| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2012, 2013, 2014, 2015 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath-Toothpick. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Math-PlanePath-Toothpick is free software; you can redistribute it and/or |
|
6
|
|
|
|
|
|
|
# modify it under the terms of the GNU General Public License as published |
|
7
|
|
|
|
|
|
|
# by the Free Software Foundation; either version 3, or (at your option) any |
|
8
|
|
|
|
|
|
|
# later version. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Math-PlanePath-Toothpick is distributed in the hope that it will be |
|
11
|
|
|
|
|
|
|
# useful, but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
12
|
|
|
|
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
|
13
|
|
|
|
|
|
|
# Public License for more details. |
|
14
|
|
|
|
|
|
|
# |
|
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
16
|
|
|
|
|
|
|
# with Math-PlanePath-Toothpick. If not, see . |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
# block_order => 'AB123' |
|
19
|
|
|
|
|
|
|
# block_order => 'A1B32' is depth first and finite parts first, |
|
20
|
|
|
|
|
|
|
# in parts=1 where single infinite spine |
|
21
|
|
|
|
|
|
|
# |
|
22
|
|
|
|
|
|
|
# maybe tree methods same structure as ToothpickTree |
|
23
|
|
|
|
|
|
|
# |
|
24
|
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
# cf A175262 odd binary length and middle digit 1 |
|
26
|
|
|
|
|
|
|
# A175263 odd binary length and middle digit 0 |
|
27
|
|
|
|
|
|
|
# |
|
28
|
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
package Math::PlanePath::ToothpickReplicate; |
|
30
|
1
|
|
|
1
|
|
1939
|
use 5.004; |
|
|
1
|
|
|
|
|
3
|
|
|
31
|
1
|
|
|
1
|
|
6
|
use strict; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
43
|
|
|
32
|
|
|
|
|
|
|
#use List::Util 'max'; |
|
33
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
|
34
|
|
|
|
|
|
|
|
|
35
|
1
|
|
|
1
|
|
4
|
use vars '$VERSION', '@ISA'; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
61
|
|
|
36
|
|
|
|
|
|
|
$VERSION = 18; |
|
37
|
1
|
|
|
1
|
|
1111
|
use Math::PlanePath; |
|
|
1
|
|
|
|
|
6453
|
|
|
|
1
|
|
|
|
|
135
|
|
|
38
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
|
39
|
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
# return ($quotient, $remainder) |
|
42
|
|
|
|
|
|
|
sub _divrem { |
|
43
|
14
|
|
|
14
|
|
20
|
my ($n, $d) = @_; |
|
44
|
14
|
50
|
33
|
|
|
32
|
if (ref $n && $n->isa('Math::BigInt')) { |
|
45
|
0
|
|
|
|
|
0
|
my ($quot,$rem) = $n->copy->bdiv($d); |
|
46
|
0
|
0
|
0
|
|
|
0
|
if (! ref $d || $d < 1_000_000) { |
|
47
|
0
|
|
|
|
|
0
|
$rem = $rem->numify; # plain remainder if fits |
|
48
|
|
|
|
|
|
|
} |
|
49
|
0
|
|
|
|
|
0
|
return ($quot, $rem); |
|
50
|
|
|
|
|
|
|
} |
|
51
|
14
|
|
|
|
|
19
|
my $rem = $n % $d; |
|
52
|
14
|
|
|
|
|
30
|
return (int(($n-$rem)/$d), # exact division stays in UV |
|
53
|
|
|
|
|
|
|
$rem); |
|
54
|
|
|
|
|
|
|
} |
|
55
|
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
|
58
|
1
|
|
|
|
|
51
|
'is_infinite', |
|
59
|
1
|
|
|
1
|
|
6
|
'round_nearest'; |
|
|
1
|
|
|
|
|
2
|
|
|
60
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits 119 # v.119 for round_up_pow() |
|
61
|
1
|
|
|
|
|
61
|
'round_up_pow', |
|
62
|
1
|
|
|
1
|
|
758
|
'round_down_pow'; |
|
|
1
|
|
|
|
|
1609
|
|
|
63
|
|
|
|
|
|
|
|
|
64
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
|
65
|
|
|
|
|
|
|
# use Smart::Comments; |
|
66
|
|
|
|
|
|
|
|
|
67
|
1
|
|
|
1
|
|
1205
|
use Math::PlanePath::ToothpickTree; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
158
|
|
|
68
|
|
|
|
|
|
|
*new = \&Math::PlanePath::ToothpickTree::new; |
|
69
|
|
|
|
|
|
|
*x_negative = \&Math::PlanePath::ToothpickTree::x_negative; |
|
70
|
|
|
|
|
|
|
*y_negative = \&Math::PlanePath::ToothpickTree::y_negative; |
|
71
|
|
|
|
|
|
|
*rect_to_n_range = \&Math::PlanePath::ToothpickTree::rect_to_n_range; |
|
72
|
|
|
|
|
|
|
*x_minimum = \&Math::PlanePath::ToothpickTree::x_minimum; |
|
73
|
|
|
|
|
|
|
*y_minimum = \&Math::PlanePath::ToothpickTree::y_minimum; |
|
74
|
|
|
|
|
|
|
*sumxy_minimum = \&Math::PlanePath::ToothpickTree::sumxy_minimum; |
|
75
|
|
|
|
|
|
|
*sumabsxy_minimum = \&Math::PlanePath::ToothpickTree::sumabsxy_minimum; |
|
76
|
|
|
|
|
|
|
*rsquared_minimum = \&Math::PlanePath::ToothpickTree::rsquared_minimum; |
|
77
|
|
|
|
|
|
|
|
|
78
|
1
|
|
|
|
|
71
|
use constant parameter_info_array => |
|
79
|
|
|
|
|
|
|
[ { name => 'parts', |
|
80
|
|
|
|
|
|
|
share_key => 'parts_toothpickreplicate', |
|
81
|
|
|
|
|
|
|
display => 'Parts', |
|
82
|
|
|
|
|
|
|
type => 'enum', |
|
83
|
|
|
|
|
|
|
default => '4', |
|
84
|
|
|
|
|
|
|
choices => ['4','3','2','1'], |
|
85
|
|
|
|
|
|
|
choices_display => ['4','3','2','1'], |
|
86
|
|
|
|
|
|
|
description => 'Which parts of the pattern to generate.', |
|
87
|
|
|
|
|
|
|
}, |
|
88
|
1
|
|
|
1
|
|
7
|
]; |
|
|
1
|
|
|
|
|
2
|
|
|
89
|
|
|
|
|
|
|
|
|
90
|
1
|
|
|
1
|
|
5
|
use constant n_start => 0; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
42
|
|
|
91
|
1
|
|
|
1
|
|
4
|
use constant class_x_negative => 1; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
45
|
|
|
92
|
1
|
|
|
1
|
|
5
|
use constant class_y_negative => 1; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
150
|
|
|
93
|
|
|
|
|
|
|
|
|
94
|
|
|
|
|
|
|
{ |
|
95
|
|
|
|
|
|
|
my @x_negative_at_n = (undef, |
|
96
|
|
|
|
|
|
|
undef, # 1 |
|
97
|
|
|
|
|
|
|
3, # 2 |
|
98
|
|
|
|
|
|
|
6, # 3 |
|
99
|
|
|
|
|
|
|
5, # 4 |
|
100
|
|
|
|
|
|
|
); |
|
101
|
|
|
|
|
|
|
sub x_negative_at_n { |
|
102
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
103
|
0
|
|
|
|
|
0
|
return $x_negative_at_n[$self->{'parts'}]; |
|
104
|
|
|
|
|
|
|
} |
|
105
|
|
|
|
|
|
|
} |
|
106
|
|
|
|
|
|
|
{ |
|
107
|
|
|
|
|
|
|
my @y_negative_at_n = (undef, |
|
108
|
|
|
|
|
|
|
undef, # 1 |
|
109
|
|
|
|
|
|
|
undef, # 2 |
|
110
|
|
|
|
|
|
|
2, # 3 |
|
111
|
|
|
|
|
|
|
2, # 4 |
|
112
|
|
|
|
|
|
|
); |
|
113
|
|
|
|
|
|
|
sub y_negative_at_n { |
|
114
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
115
|
0
|
|
|
|
|
0
|
return $y_negative_at_n[$self->{'parts'}]; |
|
116
|
|
|
|
|
|
|
} |
|
117
|
|
|
|
|
|
|
} |
|
118
|
|
|
|
|
|
|
|
|
119
|
|
|
|
|
|
|
# parts=1 same as parts=4 |
|
120
|
|
|
|
|
|
|
# parts=2 same as parts=4 |
|
121
|
|
|
|
|
|
|
# parts=3 same as parts=4 |
|
122
|
|
|
|
|
|
|
# parts=4 33,-12 |
|
123
|
|
|
|
|
|
|
# 133,-30 |
|
124
|
|
|
|
|
|
|
# 333,-112 |
|
125
|
|
|
|
|
|
|
# 1333,-230 |
|
126
|
|
|
|
|
|
|
# 3332,-1112 -> 3,-1 |
|
127
|
1
|
|
|
1
|
|
5
|
use constant dir_maximum_dxdy => (3,-1); |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
1728
|
|
|
128
|
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
130
|
|
|
|
|
|
|
# Fraction covered |
|
131
|
|
|
|
|
|
|
# Xlevel = 2^(level+1) - 1 |
|
132
|
|
|
|
|
|
|
# Ylevel = 2^(level+1) |
|
133
|
|
|
|
|
|
|
# Nend = (2*4^(level+1) + 1)/3 - 1 |
|
134
|
|
|
|
|
|
|
# |
|
135
|
|
|
|
|
|
|
# Nend / (Xlevel*Ylevel) |
|
136
|
|
|
|
|
|
|
# -> ((2*4^(level+1) + 1)/3 - 1) / 4^(level+1) |
|
137
|
|
|
|
|
|
|
# -> (2*4^(level+1) + 1)/3 / 4^(level+1) |
|
138
|
|
|
|
|
|
|
# -> 2*4^(level+1)/3 / 4^(level+1) |
|
139
|
|
|
|
|
|
|
# -> 2/3 |
|
140
|
|
|
|
|
|
|
|
|
141
|
|
|
|
|
|
|
# Leading diagonal 1,3, 7,11, |
|
142
|
|
|
|
|
|
|
# 23,25,29,43, +22,22,22,32 |
|
143
|
|
|
|
|
|
|
# 87,89,93,97, +86,86,86,86 |
|
144
|
|
|
|
|
|
|
# 109,111,115,171, +86,128 |
|
145
|
|
|
|
|
|
|
# 343 |
|
146
|
|
|
|
|
|
|
# part2start = (4^level + 5)/3 = 3,7,23,87,343 |
|
147
|
|
|
|
|
|
|
# sums of part2start(level), but +2 in second half of each |
|
148
|
|
|
|
|
|
|
# (3)/3=1 |
|
149
|
|
|
|
|
|
|
# (3+ 1+5)/3=3 |
|
150
|
|
|
|
|
|
|
# (3+ 1+5 + 4+5)/3=9 |
|
151
|
|
|
|
|
|
|
|
|
152
|
|
|
|
|
|
|
|
|
153
|
|
|
|
|
|
|
# v v |
|
154
|
|
|
|
|
|
|
# | -> | part 3 |
|
155
|
|
|
|
|
|
|
# +---h h---+ |
|
156
|
|
|
|
|
|
|
# |
|
157
|
|
|
|
|
|
|
# +---v h |
|
158
|
|
|
|
|
|
|
# | -> | part 1 rot then part 3 |
|
159
|
|
|
|
|
|
|
# h +---v |
|
160
|
|
|
|
|
|
|
# |
|
161
|
|
|
|
|
|
|
# v v |
|
162
|
|
|
|
|
|
|
# | -> | part 3 then part 3 again |
|
163
|
|
|
|
|
|
|
# h---+ +---h |
|
164
|
|
|
|
|
|
|
# |
|
165
|
|
|
|
|
|
|
|
|
166
|
|
|
|
|
|
|
# v +---v |
|
167
|
|
|
|
|
|
|
# | -> | part 1 |
|
168
|
|
|
|
|
|
|
# +---h h |
|
169
|
|
|
|
|
|
|
# |
|
170
|
|
|
|
|
|
|
# v v---+ |
|
171
|
|
|
|
|
|
|
# | -> | part 3 then part 1 rot is +90 |
|
172
|
|
|
|
|
|
|
# h---+ h |
|
173
|
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
# N = (2*4^level + 1)/3 + 1 is first of "level" |
|
175
|
|
|
|
|
|
|
# 3N-3 = 2*4^level + 1 |
|
176
|
|
|
|
|
|
|
# 2*4^level = 3N-4 |
|
177
|
|
|
|
|
|
|
# 4^(level+1) = 6N-8 |
|
178
|
|
|
|
|
|
|
# |
|
179
|
|
|
|
|
|
|
# part = (2*4^level - 2)/3 many points in "level" |
|
180
|
|
|
|
|
|
|
# above = (2*4^(level+1) - 2)/3 |
|
181
|
|
|
|
|
|
|
# = (4*2*4^level - 2)/3 |
|
182
|
|
|
|
|
|
|
# = 4*(2*4^level - 2/4)/3 |
|
183
|
|
|
|
|
|
|
# = 4*(2*4^level - 2)/3 + 4*(+ 2 - 2/4)/3 |
|
184
|
|
|
|
|
|
|
# = 4*(2*4^level - 2)/3 + 2 |
|
185
|
|
|
|
|
|
|
# = 4*part + 2 |
|
186
|
|
|
|
|
|
|
# part = (above-2)/4 |
|
187
|
|
|
|
|
|
|
|
|
188
|
|
|
|
|
|
|
my @quadrant_to_hdx = (1,-1, -1,1); |
|
189
|
|
|
|
|
|
|
my @quadrant_to_vdy = (1, 1, -1,-1); |
|
190
|
|
|
|
|
|
|
|
|
191
|
|
|
|
|
|
|
sub n_to_xy { |
|
192
|
54
|
|
|
54
|
1
|
4131
|
my ($self, $n) = @_; |
|
193
|
|
|
|
|
|
|
### ToothpickReplicate n_to_xy(): $n |
|
194
|
|
|
|
|
|
|
|
|
195
|
54
|
50
|
|
|
|
112
|
if ($n < 0) { return; } |
|
|
0
|
|
|
|
|
0
|
|
|
196
|
54
|
50
|
|
|
|
120
|
if (is_infinite($n)) { return ($n,$n); } |
|
|
0
|
|
|
|
|
0
|
|
|
197
|
|
|
|
|
|
|
|
|
198
|
|
|
|
|
|
|
{ |
|
199
|
54
|
|
|
|
|
316
|
my $int = int($n); |
|
|
54
|
|
|
|
|
69
|
|
|
200
|
|
|
|
|
|
|
### $int |
|
201
|
|
|
|
|
|
|
### $n |
|
202
|
54
|
50
|
|
|
|
99
|
if ($n != $int) { |
|
203
|
0
|
|
|
|
|
0
|
my ($x1,$y1) = $self->n_to_xy($int); |
|
204
|
0
|
|
|
|
|
0
|
my ($x2,$y2) = $self->n_to_xy($int+1); |
|
205
|
0
|
|
|
|
|
0
|
my $frac = $n - $int; # inherit possible BigFloat |
|
206
|
0
|
|
|
|
|
0
|
my $dx = $x2-$x1; |
|
207
|
0
|
|
|
|
|
0
|
my $dy = $y2-$y1; |
|
208
|
0
|
|
|
|
|
0
|
return ($frac*$dx + $x1, $frac*$dy + $y1); |
|
209
|
|
|
|
|
|
|
} |
|
210
|
54
|
|
|
|
|
71
|
$n = $int; # BigFloat int() gives BigInt, use that |
|
211
|
|
|
|
|
|
|
} |
|
212
|
|
|
|
|
|
|
|
|
213
|
54
|
|
|
|
|
71
|
my $parts = $self->{'parts'}; |
|
214
|
54
|
|
|
|
|
60
|
my $x = 0; |
|
215
|
54
|
|
|
|
|
57
|
my $y = 0; |
|
216
|
54
|
|
|
|
|
57
|
my $hdx = 1; |
|
217
|
54
|
|
|
|
|
60
|
my $hdy = 0; |
|
218
|
54
|
|
|
|
|
54
|
my $vdx = 0; |
|
219
|
54
|
|
|
|
|
58
|
my $vdy = 1; |
|
220
|
|
|
|
|
|
|
|
|
221
|
54
|
50
|
|
|
|
164
|
if ($parts eq '2') { |
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
222
|
0
|
0
|
|
|
|
0
|
if ($n == 0) { |
|
223
|
0
|
|
|
|
|
0
|
return (0,1); |
|
224
|
|
|
|
|
|
|
} |
|
225
|
|
|
|
|
|
|
|
|
226
|
|
|
|
|
|
|
# first of a replication level |
|
227
|
|
|
|
|
|
|
# Nlevel = 2*(2*4^level - 2)/3 + 1 |
|
228
|
|
|
|
|
|
|
# = (4*4^level - 4)/3 + 1 |
|
229
|
|
|
|
|
|
|
# = (4*4^level - 4 + 3)/3 |
|
230
|
|
|
|
|
|
|
# = (4*4^level - 1)/3 = 5,21 |
|
231
|
|
|
|
|
|
|
# 3N = 4*4^level - 1 |
|
232
|
|
|
|
|
|
|
# 4^(level+1) = 3N+1 |
|
233
|
|
|
|
|
|
|
|
|
234
|
0
|
|
|
|
|
0
|
my ($len,$level) = round_down_pow(3*$n+1, 4); |
|
235
|
0
|
|
|
|
|
0
|
my $three_parts = $len/2; |
|
236
|
|
|
|
|
|
|
|
|
237
|
|
|
|
|
|
|
### $len |
|
238
|
|
|
|
|
|
|
### $level |
|
239
|
|
|
|
|
|
|
### $three_parts |
|
240
|
|
|
|
|
|
|
### start this level: ($len-1)/3 |
|
241
|
|
|
|
|
|
|
### n reduced: $n-($len-1)/3 |
|
242
|
|
|
|
|
|
|
|
|
243
|
0
|
|
|
|
|
0
|
(my $quadrant, $n) = _divrem ($n-($len-1)/3, $three_parts); |
|
244
|
|
|
|
|
|
|
### $quadrant |
|
245
|
|
|
|
|
|
|
### n remainder: $n |
|
246
|
|
|
|
|
|
|
### assert: $quadrant >= 0 |
|
247
|
|
|
|
|
|
|
### assert: $quadrant <= 1 |
|
248
|
|
|
|
|
|
|
|
|
249
|
0
|
|
|
|
|
0
|
$n += ($len/2-2)/3; |
|
250
|
0
|
0
|
|
|
|
0
|
if ($quadrant) { $hdx = -1; } |
|
|
0
|
|
|
|
|
0
|
|
|
251
|
|
|
|
|
|
|
### n in quarter: $n |
|
252
|
|
|
|
|
|
|
|
|
253
|
|
|
|
|
|
|
} elsif ($parts == 3) { |
|
254
|
8
|
100
|
|
|
|
16
|
if ($n <= 1) { |
|
255
|
2
|
|
|
|
|
5
|
return (0,$n); |
|
256
|
|
|
|
|
|
|
} |
|
257
|
|
|
|
|
|
|
# Nend = 3*(2*4^level - 2)/3 + 2 |
|
258
|
|
|
|
|
|
|
# = (2*4^level - 2) + 2 |
|
259
|
|
|
|
|
|
|
# = 2*4^level = 2,8,32 |
|
260
|
|
|
|
|
|
|
# N-1 = 2*4^level |
|
261
|
|
|
|
|
|
|
# 4^(level+1) = 2N-2 |
|
262
|
|
|
|
|
|
|
|
|
263
|
6
|
|
|
|
|
17
|
my ($len,$level) = round_down_pow(2*$n, 4); |
|
264
|
6
|
|
|
|
|
62
|
my $three_parts = $len/2; |
|
265
|
|
|
|
|
|
|
|
|
266
|
|
|
|
|
|
|
### $len |
|
267
|
|
|
|
|
|
|
### $level |
|
268
|
|
|
|
|
|
|
### $three_parts |
|
269
|
|
|
|
|
|
|
### start this level: ($len/2+1) |
|
270
|
|
|
|
|
|
|
### n reduced: $n-($len/2+1) |
|
271
|
|
|
|
|
|
|
|
|
272
|
6
|
|
|
|
|
15
|
(my $quadrant, $n) = _divrem ($n-$len/2, $three_parts); |
|
273
|
|
|
|
|
|
|
### $quadrant |
|
274
|
|
|
|
|
|
|
### n remainder: $n |
|
275
|
|
|
|
|
|
|
### assert: $quadrant >= 0 |
|
276
|
|
|
|
|
|
|
### assert: $quadrant <= 2 |
|
277
|
|
|
|
|
|
|
|
|
278
|
6
|
|
|
|
|
12
|
$n += ($len/2-2)/3; |
|
279
|
|
|
|
|
|
|
### n in quarter: $n |
|
280
|
|
|
|
|
|
|
|
|
281
|
6
|
100
|
|
|
|
21
|
if ($quadrant == 0) { |
|
|
|
100
|
|
|
|
|
|
|
282
|
2
|
|
|
|
|
2
|
$hdx = 0; # rotate -90 |
|
283
|
2
|
|
|
|
|
3
|
$hdy = -1; |
|
284
|
2
|
|
|
|
|
2
|
$vdx = 1; |
|
285
|
2
|
|
|
|
|
33
|
$vdy = 0; |
|
286
|
2
|
|
|
|
|
3
|
$x = -1; # offset |
|
287
|
|
|
|
|
|
|
} elsif ($quadrant == 2) { |
|
288
|
2
|
|
|
|
|
4
|
$hdx = -1; # mirror |
|
289
|
|
|
|
|
|
|
} |
|
290
|
|
|
|
|
|
|
|
|
291
|
|
|
|
|
|
|
} elsif ($parts == 4) { |
|
292
|
11
|
100
|
|
|
|
21
|
if ($n <= 2) { |
|
293
|
3
|
100
|
|
|
|
7
|
if ($n == 0) { return (0,0); } |
|
|
1
|
|
|
|
|
3
|
|
|
294
|
2
|
100
|
|
|
|
5
|
if ($n == 1) { return (0,1); } |
|
|
1
|
|
|
|
|
3
|
|
|
295
|
1
|
|
|
|
|
3
|
return (0,-1); # N==2 |
|
296
|
|
|
|
|
|
|
} |
|
297
|
|
|
|
|
|
|
# first of a replication level |
|
298
|
|
|
|
|
|
|
# Nlevel = 4*(2*4^level - 2)/3 + 3 |
|
299
|
|
|
|
|
|
|
# = (8*4^level - 8)/3 + 3 |
|
300
|
|
|
|
|
|
|
# = (8*4^level - 8 + 9)/3 |
|
301
|
|
|
|
|
|
|
# = (8*4^level+1)/3 11,43,171 |
|
302
|
|
|
|
|
|
|
# 3N = 8*4^level+1 |
|
303
|
|
|
|
|
|
|
# 8*4^level = 3N-1 |
|
304
|
|
|
|
|
|
|
# 4^(level+2) = 6N-2 |
|
305
|
|
|
|
|
|
|
# |
|
306
|
|
|
|
|
|
|
# first of this level, using level+2 |
|
307
|
|
|
|
|
|
|
# Nlevel = (4^(level+2)/2+1)/3 |
|
308
|
|
|
|
|
|
|
# = (4^(level+2)+2)/6 |
|
309
|
|
|
|
|
|
|
# |
|
310
|
|
|
|
|
|
|
# three count = 3*(2*4^level - 2)/3 + 2 |
|
311
|
|
|
|
|
|
|
# = 2*4^level |
|
312
|
|
|
|
|
|
|
# 43-11 = 32 |
|
313
|
|
|
|
|
|
|
# 172-44 = 128 |
|
314
|
|
|
|
|
|
|
|
|
315
|
|
|
|
|
|
|
# getting level+2 and len = 4^(level+2) |
|
316
|
8
|
|
|
|
|
25
|
my ($len,$level) = round_down_pow(6*$n-2, 4); |
|
317
|
8
|
|
|
|
|
77
|
my $three_parts = $len/8; |
|
318
|
|
|
|
|
|
|
|
|
319
|
|
|
|
|
|
|
### all breakdown ... |
|
320
|
|
|
|
|
|
|
### $level |
|
321
|
|
|
|
|
|
|
### $len |
|
322
|
|
|
|
|
|
|
### $three_parts |
|
323
|
|
|
|
|
|
|
### Nlevel base: ($len+2)/6 |
|
324
|
|
|
|
|
|
|
|
|
325
|
8
|
|
|
|
|
21
|
(my $quadrant, $n) = _divrem ($n-($len+2)/6, $three_parts); |
|
326
|
|
|
|
|
|
|
### $quadrant |
|
327
|
|
|
|
|
|
|
### n remainder: $n |
|
328
|
|
|
|
|
|
|
### assert: $quadrant >= 0 |
|
329
|
|
|
|
|
|
|
### assert: $quadrant <= 3 |
|
330
|
|
|
|
|
|
|
|
|
331
|
|
|
|
|
|
|
# quarter middle |
|
332
|
|
|
|
|
|
|
# Nquarter = (2*4^level - 2)/3 = 2,10,42 |
|
333
|
8
|
|
|
|
|
13
|
$n += ($len/8-2)/3; |
|
334
|
8
|
|
|
|
|
11
|
$hdx = $quadrant_to_hdx[$quadrant]; |
|
335
|
8
|
|
|
|
|
13
|
$vdy = $quadrant_to_vdy[$quadrant]; |
|
336
|
|
|
|
|
|
|
### n in quarter: $n |
|
337
|
|
|
|
|
|
|
} |
|
338
|
|
|
|
|
|
|
|
|
339
|
|
|
|
|
|
|
# quarter first of a replication level |
|
340
|
|
|
|
|
|
|
# Nlevel = 4*(2*4^level - 2)/3 + 2 |
|
341
|
|
|
|
|
|
|
# = (8*4^level - 8)/3 + 2 |
|
342
|
|
|
|
|
|
|
# = (8*4^level - 8 + 6)/3 |
|
343
|
|
|
|
|
|
|
# = (8*4^level - 2)/3 2,10,42 |
|
344
|
|
|
|
|
|
|
# 3N = 8*4^level-2 |
|
345
|
|
|
|
|
|
|
# 8*4^level = 3N+2 |
|
346
|
|
|
|
|
|
|
# 4^(level+2) = 6N+4 |
|
347
|
|
|
|
|
|
|
# |
|
348
|
|
|
|
|
|
|
# using level+1 |
|
349
|
|
|
|
|
|
|
# Nlevel = (8*4^level - 2)/3 |
|
350
|
|
|
|
|
|
|
# = (2*4^(level+1) - 2)/3 |
|
351
|
|
|
|
|
|
|
|
|
352
|
|
|
|
|
|
|
|
|
353
|
|
|
|
|
|
|
# getting level+2 and 16*len |
|
354
|
49
|
|
|
|
|
142
|
my ($len,$level) = round_down_pow(6*$n+4, 4); |
|
355
|
49
|
|
|
|
|
458
|
my $part_n = (2*$len-2)/3; |
|
356
|
|
|
|
|
|
|
### $level |
|
357
|
|
|
|
|
|
|
### $part_n |
|
358
|
|
|
|
|
|
|
|
|
359
|
49
|
|
|
|
|
54
|
$len = 2**$level; |
|
360
|
49
|
|
|
|
|
106
|
for ( ; |
|
361
|
|
|
|
|
|
|
$level-- >= 0; |
|
362
|
|
|
|
|
|
|
$len /= 2, $part_n = ($part_n-2)/4) { |
|
363
|
|
|
|
|
|
|
|
|
364
|
|
|
|
|
|
|
### at: "x=$x,y=$y level=$level hxy=$hdx,$hdy vxy=$vdx,$vdy n=$n" |
|
365
|
|
|
|
|
|
|
### $len |
|
366
|
|
|
|
|
|
|
### $part_n |
|
367
|
|
|
|
|
|
|
### assert: $len == 2 ** ($level+1) |
|
368
|
|
|
|
|
|
|
### assert: $part_n == (2 * 4 ** ($level+1) - 2)/3 |
|
369
|
|
|
|
|
|
|
|
|
370
|
145
|
100
|
|
|
|
263
|
if ($n < $part_n) { |
|
371
|
|
|
|
|
|
|
### part 0, no change ... |
|
372
|
55
|
|
|
|
|
136
|
next; |
|
373
|
|
|
|
|
|
|
} |
|
374
|
|
|
|
|
|
|
|
|
375
|
90
|
|
|
|
|
100
|
$n -= $part_n; |
|
376
|
90
|
|
|
|
|
117
|
$x += $len * ($hdx + $vdx); # diagonal |
|
377
|
90
|
|
|
|
|
104
|
$y += $len * ($hdy + $vdy); |
|
378
|
|
|
|
|
|
|
|
|
379
|
90
|
100
|
|
|
|
155
|
if ($n == 0) { |
|
380
|
|
|
|
|
|
|
### toothpick A ... |
|
381
|
25
|
|
|
|
|
32
|
last; |
|
382
|
|
|
|
|
|
|
} |
|
383
|
65
|
100
|
|
|
|
114
|
if ($n == 1) { |
|
384
|
|
|
|
|
|
|
### toothpick B ... |
|
385
|
24
|
|
|
|
|
25
|
$x += $vdx; |
|
386
|
24
|
|
|
|
|
27
|
$y += $vdy; |
|
387
|
24
|
|
|
|
|
26
|
last; |
|
388
|
|
|
|
|
|
|
} |
|
389
|
41
|
|
|
|
|
49
|
$n -= 2; |
|
390
|
|
|
|
|
|
|
|
|
391
|
41
|
100
|
|
|
|
73
|
if ($n < $part_n) { |
|
392
|
|
|
|
|
|
|
### part 1, rotate ... |
|
393
|
16
|
|
|
|
|
18
|
$x -= $hdx; # offset |
|
394
|
16
|
|
|
|
|
17
|
$y -= $hdy; |
|
395
|
16
|
|
|
|
|
29
|
($hdx,$hdy, $vdx,$vdy) # rotate 90 in direction v toward h |
|
396
|
|
|
|
|
|
|
= (-$vdx,-$vdy, $hdx,$hdy); |
|
397
|
16
|
|
|
|
|
41
|
next; |
|
398
|
|
|
|
|
|
|
} |
|
399
|
25
|
|
|
|
|
26
|
$n -= $part_n; |
|
400
|
|
|
|
|
|
|
|
|
401
|
25
|
100
|
|
|
|
47
|
if ($n < $part_n) { |
|
402
|
|
|
|
|
|
|
### part 2 ... |
|
403
|
9
|
|
|
|
|
22
|
next; |
|
404
|
|
|
|
|
|
|
} |
|
405
|
16
|
|
|
|
|
16
|
$n -= $part_n; |
|
406
|
|
|
|
|
|
|
|
|
407
|
|
|
|
|
|
|
### part 3, mirror ... |
|
408
|
16
|
|
|
|
|
18
|
$hdx = -$hdx; |
|
409
|
16
|
|
|
|
|
54
|
$hdy = -$hdy; |
|
410
|
|
|
|
|
|
|
} |
|
411
|
|
|
|
|
|
|
|
|
412
|
|
|
|
|
|
|
### assert: $n == 0 || $n == 1 |
|
413
|
|
|
|
|
|
|
|
|
414
|
|
|
|
|
|
|
### final: "x=$x y=$y" |
|
415
|
49
|
|
|
|
|
111
|
return ($x,$y); |
|
416
|
|
|
|
|
|
|
} |
|
417
|
|
|
|
|
|
|
|
|
418
|
|
|
|
|
|
|
sub xy_to_n { |
|
419
|
0
|
|
|
0
|
1
|
0
|
my ($self, $x, $y) = @_; |
|
420
|
|
|
|
|
|
|
### ToothpickReplicate xy_to_n(): "$x, $y" |
|
421
|
|
|
|
|
|
|
|
|
422
|
0
|
|
|
|
|
0
|
$x = round_nearest ($x); |
|
423
|
0
|
|
|
|
|
0
|
$y = round_nearest ($y); |
|
424
|
|
|
|
|
|
|
|
|
425
|
0
|
|
|
|
|
0
|
my $parts = $self->{'parts'}; |
|
426
|
0
|
|
0
|
|
|
0
|
my $rotated = ($parts == 3 && $x >= 0 && $y < 0); |
|
427
|
0
|
0
|
|
|
|
0
|
if ($rotated) { |
|
428
|
0
|
|
|
|
|
0
|
($x,$y) = (-$y,$x+1); # rotate +90 and shift up |
|
429
|
|
|
|
|
|
|
### rotated: "x=$x y=$y" |
|
430
|
|
|
|
|
|
|
} |
|
431
|
|
|
|
|
|
|
|
|
432
|
0
|
|
|
|
|
0
|
my ($len,$level) = round_down_pow (max(abs($x), abs($y)-1), |
|
433
|
|
|
|
|
|
|
2); |
|
434
|
0
|
0
|
|
|
|
0
|
if (is_infinite($level)) { |
|
435
|
0
|
|
|
|
|
0
|
return $level; |
|
436
|
|
|
|
|
|
|
} |
|
437
|
|
|
|
|
|
|
### $level |
|
438
|
|
|
|
|
|
|
### $len |
|
439
|
|
|
|
|
|
|
|
|
440
|
0
|
|
|
|
|
0
|
my $zero = $x * 0 * $y; |
|
441
|
0
|
|
|
|
|
0
|
my $n = $zero; |
|
442
|
|
|
|
|
|
|
|
|
443
|
0
|
0
|
|
|
|
0
|
if ($parts == 2) { |
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
444
|
0
|
0
|
|
|
|
0
|
if ($x == 0) { |
|
445
|
0
|
0
|
|
|
|
0
|
if ($y == 1) { return 0; } |
|
|
0
|
|
|
|
|
0
|
|
|
446
|
|
|
|
|
|
|
} |
|
447
|
0
|
|
|
|
|
0
|
$n += (2*$len*$len+1)/3; # +1,+3,+11,+43 |
|
448
|
0
|
0
|
|
|
|
0
|
if ($x < 0) { |
|
449
|
0
|
|
|
|
|
0
|
$x = -$x; |
|
450
|
0
|
|
|
|
|
0
|
$n += 2*$len*$len; # second quad, +2,+8,+32 |
|
451
|
|
|
|
|
|
|
} |
|
452
|
|
|
|
|
|
|
|
|
453
|
|
|
|
|
|
|
} elsif ($parts == 3) { |
|
454
|
|
|
|
|
|
|
### 3/4 ... |
|
455
|
0
|
0
|
|
|
|
0
|
if ($x == 0) { |
|
456
|
0
|
0
|
|
|
|
0
|
if ($y == 0) { return 0; } |
|
|
0
|
|
|
|
|
0
|
|
|
457
|
0
|
0
|
|
|
|
0
|
if ($y == 1) { return 1; } |
|
|
0
|
|
|
|
|
0
|
|
|
458
|
|
|
|
|
|
|
} |
|
459
|
0
|
|
|
|
|
0
|
$n += (10*$len*$len+2)/3; # +4,+14,+54,+214,+854,+3414 |
|
460
|
0
|
0
|
|
|
|
0
|
if ($rotated) { |
|
|
|
0
|
|
|
|
|
|
|
461
|
0
|
|
|
|
|
0
|
$n -= 2*$len*$len; # fourth quad, -2, -8, -32 |
|
462
|
|
|
|
|
|
|
} elsif ($x < 0) { |
|
463
|
0
|
|
|
|
|
0
|
$x = -$x; |
|
464
|
0
|
0
|
|
|
|
0
|
if ($y > 0) { |
|
465
|
0
|
|
|
|
|
0
|
$n += 2*$len*$len; # second quad, +2, +8, +32 |
|
466
|
|
|
|
|
|
|
} else { |
|
467
|
0
|
|
|
|
|
0
|
return undef; # third quad, empty |
|
468
|
|
|
|
|
|
|
} |
|
469
|
|
|
|
|
|
|
} |
|
470
|
|
|
|
|
|
|
} elsif ($parts == 4) { |
|
471
|
0
|
0
|
|
|
|
0
|
if ($x == 0) { |
|
472
|
0
|
0
|
|
|
|
0
|
if ($y == 0) { return 0; } |
|
|
0
|
|
|
|
|
0
|
|
|
473
|
0
|
0
|
|
|
|
0
|
if ($y == 1) { return 1; } |
|
|
0
|
|
|
|
|
0
|
|
|
474
|
0
|
0
|
|
|
|
0
|
if ($y == -1) { return 2; } |
|
|
0
|
|
|
|
|
0
|
|
|
475
|
|
|
|
|
|
|
} |
|
476
|
0
|
|
|
|
|
0
|
$n += (2*$len*$len+1); |
|
477
|
0
|
0
|
|
|
|
0
|
if ($x < 0) { |
|
478
|
0
|
|
|
|
|
0
|
$x = -$x; |
|
479
|
0
|
0
|
|
|
|
0
|
if ($y > 0) { |
|
480
|
0
|
|
|
|
|
0
|
$n += 2*$len*$len; # second quad, +2, +8, +32 |
|
481
|
|
|
|
|
|
|
} else { |
|
482
|
0
|
|
|
|
|
0
|
$n += 4*$len*$len; # third quad, +4,+16 |
|
483
|
0
|
|
|
|
|
0
|
$y = -$y; |
|
484
|
|
|
|
|
|
|
} |
|
485
|
|
|
|
|
|
|
} else { |
|
486
|
0
|
0
|
|
|
|
0
|
if ($y < 0) { |
|
487
|
0
|
|
|
|
|
0
|
$n += 6*$len*$len; # fourth quad |
|
488
|
0
|
|
|
|
|
0
|
$y = -$y; |
|
489
|
|
|
|
|
|
|
} |
|
490
|
|
|
|
|
|
|
} |
|
491
|
|
|
|
|
|
|
} |
|
492
|
|
|
|
|
|
|
|
|
493
|
|
|
|
|
|
|
# 2^(level+1)-1 |
|
494
|
|
|
|
|
|
|
# v |
|
495
|
|
|
|
|
|
|
# +-----------+---------+ |
|
496
|
|
|
|
|
|
|
# | | | <- 2^(level+1) |
|
497
|
|
|
|
|
|
|
# | 3 2 | |
|
498
|
|
|
|
|
|
|
# | mirror same | |
|
499
|
|
|
|
|
|
|
# | --B-- | <- 2^level + 1 |
|
500
|
|
|
|
|
|
|
# | | | |
|
501
|
|
|
|
|
|
|
# +-- A --+ <- 2^level |
|
502
|
|
|
|
|
|
|
# | | |
|
503
|
|
|
|
|
|
|
# 1 | |
|
504
|
|
|
|
|
|
|
# rot | |
|
505
|
|
|
|
|
|
|
# 0 +90 | |
|
506
|
|
|
|
|
|
|
# | | |
|
507
|
|
|
|
|
|
|
# +-----------+ |
|
508
|
|
|
|
|
|
|
# ^ |
|
509
|
|
|
|
|
|
|
# 2^level |
|
510
|
|
|
|
|
|
|
|
|
511
|
0
|
|
|
|
|
0
|
my $part_n = (2*$len*$len - 2) / 3; |
|
512
|
|
|
|
|
|
|
### $part_n |
|
513
|
|
|
|
|
|
|
|
|
514
|
0
|
|
|
|
|
0
|
while ($level-- > 0) { |
|
515
|
|
|
|
|
|
|
### at: "x=$x,y=$y len=$len part_n=$part_n n=$n" |
|
516
|
|
|
|
|
|
|
### assert: $len == 2 ** ($level+1) |
|
517
|
|
|
|
|
|
|
### assert: $part_n == (2 * 4 ** ($level+1) - 2)/3 |
|
518
|
|
|
|
|
|
|
|
|
519
|
0
|
0
|
|
|
|
0
|
if ($x == $len) { |
|
520
|
0
|
0
|
|
|
|
0
|
if ($y == $len) { |
|
521
|
|
|
|
|
|
|
### toothpick A ... |
|
522
|
0
|
|
|
|
|
0
|
return $n + $part_n; |
|
523
|
|
|
|
|
|
|
} |
|
524
|
0
|
0
|
|
|
|
0
|
if ($y == $len+1) { |
|
525
|
|
|
|
|
|
|
### toothpick B ... |
|
526
|
0
|
|
|
|
|
0
|
return $n + $part_n + 1; |
|
527
|
|
|
|
|
|
|
} |
|
528
|
|
|
|
|
|
|
} |
|
529
|
|
|
|
|
|
|
|
|
530
|
0
|
0
|
|
|
|
0
|
if ($y <= $len) { |
|
531
|
0
|
0
|
|
|
|
0
|
if ($x < $len) { |
|
532
|
|
|
|
|
|
|
### part 0 ... |
|
533
|
|
|
|
|
|
|
} else { |
|
534
|
|
|
|
|
|
|
### part 1, rotate ... |
|
535
|
0
|
|
|
|
|
0
|
$n += $part_n + 2; |
|
536
|
0
|
|
|
|
|
0
|
($x,$y) = ($len-$y,$x-$len+1); # shift, rotate +90 |
|
537
|
|
|
|
|
|
|
} |
|
538
|
|
|
|
|
|
|
} else { |
|
539
|
0
|
|
|
|
|
0
|
$y -= $len; |
|
540
|
0
|
0
|
|
|
|
0
|
if ($x > $len) { |
|
541
|
|
|
|
|
|
|
### part 2 ... |
|
542
|
0
|
|
|
|
|
0
|
$n += 2*$part_n + 2; |
|
543
|
0
|
|
|
|
|
0
|
$x -= $len; |
|
544
|
|
|
|
|
|
|
} else { |
|
545
|
|
|
|
|
|
|
### part 3 ... |
|
546
|
0
|
|
|
|
|
0
|
$n += 3*$part_n + 2; |
|
547
|
0
|
|
|
|
|
0
|
$x = $len-$x; # mirror |
|
548
|
|
|
|
|
|
|
} |
|
549
|
|
|
|
|
|
|
} |
|
550
|
|
|
|
|
|
|
|
|
551
|
0
|
|
|
|
|
0
|
$len /= 2; |
|
552
|
0
|
|
|
|
|
0
|
$part_n = ($part_n-2)/4; |
|
553
|
|
|
|
|
|
|
} |
|
554
|
|
|
|
|
|
|
|
|
555
|
|
|
|
|
|
|
### end loop: "x=$x y=$y n=$n" |
|
556
|
|
|
|
|
|
|
|
|
557
|
0
|
0
|
|
|
|
0
|
if ($x == 1) { |
|
558
|
0
|
0
|
|
|
|
0
|
if ($y == 1) { |
|
|
|
0
|
|
|
|
|
|
|
559
|
0
|
|
|
|
|
0
|
return $n; |
|
560
|
|
|
|
|
|
|
} elsif ($y == 2) { |
|
561
|
0
|
|
|
|
|
0
|
return $n + 1; |
|
562
|
|
|
|
|
|
|
} |
|
563
|
|
|
|
|
|
|
} |
|
564
|
|
|
|
|
|
|
|
|
565
|
0
|
|
|
|
|
0
|
return undef; |
|
566
|
|
|
|
|
|
|
} |
|
567
|
|
|
|
|
|
|
|
|
568
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
569
|
|
|
|
|
|
|
# levels |
|
570
|
|
|
|
|
|
|
|
|
571
|
|
|
|
|
|
|
# parts=1 |
|
572
|
|
|
|
|
|
|
# LevelPoints[k] = 4*LevelPoints[k] + 2 starting LevelPoints[0] = 2 |
|
573
|
|
|
|
|
|
|
# LevelPoints[k] = 2 + 2*4 + 2*4^2 + ... + 2*4^(k-1) + 4^k*LevelPoints[0] |
|
574
|
|
|
|
|
|
|
# LevelPoints[k] = 2 + 2*4 + 2*4^2 + ... + 2*4^(k-1) + 2*4^k |
|
575
|
|
|
|
|
|
|
# LevelPoints[k] = 2*(4^(k+1) - 1)/3 |
|
576
|
|
|
|
|
|
|
|
|
577
|
|
|
|
|
|
|
{ |
|
578
|
|
|
|
|
|
|
my %level_to_n_range = (4 => -2, |
|
579
|
|
|
|
|
|
|
3 => -3, |
|
580
|
|
|
|
|
|
|
2 => -4, |
|
581
|
|
|
|
|
|
|
1 => -5, |
|
582
|
|
|
|
|
|
|
); |
|
583
|
|
|
|
|
|
|
sub level_to_n_range { |
|
584
|
9
|
|
|
9
|
1
|
402
|
my ($self, $level) = @_; |
|
585
|
|
|
|
|
|
|
return (0, |
|
586
|
|
|
|
|
|
|
(4**($level+1) * (2*$self->{'parts'}) |
|
587
|
9
|
|
|
|
|
37
|
+ $level_to_n_range{$self->{'parts'}}) / 3); |
|
588
|
|
|
|
|
|
|
} |
|
589
|
|
|
|
|
|
|
} |
|
590
|
|
|
|
|
|
|
{ |
|
591
|
|
|
|
|
|
|
# $level_to_n_range{} and _divrem_mutate() rounded up |
|
592
|
|
|
|
|
|
|
my %n_to_level = (4 => 2 + 2*4-1, |
|
593
|
|
|
|
|
|
|
3 => 3 + 2*3-1, |
|
594
|
|
|
|
|
|
|
2 => 4 + 2*2-1, |
|
595
|
|
|
|
|
|
|
1 => 5 + 2-1, |
|
596
|
|
|
|
|
|
|
); |
|
597
|
|
|
|
|
|
|
sub n_to_level { |
|
598
|
0
|
|
|
0
|
1
|
|
my ($self, $n) = @_; |
|
599
|
0
|
0
|
|
|
|
|
if ($n < 0) { return undef; } |
|
|
0
|
|
|
|
|
|
|
|
600
|
0
|
0
|
|
|
|
|
if (is_infinite($n)) { return $n; } |
|
|
0
|
|
|
|
|
|
|
|
601
|
0
|
|
|
|
|
|
$n = round_nearest($n); |
|
602
|
0
|
|
|
|
|
|
$n *= 3; |
|
603
|
0
|
|
|
|
|
|
$n += $n_to_level{$self->{'parts'}}; |
|
604
|
0
|
|
|
|
|
|
_divrem_mutate ($n, 2*$self->{'parts'}); |
|
605
|
0
|
|
|
|
|
|
my ($pow, $exp) = round_down_pow ($n-1, 4); |
|
606
|
0
|
|
|
|
|
|
return $exp; |
|
607
|
|
|
|
|
|
|
} |
|
608
|
|
|
|
|
|
|
} |
|
609
|
|
|
|
|
|
|
|
|
610
|
|
|
|
|
|
|
# return $remainder, modify $n |
|
611
|
|
|
|
|
|
|
# the scalar $_[0] is modified, but if it's a BigInt then a new BigInt is made |
|
612
|
|
|
|
|
|
|
# and stored there, the bigint value is not changed |
|
613
|
|
|
|
|
|
|
sub _divrem_mutate { |
|
614
|
0
|
|
|
0
|
|
|
my $d = $_[1]; |
|
615
|
0
|
|
|
|
|
|
my $rem; |
|
616
|
0
|
0
|
0
|
|
|
|
if (ref $_[0] && $_[0]->isa('Math::BigInt')) { |
|
617
|
0
|
|
|
|
|
|
($_[0], $rem) = $_[0]->copy->bdiv($d); # quot,rem in array context |
|
618
|
0
|
0
|
0
|
|
|
|
if (! ref $d || $d < 1_000_000) { |
|
619
|
0
|
|
|
|
|
|
return $rem->numify; # plain remainder if fits |
|
620
|
|
|
|
|
|
|
} |
|
621
|
|
|
|
|
|
|
} else { |
|
622
|
0
|
|
|
|
|
|
$rem = $_[0] % $d; |
|
623
|
0
|
|
|
|
|
|
$_[0] = int(($_[0]-$rem)/$d); # exact division stays in UV |
|
624
|
|
|
|
|
|
|
} |
|
625
|
0
|
|
|
|
|
|
return $rem; |
|
626
|
|
|
|
|
|
|
} |
|
627
|
|
|
|
|
|
|
|
|
628
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
629
|
|
|
|
|
|
|
1; |
|
630
|
|
|
|
|
|
|
__END__ |