| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
|
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
|
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
|
8
|
|
|
|
|
|
|
# version. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
|
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13
|
|
|
|
|
|
|
# for more details. |
|
14
|
|
|
|
|
|
|
# |
|
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# math-image --path=QuadricIslands --lines --scale=10 |
|
20
|
|
|
|
|
|
|
# math-image --path=QuadricIslands --all --output=numbers_dash --size=132x50 |
|
21
|
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
package Math::PlanePath::QuadricIslands; |
|
24
|
1
|
|
|
1
|
|
9022
|
use 5.004; |
|
|
1
|
|
|
|
|
9
|
|
|
25
|
1
|
|
|
1
|
|
6
|
use strict; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
48
|
|
|
26
|
|
|
|
|
|
|
#use List::Util 'max'; |
|
27
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
|
28
|
|
|
|
|
|
|
|
|
29
|
1
|
|
|
1
|
|
7
|
use vars '$VERSION', '@ISA'; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
64
|
|
|
30
|
|
|
|
|
|
|
$VERSION = 128; |
|
31
|
1
|
|
|
1
|
|
641
|
use Math::PlanePath; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
44
|
|
|
32
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
|
33
|
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
|
35
|
1
|
|
|
|
|
47
|
'is_infinite', |
|
36
|
|
|
|
|
|
|
'round_nearest', |
|
37
|
1
|
|
|
1
|
|
7
|
'floor'; |
|
|
1
|
|
|
|
|
2
|
|
|
38
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
|
39
|
1
|
|
|
1
|
|
458
|
'round_down_pow'; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
57
|
|
|
40
|
|
|
|
|
|
|
|
|
41
|
1
|
|
|
1
|
|
477
|
use Math::PlanePath::QuadricCurve; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
31
|
|
|
42
|
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
|
44
|
|
|
|
|
|
|
#use Smart::Comments; |
|
45
|
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
|
|
47
|
1
|
|
|
1
|
|
7
|
use constant n_frac_discontinuity => 0; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
49
|
|
|
48
|
1
|
|
|
1
|
|
6
|
use constant x_negative_at_n => 1; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
38
|
|
|
49
|
1
|
|
|
1
|
|
5
|
use constant y_negative_at_n => 1; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
37
|
|
|
50
|
1
|
|
|
1
|
|
5
|
use constant sumabsxy_minimum => 1; # minimum X=1/2,Y=1/2 |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
48
|
|
|
51
|
1
|
|
|
1
|
|
7
|
use constant rsquared_minimum => 0.5; # minimum X=1/2,Y=1/2 |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
41
|
|
|
52
|
|
|
|
|
|
|
|
|
53
|
1
|
|
|
1
|
|
5
|
use constant dx_maximum => 1; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
35
|
|
|
54
|
1
|
|
|
1
|
|
5
|
use constant dy_maximum => 1; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
36
|
|
|
55
|
1
|
|
|
1
|
|
5
|
use constant dsumxy_maximum => 1; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
65
|
|
|
56
|
1
|
|
|
1
|
|
7
|
use constant ddiffxy_minimum => -1; # dDiffXY=+1 or -1 |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
52
|
|
|
57
|
1
|
|
|
1
|
|
7
|
use constant ddiffxy_maximum => 1; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
43
|
|
|
58
|
1
|
|
|
1
|
|
6
|
use constant dir_maximum_dxdy => (0,-1); # South |
|
|
1
|
|
|
|
|
9
|
|
|
|
1
|
|
|
|
|
58
|
|
|
59
|
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
# N=1,2,3,4 gcd(1/2,1/2) = 1/2 |
|
61
|
1
|
|
|
1
|
|
6
|
use constant gcdxy_minimum => 1/2; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
845
|
|
|
62
|
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
64
|
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
# N=1 to 4 4 of, level=0 |
|
66
|
|
|
|
|
|
|
# N=5 to 36 12 of, level=1 |
|
67
|
|
|
|
|
|
|
# N=37 to .. 48 of, level=3 |
|
68
|
|
|
|
|
|
|
# |
|
69
|
|
|
|
|
|
|
# each loop = 4*8^level |
|
70
|
|
|
|
|
|
|
# |
|
71
|
|
|
|
|
|
|
# n_base = 1 + 4*8^0 + 4*8^1 + ... + 4*8^(level-1) |
|
72
|
|
|
|
|
|
|
# = 1 + 4*[ 8^0 + 8^1 + ... + 8^(level-1) ] |
|
73
|
|
|
|
|
|
|
# = 1 + 4*[ (8^level - 1)/7 ] |
|
74
|
|
|
|
|
|
|
# = 1 + 4*(8^level - 1)/7 |
|
75
|
|
|
|
|
|
|
# = (4*8^level - 4 + 7)/7 |
|
76
|
|
|
|
|
|
|
# = (4*8^level + 3)/7 |
|
77
|
|
|
|
|
|
|
# |
|
78
|
|
|
|
|
|
|
# n >= (4*8^level + 3)/7 |
|
79
|
|
|
|
|
|
|
# 7*n = 4*8^level + 3 |
|
80
|
|
|
|
|
|
|
# (7*n - 3)/4 = 8^level |
|
81
|
|
|
|
|
|
|
# |
|
82
|
|
|
|
|
|
|
# nbase(k+1)-nbase(k) |
|
83
|
|
|
|
|
|
|
# = (4*8^(k+1)+3 - (4*8^k+3)) / 7 |
|
84
|
|
|
|
|
|
|
# = (4*8*8^k - 4*8^k) / 7 |
|
85
|
|
|
|
|
|
|
# = (4*8-4) * 8^k / 7 |
|
86
|
|
|
|
|
|
|
# = 28 * 8^k / 7 |
|
87
|
|
|
|
|
|
|
# = 4 * 8^k |
|
88
|
|
|
|
|
|
|
# |
|
89
|
|
|
|
|
|
|
# nbase(0) = (4*8^0 + 3)/7 = (4+3)/7 = 1 |
|
90
|
|
|
|
|
|
|
# nbase(1) = (4*8^1 + 3)/7 = (4*8+3)/7 = (32+3)/7 = 35/7 = 5 |
|
91
|
|
|
|
|
|
|
# nbase(2) = (4*8^2 + 3)/7 = (4*64+3)/7 = (256+3)/7 = 259/7 = 37 |
|
92
|
|
|
|
|
|
|
# |
|
93
|
|
|
|
|
|
|
### loop 1: 4* 8**1 |
|
94
|
|
|
|
|
|
|
### loop 2: 4* 8**2 |
|
95
|
|
|
|
|
|
|
### loop 3: 4* 8**3 |
|
96
|
|
|
|
|
|
|
|
|
97
|
|
|
|
|
|
|
# sub _level_to_base { |
|
98
|
|
|
|
|
|
|
# my ($level) = @_; |
|
99
|
|
|
|
|
|
|
# return (4*8**$level + 3) / 7; |
|
100
|
|
|
|
|
|
|
# } |
|
101
|
|
|
|
|
|
|
# ### level_to_base(1): _level_to_base(1) |
|
102
|
|
|
|
|
|
|
# ### level_to_base(2): _level_to_base(2) |
|
103
|
|
|
|
|
|
|
# ### level_to_base(3): _level_to_base(3) |
|
104
|
|
|
|
|
|
|
|
|
105
|
|
|
|
|
|
|
# base = (4 * 8**$level + 3)/7 |
|
106
|
|
|
|
|
|
|
# = (4 * 8**($level+1) / 8 + 3)/7 |
|
107
|
|
|
|
|
|
|
# = (8**($level+1) / 2 + 3)/7 |
|
108
|
|
|
|
|
|
|
sub _n_to_base_and_level { |
|
109
|
14
|
|
|
14
|
|
27
|
my ($n) = @_; |
|
110
|
14
|
|
|
|
|
36
|
my ($base,$level) = round_down_pow ((7*$n - 3)*2, 8); |
|
111
|
14
|
|
|
|
|
38
|
return (($base/2 + 3)/7, |
|
112
|
|
|
|
|
|
|
$level - 1); |
|
113
|
|
|
|
|
|
|
} |
|
114
|
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
sub n_to_xy { |
|
116
|
14
|
|
|
14
|
1
|
65
|
my ($self, $n) = @_; |
|
117
|
|
|
|
|
|
|
### QuadricIslands n_to_xy(): "$n" |
|
118
|
14
|
50
|
|
|
|
32
|
if ($n < 1) { return; } |
|
|
0
|
|
|
|
|
0
|
|
|
119
|
14
|
50
|
|
|
|
34
|
if (is_infinite($n)) { return ($n,$n); } |
|
|
0
|
|
|
|
|
0
|
|
|
120
|
|
|
|
|
|
|
|
|
121
|
14
|
|
|
|
|
28
|
my ($base, $level) = _n_to_base_and_level($n); |
|
122
|
|
|
|
|
|
|
### $level |
|
123
|
|
|
|
|
|
|
### $base |
|
124
|
|
|
|
|
|
|
### level: "$level" |
|
125
|
|
|
|
|
|
|
### next base would be: (4 * 8**($level+1) + 3)/7 |
|
126
|
|
|
|
|
|
|
|
|
127
|
14
|
|
|
|
|
27
|
my $rem = $n - $base; |
|
128
|
|
|
|
|
|
|
### $rem |
|
129
|
|
|
|
|
|
|
|
|
130
|
|
|
|
|
|
|
### assert: $n >= $base |
|
131
|
|
|
|
|
|
|
### assert: $n < 8**($level+1) |
|
132
|
|
|
|
|
|
|
### assert: $rem>=0 |
|
133
|
|
|
|
|
|
|
### assert: $rem < 4 * 8 ** $level |
|
134
|
|
|
|
|
|
|
|
|
135
|
14
|
|
|
|
|
19
|
my $sidelen = 8**$level; |
|
136
|
14
|
|
|
|
|
25
|
my $side = int($rem / $sidelen); |
|
137
|
|
|
|
|
|
|
### $sidelen |
|
138
|
|
|
|
|
|
|
### $side |
|
139
|
|
|
|
|
|
|
### $rem |
|
140
|
14
|
|
|
|
|
19
|
$rem -= $side*$sidelen; |
|
141
|
|
|
|
|
|
|
### assert: $side >= 0 && $side < 4 |
|
142
|
14
|
|
|
|
|
32
|
my ($x, $y) = Math::PlanePath::QuadricCurve::n_to_xy ($self, $rem); |
|
143
|
|
|
|
|
|
|
|
|
144
|
14
|
|
|
|
|
27
|
my $pos = 4**$level / 2; |
|
145
|
|
|
|
|
|
|
### side calc: "$x,$y for pos $pos" |
|
146
|
|
|
|
|
|
|
### $x |
|
147
|
|
|
|
|
|
|
### $y |
|
148
|
|
|
|
|
|
|
|
|
149
|
14
|
100
|
|
|
|
35
|
if ($side < 1) { |
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
150
|
|
|
|
|
|
|
### horizontal rightwards |
|
151
|
7
|
|
|
|
|
22
|
return ($x - $pos, |
|
152
|
|
|
|
|
|
|
$y - $pos); |
|
153
|
|
|
|
|
|
|
} elsif ($side < 2) { |
|
154
|
|
|
|
|
|
|
### right vertical upwards |
|
155
|
0
|
|
|
|
|
0
|
return (-$y + $pos, # rotate +90, offset |
|
156
|
|
|
|
|
|
|
$x - $pos); |
|
157
|
|
|
|
|
|
|
} elsif ($side < 3) { |
|
158
|
|
|
|
|
|
|
### horizontal leftwards |
|
159
|
0
|
|
|
|
|
0
|
return (-$x + $pos, # rotate 180, offset |
|
160
|
|
|
|
|
|
|
-$y + $pos); |
|
161
|
|
|
|
|
|
|
} else { |
|
162
|
|
|
|
|
|
|
### left vertical downwards |
|
163
|
7
|
|
|
|
|
24
|
return ($y - $pos, # rotate -90, offset |
|
164
|
|
|
|
|
|
|
-$x + $pos); |
|
165
|
|
|
|
|
|
|
} |
|
166
|
|
|
|
|
|
|
} |
|
167
|
|
|
|
|
|
|
|
|
168
|
|
|
|
|
|
|
# +-------+-------+-------+ |
|
169
|
|
|
|
|
|
|
# |31 | 24 0,1| 23| |
|
170
|
|
|
|
|
|
|
# | | | | |
|
171
|
|
|
|
|
|
|
# | +-------+-------+ | |
|
172
|
|
|
|
|
|
|
# | |4 | |3 | | | |
|
173
|
|
|
|
|
|
|
# | | | | | | | |
|
174
|
|
|
|
|
|
|
# +---|--- ---|--- ---|---+ Y=0.5 |
|
175
|
|
|
|
|
|
|
# |32 | | | | | 16| |
|
176
|
|
|
|
|
|
|
# | | | | | | | |
|
177
|
|
|
|
|
|
|
# | +=======+=======+ | Y=0 |
|
178
|
|
|
|
|
|
|
# | |1 | |2 | | | |
|
179
|
|
|
|
|
|
|
# | | | | | | | |
|
180
|
|
|
|
|
|
|
# +---|--- ---|--- ---|---+ Y=-0.5 |
|
181
|
|
|
|
|
|
|
# | | | | | | | |
|
182
|
|
|
|
|
|
|
# | | | | | | | |
|
183
|
|
|
|
|
|
|
# | +-------+-------+ | Y=-1 |
|
184
|
|
|
|
|
|
|
# | | | | |
|
185
|
|
|
|
|
|
|
# |7 |8 | 15| |
|
186
|
|
|
|
|
|
|
# +-------+-------+-------+ |
|
187
|
|
|
|
|
|
|
# |
|
188
|
|
|
|
|
|
|
# -2 <= 2*x < 2, round to -2,-1,0,1 |
|
189
|
|
|
|
|
|
|
# then 4*yround -8,-4,0,4 |
|
190
|
|
|
|
|
|
|
# total -10 to 5 inclusive |
|
191
|
|
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
my @inner_n_list = ([1,7], [1,8], [2,8], [2,15], # Y=-1 |
|
193
|
|
|
|
|
|
|
[1,32], [1], [2], [2,16], # Y=-0.5 |
|
194
|
|
|
|
|
|
|
[4,32], [4], [3], [3,16], # Y=0 |
|
195
|
|
|
|
|
|
|
[4,31],[4,24],[3,24],[3,23]); # Y=0.5 |
|
196
|
|
|
|
|
|
|
|
|
197
|
|
|
|
|
|
|
sub xy_to_n { |
|
198
|
0
|
|
|
0
|
1
|
0
|
return scalar((shift->xy_to_n_list(@_))[0]); |
|
199
|
|
|
|
|
|
|
} |
|
200
|
|
|
|
|
|
|
sub xy_to_n_list { |
|
201
|
0
|
|
|
0
|
1
|
0
|
my ($self, $x, $y) = @_; |
|
202
|
|
|
|
|
|
|
### QuadricIslands xy_to_n(): "$x, $y" |
|
203
|
|
|
|
|
|
|
|
|
204
|
0
|
0
|
0
|
|
|
0
|
if ($x >= -1 && $x < 1 |
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
205
|
|
|
|
|
|
|
&& $y >= -1 && $y < 1) { |
|
206
|
|
|
|
|
|
|
|
|
207
|
|
|
|
|
|
|
### round 2x: floor(2*$x) |
|
208
|
|
|
|
|
|
|
### round 2y: floor(2*$y) |
|
209
|
|
|
|
|
|
|
### index: floor(2*$x) + 4*floor(2*$y) + 10 |
|
210
|
|
|
|
|
|
|
### assert: floor(2*$x) + 4*floor(2*$y) + 10 >= 0 |
|
211
|
|
|
|
|
|
|
### assert: floor(2*$x) + 4*floor(2*$y) + 10 <= 15 |
|
212
|
|
|
|
|
|
|
|
|
213
|
0
|
|
|
|
|
0
|
return @{$inner_n_list[ floor(2*$x) |
|
|
0
|
|
|
|
|
0
|
|
|
214
|
|
|
|
|
|
|
+ 4*floor(2*$y) |
|
215
|
|
|
|
|
|
|
+ 10 ]}; |
|
216
|
|
|
|
|
|
|
} |
|
217
|
|
|
|
|
|
|
|
|
218
|
0
|
|
|
|
|
0
|
$x = round_nearest($x); |
|
219
|
0
|
|
|
|
|
0
|
$y = round_nearest($y); |
|
220
|
|
|
|
|
|
|
|
|
221
|
0
|
|
|
|
|
0
|
my $high; |
|
222
|
0
|
0
|
|
|
|
0
|
if ($x >= $y + ($y>0)) { |
|
223
|
|
|
|
|
|
|
# +($y>0) to exclude the downward bump of the top side |
|
224
|
|
|
|
|
|
|
### below leading diagonal ... |
|
225
|
0
|
0
|
|
|
|
0
|
if ($x < -$y) { |
|
226
|
|
|
|
|
|
|
### bottom quarter ... |
|
227
|
0
|
|
|
|
|
0
|
$high = 0; |
|
228
|
|
|
|
|
|
|
} else { |
|
229
|
|
|
|
|
|
|
### right quarter ... |
|
230
|
0
|
|
|
|
|
0
|
$high = 1; |
|
231
|
0
|
|
|
|
|
0
|
($x,$y) = ($y, -$x); # rotate -90 |
|
232
|
|
|
|
|
|
|
} |
|
233
|
|
|
|
|
|
|
} else { |
|
234
|
|
|
|
|
|
|
### above leading diagonal |
|
235
|
0
|
0
|
|
|
|
0
|
if ($y > -$x) { |
|
236
|
|
|
|
|
|
|
### top quarter ... |
|
237
|
0
|
|
|
|
|
0
|
$high = 2; |
|
238
|
0
|
|
|
|
|
0
|
$x = -$x; # rotate 180 |
|
239
|
0
|
|
|
|
|
0
|
$y = -$y; |
|
240
|
|
|
|
|
|
|
} else { |
|
241
|
|
|
|
|
|
|
### right quarter ... |
|
242
|
0
|
|
|
|
|
0
|
$high = 3; |
|
243
|
0
|
|
|
|
|
0
|
($x,$y) = (-$y, $x); # rotate +90 |
|
244
|
|
|
|
|
|
|
} |
|
245
|
|
|
|
|
|
|
} |
|
246
|
|
|
|
|
|
|
### rotate to: "$x,$y high=$high" |
|
247
|
|
|
|
|
|
|
|
|
248
|
|
|
|
|
|
|
# ymax = (10*4^(l-1)-1)/3 |
|
249
|
|
|
|
|
|
|
# ymax < (10*4^(l-1)-1)/3+1 |
|
250
|
|
|
|
|
|
|
# (10*4^(l-1)-1)/3+1 > ymax |
|
251
|
|
|
|
|
|
|
# (10*4^(l-1)-1)/3 > ymax-1 |
|
252
|
|
|
|
|
|
|
# 10*4^(l-1)-1 > 3*(ymax-1) |
|
253
|
|
|
|
|
|
|
# 10*4^(l-1) > 3*(ymax-1)+1 |
|
254
|
|
|
|
|
|
|
# 10*4^(l-1) > 3*(ymax-1)+1 |
|
255
|
|
|
|
|
|
|
# 10*4^(l-1) > 3*ymax-3+1 |
|
256
|
|
|
|
|
|
|
# 10*4^(l-1) > 3*ymax-2 |
|
257
|
|
|
|
|
|
|
# 4^(l-1) > (3*ymax-2)/10 |
|
258
|
|
|
|
|
|
|
# |
|
259
|
|
|
|
|
|
|
# (2*4^(l-1) + 1)/3 = ymin |
|
260
|
|
|
|
|
|
|
# 2*4^(l-1) + 1 = 3*y |
|
261
|
|
|
|
|
|
|
# 2*4^(l-1) = 3*y-1 |
|
262
|
|
|
|
|
|
|
# 4^(l-1) = (3*y-1)/2 |
|
263
|
|
|
|
|
|
|
# |
|
264
|
|
|
|
|
|
|
# ypos = 4^l/2 = 2*4^(l-1) |
|
265
|
|
|
|
|
|
|
|
|
266
|
|
|
|
|
|
|
|
|
267
|
|
|
|
|
|
|
# z = -2*y+x |
|
268
|
|
|
|
|
|
|
# (2*4**($level-1) + 1)/3 = z |
|
269
|
|
|
|
|
|
|
# 2*4**($level-1) + 1 = 3*z |
|
270
|
|
|
|
|
|
|
# 2*4**($level-1) = 3*z - 1 |
|
271
|
|
|
|
|
|
|
# 4**($level-1) = (3*z - 1)/2 |
|
272
|
|
|
|
|
|
|
# = (3*(-2y+x)-1)/2 |
|
273
|
|
|
|
|
|
|
# = (-6y+3x - 1)/2 |
|
274
|
|
|
|
|
|
|
# = -3*y + (3x-1)/2 |
|
275
|
|
|
|
|
|
|
|
|
276
|
|
|
|
|
|
|
# 2*4**($level-1) = -2*y-x |
|
277
|
|
|
|
|
|
|
# 4**($level-1) = -y-x/2 |
|
278
|
|
|
|
|
|
|
# 4**$level = -4y-2x |
|
279
|
|
|
|
|
|
|
# |
|
280
|
|
|
|
|
|
|
# line slope y/x = 1/2 as an index |
|
281
|
0
|
|
|
|
|
0
|
my $z = -$y-$x/2; |
|
282
|
0
|
|
|
|
|
0
|
my ($len,$level) = round_down_pow ($z, 4); |
|
283
|
|
|
|
|
|
|
### $z |
|
284
|
|
|
|
|
|
|
### amin: 2*4**($level-1) |
|
285
|
|
|
|
|
|
|
### $level |
|
286
|
|
|
|
|
|
|
### $len |
|
287
|
0
|
0
|
|
|
|
0
|
if (is_infinite($level)) { |
|
288
|
0
|
|
|
|
|
0
|
return $level; |
|
289
|
|
|
|
|
|
|
} |
|
290
|
|
|
|
|
|
|
|
|
291
|
0
|
|
|
|
|
0
|
$len *= 2; |
|
292
|
0
|
|
|
|
|
0
|
$x += $len; |
|
293
|
0
|
|
|
|
|
0
|
$y += $len; |
|
294
|
|
|
|
|
|
|
### shift to: "$x,$y" |
|
295
|
0
|
|
|
|
|
0
|
my $n = Math::PlanePath::QuadricCurve::xy_to_n($self, $x, $y); |
|
296
|
|
|
|
|
|
|
|
|
297
|
|
|
|
|
|
|
# Nmin = (4*8^l+3)/7 |
|
298
|
|
|
|
|
|
|
# Nmin+high = (4*8^l+3)/7 + h*8^l |
|
299
|
|
|
|
|
|
|
# = (4*8^l + 3 + 7h*8^l)/7 + |
|
300
|
|
|
|
|
|
|
# = ((4+7h)*8^l + 3)/7 |
|
301
|
|
|
|
|
|
|
# |
|
302
|
|
|
|
|
|
|
### plain curve on: ($x+2*$len).",".($y+2*$len)." give n=".(defined $n && $n) |
|
303
|
|
|
|
|
|
|
### $high |
|
304
|
|
|
|
|
|
|
### high: (8**$level)*$high |
|
305
|
|
|
|
|
|
|
### base: (4 * 8**($level+1) + 3)/7 |
|
306
|
|
|
|
|
|
|
### base with high: ((4+7*$high) * 8**($level+1) + 3)/7 |
|
307
|
|
|
|
|
|
|
|
|
308
|
0
|
0
|
|
|
|
0
|
if (defined $n) { |
|
309
|
0
|
|
|
|
|
0
|
return ((4+7*$high) * 8**($level+1) + 3)/7 + $n; |
|
310
|
|
|
|
|
|
|
} else { |
|
311
|
0
|
|
|
|
|
0
|
return; |
|
312
|
|
|
|
|
|
|
} |
|
313
|
|
|
|
|
|
|
} |
|
314
|
|
|
|
|
|
|
|
|
315
|
|
|
|
|
|
|
# level width extends |
|
316
|
|
|
|
|
|
|
# side = 4^level |
|
317
|
|
|
|
|
|
|
# ypos = 4^l / 2 |
|
318
|
|
|
|
|
|
|
# width = 1 + 4 + ... + 4^(l-1) |
|
319
|
|
|
|
|
|
|
# = (4^l - 1)/3 |
|
320
|
|
|
|
|
|
|
# ymin = ypos(l) - 4^(l-1) - width(l-1) |
|
321
|
|
|
|
|
|
|
# = 4^l / 2 - 4^(l-1) - (4^(l-1) - 1)/3 |
|
322
|
|
|
|
|
|
|
# = 4^(l-1) * (2 - 1 - 1/3) + 1/3 |
|
323
|
|
|
|
|
|
|
# = (2*4^(l-1) + 1) / 3 |
|
324
|
|
|
|
|
|
|
# |
|
325
|
|
|
|
|
|
|
# (2*4^(l-1) + 1) / 3 = y |
|
326
|
|
|
|
|
|
|
# 2*4^(l-1) + 1 = 3*y |
|
327
|
|
|
|
|
|
|
# 2*4^(l-1) = 3*y-1 |
|
328
|
|
|
|
|
|
|
# 4^(l-1) = (3*y-1)/2 |
|
329
|
|
|
|
|
|
|
# |
|
330
|
|
|
|
|
|
|
# ENHANCE-ME: slope Y=X/2+1 or thereabouts for sides |
|
331
|
|
|
|
|
|
|
# |
|
332
|
|
|
|
|
|
|
# not exact |
|
333
|
|
|
|
|
|
|
sub rect_to_n_range { |
|
334
|
0
|
|
|
0
|
1
|
0
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
|
335
|
|
|
|
|
|
|
### QuadricIslands rect_to_n_range(): "$x1,$y1 $x2,$y2" |
|
336
|
|
|
|
|
|
|
|
|
337
|
|
|
|
|
|
|
# $x1 = round_nearest ($x1); |
|
338
|
|
|
|
|
|
|
# $y1 = round_nearest ($y1); |
|
339
|
|
|
|
|
|
|
# $x2 = round_nearest ($x2); |
|
340
|
|
|
|
|
|
|
# $y2 = round_nearest ($y2); |
|
341
|
|
|
|
|
|
|
|
|
342
|
0
|
|
|
|
|
0
|
my $m = max(abs($x1), abs($x2), |
|
343
|
|
|
|
|
|
|
abs($y1), abs($y2)); |
|
344
|
|
|
|
|
|
|
|
|
345
|
0
|
|
|
|
|
0
|
my ($len,$level) = round_down_pow (6*$m-2, 4); |
|
346
|
|
|
|
|
|
|
### $len |
|
347
|
|
|
|
|
|
|
### $level |
|
348
|
0
|
|
|
|
|
0
|
return (1, |
|
349
|
|
|
|
|
|
|
(32*8**$level - 4)/7); |
|
350
|
|
|
|
|
|
|
} |
|
351
|
|
|
|
|
|
|
|
|
352
|
|
|
|
|
|
|
# ymax = ypos(l) + 4^(l-1) + width(l-1) |
|
353
|
|
|
|
|
|
|
# = 4^l / 2 + 4^(l-1) + (4^(l-1) - 1)/3 |
|
354
|
|
|
|
|
|
|
# = 4^(l-1) * (4/2 + 1 + 1/3) - 1/3 |
|
355
|
|
|
|
|
|
|
# = 4^(l-1) * (2 + 1 + 1/3) - 1/3 |
|
356
|
|
|
|
|
|
|
# = 4^(l-1) * 10/3 - 1/3 |
|
357
|
|
|
|
|
|
|
# = (10*4^(l-1) - 1) / 3 |
|
358
|
|
|
|
|
|
|
# |
|
359
|
|
|
|
|
|
|
# (10*4^(l-1) - 1) / 3 = y |
|
360
|
|
|
|
|
|
|
# 10*4^(l-1) - 1 = 3*y |
|
361
|
|
|
|
|
|
|
# 10*4^(l-1) = 3*y+1 |
|
362
|
|
|
|
|
|
|
# 4^(l-1) = (3*y+1)/10 |
|
363
|
|
|
|
|
|
|
# |
|
364
|
|
|
|
|
|
|
# based on max ??? ... |
|
365
|
|
|
|
|
|
|
# |
|
366
|
|
|
|
|
|
|
# my ($power,$level) = round_down_pow ((3*$m+1-3)/10, 4); |
|
367
|
|
|
|
|
|
|
# ### $power |
|
368
|
|
|
|
|
|
|
# ### $level |
|
369
|
|
|
|
|
|
|
# return (1, |
|
370
|
|
|
|
|
|
|
# (4*8**($level+3) + 3)/7 - 1); |
|
371
|
|
|
|
|
|
|
|
|
372
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
373
|
|
|
|
|
|
|
# Nstart(k) = (4*8^k + 3)/7 |
|
374
|
|
|
|
|
|
|
# Nend(k) = Nstart(k+1) - 1 |
|
375
|
|
|
|
|
|
|
# = (4*8*8^k + 3)/7 - 1 |
|
376
|
|
|
|
|
|
|
# = (4*8*8^k + 8*3 - 8*3 + 3)/7 - 1 |
|
377
|
|
|
|
|
|
|
# = (4*8*8^k + 8*3)/7 + (-8*3 + 3)/7 - 1 |
|
378
|
|
|
|
|
|
|
# = 8*Nstart(k) + (-8*3 + 3)/7 - 1 |
|
379
|
|
|
|
|
|
|
# = 8*Nstart(k) - 4 |
|
380
|
|
|
|
|
|
|
|
|
381
|
|
|
|
|
|
|
sub level_to_n_range { |
|
382
|
10
|
|
|
10
|
1
|
886
|
my ($self, $level) = @_; |
|
383
|
10
|
|
|
|
|
29
|
my $n_lo = (4 * 8**$level + 3)/7; |
|
384
|
10
|
|
|
|
|
30
|
return ($n_lo, 8*$n_lo - 4); |
|
385
|
|
|
|
|
|
|
} |
|
386
|
|
|
|
|
|
|
sub n_to_level { |
|
387
|
0
|
|
|
0
|
1
|
|
my ($self, $n) = @_; |
|
388
|
0
|
0
|
|
|
|
|
if ($n < 1) { return undef; } |
|
|
0
|
|
|
|
|
|
|
|
389
|
0
|
0
|
|
|
|
|
if (is_infinite($n)) { return $n; } |
|
|
0
|
|
|
|
|
|
|
|
390
|
0
|
|
|
|
|
|
$n = round_nearest($n); |
|
391
|
0
|
|
|
|
|
|
my ($base,$level) = _n_to_base_and_level($n); |
|
392
|
0
|
|
|
|
|
|
return $level; |
|
393
|
|
|
|
|
|
|
} |
|
394
|
|
|
|
|
|
|
|
|
395
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
396
|
|
|
|
|
|
|
1; |
|
397
|
|
|
|
|
|
|
__END__ |