| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Math::Prime::Util::ECProjectivePoint; |
|
2
|
1
|
|
|
1
|
|
6
|
use strict; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
36
|
|
|
3
|
1
|
|
|
1
|
|
5
|
use warnings; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
35
|
|
|
4
|
1
|
|
|
1
|
|
4
|
use Carp qw/carp croak confess/; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
82
|
|
|
5
|
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
BEGIN { |
|
7
|
1
|
|
|
1
|
|
3
|
$Math::Prime::Util::ECProjectivePoint::AUTHORITY = 'cpan:DANAJ'; |
|
8
|
1
|
|
|
|
|
42
|
$Math::Prime::Util::ECProjectivePoint::VERSION = '0.68'; |
|
9
|
|
|
|
|
|
|
} |
|
10
|
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
BEGIN { |
|
12
|
1
|
50
|
|
1
|
|
929
|
do { require Math::BigInt; Math::BigInt->import(try=>"GMP,Pari"); } |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
13
|
|
|
|
|
|
|
unless defined $Math::BigInt::VERSION; |
|
14
|
|
|
|
|
|
|
} |
|
15
|
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
# Pure perl (with Math::BigInt) manipulation of Elliptic Curves |
|
17
|
|
|
|
|
|
|
# in projective coordinates. |
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
sub new { |
|
20
|
9
|
|
|
9
|
1
|
33
|
my ($class, $c, $n, $x, $z) = @_; |
|
21
|
9
|
50
|
|
|
|
30
|
$c = Math::BigInt->new("$c") unless ref($c) eq 'Math::BigInt'; |
|
22
|
9
|
100
|
|
|
|
30
|
$n = Math::BigInt->new("$n") unless ref($n) eq 'Math::BigInt'; |
|
23
|
9
|
100
|
|
|
|
62
|
$x = Math::BigInt->new("$x") unless ref($x) eq 'Math::BigInt'; |
|
24
|
9
|
100
|
|
|
|
58
|
$z = Math::BigInt->new("$z") unless ref($z) eq 'Math::BigInt'; |
|
25
|
|
|
|
|
|
|
|
|
26
|
9
|
50
|
|
|
|
55
|
croak "n must be >= 2" unless $n >= 2; |
|
27
|
9
|
|
|
|
|
858
|
$c->bmod($n); |
|
28
|
|
|
|
|
|
|
|
|
29
|
9
|
|
|
|
|
861
|
my $self = { |
|
30
|
|
|
|
|
|
|
c => $c, |
|
31
|
|
|
|
|
|
|
d => ($c + 2) >> 2, |
|
32
|
|
|
|
|
|
|
n => $n, |
|
33
|
|
|
|
|
|
|
x => $x, |
|
34
|
|
|
|
|
|
|
z => $z, |
|
35
|
|
|
|
|
|
|
f => $n-$n+1, |
|
36
|
|
|
|
|
|
|
}; |
|
37
|
|
|
|
|
|
|
|
|
38
|
9
|
|
|
|
|
5180
|
bless $self, $class; |
|
39
|
9
|
|
|
|
|
34
|
return $self; |
|
40
|
|
|
|
|
|
|
} |
|
41
|
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
sub _addx { |
|
43
|
196
|
|
|
196
|
|
497
|
my ($x1, $x2, $xin, $n) = @_; |
|
44
|
|
|
|
|
|
|
|
|
45
|
196
|
|
|
|
|
524
|
my $u = ($x2 - 1) * ($x1 + 1); |
|
46
|
196
|
|
|
|
|
81812
|
my $v = ($x2 + 1) * ($x1 - 1); |
|
47
|
|
|
|
|
|
|
|
|
48
|
196
|
|
|
|
|
78663
|
my $upv2 = ($u + $v) ** 2; |
|
49
|
196
|
|
|
|
|
72899
|
my $umv2 = ($u - $v) ** 2; |
|
50
|
|
|
|
|
|
|
|
|
51
|
196
|
|
|
|
|
70565
|
return ( $upv2 % $n, ($umv2*$xin) % $n ); |
|
52
|
|
|
|
|
|
|
} |
|
53
|
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
sub _add3 { |
|
55
|
104
|
|
|
104
|
|
215
|
my ($x1, $z1, $x2, $z2, $xin, $zin, $n) = @_; |
|
56
|
|
|
|
|
|
|
|
|
57
|
104
|
|
|
|
|
296
|
my $u = ($x2 - $z2) * ($x1 + $z1); |
|
58
|
104
|
|
|
|
|
32575
|
my $v = ($x2 + $z2) * ($x1 - $z1); |
|
59
|
|
|
|
|
|
|
|
|
60
|
104
|
|
|
|
|
31804
|
my $upv2 = $u + $v; $upv2->bmul($upv2); |
|
|
104
|
|
|
|
|
9453
|
|
|
61
|
104
|
|
|
|
|
17346
|
my $umv2 = $u - $v; $umv2->bmul($umv2); |
|
|
104
|
|
|
|
|
11337
|
|
|
62
|
|
|
|
|
|
|
|
|
63
|
104
|
|
|
|
|
17133
|
$upv2->bmul($zin)->bmod($n); |
|
64
|
104
|
|
|
|
|
57348
|
$umv2->bmul($xin)->bmod($n); |
|
65
|
104
|
|
|
|
|
58167
|
return ($upv2, $umv2); |
|
66
|
|
|
|
|
|
|
} |
|
67
|
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
sub _double { |
|
69
|
243
|
|
|
243
|
|
568
|
my ($x, $z, $n, $d) = @_; |
|
70
|
|
|
|
|
|
|
|
|
71
|
243
|
|
|
|
|
657
|
my $u = $x + $z; $u->bmul($u); |
|
|
243
|
|
|
|
|
22100
|
|
|
72
|
243
|
|
|
|
|
24340
|
my $v = $x - $z; $v->bmul($v); |
|
|
243
|
|
|
|
|
31478
|
|
|
73
|
|
|
|
|
|
|
|
|
74
|
243
|
|
|
|
|
23455
|
my $w = $u - $v; |
|
75
|
243
|
|
|
|
|
31096
|
my $t = $d * $w + $v; |
|
76
|
|
|
|
|
|
|
|
|
77
|
243
|
|
|
|
|
44343
|
$u->bmul($v)->bmod($n); |
|
78
|
243
|
|
|
|
|
100139
|
$w->bmul($t)->bmod($n); |
|
79
|
243
|
|
|
|
|
99824
|
return ($u, $w); |
|
80
|
|
|
|
|
|
|
} |
|
81
|
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
sub mul { |
|
83
|
28
|
|
|
28
|
1
|
67
|
my ($self, $k) = @_; |
|
84
|
28
|
|
|
|
|
54
|
my $x = $self->{'x'}; |
|
85
|
28
|
|
|
|
|
48
|
my $z = $self->{'z'}; |
|
86
|
28
|
|
|
|
|
50
|
my $n = $self->{'n'}; |
|
87
|
28
|
|
|
|
|
44
|
my $d = $self->{'d'}; |
|
88
|
|
|
|
|
|
|
|
|
89
|
28
|
|
|
|
|
54
|
my ($x1, $x2, $z1, $z2); |
|
90
|
|
|
|
|
|
|
|
|
91
|
28
|
|
|
|
|
50
|
my $r = --$k; |
|
92
|
28
|
|
|
|
|
51
|
my $l = -1; |
|
93
|
28
|
|
|
|
|
67
|
while ($r != 1) { $r >>= 1; $l++ } |
|
|
102
|
|
|
|
|
124
|
|
|
|
102
|
|
|
|
|
166
|
|
|
94
|
28
|
100
|
|
|
|
78
|
if ($k & (1 << $l)) { |
|
95
|
10
|
|
|
|
|
24
|
($x2, $z2) = _double($x, $z, $n, $d); |
|
96
|
10
|
|
|
|
|
31
|
($x1, $z1) = _add3($x2, $z2, $x, $z, $x, $z, $n); |
|
97
|
10
|
|
|
|
|
30
|
($x2, $z2) = _double($x2, $z2, $n, $d); |
|
98
|
|
|
|
|
|
|
} else { |
|
99
|
18
|
|
|
|
|
44
|
($x1, $z1) = _double($x, $z, $n, $d); |
|
100
|
18
|
|
|
|
|
51
|
($x2, $z2) = _add3($x, $z, $x1, $z1, $x, $z, $n); |
|
101
|
|
|
|
|
|
|
} |
|
102
|
28
|
|
|
|
|
62
|
$l--; |
|
103
|
28
|
|
|
|
|
76
|
while ($l >= 1) { |
|
104
|
48
|
100
|
|
|
|
125
|
if ($k & (1 << $l)) { |
|
105
|
21
|
|
|
|
|
55
|
($x1, $z1) = _add3($x1, $z1, $x2, $z2, $x, $z, $n); |
|
106
|
21
|
|
|
|
|
74
|
($x2, $z2) = _double($x2, $z2, $n, $d); |
|
107
|
|
|
|
|
|
|
} else { |
|
108
|
27
|
|
|
|
|
62
|
($x2, $z2) = _add3($x2, $z2, $x1, $z1, $x, $z, $n); |
|
109
|
27
|
|
|
|
|
95
|
($x1, $z1) = _double($x1, $z1, $n, $d); |
|
110
|
|
|
|
|
|
|
} |
|
111
|
48
|
|
|
|
|
184
|
$l--; |
|
112
|
|
|
|
|
|
|
} |
|
113
|
28
|
50
|
|
|
|
75
|
if ($k & 1) { |
|
114
|
0
|
|
|
|
|
0
|
($x, $z) = _double($x2, $z2, $n, $d); |
|
115
|
|
|
|
|
|
|
} else { |
|
116
|
28
|
|
|
|
|
61
|
($x, $z) = _add3($x2, $z2, $x1, $z1, $x, $z, $n); |
|
117
|
|
|
|
|
|
|
} |
|
118
|
|
|
|
|
|
|
|
|
119
|
28
|
|
|
|
|
77
|
$self->{'x'} = $x; |
|
120
|
28
|
|
|
|
|
71
|
$self->{'z'} = $z; |
|
121
|
28
|
|
|
|
|
133
|
return $self; |
|
122
|
|
|
|
|
|
|
} |
|
123
|
|
|
|
|
|
|
|
|
124
|
|
|
|
|
|
|
sub add { |
|
125
|
0
|
|
|
0
|
1
|
0
|
my ($self, $other) = @_; |
|
126
|
0
|
0
|
|
|
|
0
|
croak "add takes a EC point" |
|
127
|
|
|
|
|
|
|
unless ref($other) eq 'Math::Prime::Util::ECProjectivePoint'; |
|
128
|
|
|
|
|
|
|
croak "second point is not on the same curve" |
|
129
|
|
|
|
|
|
|
unless $self->{'c'} == $other->{'c'} && |
|
130
|
0
|
0
|
0
|
|
|
0
|
$self->{'n'} == $other->{'n'}; |
|
131
|
|
|
|
|
|
|
|
|
132
|
|
|
|
|
|
|
($self->{'x'}, $self->{'z'}) = _add3($self->{'x'}, $self->{'z'}, |
|
133
|
|
|
|
|
|
|
$other->{'x'}, $other->{'z'}, |
|
134
|
|
|
|
|
|
|
$self->{'x'}, $self->{'z'}, |
|
135
|
0
|
|
|
|
|
0
|
$self->{'n'}); |
|
136
|
0
|
|
|
|
|
0
|
return $self; |
|
137
|
|
|
|
|
|
|
} |
|
138
|
|
|
|
|
|
|
|
|
139
|
|
|
|
|
|
|
sub double { |
|
140
|
16
|
|
|
16
|
1
|
33
|
my ($self) = @_; |
|
141
|
16
|
|
|
|
|
52
|
($self->{'x'}, $self->{'z'}) = _double($self->{'x'}, $self->{'z'}, $self->{'n'}, $self->{'d'}); |
|
142
|
16
|
|
|
|
|
72
|
return $self; |
|
143
|
|
|
|
|
|
|
} |
|
144
|
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
#sub _extended_gcd { |
|
146
|
|
|
|
|
|
|
# my ($a, $b) = @_; |
|
147
|
|
|
|
|
|
|
# my $zero = $a-$a; |
|
148
|
|
|
|
|
|
|
# my ($x, $lastx, $y, $lasty) = ($zero, $zero+1, $zero+1, $zero); |
|
149
|
|
|
|
|
|
|
# while ($b != 0) { |
|
150
|
|
|
|
|
|
|
# my $q = int($a/$b); |
|
151
|
|
|
|
|
|
|
# ($a, $b) = ($b, $a % $b); |
|
152
|
|
|
|
|
|
|
# ($x, $lastx) = ($lastx - $q*$x, $x); |
|
153
|
|
|
|
|
|
|
# ($y, $lasty) = ($lasty - $q*$y, $y); |
|
154
|
|
|
|
|
|
|
# } |
|
155
|
|
|
|
|
|
|
# return ($a, $lastx, $lasty); |
|
156
|
|
|
|
|
|
|
#} |
|
157
|
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
sub normalize { |
|
159
|
4
|
|
|
4
|
1
|
12
|
my ($self) = @_; |
|
160
|
4
|
|
|
|
|
11
|
my $n = $self->{'n'}; |
|
161
|
4
|
|
|
|
|
8
|
my $z = $self->{'z'}; |
|
162
|
|
|
|
|
|
|
#my ($f, $u, undef) = _extended_gcd( $z, $n ); |
|
163
|
4
|
|
|
|
|
11
|
my $f = Math::BigInt::bgcd( $z, $n ); |
|
164
|
4
|
|
|
|
|
8853
|
my $u = $z->copy->bmodinv($n); |
|
165
|
4
|
|
|
|
|
13095
|
$self->{'x'} = ( $self->{'x'} * $u ) % $n; |
|
166
|
4
|
|
|
|
|
1221
|
$self->{'z'} = $n-$n+1; |
|
167
|
4
|
|
|
|
|
930
|
$self->{'f'} = ($f * $self->{'f'}) % $n; |
|
168
|
4
|
|
|
|
|
622
|
return $self; |
|
169
|
|
|
|
|
|
|
} |
|
170
|
|
|
|
|
|
|
|
|
171
|
0
|
|
|
0
|
1
|
0
|
sub c { return shift->{'c'}; } |
|
172
|
4
|
|
|
4
|
1
|
11
|
sub d { return shift->{'d'}; } |
|
173
|
0
|
|
|
0
|
1
|
0
|
sub n { return shift->{'n'}; } |
|
174
|
32
|
|
|
32
|
1
|
102
|
sub x { return shift->{'x'}; } |
|
175
|
0
|
|
|
0
|
1
|
0
|
sub z { return shift->{'z'}; } |
|
176
|
4
|
|
|
4
|
1
|
12
|
sub f { return shift->{'f'}; } |
|
177
|
|
|
|
|
|
|
|
|
178
|
|
|
|
|
|
|
sub is_infinity { |
|
179
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
180
|
0
|
|
0
|
|
|
0
|
return ($self->{'x'}->is_zero() && $self->{'z'}->is_one()); |
|
181
|
|
|
|
|
|
|
} |
|
182
|
|
|
|
|
|
|
|
|
183
|
|
|
|
|
|
|
sub copy { |
|
184
|
4
|
|
|
4
|
1
|
7
|
my $self = shift; |
|
185
|
|
|
|
|
|
|
return Math::Prime::Util::ECProjectivePoint->new( |
|
186
|
4
|
|
|
|
|
17
|
$self->{'c'}, $self->{'n'}, $self->{'x'}, $self->{'z'}); |
|
187
|
|
|
|
|
|
|
} |
|
188
|
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
1; |
|
190
|
|
|
|
|
|
|
|
|
191
|
|
|
|
|
|
|
__END__ |