| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
|
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
|
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
|
8
|
|
|
|
|
|
|
# version. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
|
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13
|
|
|
|
|
|
|
# for more details. |
|
14
|
|
|
|
|
|
|
# |
|
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# http://www.cisl.ucar.edu/css/papers/sfc3.pdf |
|
20
|
|
|
|
|
|
|
# Hilbert + Peano-meander |
|
21
|
|
|
|
|
|
|
# |
|
22
|
|
|
|
|
|
|
# http://oceans11.lanl.gov/svn/POP/trunk/pop/source/distribution.F90 |
|
23
|
|
|
|
|
|
|
# |
|
24
|
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
package Math::PlanePath::CincoCurve; |
|
26
|
1
|
|
|
1
|
|
9190
|
use 5.004; |
|
|
1
|
|
|
|
|
10
|
|
|
27
|
1
|
|
|
1
|
|
5
|
use strict; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
66
|
|
|
28
|
|
|
|
|
|
|
#use List::Util 'min', 'max'; |
|
29
|
|
|
|
|
|
|
*min = \&Math::PlanePath::_min; |
|
30
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
|
31
|
|
|
|
|
|
|
|
|
32
|
1
|
|
|
1
|
|
7
|
use vars '$VERSION', '@ISA'; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
70
|
|
|
33
|
|
|
|
|
|
|
$VERSION = 129; |
|
34
|
1
|
|
|
1
|
|
694
|
use Math::PlanePath; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
30
|
|
|
35
|
1
|
|
|
1
|
|
425
|
use Math::PlanePath::Base::NSEW; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
41
|
|
|
36
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath::Base::NSEW', |
|
37
|
|
|
|
|
|
|
'Math::PlanePath'); |
|
38
|
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
|
40
|
1
|
|
|
|
|
107
|
'is_infinite', |
|
41
|
1
|
|
|
1
|
|
6
|
'round_nearest'; |
|
|
1
|
|
|
|
|
1
|
|
|
42
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
|
43
|
1
|
|
|
|
|
68
|
'round_down_pow', |
|
44
|
|
|
|
|
|
|
'digit_split_lowtohigh', |
|
45
|
1
|
|
|
1
|
|
490
|
'digit_join_lowtohigh'; |
|
|
1
|
|
|
|
|
3
|
|
|
46
|
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
|
|
48
|
1
|
|
|
1
|
|
7
|
use constant n_start => 0; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
48
|
|
|
49
|
1
|
|
|
1
|
|
5
|
use constant class_x_negative => 0; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
39
|
|
|
50
|
1
|
|
|
1
|
|
5
|
use constant class_y_negative => 0; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
1753
|
|
|
51
|
|
|
|
|
|
|
*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_visited_quad1; |
|
52
|
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
55
|
|
|
|
|
|
|
# tables generated by tools/dekking-curve-table.pl |
|
56
|
|
|
|
|
|
|
# |
|
57
|
|
|
|
|
|
|
my @next_state = ( 0, 0,50,50,50, # 0 |
|
58
|
|
|
|
|
|
|
75,25,25,50,50, |
|
59
|
|
|
|
|
|
|
0, 0,75,50, 0, |
|
60
|
|
|
|
|
|
|
0, 0,25,75,75, |
|
61
|
|
|
|
|
|
|
0,25,75,75, 0, |
|
62
|
|
|
|
|
|
|
25,25,75,75,75, # 25 |
|
63
|
|
|
|
|
|
|
50, 0, 0,75,75, |
|
64
|
|
|
|
|
|
|
25,25,50,75,25, |
|
65
|
|
|
|
|
|
|
25,25, 0,50,50, |
|
66
|
|
|
|
|
|
|
25, 0,50,50,25, |
|
67
|
|
|
|
|
|
|
50,50, 0, 0, 0, # 50 |
|
68
|
|
|
|
|
|
|
25,75,75, 0, 0, |
|
69
|
|
|
|
|
|
|
50,50,25, 0,50, |
|
70
|
|
|
|
|
|
|
50,50,75,25,25, |
|
71
|
|
|
|
|
|
|
50,75,25,25,50, |
|
72
|
|
|
|
|
|
|
75,75,25,25,25, # 75 |
|
73
|
|
|
|
|
|
|
0,50,50,25,25, |
|
74
|
|
|
|
|
|
|
75,75, 0,25,75, |
|
75
|
|
|
|
|
|
|
75,75,50, 0, 0, |
|
76
|
|
|
|
|
|
|
75,50, 0, 0,75); |
|
77
|
|
|
|
|
|
|
my @digit_to_x = (0,1,2,2,2, 1,1,0,0,0, 0,1,1,2,2, 3,4,4,3,3, 4,4,3,3,4, |
|
78
|
|
|
|
|
|
|
4,3,2,2,2, 3,3,4,4,4, 4,3,3,2,2, 1,0,0,1,1, 0,0,1,1,0, |
|
79
|
|
|
|
|
|
|
0,0,0,1,2, 2,1,1,2,3, 4,4,3,3,4, 4,4,3,3,2, 2,1,1,0,0, |
|
80
|
|
|
|
|
|
|
4,4,4,3,2, 2,3,3,2,1, 0,0,1,1,0, 0,0,1,1,2, 2,3,3,4,4); |
|
81
|
|
|
|
|
|
|
my @digit_to_y = (0,0,0,1,2, 2,1,1,2,3, 4,4,3,3,4, 4,4,3,3,2, 2,1,1,0,0, |
|
82
|
|
|
|
|
|
|
4,4,4,3,2, 2,3,3,2,1, 0,0,1,1,0, 0,0,1,1,2, 2,3,3,4,4, |
|
83
|
|
|
|
|
|
|
0,1,2,2,2, 1,1,0,0,0, 0,1,1,2,2, 3,4,4,3,3, 4,4,3,3,4, |
|
84
|
|
|
|
|
|
|
4,3,2,2,2, 3,3,4,4,4, 4,3,3,2,2, 1,0,0,1,1, 0,0,1,1,0); |
|
85
|
|
|
|
|
|
|
my @yx_to_digit = ( 0, 1, 2,23,24, # 0 |
|
86
|
|
|
|
|
|
|
7, 6, 3,22,21, |
|
87
|
|
|
|
|
|
|
8, 5, 4,19,20, |
|
88
|
|
|
|
|
|
|
9,12,13,18,17, |
|
89
|
|
|
|
|
|
|
10,11,14,15,16, |
|
90
|
|
|
|
|
|
|
16,15,14,11,10, # 25 |
|
91
|
|
|
|
|
|
|
17,18,13,12, 9, |
|
92
|
|
|
|
|
|
|
20,19, 4, 5, 8, |
|
93
|
|
|
|
|
|
|
21,22, 3, 6, 7, |
|
94
|
|
|
|
|
|
|
24,23, 2, 1, 0, |
|
95
|
|
|
|
|
|
|
0, 7, 8, 9,10, # 50 |
|
96
|
|
|
|
|
|
|
1, 6, 5,12,11, |
|
97
|
|
|
|
|
|
|
2, 3, 4,13,14, |
|
98
|
|
|
|
|
|
|
23,22,19,18,15, |
|
99
|
|
|
|
|
|
|
24,21,20,17,16, |
|
100
|
|
|
|
|
|
|
16,17,20,21,24, # 75 |
|
101
|
|
|
|
|
|
|
15,18,19,22,23, |
|
102
|
|
|
|
|
|
|
14,13, 4, 3, 2, |
|
103
|
|
|
|
|
|
|
11,12, 5, 6, 1, |
|
104
|
|
|
|
|
|
|
10, 9, 8, 7, 0); |
|
105
|
|
|
|
|
|
|
my @min_digit = ( 0, 0, 0, 0, 0, # 0 |
|
106
|
|
|
|
|
|
|
7, 7, 7, 7, 8, |
|
107
|
|
|
|
|
|
|
8, 8, 9, 9,10, |
|
108
|
|
|
|
|
|
|
0, 0, 0, 0, 0, |
|
109
|
|
|
|
|
|
|
6, 5, 5, 5, 5, |
|
110
|
|
|
|
|
|
|
5, 5, 9, 9,10, # 25 |
|
111
|
|
|
|
|
|
|
0, 0, 0, 0, 0, |
|
112
|
|
|
|
|
|
|
3, 3, 3, 3, 4, |
|
113
|
|
|
|
|
|
|
4, 4, 9, 9,10, |
|
114
|
|
|
|
|
|
|
0, 0, 0, 0, 0, |
|
115
|
|
|
|
|
|
|
3, 3, 3, 3, 4, # 50 |
|
116
|
|
|
|
|
|
|
4, 4, 9, 9,10, |
|
117
|
|
|
|
|
|
|
0, 0, 0, 0, 0, |
|
118
|
|
|
|
|
|
|
3, 3, 3, 3, 4, |
|
119
|
|
|
|
|
|
|
4, 4, 9, 9,10, |
|
120
|
|
|
|
|
|
|
1, 1, 1, 1, 1, # 75 |
|
121
|
|
|
|
|
|
|
6, 5, 5, 5, 5, |
|
122
|
|
|
|
|
|
|
5, 5,12,11,11, |
|
123
|
|
|
|
|
|
|
1, 1, 1, 1, 1, |
|
124
|
|
|
|
|
|
|
3, 3, 3, 3, 4, |
|
125
|
|
|
|
|
|
|
4, 4,12,11,11, # 100 |
|
126
|
|
|
|
|
|
|
1, 1, 1, 1, 1, |
|
127
|
|
|
|
|
|
|
3, 3, 3, 3, 4, |
|
128
|
|
|
|
|
|
|
4, 4,12,11,11, |
|
129
|
|
|
|
|
|
|
1, 1, 1, 1, 1, |
|
130
|
|
|
|
|
|
|
3, 3, 3, 3, 4, # 125 |
|
131
|
|
|
|
|
|
|
4, 4,12,11,11, |
|
132
|
|
|
|
|
|
|
2, 2, 2, 2, 2, |
|
133
|
|
|
|
|
|
|
3, 3, 3, 3, 4, |
|
134
|
|
|
|
|
|
|
4, 4,13,13,14, |
|
135
|
|
|
|
|
|
|
2, 2, 2, 2, 2, # 150 |
|
136
|
|
|
|
|
|
|
3, 3, 3, 3, 4, |
|
137
|
|
|
|
|
|
|
4, 4,13,13,14, |
|
138
|
|
|
|
|
|
|
2, 2, 2, 2, 2, |
|
139
|
|
|
|
|
|
|
3, 3, 3, 3, 4, |
|
140
|
|
|
|
|
|
|
4, 4,13,13,14, # 175 |
|
141
|
|
|
|
|
|
|
23,22,19,18,15, |
|
142
|
|
|
|
|
|
|
22,19,18,15,19, |
|
143
|
|
|
|
|
|
|
18,15,18,15,15, |
|
144
|
|
|
|
|
|
|
23,21,19,17,15, |
|
145
|
|
|
|
|
|
|
21,19,17,15,19, # 200 |
|
146
|
|
|
|
|
|
|
17,15,17,15,15, |
|
147
|
|
|
|
|
|
|
24,21,20,17,16, |
|
148
|
|
|
|
|
|
|
21,20,17,16,20, |
|
149
|
|
|
|
|
|
|
17,16,17,16,16, |
|
150
|
|
|
|
|
|
|
16,16,16,16,16, # 225 |
|
151
|
|
|
|
|
|
|
17,17,17,17,20, |
|
152
|
|
|
|
|
|
|
20,20,21,21,24, |
|
153
|
|
|
|
|
|
|
15,15,15,15,15, |
|
154
|
|
|
|
|
|
|
17,17,17,17,19, |
|
155
|
|
|
|
|
|
|
19,19,21,21,23, # 250 |
|
156
|
|
|
|
|
|
|
14,13, 4, 3, 2, |
|
157
|
|
|
|
|
|
|
13, 4, 3, 2, 4, |
|
158
|
|
|
|
|
|
|
3, 2, 3, 2, 2, |
|
159
|
|
|
|
|
|
|
11,11, 4, 3, 1, |
|
160
|
|
|
|
|
|
|
12, 4, 3, 1, 4, # 275 |
|
161
|
|
|
|
|
|
|
3, 1, 3, 1, 1, |
|
162
|
|
|
|
|
|
|
10, 9, 4, 3, 0, |
|
163
|
|
|
|
|
|
|
9, 4, 3, 0, 4, |
|
164
|
|
|
|
|
|
|
3, 0, 3, 0, 0, |
|
165
|
|
|
|
|
|
|
15,15,15,15,15, # 300 |
|
166
|
|
|
|
|
|
|
18,18,18,18,19, |
|
167
|
|
|
|
|
|
|
19,19,22,22,23, |
|
168
|
|
|
|
|
|
|
14,13, 4, 3, 2, |
|
169
|
|
|
|
|
|
|
13, 4, 3, 2, 4, |
|
170
|
|
|
|
|
|
|
3, 2, 3, 2, 2, # 325 |
|
171
|
|
|
|
|
|
|
11,11, 4, 3, 1, |
|
172
|
|
|
|
|
|
|
12, 4, 3, 1, 4, |
|
173
|
|
|
|
|
|
|
3, 1, 3, 1, 1, |
|
174
|
|
|
|
|
|
|
10, 9, 4, 3, 0, |
|
175
|
|
|
|
|
|
|
9, 4, 3, 0, 4, # 350 |
|
176
|
|
|
|
|
|
|
3, 0, 3, 0, 0, |
|
177
|
|
|
|
|
|
|
14,13, 4, 3, 2, |
|
178
|
|
|
|
|
|
|
13, 4, 3, 2, 4, |
|
179
|
|
|
|
|
|
|
3, 2, 3, 2, 2, |
|
180
|
|
|
|
|
|
|
11,11, 4, 3, 1, # 375 |
|
181
|
|
|
|
|
|
|
12, 4, 3, 1, 4, |
|
182
|
|
|
|
|
|
|
3, 1, 3, 1, 1, |
|
183
|
|
|
|
|
|
|
10, 9, 4, 3, 0, |
|
184
|
|
|
|
|
|
|
9, 4, 3, 0, 4, |
|
185
|
|
|
|
|
|
|
3, 0, 3, 0, 0, # 400 |
|
186
|
|
|
|
|
|
|
11,11, 5, 5, 1, |
|
187
|
|
|
|
|
|
|
12, 5, 5, 1, 5, |
|
188
|
|
|
|
|
|
|
5, 1, 6, 1, 1, |
|
189
|
|
|
|
|
|
|
10, 9, 5, 5, 0, |
|
190
|
|
|
|
|
|
|
9, 5, 5, 0, 5, # 425 |
|
191
|
|
|
|
|
|
|
5, 0, 6, 0, 0, |
|
192
|
|
|
|
|
|
|
10, 9, 8, 7, 0, |
|
193
|
|
|
|
|
|
|
9, 8, 7, 0, 8, |
|
194
|
|
|
|
|
|
|
7, 0, 7, 0, 0, |
|
195
|
|
|
|
|
|
|
0, 0, 0, 0, 0, # 450 |
|
196
|
|
|
|
|
|
|
1, 1, 1, 1, 2, |
|
197
|
|
|
|
|
|
|
2, 2,23,23,24, |
|
198
|
|
|
|
|
|
|
0, 0, 0, 0, 0, |
|
199
|
|
|
|
|
|
|
1, 1, 1, 1, 2, |
|
200
|
|
|
|
|
|
|
2, 2,22,21,21, # 475 |
|
201
|
|
|
|
|
|
|
0, 0, 0, 0, 0, |
|
202
|
|
|
|
|
|
|
1, 1, 1, 1, 2, |
|
203
|
|
|
|
|
|
|
2, 2,19,19,20, |
|
204
|
|
|
|
|
|
|
0, 0, 0, 0, 0, |
|
205
|
|
|
|
|
|
|
1, 1, 1, 1, 2, # 500 |
|
206
|
|
|
|
|
|
|
2, 2,18,17,17, |
|
207
|
|
|
|
|
|
|
0, 0, 0, 0, 0, |
|
208
|
|
|
|
|
|
|
1, 1, 1, 1, 2, |
|
209
|
|
|
|
|
|
|
2, 2,15,15,16, |
|
210
|
|
|
|
|
|
|
7, 6, 3, 3, 3, # 525 |
|
211
|
|
|
|
|
|
|
6, 3, 3, 3, 3, |
|
212
|
|
|
|
|
|
|
3, 3,22,21,21, |
|
213
|
|
|
|
|
|
|
7, 5, 3, 3, 3, |
|
214
|
|
|
|
|
|
|
5, 3, 3, 3, 3, |
|
215
|
|
|
|
|
|
|
3, 3,19,19,20, # 550 |
|
216
|
|
|
|
|
|
|
7, 5, 3, 3, 3, |
|
217
|
|
|
|
|
|
|
5, 3, 3, 3, 3, |
|
218
|
|
|
|
|
|
|
3, 3,18,17,17, |
|
219
|
|
|
|
|
|
|
7, 5, 3, 3, 3, |
|
220
|
|
|
|
|
|
|
5, 3, 3, 3, 3, # 575 |
|
221
|
|
|
|
|
|
|
3, 3,15,15,16, |
|
222
|
|
|
|
|
|
|
8, 5, 4, 4, 4, |
|
223
|
|
|
|
|
|
|
5, 4, 4, 4, 4, |
|
224
|
|
|
|
|
|
|
4, 4,19,19,20, |
|
225
|
|
|
|
|
|
|
8, 5, 4, 4, 4, # 600 |
|
226
|
|
|
|
|
|
|
5, 4, 4, 4, 4, |
|
227
|
|
|
|
|
|
|
4, 4,18,17,17, |
|
228
|
|
|
|
|
|
|
8, 5, 4, 4, 4, |
|
229
|
|
|
|
|
|
|
5, 4, 4, 4, 4, |
|
230
|
|
|
|
|
|
|
4, 4,15,15,16, # 625 |
|
231
|
|
|
|
|
|
|
9, 9, 9, 9, 9, |
|
232
|
|
|
|
|
|
|
12,12,12,12,13, |
|
233
|
|
|
|
|
|
|
13,13,18,17,17, |
|
234
|
|
|
|
|
|
|
9, 9, 9, 9, 9, |
|
235
|
|
|
|
|
|
|
11,11,11,11,13, # 650 |
|
236
|
|
|
|
|
|
|
13,13,15,15,16, |
|
237
|
|
|
|
|
|
|
10,10,10,10,10, |
|
238
|
|
|
|
|
|
|
11,11,11,11,14, |
|
239
|
|
|
|
|
|
|
14,14,15,15,16, |
|
240
|
|
|
|
|
|
|
16,15,14,11,10, # 675 |
|
241
|
|
|
|
|
|
|
15,14,11,10,14, |
|
242
|
|
|
|
|
|
|
11,10,11,10,10, |
|
243
|
|
|
|
|
|
|
16,15,13,11, 9, |
|
244
|
|
|
|
|
|
|
15,13,11, 9,13, |
|
245
|
|
|
|
|
|
|
11, 9,11, 9, 9, # 700 |
|
246
|
|
|
|
|
|
|
16,15, 4, 4, 4, |
|
247
|
|
|
|
|
|
|
15, 4, 4, 4, 4, |
|
248
|
|
|
|
|
|
|
4, 4, 5, 5, 8, |
|
249
|
|
|
|
|
|
|
16,15, 3, 3, 3, |
|
250
|
|
|
|
|
|
|
15, 3, 3, 3, 3, # 725 |
|
251
|
|
|
|
|
|
|
3, 3, 5, 5, 7, |
|
252
|
|
|
|
|
|
|
16,15, 2, 1, 0, |
|
253
|
|
|
|
|
|
|
15, 2, 1, 0, 2, |
|
254
|
|
|
|
|
|
|
1, 0, 1, 0, 0, |
|
255
|
|
|
|
|
|
|
17,17,13,12, 9, # 750 |
|
256
|
|
|
|
|
|
|
18,13,12, 9,13, |
|
257
|
|
|
|
|
|
|
12, 9,12, 9, 9, |
|
258
|
|
|
|
|
|
|
17,17, 4, 4, 4, |
|
259
|
|
|
|
|
|
|
18, 4, 4, 4, 4, |
|
260
|
|
|
|
|
|
|
4, 4, 5, 5, 8, # 775 |
|
261
|
|
|
|
|
|
|
17,17, 3, 3, 3, |
|
262
|
|
|
|
|
|
|
18, 3, 3, 3, 3, |
|
263
|
|
|
|
|
|
|
3, 3, 5, 5, 7, |
|
264
|
|
|
|
|
|
|
17,17, 2, 1, 0, |
|
265
|
|
|
|
|
|
|
18, 2, 1, 0, 2, # 800 |
|
266
|
|
|
|
|
|
|
1, 0, 1, 0, 0, |
|
267
|
|
|
|
|
|
|
20,19, 4, 4, 4, |
|
268
|
|
|
|
|
|
|
19, 4, 4, 4, 4, |
|
269
|
|
|
|
|
|
|
4, 4, 5, 5, 8, |
|
270
|
|
|
|
|
|
|
20,19, 3, 3, 3, # 825 |
|
271
|
|
|
|
|
|
|
19, 3, 3, 3, 3, |
|
272
|
|
|
|
|
|
|
3, 3, 5, 5, 7, |
|
273
|
|
|
|
|
|
|
20,19, 2, 1, 0, |
|
274
|
|
|
|
|
|
|
19, 2, 1, 0, 2, |
|
275
|
|
|
|
|
|
|
1, 0, 1, 0, 0, # 850 |
|
276
|
|
|
|
|
|
|
21,21, 3, 3, 3, |
|
277
|
|
|
|
|
|
|
22, 3, 3, 3, 3, |
|
278
|
|
|
|
|
|
|
3, 3, 6, 6, 7, |
|
279
|
|
|
|
|
|
|
21,21, 2, 1, 0, |
|
280
|
|
|
|
|
|
|
22, 2, 1, 0, 2, # 875 |
|
281
|
|
|
|
|
|
|
1, 0, 1, 0, 0, |
|
282
|
|
|
|
|
|
|
24,23, 2, 1, 0, |
|
283
|
|
|
|
|
|
|
23, 2, 1, 0, 2, |
|
284
|
|
|
|
|
|
|
1, 0, 1, 0, 0); |
|
285
|
|
|
|
|
|
|
my @max_digit = ( 0, 7, 8, 9,10, # 0 |
|
286
|
|
|
|
|
|
|
7, 8, 9,10, 8, |
|
287
|
|
|
|
|
|
|
9,10, 9,10,10, |
|
288
|
|
|
|
|
|
|
1, 7, 8,12,12, |
|
289
|
|
|
|
|
|
|
7, 8,12,12, 8, |
|
290
|
|
|
|
|
|
|
12,12,12,12,11, # 25 |
|
291
|
|
|
|
|
|
|
2, 7, 8,13,14, |
|
292
|
|
|
|
|
|
|
7, 8,13,14, 8, |
|
293
|
|
|
|
|
|
|
13,14,13,14,14, |
|
294
|
|
|
|
|
|
|
23,23,23,23,23, |
|
295
|
|
|
|
|
|
|
22,22,22,22,19, # 50 |
|
296
|
|
|
|
|
|
|
19,19,18,18,15, |
|
297
|
|
|
|
|
|
|
24,24,24,24,24, |
|
298
|
|
|
|
|
|
|
22,22,22,22,20, |
|
299
|
|
|
|
|
|
|
20,20,18,18,16, |
|
300
|
|
|
|
|
|
|
1, 6, 6,12,12, # 75 |
|
301
|
|
|
|
|
|
|
6, 6,12,12, 5, |
|
302
|
|
|
|
|
|
|
12,12,12,12,11, |
|
303
|
|
|
|
|
|
|
2, 6, 6,13,14, |
|
304
|
|
|
|
|
|
|
6, 6,13,14, 5, |
|
305
|
|
|
|
|
|
|
13,14,13,14,14, # 100 |
|
306
|
|
|
|
|
|
|
23,23,23,23,23, |
|
307
|
|
|
|
|
|
|
22,22,22,22,19, |
|
308
|
|
|
|
|
|
|
19,19,18,18,15, |
|
309
|
|
|
|
|
|
|
24,24,24,24,24, |
|
310
|
|
|
|
|
|
|
22,22,22,22,20, # 125 |
|
311
|
|
|
|
|
|
|
20,20,18,18,16, |
|
312
|
|
|
|
|
|
|
2, 3, 4,13,14, |
|
313
|
|
|
|
|
|
|
3, 4,13,14, 4, |
|
314
|
|
|
|
|
|
|
13,14,13,14,14, |
|
315
|
|
|
|
|
|
|
23,23,23,23,23, # 150 |
|
316
|
|
|
|
|
|
|
22,22,22,22,19, |
|
317
|
|
|
|
|
|
|
19,19,18,18,15, |
|
318
|
|
|
|
|
|
|
24,24,24,24,24, |
|
319
|
|
|
|
|
|
|
22,22,22,22,20, |
|
320
|
|
|
|
|
|
|
20,20,18,18,16, # 175 |
|
321
|
|
|
|
|
|
|
23,23,23,23,23, |
|
322
|
|
|
|
|
|
|
22,22,22,22,19, |
|
323
|
|
|
|
|
|
|
19,19,18,18,15, |
|
324
|
|
|
|
|
|
|
24,24,24,24,24, |
|
325
|
|
|
|
|
|
|
22,22,22,22,20, # 200 |
|
326
|
|
|
|
|
|
|
20,20,18,18,16, |
|
327
|
|
|
|
|
|
|
24,24,24,24,24, |
|
328
|
|
|
|
|
|
|
21,21,21,21,20, |
|
329
|
|
|
|
|
|
|
20,20,17,17,16, |
|
330
|
|
|
|
|
|
|
16,17,20,21,24, # 225 |
|
331
|
|
|
|
|
|
|
17,20,21,24,20, |
|
332
|
|
|
|
|
|
|
21,24,21,24,24, |
|
333
|
|
|
|
|
|
|
16,18,20,22,24, |
|
334
|
|
|
|
|
|
|
18,20,22,24,20, |
|
335
|
|
|
|
|
|
|
22,24,22,24,24, # 250 |
|
336
|
|
|
|
|
|
|
16,18,20,22,24, |
|
337
|
|
|
|
|
|
|
18,20,22,24,20, |
|
338
|
|
|
|
|
|
|
22,24,22,24,24, |
|
339
|
|
|
|
|
|
|
16,18,20,22,24, |
|
340
|
|
|
|
|
|
|
18,20,22,24,20, # 275 |
|
341
|
|
|
|
|
|
|
22,24,22,24,24, |
|
342
|
|
|
|
|
|
|
16,18,20,22,24, |
|
343
|
|
|
|
|
|
|
18,20,22,24,20, |
|
344
|
|
|
|
|
|
|
22,24,22,24,24, |
|
345
|
|
|
|
|
|
|
15,18,19,22,23, # 300 |
|
346
|
|
|
|
|
|
|
18,19,22,23,19, |
|
347
|
|
|
|
|
|
|
22,23,22,23,23, |
|
348
|
|
|
|
|
|
|
15,18,19,22,23, |
|
349
|
|
|
|
|
|
|
18,19,22,23,19, |
|
350
|
|
|
|
|
|
|
22,23,22,23,23, # 325 |
|
351
|
|
|
|
|
|
|
15,18,19,22,23, |
|
352
|
|
|
|
|
|
|
18,19,22,23,19, |
|
353
|
|
|
|
|
|
|
22,23,22,23,23, |
|
354
|
|
|
|
|
|
|
15,18,19,22,23, |
|
355
|
|
|
|
|
|
|
18,19,22,23,19, # 350 |
|
356
|
|
|
|
|
|
|
22,23,22,23,23, |
|
357
|
|
|
|
|
|
|
14,14,14,14,14, |
|
358
|
|
|
|
|
|
|
13,13,13,13, 4, |
|
359
|
|
|
|
|
|
|
4, 4, 3, 3, 2, |
|
360
|
|
|
|
|
|
|
14,14,14,14,14, # 375 |
|
361
|
|
|
|
|
|
|
13,13,13,13, 5, |
|
362
|
|
|
|
|
|
|
6, 6, 6, 6, 2, |
|
363
|
|
|
|
|
|
|
14,14,14,14,14, |
|
364
|
|
|
|
|
|
|
13,13,13,13, 8, |
|
365
|
|
|
|
|
|
|
8, 8, 7, 7, 2, # 400 |
|
366
|
|
|
|
|
|
|
11,12,12,12,12, |
|
367
|
|
|
|
|
|
|
12,12,12,12, 5, |
|
368
|
|
|
|
|
|
|
6, 6, 6, 6, 1, |
|
369
|
|
|
|
|
|
|
11,12,12,12,12, |
|
370
|
|
|
|
|
|
|
12,12,12,12, 8, # 425 |
|
371
|
|
|
|
|
|
|
8, 8, 7, 7, 1, |
|
372
|
|
|
|
|
|
|
10,10,10,10,10, |
|
373
|
|
|
|
|
|
|
9, 9, 9, 9, 8, |
|
374
|
|
|
|
|
|
|
8, 8, 7, 7, 0, |
|
375
|
|
|
|
|
|
|
0, 1, 2,23,24, # 450 |
|
376
|
|
|
|
|
|
|
1, 2,23,24, 2, |
|
377
|
|
|
|
|
|
|
23,24,23,24,24, |
|
378
|
|
|
|
|
|
|
7, 7, 7,23,24, |
|
379
|
|
|
|
|
|
|
6, 6,23,24, 3, |
|
380
|
|
|
|
|
|
|
23,24,23,24,24, # 475 |
|
381
|
|
|
|
|
|
|
8, 8, 8,23,24, |
|
382
|
|
|
|
|
|
|
6, 6,23,24, 4, |
|
383
|
|
|
|
|
|
|
23,24,23,24,24, |
|
384
|
|
|
|
|
|
|
9,12,13,23,24, |
|
385
|
|
|
|
|
|
|
12,13,23,24,13, # 500 |
|
386
|
|
|
|
|
|
|
23,24,23,24,24, |
|
387
|
|
|
|
|
|
|
10,12,14,23,24, |
|
388
|
|
|
|
|
|
|
12,14,23,24,14, |
|
389
|
|
|
|
|
|
|
23,24,23,24,24, |
|
390
|
|
|
|
|
|
|
7, 7, 7,22,22, # 525 |
|
391
|
|
|
|
|
|
|
6, 6,22,22, 3, |
|
392
|
|
|
|
|
|
|
22,22,22,22,21, |
|
393
|
|
|
|
|
|
|
8, 8, 8,22,22, |
|
394
|
|
|
|
|
|
|
6, 6,22,22, 4, |
|
395
|
|
|
|
|
|
|
22,22,22,22,21, # 550 |
|
396
|
|
|
|
|
|
|
9,12,13,22,22, |
|
397
|
|
|
|
|
|
|
12,13,22,22,13, |
|
398
|
|
|
|
|
|
|
22,22,22,22,21, |
|
399
|
|
|
|
|
|
|
10,12,14,22,22, |
|
400
|
|
|
|
|
|
|
12,14,22,22,14, # 575 |
|
401
|
|
|
|
|
|
|
22,22,22,22,21, |
|
402
|
|
|
|
|
|
|
8, 8, 8,19,20, |
|
403
|
|
|
|
|
|
|
5, 5,19,20, 4, |
|
404
|
|
|
|
|
|
|
19,20,19,20,20, |
|
405
|
|
|
|
|
|
|
9,12,13,19,20, # 600 |
|
406
|
|
|
|
|
|
|
12,13,19,20,13, |
|
407
|
|
|
|
|
|
|
19,20,19,20,20, |
|
408
|
|
|
|
|
|
|
10,12,14,19,20, |
|
409
|
|
|
|
|
|
|
12,14,19,20,14, |
|
410
|
|
|
|
|
|
|
19,20,19,20,20, # 625 |
|
411
|
|
|
|
|
|
|
9,12,13,18,18, |
|
412
|
|
|
|
|
|
|
12,13,18,18,13, |
|
413
|
|
|
|
|
|
|
18,18,18,18,17, |
|
414
|
|
|
|
|
|
|
10,12,14,18,18, |
|
415
|
|
|
|
|
|
|
12,14,18,18,14, # 650 |
|
416
|
|
|
|
|
|
|
18,18,18,18,17, |
|
417
|
|
|
|
|
|
|
10,11,14,15,16, |
|
418
|
|
|
|
|
|
|
11,14,15,16,14, |
|
419
|
|
|
|
|
|
|
15,16,15,16,16, |
|
420
|
|
|
|
|
|
|
16,16,16,16,16, # 675 |
|
421
|
|
|
|
|
|
|
15,15,15,15,14, |
|
422
|
|
|
|
|
|
|
14,14,11,11,10, |
|
423
|
|
|
|
|
|
|
17,18,18,18,18, |
|
424
|
|
|
|
|
|
|
18,18,18,18,14, |
|
425
|
|
|
|
|
|
|
14,14,12,12,10, # 700 |
|
426
|
|
|
|
|
|
|
20,20,20,20,20, |
|
427
|
|
|
|
|
|
|
19,19,19,19,14, |
|
428
|
|
|
|
|
|
|
14,14,12,12,10, |
|
429
|
|
|
|
|
|
|
21,22,22,22,22, |
|
430
|
|
|
|
|
|
|
22,22,22,22,14, # 725 |
|
431
|
|
|
|
|
|
|
14,14,12,12,10, |
|
432
|
|
|
|
|
|
|
24,24,24,24,24, |
|
433
|
|
|
|
|
|
|
23,23,23,23,14, |
|
434
|
|
|
|
|
|
|
14,14,12,12,10, |
|
435
|
|
|
|
|
|
|
17,18,18,18,18, # 750 |
|
436
|
|
|
|
|
|
|
18,18,18,18,13, |
|
437
|
|
|
|
|
|
|
13,13,12,12, 9, |
|
438
|
|
|
|
|
|
|
20,20,20,20,20, |
|
439
|
|
|
|
|
|
|
19,19,19,19,13, |
|
440
|
|
|
|
|
|
|
13,13,12,12, 9, # 775 |
|
441
|
|
|
|
|
|
|
21,22,22,22,22, |
|
442
|
|
|
|
|
|
|
22,22,22,22,13, |
|
443
|
|
|
|
|
|
|
13,13,12,12, 9, |
|
444
|
|
|
|
|
|
|
24,24,24,24,24, |
|
445
|
|
|
|
|
|
|
23,23,23,23,13, # 800 |
|
446
|
|
|
|
|
|
|
13,13,12,12, 9, |
|
447
|
|
|
|
|
|
|
20,20,20,20,20, |
|
448
|
|
|
|
|
|
|
19,19,19,19, 4, |
|
449
|
|
|
|
|
|
|
5, 8, 5, 8, 8, |
|
450
|
|
|
|
|
|
|
21,22,22,22,22, # 825 |
|
451
|
|
|
|
|
|
|
22,22,22,22, 4, |
|
452
|
|
|
|
|
|
|
6, 8, 6, 8, 8, |
|
453
|
|
|
|
|
|
|
24,24,24,24,24, |
|
454
|
|
|
|
|
|
|
23,23,23,23, 4, |
|
455
|
|
|
|
|
|
|
6, 8, 6, 8, 8, # 850 |
|
456
|
|
|
|
|
|
|
21,22,22,22,22, |
|
457
|
|
|
|
|
|
|
22,22,22,22, 3, |
|
458
|
|
|
|
|
|
|
6, 7, 6, 7, 7, |
|
459
|
|
|
|
|
|
|
24,24,24,24,24, |
|
460
|
|
|
|
|
|
|
23,23,23,23, 3, # 875 |
|
461
|
|
|
|
|
|
|
6, 7, 6, 7, 7, |
|
462
|
|
|
|
|
|
|
24,24,24,24,24, |
|
463
|
|
|
|
|
|
|
23,23,23,23, 2, |
|
464
|
|
|
|
|
|
|
2, 2, 1, 1, 0); |
|
465
|
|
|
|
|
|
|
# state length 100 in each of 4 tables = 400 |
|
466
|
|
|
|
|
|
|
# min/max 2 of 900 each = 1800 |
|
467
|
|
|
|
|
|
|
|
|
468
|
|
|
|
|
|
|
sub n_to_xy { |
|
469
|
31363
|
|
|
31363
|
1
|
203433
|
my ($self, $n) = @_; |
|
470
|
|
|
|
|
|
|
### CincoCurve n_to_xy(): $n |
|
471
|
|
|
|
|
|
|
|
|
472
|
31363
|
50
|
|
|
|
55975
|
if ($n < 0) { return; } |
|
|
0
|
|
|
|
|
0
|
|
|
473
|
31363
|
50
|
|
|
|
56988
|
if (is_infinite($n)) { return ($n,$n); } |
|
|
0
|
|
|
|
|
0
|
|
|
474
|
|
|
|
|
|
|
|
|
475
|
31363
|
|
|
|
|
56325
|
my $int = int($n); |
|
476
|
31363
|
|
|
|
|
43111
|
$n -= $int; # fraction part |
|
477
|
|
|
|
|
|
|
|
|
478
|
31363
|
|
|
|
|
59373
|
my @digits = digit_split_lowtohigh($int,25); |
|
479
|
31363
|
|
|
|
|
55749
|
my $len = ($int*0 + 5) ** scalar(@digits); # inherit bignum |
|
480
|
|
|
|
|
|
|
|
|
481
|
|
|
|
|
|
|
### digits: join(', ',@digits)." count ".scalar(@digits) |
|
482
|
|
|
|
|
|
|
### $len |
|
483
|
|
|
|
|
|
|
|
|
484
|
31363
|
|
|
|
|
45098
|
my $state = my $dir = 0; |
|
485
|
31363
|
|
|
|
|
40667
|
my $x = 0; |
|
486
|
31363
|
|
|
|
|
39137
|
my $y = 0; |
|
487
|
|
|
|
|
|
|
|
|
488
|
31363
|
|
|
|
|
60477
|
while (defined (my $digit = pop @digits)) { |
|
489
|
92740
|
|
|
|
|
125298
|
$len /= 5; |
|
490
|
92740
|
|
|
|
|
113868
|
$state += $digit; |
|
491
|
92740
|
100
|
|
|
|
150176
|
if ($digit != 24) { |
|
492
|
88984
|
|
|
|
|
116409
|
$dir = $state; |
|
493
|
|
|
|
|
|
|
} |
|
494
|
|
|
|
|
|
|
|
|
495
|
|
|
|
|
|
|
### $len |
|
496
|
|
|
|
|
|
|
### $state |
|
497
|
|
|
|
|
|
|
### digit_to_x: $digit_to_x[$state] |
|
498
|
|
|
|
|
|
|
### digit_to_y: $digit_to_y[$state] |
|
499
|
|
|
|
|
|
|
### next_state: $next_state[$state] |
|
500
|
|
|
|
|
|
|
|
|
501
|
92740
|
|
|
|
|
128645
|
$x += $len * $digit_to_x[$state]; |
|
502
|
92740
|
|
|
|
|
121246
|
$y += $len * $digit_to_y[$state]; |
|
503
|
92740
|
|
|
|
|
174497
|
$state = $next_state[$state]; |
|
504
|
|
|
|
|
|
|
} |
|
505
|
|
|
|
|
|
|
|
|
506
|
|
|
|
|
|
|
### final integer: "$x,$y" |
|
507
|
|
|
|
|
|
|
### assert: ($dir % 25) != 24 |
|
508
|
|
|
|
|
|
|
|
|
509
|
|
|
|
|
|
|
# with $n fractional part |
|
510
|
31363
|
|
|
|
|
99216
|
return ($n * ($digit_to_x[$dir+1] - $digit_to_x[$dir]) + $x, |
|
511
|
|
|
|
|
|
|
$n * ($digit_to_y[$dir+1] - $digit_to_y[$dir]) + $y); |
|
512
|
|
|
|
|
|
|
} |
|
513
|
|
|
|
|
|
|
|
|
514
|
|
|
|
|
|
|
sub xy_to_n { |
|
515
|
0
|
|
|
0
|
1
|
|
my ($self, $x, $y) = @_; |
|
516
|
|
|
|
|
|
|
### CincoCurve xy_to_n(): "$x, $y" |
|
517
|
|
|
|
|
|
|
|
|
518
|
0
|
|
|
|
|
|
$x = round_nearest ($x); |
|
519
|
0
|
|
|
|
|
|
$y = round_nearest ($y); |
|
520
|
0
|
0
|
0
|
|
|
|
if ($x < 0 || $y < 0) { |
|
521
|
0
|
|
|
|
|
|
return undef; |
|
522
|
|
|
|
|
|
|
} |
|
523
|
0
|
0
|
|
|
|
|
if (is_infinite($x)) { |
|
524
|
0
|
|
|
|
|
|
return $x; |
|
525
|
|
|
|
|
|
|
} |
|
526
|
0
|
0
|
|
|
|
|
if (is_infinite($y)) { |
|
527
|
0
|
|
|
|
|
|
return $y; |
|
528
|
|
|
|
|
|
|
} |
|
529
|
|
|
|
|
|
|
|
|
530
|
0
|
|
|
|
|
|
my @xdigits = digit_split_lowtohigh ($x, 5); |
|
531
|
0
|
|
|
|
|
|
my @ydigits = digit_split_lowtohigh ($y, 5); |
|
532
|
0
|
|
|
|
|
|
my $state = 0; |
|
533
|
0
|
|
|
|
|
|
my @ndigits; |
|
534
|
|
|
|
|
|
|
|
|
535
|
0
|
|
|
|
|
|
foreach my $i (reverse 0 .. max($#xdigits,$#ydigits)) { # high to low |
|
536
|
0
|
|
0
|
|
|
|
my $ndigit = $yx_to_digit[$state |
|
|
|
|
0
|
|
|
|
|
|
537
|
|
|
|
|
|
|
+ 5*($ydigits[$i]||0) |
|
538
|
|
|
|
|
|
|
+ ($xdigits[$i]||0)]; |
|
539
|
0
|
|
|
|
|
|
$ndigits[$i] = $ndigit; |
|
540
|
0
|
|
|
|
|
|
$state = $next_state[$state+$ndigit]; |
|
541
|
|
|
|
|
|
|
} |
|
542
|
|
|
|
|
|
|
|
|
543
|
0
|
|
|
|
|
|
return digit_join_lowtohigh (\@ndigits, 25, |
|
544
|
|
|
|
|
|
|
$x * 0 * $y); # bignum zero |
|
545
|
|
|
|
|
|
|
} |
|
546
|
|
|
|
|
|
|
|
|
547
|
|
|
|
|
|
|
# exact |
|
548
|
|
|
|
|
|
|
sub rect_to_n_range { |
|
549
|
0
|
|
|
0
|
1
|
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
|
550
|
|
|
|
|
|
|
### BetaOmega rect_to_n_range(): "$x1,$y1, $x2,$y2" |
|
551
|
|
|
|
|
|
|
|
|
552
|
0
|
|
|
|
|
|
$x1 = round_nearest ($x1); |
|
553
|
0
|
|
|
|
|
|
$x2 = round_nearest ($x2); |
|
554
|
0
|
|
|
|
|
|
$y1 = round_nearest ($y1); |
|
555
|
0
|
|
|
|
|
|
$y2 = round_nearest ($y2); |
|
556
|
0
|
0
|
|
|
|
|
($x1,$x2) = ($x2,$x1) if $x1 > $x2; |
|
557
|
0
|
0
|
|
|
|
|
($y1,$y2) = ($y2,$y1) if $y1 > $y2; |
|
558
|
|
|
|
|
|
|
|
|
559
|
0
|
0
|
0
|
|
|
|
if ($x2 < 0 || $y2 < 0) { |
|
560
|
0
|
|
|
|
|
|
return (1, 0); |
|
561
|
|
|
|
|
|
|
} |
|
562
|
0
|
0
|
|
|
|
|
if ($x1 < 0) { $x1 *= 0; } # "*=" to preserve bigint x1 or y1 |
|
|
0
|
|
|
|
|
|
|
|
563
|
0
|
0
|
|
|
|
|
if ($y1 < 0) { $y1 *= 0; } |
|
|
0
|
|
|
|
|
|
|
|
564
|
|
|
|
|
|
|
|
|
565
|
0
|
0
|
|
|
|
|
my ($len, $level) = round_down_pow (($x2 > $y2 ? $x2 : $y2), |
|
566
|
|
|
|
|
|
|
5); |
|
567
|
0
|
0
|
|
|
|
|
if (is_infinite($len)) { |
|
568
|
0
|
|
|
|
|
|
return (0, $len); |
|
569
|
|
|
|
|
|
|
} |
|
570
|
|
|
|
|
|
|
|
|
571
|
|
|
|
|
|
|
# At this point an over-estimate would be: return (0, 25*$len*$len-1); |
|
572
|
|
|
|
|
|
|
|
|
573
|
|
|
|
|
|
|
|
|
574
|
0
|
|
|
|
|
|
my $n_min = my $n_max |
|
575
|
|
|
|
|
|
|
= my $y_min = my $y_max |
|
576
|
|
|
|
|
|
|
= my $x_min = my $x_max |
|
577
|
|
|
|
|
|
|
= my $min_state = my $max_state |
|
578
|
|
|
|
|
|
|
= 0; |
|
579
|
|
|
|
|
|
|
### $x_min |
|
580
|
|
|
|
|
|
|
### $y_min |
|
581
|
|
|
|
|
|
|
|
|
582
|
0
|
|
|
|
|
|
while ($level >= 0) { |
|
583
|
|
|
|
|
|
|
### $level |
|
584
|
|
|
|
|
|
|
### $len |
|
585
|
|
|
|
|
|
|
{ |
|
586
|
0
|
|
|
|
|
|
my $digit = $min_digit[9*$min_state |
|
587
|
|
|
|
|
|
|
+ _rect_key($x1, $x2, $x_min, $len) * 15 |
|
588
|
|
|
|
|
|
|
+ _rect_key($y1, $y2, $y_min, $len)]; |
|
589
|
|
|
|
|
|
|
|
|
590
|
|
|
|
|
|
|
### $min_state |
|
591
|
|
|
|
|
|
|
### $x_min |
|
592
|
|
|
|
|
|
|
### $y_min |
|
593
|
|
|
|
|
|
|
### $digit |
|
594
|
|
|
|
|
|
|
|
|
595
|
0
|
|
|
|
|
|
$n_min = 25*$n_min + $digit; |
|
596
|
0
|
|
|
|
|
|
$min_state += $digit; |
|
597
|
0
|
|
|
|
|
|
$x_min += $len * $digit_to_x[$min_state]; |
|
598
|
0
|
|
|
|
|
|
$y_min += $len * $digit_to_y[$min_state]; |
|
599
|
0
|
|
|
|
|
|
$min_state = $next_state[$min_state]; |
|
600
|
|
|
|
|
|
|
} |
|
601
|
|
|
|
|
|
|
{ |
|
602
|
0
|
|
|
|
|
|
my $digit = $max_digit[9*$max_state |
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
603
|
|
|
|
|
|
|
+ _rect_key($x1, $x2, $x_max, $len) * 15 |
|
604
|
|
|
|
|
|
|
+ _rect_key($y1, $y2, $y_max, $len)]; |
|
605
|
|
|
|
|
|
|
|
|
606
|
0
|
|
|
|
|
|
$n_max = 25*$n_max + $digit; |
|
607
|
0
|
|
|
|
|
|
$max_state += $digit; |
|
608
|
0
|
|
|
|
|
|
$x_max += $len * $digit_to_x[$max_state]; |
|
609
|
0
|
|
|
|
|
|
$y_max += $len * $digit_to_y[$max_state]; |
|
610
|
0
|
|
|
|
|
|
$max_state = $next_state[$max_state]; |
|
611
|
|
|
|
|
|
|
} |
|
612
|
|
|
|
|
|
|
|
|
613
|
0
|
|
|
|
|
|
$len = int($len/5); |
|
614
|
0
|
|
|
|
|
|
$level--; |
|
615
|
|
|
|
|
|
|
} |
|
616
|
|
|
|
|
|
|
|
|
617
|
0
|
|
|
|
|
|
return ($n_min, $n_max); |
|
618
|
|
|
|
|
|
|
} |
|
619
|
|
|
|
|
|
|
|
|
620
|
|
|
|
|
|
|
sub _rect_key { |
|
621
|
0
|
|
|
0
|
|
|
my ($z1, $z2, $zbase, $len) = @_; |
|
622
|
0
|
|
|
|
|
|
$z1 = max (0, min (4, int (($z1 - $zbase)/$len))); |
|
623
|
0
|
|
|
|
|
|
$z2 = max (0, min (4, int (($z2 - $zbase)/$len))); |
|
624
|
|
|
|
|
|
|
### assert: $z1 <= $z2 |
|
625
|
0
|
|
|
|
|
|
return (9-$z1)*$z1/2 + $z2; |
|
626
|
|
|
|
|
|
|
} |
|
627
|
|
|
|
|
|
|
|
|
628
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
629
|
|
|
|
|
|
|
# levels |
|
630
|
|
|
|
|
|
|
|
|
631
|
1
|
|
|
1
|
|
504
|
use Math::PlanePath::DekkingCentres; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
153
|
|
|
632
|
|
|
|
|
|
|
*level_to_n_range = \&Math::PlanePath::DekkingCentres::level_to_n_range; |
|
633
|
|
|
|
|
|
|
*n_to_level = \&Math::PlanePath::DekkingCentres::n_to_level; |
|
634
|
|
|
|
|
|
|
|
|
635
|
|
|
|
|
|
|
|
|
636
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
637
|
|
|
|
|
|
|
1; |
|
638
|
|
|
|
|
|
|
__END__ |