
657
|
|
|
|
|
|
|
|
|
658
|
|
|
|
|
|
|
=head2 GetEvaluation(EvaluationId => Str) |
|
659
|
|
|
|
|
|
|
|
|
660
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::GetEvaluation> |
|
661
|
|
|
|
|
|
|
|
|
662
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::GetEvaluationOutput> instance |
|
663
|
|
|
|
|
|
|
|
|
664
|
|
|
|
|
|
|
Returns an C<Evaluation> that includes metadata as well as the current |
|
665
|
|
|
|
|
|
|
status of the C<Evaluation>. |
|
666
|
|
|
|
|
|
|
|
|
667
|
|
|
|
|
|
|
|
|
668
|
|
|
|
|
|
|
=head2 GetMLModel(MLModelId => Str, [Verbose => Bool]) |
|
669
|
|
|
|
|
|
|
|
|
670
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::GetMLModel> |
|
671
|
|
|
|
|
|
|
|
|
672
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::GetMLModelOutput> instance |
|
673
|
|
|
|
|
|
|
|
|
674
|
|
|
|
|
|
|
Returns an C<MLModel> that includes detailed metadata, data source |
|
675
|
|
|
|
|
|
|
information, and the current status of the C<MLModel>. |
|
676
|
|
|
|
|
|
|
|
|
677
|
|
|
|
|
|
|
C<GetMLModel> provides results in normal or verbose format. |
|
678
|
|
|
|
|
|
|
|
|
679
|
|
|
|
|
|
|
|
|
680
|
|
|
|
|
|
|
=head2 Predict(MLModelId => Str, PredictEndpoint => Str, Record => L<Paws::MachineLearning::Record>) |
|
681
|
|
|
|
|
|
|
|
|
682
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::Predict> |
|
683
|
|
|
|
|
|
|
|
|
684
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::PredictOutput> instance |
|
685
|
|
|
|
|
|
|
|
|
686
|
|
|
|
|
|
|
Generates a prediction for the observation using the specified C<ML |
|
687
|
|
|
|
|
|
|
Model>. |
|
688
|
|
|
|
|
|
|
|
|
689
|
|
|
|
|
|
|
Not all response parameters will be populated. Whether a response |
|
690
|
|
|
|
|
|
|
parameter is populated depends on the type of model requested. |
|
691
|
|
|
|
|
|
|
|
|
692
|
|
|
|
|
|
|
|
|
693
|
|
|
|
|
|
|
=head2 UpdateBatchPrediction(BatchPredictionId => Str, BatchPredictionName => Str) |
|
694
|
|
|
|
|
|
|
|
|
695
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::UpdateBatchPrediction> |
|
696
|
|
|
|
|
|
|
|
|
697
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::UpdateBatchPredictionOutput> instance |
|
698
|
|
|
|
|
|
|
|
|
699
|
|
|
|
|
|
|
Updates the C<BatchPredictionName> of a C<BatchPrediction>. |
|
700
|
|
|
|
|
|
|
|
|
701
|
|
|
|
|
|
|
You can use the C<GetBatchPrediction> operation to view the contents of |
|
702
|
|
|
|
|
|
|
the updated data element. |
|
703
|
|
|
|
|
|
|
|
|
704
|
|
|
|
|
|
|
|
|
705
|
|
|
|
|
|
|
=head2 UpdateDataSource(DataSourceId => Str, DataSourceName => Str) |
|
706
|
|
|
|
|
|
|
|
|
707
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::UpdateDataSource> |
|
708
|
|
|
|
|
|
|
|
|
709
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::UpdateDataSourceOutput> instance |
|
710
|
|
|
|
|
|
|
|
|
711
|
|
|
|
|
|
|
Updates the C<DataSourceName> of a C<DataSource>. |
|
712
|
|
|
|
|
|
|
|
|
713
|
|
|
|
|
|
|
You can use the C<GetDataSource> operation to view the contents of the |
|
714
|
|
|
|
|
|
|
updated data element. |
|
715
|
|
|
|
|
|
|
|
|
716
|
|
|
|
|
|
|
|
|
717
|
|
|
|
|
|
|
=head2 UpdateEvaluation(EvaluationId => Str, EvaluationName => Str) |
|
718
|
|
|
|
|
|
|
|
|
719
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::UpdateEvaluation> |
|
720
|
|
|
|
|
|
|
|
|
721
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::UpdateEvaluationOutput> instance |
|
722
|
|
|
|
|
|
|
|
|
723
|
|
|
|
|
|
|
Updates the C<EvaluationName> of an C<Evaluation>. |
|
724
|
|
|
|
|
|
|
|
|
725
|
|
|
|
|
|
|
You can use the C<GetEvaluation> operation to view the contents of the |
|
726
|
|
|
|
|
|
|
updated data element. |
|
727
|
|
|
|
|
|
|
|
|
728
|
|
|
|
|
|
|
|
|
729
|
|
|
|
|
|
|
=head2 UpdateMLModel(MLModelId => Str, [MLModelName => Str, ScoreThreshold => Num]) |
|
730
|
|
|
|
|
|
|
|
|
731
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::UpdateMLModel> |
|
732
|
|
|
|
|
|
|
|
|
733
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::UpdateMLModelOutput> instance |
|
734
|
|
|
|
|
|
|
|
|
735
|
|
|
|
|
|
|
Updates the C<MLModelName> and the C<ScoreThreshold> of an C<MLModel>. |
|
736
|
|
|
|
|
|
|
|
|
737
|
|
|
|
|
|
|
You can use the C<GetMLModel> operation to view the contents of the |
|
738
|
|
|
|
|
|
|
updated data element. |
|
739
|
|
|
|
|
|
|
|
|
740
|
|
|
|
|
|
|
|
|
741
|
|
|
|
|
|
|
|
|
742
|
|
|
|
|
|
|
|
|
743
|
|
|
|
|
|
|
=head1 PAGINATORS |
|
744
|
|
|
|
|
|
|
|
|
745
|
|
|
|
|
|
|
Paginator methods are helpers that repetively call methods that return partial results |
|
746
|
|
|
|
|
|
|
|
|
747
|
|
|
|
|
|
|
=head2 DescribeAllBatchPredictions(sub { },[EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str]) |
|
748
|
|
|
|
|
|
|
|
|
749
|
|
|
|
|
|
|
=head2 DescribeAllBatchPredictions([EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str]) |
|
750
|
|
|
|
|
|
|
|
|
751
|
|
|
|
|
|
|
|
|
752
|
|
|
|
|
|
|
If passed a sub as first parameter, it will call the sub for each element found in : |
|
753
|
|
|
|
|
|
|
|
|
754
|
|
|
|
|
|
|
- Results, passing the object as the first parameter, and the string 'Results' as the second parameter |
|
755
|
|
|
|
|
|
|
|
|
756
|
|
|
|
|
|
|
If not, it will return a a L<Paws::MachineLearning::DescribeBatchPredictionsOutput> instance with all the C<param>s; from all the responses. Please take into account that this mode can potentially consume vasts ammounts of memory. |
|
757
|
|
|
|
|
|
|
|
|
758
|
|
|
|
|
|
|
|
|
759
|
|
|
|
|
|
|
=head2 DescribeAllDataSources(sub { },[EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str]) |
|
760
|
|
|
|
|
|
|
|
|
761
|
|
|
|
|
|
|
=head2 DescribeAllDataSources([EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str]) |
|
762
|
|
|
|
|
|
|
|
|
763
|
|
|
|
|
|
|
|
|
764
|
|
|
|
|
|
|
If passed a sub as first parameter, it will call the sub for each element found in : |
|
765
|
|
|
|
|
|
|
|
|
766
|
|
|
|
|
|
|
- Results, passing the object as the first parameter, and the string 'Results' as the second parameter |
|
767
|
|
|
|
|
|
|
|
|
768
|
|
|
|
|
|
|
If not, it will return a a L<Paws::MachineLearning::DescribeDataSourcesOutput> instance with all the C<param>s; from all the responses. Please take into account that this mode can potentially consume vasts ammounts of memory. |
|
769
|
|
|
|
|
|
|
|
|
770
|
|
|
|
|
|
|
|
|
771
|
|
|
|
|
|
|
=head2 DescribeAllEvaluations(sub { },[EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str]) |
|
772
|
|
|
|
|
|
|
|
|
773
|
|
|
|
|
|
|
=head2 DescribeAllEvaluations([EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str]) |
|
774
|
|
|
|
|
|
|
|
|
775
|
|
|
|
|
|
|
|
|
776
|
|
|
|
|
|
|
If passed a sub as first parameter, it will call the sub for each element found in : |
|
777
|
|
|
|
|
|
|
|
|
778
|
|
|
|
|
|
|
- Results, passing the object as the first parameter, and the string 'Results' as the second parameter |
|
779
|
|
|
|
|
|
|
|
|
780
|
|
|
|
|
|
|
If not, it will return a a L<Paws::MachineLearning::DescribeEvaluationsOutput> instance with all the C<param>s; from all the responses. Please take into account that this mode can potentially consume vasts ammounts of memory. |
|
781
|
|
|
|
|
|
|
|
|
782
|
|
|
|
|
|
|
|
|
783
|
|
|
|
|
|
|
=head2 DescribeAllMLModels(sub { },[EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str]) |
|
784
|
|
|
|
|
|
|
|
|
785
|
|
|
|
|
|
|
=head2 DescribeAllMLModels([EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str]) |
|
786
|
|
|
|
|
|
|
|
|
787
|
|
|
|
|
|
|
|
|
788
|
|
|
|
|
|
|
If passed a sub as first parameter, it will call the sub for each element found in : |
|
789
|
|
|
|
|
|
|
|
|
790
|
|
|
|
|
|
|
- Results, passing the object as the first parameter, and the string 'Results' as the second parameter |
|
791
|
|
|
|
|
|
|
|
|
792
|
|
|
|
|
|
|
If not, it will return a a L<Paws::MachineLearning::DescribeMLModelsOutput> instance with all the C<param>s; from all the responses. Please take into account that this mode can potentially consume vasts ammounts of memory. |
|
793
|
|
|
|
|
|
|
|
|
794
|
|
|
|
|
|
|
|
|
795
|
|
|
|
|
|
|
|
|
796
|
|
|
|
|
|
|
|
|
797
|
|
|
|
|
|
|
|
|
798
|
|
|
|
|
|
|
=head1 SEE ALSO |
|
799
|
|
|
|
|
|
|
|
|
800
|
|
|
|
|
|
|
This service class forms part of L<Paws> |
|
801
|
|
|
|
|
|
|
|
|
802
|
|
|
|
|
|
|
=head1 BUGS and CONTRIBUTIONS |
|
803
|
|
|
|
|
|
|
|
|
804
|
|
|
|
|
|
|
The source code is located here: https://github.com/pplu/aws-sdk-perl |
|
805
|
|
|
|
|
|
|
|
|
806
|
|
|
|
|
|
|
Please report bugs to: https://github.com/pplu/aws-sdk-perl/issues |
|
807
|
|
|
|
|
|
|
|
|
808
|
|
|
|
|
|
|
=cut |
|
809
|
|
|
|
|
|
|
|