| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
#include |
|
2
|
|
|
|
|
|
|
#include |
|
3
|
|
|
|
|
|
|
#include "csprng.h" |
|
4
|
|
|
|
|
|
|
#include "primality.h" |
|
5
|
|
|
|
|
|
|
#include "util.h" |
|
6
|
|
|
|
|
|
|
#include "prime_nth_count.h" |
|
7
|
|
|
|
|
|
|
#include "lmo.h" |
|
8
|
|
|
|
|
|
|
#include "mulmod.h" |
|
9
|
|
|
|
|
|
|
#include "constants.h" |
|
10
|
|
|
|
|
|
|
#include "random_prime.h" |
|
11
|
|
|
|
|
|
|
|
|
12
|
254
|
|
|
|
|
|
UV random_nbit_prime(void* ctx, UV b) |
|
13
|
|
|
|
|
|
|
{ |
|
14
|
254
|
|
|
|
|
|
uint32_t start = 0, range; |
|
15
|
|
|
|
|
|
|
UV n, p; |
|
16
|
254
|
|
|
|
|
|
switch (b) { |
|
17
|
|
|
|
|
|
|
case 0: |
|
18
|
0
|
|
|
|
|
|
case 1: return 0; |
|
19
|
4
|
100
|
|
|
|
|
case 2: return urandomb(ctx,1) ? 2 : 3; |
|
20
|
4
|
100
|
|
|
|
|
case 3: return urandomb(ctx,1) ? 5 : 7; |
|
21
|
4
|
50
|
|
|
|
|
case 4: return urandomb(ctx,1) ? 11 : 13; |
|
22
|
4
|
|
|
|
|
|
case 5: start = 7; range = 5; break; |
|
23
|
4
|
|
|
|
|
|
case 6: start = 12; range = 7; break; |
|
24
|
4
|
|
|
|
|
|
case 7: start = 19; range = 13; break; |
|
25
|
4
|
|
|
|
|
|
case 8: start = 32; range = 23; break; |
|
26
|
4
|
|
|
|
|
|
case 9: start = 55; range = 43; break; |
|
27
|
222
|
|
|
|
|
|
default: break; |
|
28
|
|
|
|
|
|
|
} |
|
29
|
|
|
|
|
|
|
|
|
30
|
242
|
100
|
|
|
|
|
if (start) |
|
31
|
20
|
|
|
|
|
|
return nth_prime(start + urandomm32(ctx,range)); |
|
32
|
|
|
|
|
|
|
|
|
33
|
222
|
50
|
|
|
|
|
if (b > BITS_PER_WORD) |
|
34
|
0
|
|
|
|
|
|
return 0; |
|
35
|
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
/* Trivial method */ |
|
37
|
222
|
|
|
|
|
|
p = (UVCONST(1) << (b-1)) + 1; |
|
38
|
|
|
|
|
|
|
while (1) { |
|
39
|
2796
|
|
|
|
|
|
n = p + (urandomb(ctx,b-2) << 1); |
|
40
|
2796
|
100
|
|
|
|
|
if (is_prob_prime(n)) |
|
41
|
222
|
|
|
|
|
|
return n; |
|
42
|
2574
|
|
|
|
|
|
} |
|
43
|
|
|
|
|
|
|
} |
|
44
|
|
|
|
|
|
|
|
|
45
|
22
|
|
|
|
|
|
UV random_ndigit_prime(void* ctx, UV d) |
|
46
|
|
|
|
|
|
|
{ |
|
47
|
|
|
|
|
|
|
UV lo, hi; |
|
48
|
22
|
50
|
|
|
|
|
if ( (d == 0) || (BITS_PER_WORD == 32 && d >= 10) || (BITS_PER_WORD == 64 && d >= 20) ) return 0; |
|
|
|
100
|
|
|
|
|
|
|
49
|
19
|
100
|
|
|
|
|
if (d == 1) return nth_prime(1 + urandomm32(ctx,4)); |
|
50
|
18
|
100
|
|
|
|
|
if (d == 2) return nth_prime(5 + urandomm32(ctx,21)); |
|
51
|
17
|
|
|
|
|
|
lo = powmod(10,d-1,UV_MAX)+1; |
|
52
|
17
|
|
|
|
|
|
hi = 10*lo-11; |
|
53
|
|
|
|
|
|
|
while (1) { |
|
54
|
227
|
|
|
|
|
|
UV n = (lo + urandomm64(ctx,hi-lo+1)) | 1; |
|
55
|
227
|
100
|
|
|
|
|
if (is_prob_prime(n)) |
|
56
|
17
|
|
|
|
|
|
return n; |
|
57
|
210
|
|
|
|
|
|
} |
|
58
|
|
|
|
|
|
|
} |
|
59
|
|
|
|
|
|
|
|
|
60
|
22017
|
|
|
|
|
|
UV random_prime(void* ctx, UV lo, UV hi) |
|
61
|
|
|
|
|
|
|
{ |
|
62
|
|
|
|
|
|
|
UV n, oddrange; |
|
63
|
22017
|
100
|
|
|
|
|
if (lo > hi) return 0; |
|
64
|
|
|
|
|
|
|
/* Pull edges in to nearest primes */ |
|
65
|
22015
|
100
|
|
|
|
|
lo = (lo <= 2) ? 2 : next_prime(lo-1); |
|
66
|
22015
|
50
|
|
|
|
|
hi = (hi >= MPU_MAX_PRIME) ? MPU_MAX_PRIME : prev_prime(hi+1); |
|
67
|
22015
|
100
|
|
|
|
|
if (lo > hi) return 0; |
|
68
|
|
|
|
|
|
|
/* There must be at least one prime in the range */ |
|
69
|
22011
|
100
|
|
|
|
|
if (!(lo&1)) lo--; /* treat 2 as 1 */ |
|
70
|
22011
|
|
|
|
|
|
oddrange = ((hi-lo)>>1) + 1; /* look for odds */ |
|
71
|
|
|
|
|
|
|
while (1) { |
|
72
|
133867
|
|
|
|
|
|
n = lo + 2 * urandomm64(ctx, oddrange); |
|
73
|
133867
|
100
|
|
|
|
|
if (n == 1 || is_prob_prime(n)) |
|
|
|
100
|
|
|
|
|
|
|
74
|
22011
|
100
|
|
|
|
|
return (n == 1) ? 2 : n; |
|
75
|
111856
|
|
|
|
|
|
} |
|
76
|
|
|
|
|
|
|
} |
|
77
|
|
|
|
|
|
|
|
|
78
|
|
|
|
|
|
|
/* Note that 7 chosen bases or the first 12 prime bases are enough |
|
79
|
|
|
|
|
|
|
* to guarantee sucess. We could choose to limit to those. */ |
|
80
|
5
|
|
|
|
|
|
int is_mr_random(void* ctx, UV n, UV k) { |
|
81
|
5
|
50
|
|
|
|
|
if (k >= 3*(n/4)) |
|
82
|
0
|
|
|
|
|
|
return is_prob_prime(n); |
|
83
|
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
/* TODO: do 16 at a time */ |
|
85
|
23
|
100
|
|
|
|
|
while (k--) { |
|
86
|
20
|
|
|
|
|
|
UV base = 2 + urandomm64(ctx, n-2); |
|
87
|
20
|
100
|
|
|
|
|
if (!miller_rabin(n, &base, 1)) |
|
88
|
20
|
|
|
|
|
|
return 0; |
|
89
|
|
|
|
|
|
|
} |
|
90
|
3
|
|
|
|
|
|
return 1; |
|
91
|
|
|
|
|
|
|
} |
|
92
|
|
|
|
|
|
|
|
|
93
|
2
|
|
|
|
|
|
UV random_semiprime(void* ctx, UV b) { /* Even split of bits */ |
|
94
|
|
|
|
|
|
|
static const uint16_t small_semi[] = {35,35,49,65,77,91,143,143,169,299,319,341,377,403}; |
|
95
|
|
|
|
|
|
|
UV min, max, n, L, N; |
|
96
|
|
|
|
|
|
|
|
|
97
|
2
|
50
|
|
|
|
|
if (b < 4 || b > BITS_PER_WORD) |
|
|
|
50
|
|
|
|
|
|
|
98
|
0
|
|
|
|
|
|
return 0; |
|
99
|
|
|
|
|
|
|
|
|
100
|
2
|
|
|
|
|
|
switch (b) { |
|
101
|
1
|
|
|
|
|
|
case 4: return 9; |
|
102
|
0
|
|
|
|
|
|
case 5: return 21; |
|
103
|
0
|
|
|
|
|
|
case 6: return small_semi[ 0 + urandomm32(ctx,3) ]; |
|
104
|
0
|
|
|
|
|
|
case 7: return small_semi[ 3 + urandomm32(ctx,3) ]; |
|
105
|
0
|
|
|
|
|
|
case 8: return small_semi[ 6 + urandomm32(ctx,3) ]; |
|
106
|
0
|
|
|
|
|
|
case 9: return small_semi[ 9 + urandomm32(ctx,5) ]; |
|
107
|
1
|
|
|
|
|
|
default: break; |
|
108
|
|
|
|
|
|
|
} |
|
109
|
|
|
|
|
|
|
|
|
110
|
1
|
|
|
|
|
|
min = UVCONST(1) << (b-1); |
|
111
|
1
|
|
|
|
|
|
max = min + (min-1); |
|
112
|
1
|
|
|
|
|
|
L = b / 2; |
|
113
|
1
|
|
|
|
|
|
N = b - L; |
|
114
|
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
do { |
|
116
|
1
|
|
|
|
|
|
n = random_nbit_prime(ctx,L) * random_nbit_prime(ctx,N); |
|
117
|
1
|
50
|
|
|
|
|
} while (n < min || n > max); |
|
|
|
50
|
|
|
|
|
|
|
118
|
1
|
|
|
|
|
|
return n; |
|
119
|
|
|
|
|
|
|
} |
|
120
|
|
|
|
|
|
|
|
|
121
|
1
|
|
|
|
|
|
UV random_unrestricted_semiprime(void* ctx, UV b) { /* generic semiprime */ |
|
122
|
|
|
|
|
|
|
static const unsigned char small_semi[] = {4,6,9,10,14,15,21,22,25,26,33,34,35,38,39,46,49,51,55,57,58,62,65,69,74,77,82,85,86,87,91,93,94,95,106,111,115,118,119,121,122,123}; |
|
123
|
|
|
|
|
|
|
UV min, n; |
|
124
|
|
|
|
|
|
|
|
|
125
|
1
|
50
|
|
|
|
|
if (b < 3 || b > BITS_PER_WORD) |
|
|
|
50
|
|
|
|
|
|
|
126
|
0
|
|
|
|
|
|
return 0; |
|
127
|
|
|
|
|
|
|
|
|
128
|
1
|
|
|
|
|
|
switch (b) { |
|
129
|
1
|
|
|
|
|
|
case 3: return small_semi[ 0 + urandomm32(ctx, 2) ]; |
|
130
|
0
|
|
|
|
|
|
case 4: return small_semi[ 2 + urandomm32(ctx, 4) ]; |
|
131
|
0
|
|
|
|
|
|
case 5: return small_semi[ 6 + urandomm32(ctx, 4) ]; |
|
132
|
0
|
|
|
|
|
|
case 6: return small_semi[ 10 + urandomm32(ctx,12) ]; |
|
133
|
0
|
|
|
|
|
|
case 7: return small_semi[ 22 + urandomm32(ctx,20) ]; |
|
134
|
0
|
|
|
|
|
|
default: break; |
|
135
|
|
|
|
|
|
|
} |
|
136
|
|
|
|
|
|
|
/* There are faster ways to generate if we could be lax on distribution. |
|
137
|
|
|
|
|
|
|
* Picking a random prime followed by a second that makes a semiprime in |
|
138
|
|
|
|
|
|
|
* the range seems obvious and is fast, but the distribution is wrong. |
|
139
|
|
|
|
|
|
|
* With that method, some semiprimes are much more likely than others. */ |
|
140
|
0
|
|
|
|
|
|
min = UVCONST(1) << (b-1); |
|
141
|
|
|
|
|
|
|
do { |
|
142
|
0
|
|
|
|
|
|
n = min + urandomb(ctx,b-1); |
|
143
|
0
|
0
|
|
|
|
|
} while (!is_semiprime(n)); |
|
144
|
0
|
|
|
|
|
|
return n; |
|
145
|
|
|
|
|
|
|
} |