| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
|
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
|
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
|
8
|
|
|
|
|
|
|
# version. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
|
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13
|
|
|
|
|
|
|
# for more details. |
|
14
|
|
|
|
|
|
|
# |
|
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
package Math::PlanePath::LTiling; |
|
20
|
1
|
|
|
1
|
|
9406
|
use 5.004; |
|
|
1
|
|
|
|
|
10
|
|
|
21
|
1
|
|
|
1
|
|
6
|
use strict; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
23
|
|
|
22
|
1
|
|
|
1
|
|
5
|
use Carp 'croak'; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
73
|
|
|
23
|
|
|
|
|
|
|
#use List::Util 'max'; |
|
24
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
|
25
|
|
|
|
|
|
|
|
|
26
|
1
|
|
|
1
|
|
8
|
use vars '$VERSION', '@ISA'; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
67
|
|
|
27
|
|
|
|
|
|
|
$VERSION = 129; |
|
28
|
1
|
|
|
1
|
|
729
|
use Math::PlanePath; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
53
|
|
|
29
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
|
30
|
|
|
|
|
|
|
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate; |
|
31
|
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
|
33
|
1
|
|
|
|
|
50
|
'is_infinite', |
|
34
|
1
|
|
|
1
|
|
6
|
'round_nearest'; |
|
|
1
|
|
|
|
|
2
|
|
|
35
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
|
36
|
1
|
|
|
|
|
78
|
'round_down_pow', |
|
37
|
|
|
|
|
|
|
'round_up_pow', |
|
38
|
1
|
|
|
1
|
|
491
|
'digit_split_lowtohigh'; |
|
|
1
|
|
|
|
|
3
|
|
|
39
|
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
|
42
|
|
|
|
|
|
|
#use Smart::Comments; |
|
43
|
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
|
|
45
|
1
|
|
|
1
|
|
8
|
use constant n_start => 0; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
48
|
|
|
46
|
1
|
|
|
1
|
|
6
|
use constant class_x_negative => 0; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
39
|
|
|
47
|
1
|
|
|
1
|
|
5
|
use constant class_y_negative => 0; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
77
|
|
|
48
|
|
|
|
|
|
|
|
|
49
|
1
|
|
|
|
|
1258
|
use constant parameter_info_array => |
|
50
|
|
|
|
|
|
|
[ { name => 'L_fill', |
|
51
|
|
|
|
|
|
|
display => 'L Fill', |
|
52
|
|
|
|
|
|
|
type => 'enum', |
|
53
|
|
|
|
|
|
|
default => 'middle', |
|
54
|
|
|
|
|
|
|
choices => ['middle','left','upper','ends','all'], |
|
55
|
|
|
|
|
|
|
choices_display => ['Middle','Left','Upper','Ends','All'], |
|
56
|
|
|
|
|
|
|
description => 'Which points to number with each "L".', |
|
57
|
|
|
|
|
|
|
}, |
|
58
|
1
|
|
|
1
|
|
7
|
]; |
|
|
1
|
|
|
|
|
1
|
|
|
59
|
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
my %sumxy_minimum = (middle => 0, # X=0,Y=0 |
|
61
|
|
|
|
|
|
|
left => 1, # X=1,Y=0 |
|
62
|
|
|
|
|
|
|
upper => 1, # X=0,Y=1 |
|
63
|
|
|
|
|
|
|
ends => 1, # X=1,Y=0 and X=0,Y=1 |
|
64
|
|
|
|
|
|
|
all => 0, # X=0,Y=0 |
|
65
|
|
|
|
|
|
|
); |
|
66
|
|
|
|
|
|
|
sub sumxy_minimum { |
|
67
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
68
|
0
|
|
|
|
|
0
|
return $sumxy_minimum{$self->{'L_fill'}}; |
|
69
|
|
|
|
|
|
|
} |
|
70
|
|
|
|
|
|
|
*sumabsxy_minimum = \&sumxy_minimum; |
|
71
|
|
|
|
|
|
|
*absdiffxy_minimum = \&sumxy_minimum; |
|
72
|
|
|
|
|
|
|
*rsquared_minimum = \&sumxy_minimum; |
|
73
|
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
{ |
|
75
|
|
|
|
|
|
|
my %turn_any_straight = (# middle => 0, |
|
76
|
|
|
|
|
|
|
left => 1, |
|
77
|
|
|
|
|
|
|
# upper => 0, |
|
78
|
|
|
|
|
|
|
ends => 1, |
|
79
|
|
|
|
|
|
|
all => 1, |
|
80
|
|
|
|
|
|
|
); |
|
81
|
|
|
|
|
|
|
sub turn_any_straight { |
|
82
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
83
|
0
|
|
|
|
|
0
|
return $turn_any_straight{$self->{'L_fill'}}; |
|
84
|
|
|
|
|
|
|
} |
|
85
|
|
|
|
|
|
|
} |
|
86
|
|
|
|
|
|
|
|
|
87
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
88
|
|
|
|
|
|
|
|
|
89
|
|
|
|
|
|
|
sub new { |
|
90
|
6
|
|
|
6
|
1
|
1642
|
my $self = shift->SUPER::new (@_); |
|
91
|
6
|
|
|
|
|
16
|
my $L_fill = $self->{'L_fill'}; |
|
92
|
6
|
100
|
|
|
|
21
|
if (! defined $L_fill) { |
|
|
|
50
|
|
|
|
|
|
|
93
|
4
|
|
|
|
|
12
|
$self->{'L_fill'} = 'middle'; |
|
94
|
|
|
|
|
|
|
} elsif (! exists $sumxy_minimum{$L_fill}) { |
|
95
|
0
|
|
|
|
|
0
|
croak "Unrecognised L_fill option: ",$L_fill; |
|
96
|
|
|
|
|
|
|
} |
|
97
|
6
|
|
|
|
|
13
|
return $self; |
|
98
|
|
|
|
|
|
|
} |
|
99
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
sub n_to_xy { |
|
101
|
0
|
|
|
0
|
1
|
0
|
my ($self, $n) = @_; |
|
102
|
|
|
|
|
|
|
### LTiling n_to_xy(): $n |
|
103
|
|
|
|
|
|
|
|
|
104
|
0
|
0
|
|
|
|
0
|
if ($n < 0) { return; } |
|
|
0
|
|
|
|
|
0
|
|
|
105
|
0
|
0
|
|
|
|
0
|
if (is_infinite($n)) { return ($n,$n); } |
|
|
0
|
|
|
|
|
0
|
|
|
106
|
|
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
{ |
|
108
|
0
|
|
|
|
|
0
|
my $int = int($n); |
|
|
0
|
|
|
|
|
0
|
|
|
109
|
|
|
|
|
|
|
### $int |
|
110
|
|
|
|
|
|
|
### $n |
|
111
|
0
|
0
|
|
|
|
0
|
if ($n != $int) { |
|
112
|
0
|
|
|
|
|
0
|
my ($x1,$y1) = $self->n_to_xy($int); |
|
113
|
0
|
|
|
|
|
0
|
my ($x2,$y2) = $self->n_to_xy($int+1); |
|
114
|
0
|
|
|
|
|
0
|
my $frac = $n - $int; # inherit possible BigFloat |
|
115
|
0
|
|
|
|
|
0
|
my $dx = $x2-$x1; |
|
116
|
0
|
|
|
|
|
0
|
my $dy = $y2-$y1; |
|
117
|
0
|
|
|
|
|
0
|
return ($frac*$dx + $x1, $frac*$dy + $y1); |
|
118
|
|
|
|
|
|
|
} |
|
119
|
0
|
|
|
|
|
0
|
$n = $int; # BigFloat int() gives BigInt, use that |
|
120
|
|
|
|
|
|
|
} |
|
121
|
|
|
|
|
|
|
|
|
122
|
0
|
|
|
|
|
0
|
my $x = my $y = ($n * 0); # inherit bignum 0 |
|
123
|
0
|
|
|
|
|
0
|
my $len = $x + 1; # inherit bignum 1 |
|
124
|
|
|
|
|
|
|
|
|
125
|
0
|
|
|
|
|
0
|
my $L_fill = $self->{'L_fill'}; |
|
126
|
0
|
0
|
|
|
|
0
|
if ($L_fill eq 'left') { |
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
127
|
0
|
|
|
|
|
0
|
$x += 1; |
|
128
|
|
|
|
|
|
|
} elsif ($L_fill eq 'upper') { |
|
129
|
0
|
|
|
|
|
0
|
$y += 1; |
|
130
|
|
|
|
|
|
|
} elsif ($L_fill eq 'ends') { |
|
131
|
0
|
|
|
|
|
0
|
my $rem = _divrem_mutate ($n, 2); |
|
132
|
0
|
0
|
|
|
|
0
|
if ($rem) { # low digit==1 |
|
133
|
0
|
|
|
|
|
0
|
$y = $len; # 1 |
|
134
|
|
|
|
|
|
|
} else { # low digit==0 |
|
135
|
0
|
|
|
|
|
0
|
$x = $len; # 1 |
|
136
|
|
|
|
|
|
|
} |
|
137
|
|
|
|
|
|
|
} elsif ($L_fill eq 'all') { |
|
138
|
0
|
|
|
|
|
0
|
my $rem = _divrem_mutate ($n, 3); |
|
139
|
0
|
0
|
|
|
|
0
|
if ($rem == 1) { |
|
|
|
0
|
|
|
|
|
|
|
140
|
0
|
|
|
|
|
0
|
$x = $len; # 1 |
|
141
|
|
|
|
|
|
|
} elsif ($rem == 2) { |
|
142
|
0
|
|
|
|
|
0
|
$y = $len; # 1 |
|
143
|
|
|
|
|
|
|
} |
|
144
|
|
|
|
|
|
|
} |
|
145
|
|
|
|
|
|
|
|
|
146
|
0
|
|
|
|
|
0
|
foreach my $digit (digit_split_lowtohigh($n,4)) { |
|
147
|
|
|
|
|
|
|
### at: "$x,$y digit=$digit" |
|
148
|
|
|
|
|
|
|
|
|
149
|
0
|
0
|
|
|
|
0
|
if ($digit == 1) { |
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
150
|
0
|
|
|
|
|
0
|
($x,$y) = (4*$len-1-$y,$x); |
|
151
|
|
|
|
|
|
|
} elsif ($digit == 2) { |
|
152
|
0
|
|
|
|
|
0
|
$x += $len; |
|
153
|
0
|
|
|
|
|
0
|
$y += $len; |
|
154
|
|
|
|
|
|
|
} elsif ($digit == 3) { |
|
155
|
0
|
|
|
|
|
0
|
($x,$y) = ($y,4*$len-1-$x); |
|
156
|
|
|
|
|
|
|
} |
|
157
|
0
|
|
|
|
|
0
|
$len *= 2; |
|
158
|
|
|
|
|
|
|
} |
|
159
|
|
|
|
|
|
|
|
|
160
|
|
|
|
|
|
|
### final: "$x,$y" |
|
161
|
0
|
|
|
|
|
0
|
return ($x,$y); |
|
162
|
|
|
|
|
|
|
} |
|
163
|
|
|
|
|
|
|
|
|
164
|
|
|
|
|
|
|
my @yx_to_digit = ([0,0,1,1], |
|
165
|
|
|
|
|
|
|
[0,2,2,1], |
|
166
|
|
|
|
|
|
|
[3,2], |
|
167
|
|
|
|
|
|
|
[3,3]); |
|
168
|
|
|
|
|
|
|
my %fill_factor = (middle => 1, |
|
169
|
|
|
|
|
|
|
left => 1, |
|
170
|
|
|
|
|
|
|
upper => 1, |
|
171
|
|
|
|
|
|
|
ends => 2, |
|
172
|
|
|
|
|
|
|
all => 3); |
|
173
|
|
|
|
|
|
|
my %yx_to_fill = (middle => [[0]], |
|
174
|
|
|
|
|
|
|
left => [[undef,0]], |
|
175
|
|
|
|
|
|
|
upper => [[], |
|
176
|
|
|
|
|
|
|
[0]], |
|
177
|
|
|
|
|
|
|
ends => [[undef,0], |
|
178
|
|
|
|
|
|
|
[1]], |
|
179
|
|
|
|
|
|
|
all => [[0,1], |
|
180
|
|
|
|
|
|
|
[2]]); |
|
181
|
|
|
|
|
|
|
sub xy_to_n { |
|
182
|
51
|
|
|
51
|
1
|
12747
|
my ($self, $x, $y) = @_; |
|
183
|
|
|
|
|
|
|
### LTiling xy_to_n(): "$x, $y" |
|
184
|
|
|
|
|
|
|
|
|
185
|
51
|
|
|
|
|
124
|
$x = round_nearest ($x); |
|
186
|
51
|
|
|
|
|
99
|
$y = round_nearest ($y); |
|
187
|
51
|
50
|
33
|
|
|
188
|
if ($x < 0 || $y < 0) { |
|
188
|
0
|
|
|
|
|
0
|
return undef; |
|
189
|
|
|
|
|
|
|
} |
|
190
|
|
|
|
|
|
|
|
|
191
|
51
|
|
|
|
|
126
|
my ($len, $level) = round_down_pow (max($x,$y), |
|
192
|
|
|
|
|
|
|
2); |
|
193
|
51
|
50
|
|
|
|
131
|
if (is_infinite($level)) { |
|
194
|
0
|
|
|
|
|
0
|
return $level; |
|
195
|
|
|
|
|
|
|
} |
|
196
|
|
|
|
|
|
|
|
|
197
|
51
|
|
|
|
|
96
|
my $n = ($x * 0 * $y); # inherit bignum 0 |
|
198
|
|
|
|
|
|
|
|
|
199
|
51
|
|
|
|
|
104
|
while ($level-- >= 0) { |
|
200
|
|
|
|
|
|
|
### assert: $x >= 0 |
|
201
|
|
|
|
|
|
|
### assert: $y >= 0 |
|
202
|
|
|
|
|
|
|
### assert: ($y < 2*$len && $x < 4*$len) || ($x < 2*$len && $y < 4*$len) |
|
203
|
|
|
|
|
|
|
|
|
204
|
|
|
|
|
|
|
### $len |
|
205
|
|
|
|
|
|
|
### x: int($x/$len) |
|
206
|
|
|
|
|
|
|
### y: int($y/$len) |
|
207
|
|
|
|
|
|
|
|
|
208
|
244
|
|
|
|
|
445
|
my $digit = $yx_to_digit[int($y/$len)]->[int($x/$len)]; |
|
209
|
244
|
50
|
|
|
|
477
|
if ($digit == 1) { |
|
|
|
100
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
210
|
0
|
|
|
|
|
0
|
($x,$y) = ($y,4*$len-1-$x); |
|
211
|
|
|
|
|
|
|
} elsif ($digit == 2) { |
|
212
|
136
|
|
|
|
|
178
|
$x -= $len; |
|
213
|
136
|
|
|
|
|
174
|
$y -= $len; |
|
214
|
|
|
|
|
|
|
} elsif ($digit == 3) { |
|
215
|
0
|
|
|
|
|
0
|
($x,$y) = (4*$len-1-$y,$x); |
|
216
|
|
|
|
|
|
|
} |
|
217
|
|
|
|
|
|
|
|
|
218
|
|
|
|
|
|
|
### to: "digit=$digit xy=$x,$y" |
|
219
|
|
|
|
|
|
|
|
|
220
|
244
|
|
|
|
|
295
|
$n = $n*4 + $digit; |
|
221
|
244
|
|
|
|
|
413
|
$len /= 2; |
|
222
|
|
|
|
|
|
|
} |
|
223
|
|
|
|
|
|
|
|
|
224
|
|
|
|
|
|
|
### assert: ($x==0 && $y== 0) || ($x==1 && $y== 0) || ($x==0 && $y== 1) |
|
225
|
|
|
|
|
|
|
|
|
226
|
51
|
|
|
|
|
85
|
my $fill = $self->{'L_fill'}; |
|
227
|
51
|
50
|
|
|
|
113
|
if (defined (my $digit = $yx_to_fill{$fill}->[$y]->[$x])) { |
|
228
|
51
|
|
|
|
|
122
|
return $n*$fill_factor{$fill} + $digit; |
|
229
|
|
|
|
|
|
|
} |
|
230
|
0
|
|
|
|
|
0
|
return undef; |
|
231
|
|
|
|
|
|
|
} |
|
232
|
|
|
|
|
|
|
|
|
233
|
|
|
|
|
|
|
my %range_factor = (middle => 3, |
|
234
|
|
|
|
|
|
|
left => 3, |
|
235
|
|
|
|
|
|
|
upper => 3, |
|
236
|
|
|
|
|
|
|
ends => 6, |
|
237
|
|
|
|
|
|
|
all => 8); |
|
238
|
|
|
|
|
|
|
# not exact |
|
239
|
|
|
|
|
|
|
sub rect_to_n_range { |
|
240
|
0
|
|
|
0
|
1
|
0
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
|
241
|
|
|
|
|
|
|
### LTiling rect_to_n_range(): "$x1,$y1 $x2,$y2" |
|
242
|
|
|
|
|
|
|
|
|
243
|
0
|
|
|
|
|
0
|
$x1 = round_nearest ($x1); |
|
244
|
0
|
|
|
|
|
0
|
$y1 = round_nearest ($y1); |
|
245
|
0
|
|
|
|
|
0
|
$x2 = round_nearest ($x2); |
|
246
|
0
|
|
|
|
|
0
|
$y2 = round_nearest ($y2); |
|
247
|
0
|
0
|
|
|
|
0
|
($x1,$x2) = ($x2,$x1) if $x1 > $x2; |
|
248
|
0
|
0
|
|
|
|
0
|
($y1,$y2) = ($y2,$y1) if $y1 > $y2; |
|
249
|
|
|
|
|
|
|
### rect: "X = $x1 to $x2, Y = $y1 to $y2" |
|
250
|
|
|
|
|
|
|
|
|
251
|
0
|
0
|
0
|
|
|
0
|
if ($x2 < 0 || $y2 < 0) { |
|
252
|
|
|
|
|
|
|
### rectangle outside first quadrant ... |
|
253
|
0
|
|
|
|
|
0
|
return (1, 0); |
|
254
|
|
|
|
|
|
|
} |
|
255
|
|
|
|
|
|
|
|
|
256
|
0
|
|
|
|
|
0
|
my ($len, $level) = round_down_pow (max($x2,$y2), 2); |
|
257
|
|
|
|
|
|
|
### $len |
|
258
|
|
|
|
|
|
|
### $level |
|
259
|
0
|
0
|
|
|
|
0
|
if (is_infinite($level)) { |
|
260
|
0
|
|
|
|
|
0
|
return (0,$level); |
|
261
|
|
|
|
|
|
|
} |
|
262
|
|
|
|
|
|
|
|
|
263
|
|
|
|
|
|
|
return (0, |
|
264
|
0
|
|
|
|
|
0
|
$len*$len * $range_factor{$self->{'L_fill'}}); |
|
265
|
|
|
|
|
|
|
} |
|
266
|
|
|
|
|
|
|
|
|
267
|
|
|
|
|
|
|
|
|
268
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
269
|
|
|
|
|
|
|
# levels |
|
270
|
|
|
|
|
|
|
|
|
271
|
|
|
|
|
|
|
sub level_to_n_range { |
|
272
|
7
|
|
|
7
|
1
|
418
|
my ($self, $level) = @_; |
|
273
|
7
|
|
|
|
|
28
|
return (0, 4**$level * $fill_factor{$self->{'L_fill'}} - 1); |
|
274
|
|
|
|
|
|
|
} |
|
275
|
|
|
|
|
|
|
sub n_to_level { |
|
276
|
0
|
|
|
0
|
1
|
|
my ($self, $n) = @_; |
|
277
|
0
|
0
|
|
|
|
|
if ($n < 0) { return undef; } |
|
|
0
|
|
|
|
|
|
|
|
278
|
0
|
0
|
|
|
|
|
if (is_infinite($n)) { return $n; } |
|
|
0
|
|
|
|
|
|
|
|
279
|
0
|
|
|
|
|
|
$n = round_nearest($n); |
|
280
|
0
|
|
|
|
|
|
_divrem_mutate ($n, $fill_factor{$self->{'L_fill'}}); |
|
281
|
0
|
|
|
|
|
|
my ($pow, $exp) = round_up_pow ($n+1, 4); |
|
282
|
0
|
|
|
|
|
|
return $exp; |
|
283
|
|
|
|
|
|
|
} |
|
284
|
|
|
|
|
|
|
|
|
285
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
286
|
|
|
|
|
|
|
1; |
|
287
|
|
|
|
|
|
|
__END__ |