| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
|
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
|
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
|
8
|
|
|
|
|
|
|
# version. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
|
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13
|
|
|
|
|
|
|
# for more details. |
|
14
|
|
|
|
|
|
|
# |
|
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
package Math::PlanePath::TriangleSpiral; |
|
20
|
1
|
|
|
1
|
|
730
|
use 5.004; |
|
|
1
|
|
|
|
|
3
|
|
|
21
|
1
|
|
|
1
|
|
4
|
use strict; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
29
|
|
|
22
|
|
|
|
|
|
|
#use List::Util 'max'; |
|
23
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
|
24
|
|
|
|
|
|
|
|
|
25
|
1
|
|
|
1
|
|
5
|
use vars '$VERSION', '@ISA'; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
58
|
|
|
26
|
|
|
|
|
|
|
$VERSION = 128; |
|
27
|
1
|
|
|
1
|
|
512
|
use Math::PlanePath; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
31
|
|
|
28
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
|
29
|
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
|
31
|
1
|
|
|
1
|
|
5
|
'round_nearest'; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
49
|
|
|
32
|
|
|
|
|
|
|
*_sqrtint = \&Math::PlanePath::_sqrtint; |
|
33
|
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
|
35
|
|
|
|
|
|
|
#use Smart::Comments; |
|
36
|
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_even; |
|
39
|
1
|
|
|
|
|
104
|
use constant parameter_info_array => |
|
40
|
1
|
|
|
1
|
|
5
|
[ Math::PlanePath::Base::Generic::parameter_info_nstart1() ]; |
|
|
1
|
|
|
|
|
1
|
|
|
41
|
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
sub x_negative_at_n { |
|
43
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
44
|
0
|
|
|
|
|
0
|
return $self->n_start + 4; |
|
45
|
|
|
|
|
|
|
} |
|
46
|
|
|
|
|
|
|
sub y_negative_at_n { |
|
47
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
48
|
0
|
|
|
|
|
0
|
return $self->n_start + 6; |
|
49
|
|
|
|
|
|
|
} |
|
50
|
|
|
|
|
|
|
sub _UNDOCUMENTED__dxdy_list_at_n { |
|
51
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
|
52
|
0
|
|
|
|
|
0
|
return $self->n_start + 3; |
|
53
|
|
|
|
|
|
|
} |
|
54
|
1
|
|
|
1
|
|
6
|
use constant dx_minimum => -1; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
37
|
|
|
55
|
1
|
|
|
1
|
|
4
|
use constant dx_maximum => 2; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
30
|
|
|
56
|
1
|
|
|
1
|
|
4
|
use constant dy_minimum => -1; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
43
|
|
|
57
|
1
|
|
|
1
|
|
5
|
use constant dy_maximum => 1; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
91
|
|
|
58
|
1
|
|
|
|
|
50
|
use constant 1.02 _UNDOCUMENTED__dxdy_list => (2,0, # E |
|
59
|
|
|
|
|
|
|
-1,1, # NW |
|
60
|
1
|
|
|
1
|
|
6
|
-1,-1); # SW |
|
|
1
|
|
|
|
|
10
|
|
|
61
|
1
|
|
|
1
|
|
5
|
use constant absdx_minimum => 1; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
44
|
|
|
62
|
1
|
|
|
1
|
|
6
|
use constant dsumxy_minimum => -2; # SW diagonal |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
40
|
|
|
63
|
1
|
|
|
1
|
|
6
|
use constant dsumxy_maximum => 2; # dX=+2 horiz |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
39
|
|
|
64
|
1
|
|
|
1
|
|
5
|
use constant ddiffxy_minimum => -2; # NW diagonal |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
32
|
|
|
65
|
1
|
|
|
1
|
|
4
|
use constant ddiffxy_maximum => 2; # dX=+2 horiz |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
40
|
|
|
66
|
1
|
|
|
1
|
|
5
|
use constant dir_maximum_dxdy => (-1,-1); # at most South-West diagonal |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
34
|
|
|
67
|
|
|
|
|
|
|
|
|
68
|
1
|
|
|
1
|
|
4
|
use constant turn_any_right => 0; # only left or straight |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
410
|
|
|
69
|
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
72
|
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
sub new { |
|
74
|
1
|
|
|
1
|
1
|
8
|
my $self = shift->SUPER::new (@_); |
|
75
|
1
|
50
|
|
|
|
7
|
if (! defined $self->{'n_start'}) { |
|
76
|
1
|
|
|
|
|
8
|
$self->{'n_start'} = $self->default_n_start; |
|
77
|
|
|
|
|
|
|
} |
|
78
|
1
|
|
|
|
|
3
|
return $self; |
|
79
|
|
|
|
|
|
|
} |
|
80
|
|
|
|
|
|
|
|
|
81
|
|
|
|
|
|
|
# base at bottom right corner |
|
82
|
|
|
|
|
|
|
# d = [ 1, 2, 3 ] |
|
83
|
|
|
|
|
|
|
# n = [ 2, 11, 29 ] |
|
84
|
|
|
|
|
|
|
# $d = 1/2 + sqrt(2/9 * $n + -7/36) |
|
85
|
|
|
|
|
|
|
# = 1/2 + sqrt(8/36 * $n + -7/36) |
|
86
|
|
|
|
|
|
|
# = 0.5 + sqrt(8*$n + -7)/6 |
|
87
|
|
|
|
|
|
|
# = (1 + 2*sqrt(8*$n + -7)/6) / 2 |
|
88
|
|
|
|
|
|
|
# = (1 + sqrt(8*$n + -7)/3) / 2 |
|
89
|
|
|
|
|
|
|
# = (3 + sqrt(8*$n - 7)) / 6 |
|
90
|
|
|
|
|
|
|
# |
|
91
|
|
|
|
|
|
|
# $n = (9/2*$d**2 + -9/2*$d + 2) |
|
92
|
|
|
|
|
|
|
# = (4.5*$d - 4.5)*$d + 2 |
|
93
|
|
|
|
|
|
|
# |
|
94
|
|
|
|
|
|
|
# top of pyramid |
|
95
|
|
|
|
|
|
|
# d = [ 1, 2, 3 ] |
|
96
|
|
|
|
|
|
|
# n = [ 4, 16, 37 ] |
|
97
|
|
|
|
|
|
|
# $n = (9/2*$d**2 + -3/2*$d + 1) |
|
98
|
|
|
|
|
|
|
# so remainder from there |
|
99
|
|
|
|
|
|
|
# rem = $n - (9/2*$d**2 + -3/2*$d + 1) |
|
100
|
|
|
|
|
|
|
# = $n - (4.5*$d*$d - 1.5*$d + 1) |
|
101
|
|
|
|
|
|
|
# = $n - ((4.5*$d - 1.5)*$d + 1) |
|
102
|
|
|
|
|
|
|
# |
|
103
|
|
|
|
|
|
|
# |
|
104
|
|
|
|
|
|
|
sub n_to_xy { |
|
105
|
0
|
|
|
0
|
1
|
|
my ($self, $n) = @_; |
|
106
|
|
|
|
|
|
|
#### TriangleSpiral n_to_xy: $n |
|
107
|
|
|
|
|
|
|
|
|
108
|
0
|
|
|
|
|
|
$n = $n - $self->{'n_start'}; # starting $n==0, warn if $n==undef |
|
109
|
0
|
0
|
|
|
|
|
if ($n < 0) { return; } |
|
|
0
|
|
|
|
|
|
|
|
110
|
|
|
|
|
|
|
|
|
111
|
0
|
|
|
|
|
|
my $d = int ((3 + _sqrtint(8*$n+1)) / 6); |
|
112
|
|
|
|
|
|
|
#### $d |
|
113
|
|
|
|
|
|
|
|
|
114
|
0
|
|
|
|
|
|
$n -= (9*$d - 3)*$d/2; |
|
115
|
|
|
|
|
|
|
#### remainder: $n |
|
116
|
|
|
|
|
|
|
|
|
117
|
0
|
0
|
|
|
|
|
if ($n <= 3*$d) { |
|
118
|
|
|
|
|
|
|
### sides, remainder pos/neg from top |
|
119
|
0
|
|
|
|
|
|
return (-$n, |
|
120
|
|
|
|
|
|
|
2*$d - abs($n)); |
|
121
|
|
|
|
|
|
|
} else { |
|
122
|
|
|
|
|
|
|
### rightwards from bottom left |
|
123
|
|
|
|
|
|
|
### remainder: $n - 3*$d |
|
124
|
|
|
|
|
|
|
# corner is x=-3*$d |
|
125
|
|
|
|
|
|
|
# so -3*$d + 2*($n - 3*$d) |
|
126
|
|
|
|
|
|
|
# = -3*$d + 2*$n - 6*$d |
|
127
|
|
|
|
|
|
|
# = -9*$d + 2*$n |
|
128
|
|
|
|
|
|
|
# = 2*$n - 9*$d |
|
129
|
0
|
|
|
|
|
|
return (2*$n - 9*$d, |
|
130
|
|
|
|
|
|
|
-$d); |
|
131
|
|
|
|
|
|
|
} |
|
132
|
|
|
|
|
|
|
} |
|
133
|
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
sub xy_to_n { |
|
135
|
0
|
|
|
0
|
1
|
|
my ($self, $x, $y) = @_; |
|
136
|
0
|
|
|
|
|
|
$x = round_nearest ($x); |
|
137
|
0
|
|
|
|
|
|
$y = round_nearest ($y); |
|
138
|
|
|
|
|
|
|
### xy_to_n(): "$x,$y" |
|
139
|
|
|
|
|
|
|
|
|
140
|
0
|
0
|
|
|
|
|
if (($x ^ $y) & 1) { |
|
141
|
0
|
|
|
|
|
|
return undef; # nothing on odd points |
|
142
|
|
|
|
|
|
|
} |
|
143
|
|
|
|
|
|
|
|
|
144
|
0
|
0
|
0
|
|
|
|
if ($y < 0 && 3*$y <= $x && $x <= -3*$y) { |
|
|
|
|
0
|
|
|
|
|
|
145
|
|
|
|
|
|
|
### bottom horizontal |
|
146
|
|
|
|
|
|
|
# negative y, at vertical x=0 |
|
147
|
|
|
|
|
|
|
# [ -1, -2, -3, -4, -5, -6 ] |
|
148
|
|
|
|
|
|
|
# [ 8.5, 25, 50.5, 85, 128.5, 181 ] |
|
149
|
|
|
|
|
|
|
# $n = (9/2*$y**2 + -3*$y + 1) |
|
150
|
|
|
|
|
|
|
# = (4.5*$y*$y + -3*$y + 1) |
|
151
|
|
|
|
|
|
|
# = ((4.5*$y -3)*$y + 1) |
|
152
|
|
|
|
|
|
|
# from which $x/2 |
|
153
|
|
|
|
|
|
|
# |
|
154
|
0
|
|
|
|
|
|
return ((9*$y - 6)*$y/2) + $x/2 + $self->{'n_start'}; |
|
155
|
|
|
|
|
|
|
|
|
156
|
|
|
|
|
|
|
} else { |
|
157
|
|
|
|
|
|
|
### sides diagonal |
|
158
|
|
|
|
|
|
|
# |
|
159
|
|
|
|
|
|
|
# positive y, x=0 centres |
|
160
|
|
|
|
|
|
|
# [ 2, 4, 6, 8 ] |
|
161
|
|
|
|
|
|
|
# [ 4, 16, 37, 67 ] |
|
162
|
|
|
|
|
|
|
# n = (9/8*$d**2 + -3/4*$d + 1) |
|
163
|
|
|
|
|
|
|
# = (9/8*$d + -3/4)*$d + 1 |
|
164
|
|
|
|
|
|
|
# = (9*$d + - 6)*$d/8 + 1 |
|
165
|
|
|
|
|
|
|
# from which -$x offset |
|
166
|
|
|
|
|
|
|
# |
|
167
|
0
|
|
|
|
|
|
my $d = abs($x) + $y; |
|
168
|
0
|
|
|
|
|
|
return ((9*$d - 6)*$d/8) - $x + $self->{'n_start'}; |
|
169
|
|
|
|
|
|
|
} |
|
170
|
|
|
|
|
|
|
} |
|
171
|
|
|
|
|
|
|
|
|
172
|
|
|
|
|
|
|
# not exact |
|
173
|
|
|
|
|
|
|
sub rect_to_n_range { |
|
174
|
0
|
|
|
0
|
1
|
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
|
175
|
|
|
|
|
|
|
|
|
176
|
0
|
|
|
|
|
|
$x1 = round_nearest ($x1); |
|
177
|
0
|
|
|
|
|
|
$y1 = round_nearest ($y1); |
|
178
|
0
|
|
|
|
|
|
$x2 = round_nearest ($x2); |
|
179
|
0
|
|
|
|
|
|
$y2 = round_nearest ($y2); |
|
180
|
|
|
|
|
|
|
|
|
181
|
0
|
|
|
|
|
|
my $d = 0; |
|
182
|
0
|
|
|
|
|
|
foreach my $x ($x1, $x2) { |
|
183
|
0
|
|
|
|
|
|
foreach my $y ($y1, $y2) { |
|
184
|
0
|
0
|
0
|
|
|
|
$d = max ($d, |
|
185
|
|
|
|
|
|
|
1 + ($y < 0 && 3*$y <= $x && $x <= -3*$y |
|
186
|
|
|
|
|
|
|
? -$y # bottom horizontal |
|
187
|
|
|
|
|
|
|
: int ((abs($x) + $y) / 2))); # sides |
|
188
|
|
|
|
|
|
|
} |
|
189
|
|
|
|
|
|
|
} |
|
190
|
|
|
|
|
|
|
return ($self->{'n_start'}, |
|
191
|
0
|
|
|
|
|
|
(9*$d - 9)*$d/2 + $self->{'n_start'}); |
|
192
|
|
|
|
|
|
|
} |
|
193
|
|
|
|
|
|
|
|
|
194
|
|
|
|
|
|
|
1; |
|
195
|
|
|
|
|
|
|
__END__ |