| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Math::Fraction::Egyptian; |
|
2
|
|
|
|
|
|
|
|
|
3
|
13
|
|
|
13
|
|
12567
|
use strict; |
|
|
13
|
|
|
|
|
34
|
|
|
|
13
|
|
|
|
|
585
|
|
|
4
|
13
|
|
|
13
|
|
70
|
use warnings FATAL => 'all'; |
|
|
13
|
|
|
|
|
23
|
|
|
|
13
|
|
|
|
|
684
|
|
|
5
|
13
|
|
|
13
|
|
76
|
use base 'Exporter'; |
|
|
13
|
|
|
|
|
23
|
|
|
|
13
|
|
|
|
|
1296
|
|
|
6
|
13
|
|
|
13
|
|
73
|
use List::Util qw(first reduce max); |
|
|
13
|
|
|
|
|
26
|
|
|
|
13
|
|
|
|
|
30850
|
|
|
7
|
|
|
|
|
|
|
|
|
8
|
|
|
|
|
|
|
our @EXPORT_OK = qw( to_egyptian to_common ); |
|
9
|
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
our %EXPORT_TAGS = (all => \@EXPORT_OK); |
|
11
|
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
our $VERSION = '0.01'; |
|
13
|
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
my %PRIMES = map { $_ => 1 } primes(); |
|
15
|
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
=head1 NAME |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
Math::Fraction::Egyptian - construct Egyptian representations of fractions |
|
19
|
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
=head1 SYNOPSIS |
|
21
|
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
use Math::Fraction::Egyptian ':all'; |
|
23
|
|
|
|
|
|
|
my @e = to_egyptian(43, 48); # returns 43/48 in Egyptian format |
|
24
|
|
|
|
|
|
|
my @v = to_common(2, 3, 16); # returns 1/2 + 1/3 + 1/16 in common format |
|
25
|
|
|
|
|
|
|
|
|
26
|
|
|
|
|
|
|
=head1 DESCRIPTION |
|
27
|
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
From L: |
|
29
|
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
=over 4 |
|
31
|
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
An Egyptian fraction is the sum of distinct unit fractions, such as |
|
33
|
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
1/2 + 1/3 + 1/16 |
|
35
|
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
That is, each fraction in the expression has a numerator equal to 1 and a |
|
37
|
|
|
|
|
|
|
denominator that is a positive integer, and all the denominators differ |
|
38
|
|
|
|
|
|
|
from each other. The sum of an expression of this type is a positive |
|
39
|
|
|
|
|
|
|
rational number C; for instance the Egyptian fraction above sums to |
|
40
|
|
|
|
|
|
|
C<43/48>. |
|
41
|
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
Every positive rational number can be represented by an Egyptian fraction. |
|
43
|
|
|
|
|
|
|
Sums of this type, and similar sums also including C<2/3> and C<3/4> as |
|
44
|
|
|
|
|
|
|
summands, were used as a serious notation for rational numbers by the |
|
45
|
|
|
|
|
|
|
ancient Egyptians, and continued to be used by other civilizations into |
|
46
|
|
|
|
|
|
|
medieval times. |
|
47
|
|
|
|
|
|
|
|
|
48
|
|
|
|
|
|
|
In modern mathematical notation, Egyptian fractions have been superseded by |
|
49
|
|
|
|
|
|
|
L and |
|
50
|
|
|
|
|
|
|
decimal notation. However, Egyptian fractions continue to be an object of |
|
51
|
|
|
|
|
|
|
study in modern number theory and recreational mathematics, as well as in |
|
52
|
|
|
|
|
|
|
modern historical studies of ancient mathematics. |
|
53
|
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
=back |
|
55
|
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
A common fraction has an infinite number of different Egyptian fraction |
|
57
|
|
|
|
|
|
|
representations. This module only implements a handful of conversion |
|
58
|
|
|
|
|
|
|
strategies for conversion of common fractions to Egyptian form; see section |
|
59
|
|
|
|
|
|
|
L below for details. |
|
60
|
|
|
|
|
|
|
|
|
61
|
|
|
|
|
|
|
=head1 FUNCTIONS |
|
62
|
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
=head2 to_egyptian($numer, $denom, %attr) |
|
64
|
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
Converts fraction C<$numer/$denom> to its Egyptian representation. |
|
66
|
|
|
|
|
|
|
|
|
67
|
|
|
|
|
|
|
Example: |
|
68
|
|
|
|
|
|
|
|
|
69
|
|
|
|
|
|
|
my @egypt = to_egyptian(5,9); # converts 5/9 |
|
70
|
|
|
|
|
|
|
print "@egypt"; # prints FIXME |
|
71
|
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
=cut |
|
73
|
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
sub to_egyptian { |
|
75
|
60
|
|
|
60
|
1
|
8016
|
my ($n,$d,%attr) = @_; |
|
76
|
60
|
|
|
|
|
183
|
($n,$d) = (abs(int($n)), abs(int($d))); |
|
77
|
60
|
|
50
|
|
|
475
|
$attr{dispatch} ||= \&_dispatch; |
|
78
|
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
# oh come on |
|
80
|
60
|
100
|
|
|
|
223
|
if ($d == 0) { die "can't convert $n/$d"; } |
|
|
3
|
|
|
|
|
29
|
|
|
81
|
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
# handle improper fractions |
|
83
|
57
|
100
|
|
|
|
186
|
if ($n >= $d) { |
|
84
|
2
|
|
|
|
|
3
|
my $n2 = $n % $d; |
|
85
|
2
|
|
|
|
|
24
|
warn "$n/$d is an improper fraction; expanding $n2/$d instead"; |
|
86
|
2
|
|
|
|
|
112
|
$n = $n2; |
|
87
|
|
|
|
|
|
|
} |
|
88
|
|
|
|
|
|
|
|
|
89
|
57
|
|
|
|
|
85
|
my @egypt; |
|
90
|
57
|
|
66
|
|
|
270
|
while ($n && $n != 0) { |
|
91
|
53
|
|
|
|
|
133
|
($n, $d, my @e) = $attr{dispatch}->($n,$d); |
|
92
|
53
|
|
|
|
|
293
|
push @egypt, @e; |
|
93
|
|
|
|
|
|
|
} |
|
94
|
57
|
|
|
|
|
673
|
return @egypt; |
|
95
|
|
|
|
|
|
|
} |
|
96
|
|
|
|
|
|
|
|
|
97
|
|
|
|
|
|
|
# default strategy dispatcher |
|
98
|
|
|
|
|
|
|
sub _dispatch { |
|
99
|
53
|
|
|
53
|
|
119
|
my ($n, $d) = @_; |
|
100
|
53
|
|
|
|
|
70
|
my @egypt; |
|
101
|
|
|
|
|
|
|
|
|
102
|
53
|
|
|
|
|
410
|
my @strategies = ( |
|
103
|
|
|
|
|
|
|
[ trivial => \&s_trivial, ], |
|
104
|
|
|
|
|
|
|
[ small_prime => \&s_small_prime, ], |
|
105
|
|
|
|
|
|
|
[ practical_strict => \&s_practical_strict, ], |
|
106
|
|
|
|
|
|
|
[ practical => \&s_practical, ], |
|
107
|
|
|
|
|
|
|
[ greedy => \&s_greedy, ], |
|
108
|
|
|
|
|
|
|
); |
|
109
|
|
|
|
|
|
|
|
|
110
|
|
|
|
|
|
|
STRATEGY: |
|
111
|
53
|
|
|
|
|
116
|
for my $s (@strategies) { |
|
112
|
187
|
|
|
|
|
372
|
my ($name,$coderef) = @$s; |
|
113
|
187
|
|
|
|
|
263
|
my @result = eval { $coderef->($n,$d); }; |
|
|
187
|
|
|
|
|
548
|
|
|
114
|
187
|
100
|
|
|
|
812
|
next STRATEGY if $@; |
|
115
|
53
|
|
|
|
|
156
|
my ($n2, $d2, @e2) = @result; |
|
116
|
53
|
|
|
|
|
121
|
($n,$d) = ($n2,$d2); |
|
117
|
53
|
|
|
|
|
93
|
push @egypt, @e2; |
|
118
|
53
|
|
|
|
|
166
|
last STRATEGY; |
|
119
|
|
|
|
|
|
|
} |
|
120
|
53
|
|
|
|
|
408
|
return $n, $d, @egypt; |
|
121
|
|
|
|
|
|
|
} |
|
122
|
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
=head2 to_common(@denominators) |
|
124
|
|
|
|
|
|
|
|
|
125
|
|
|
|
|
|
|
Converts an Egyptian fraction into a common fraction. |
|
126
|
|
|
|
|
|
|
|
|
127
|
|
|
|
|
|
|
Example: |
|
128
|
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
my ($num,$den) = to_common(2,5,11); # 1/2 + 1/5 + 1/11 = ? |
|
130
|
|
|
|
|
|
|
print "$num/$den"; # prints "87/110" |
|
131
|
|
|
|
|
|
|
|
|
132
|
|
|
|
|
|
|
=cut |
|
133
|
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
sub to_common { |
|
135
|
8
|
|
|
8
|
1
|
5397
|
my ($n,$d) = (0,1); |
|
136
|
8
|
|
|
|
|
19
|
for my $a (@_) { |
|
137
|
18
|
|
|
|
|
41
|
($n, $d) = simplify($a * $n + $d, $a * $d); |
|
138
|
|
|
|
|
|
|
} |
|
139
|
8
|
|
|
|
|
34
|
return ($n,$d); |
|
140
|
|
|
|
|
|
|
} |
|
141
|
|
|
|
|
|
|
|
|
142
|
|
|
|
|
|
|
=head2 GCD($x,$y) |
|
143
|
|
|
|
|
|
|
|
|
144
|
|
|
|
|
|
|
Uses Euclid's algorithm to determine the greatest common denominator |
|
145
|
|
|
|
|
|
|
("GCD") of C<$x> and C<$y>. Returns the GCD. |
|
146
|
|
|
|
|
|
|
|
|
147
|
|
|
|
|
|
|
=cut |
|
148
|
|
|
|
|
|
|
|
|
149
|
|
|
|
|
|
|
sub GCD { |
|
150
|
115
|
|
|
115
|
1
|
1424
|
my ($x, $y) = (int($_[0]), int($_[1])); |
|
151
|
115
|
100
|
|
|
|
299
|
return ($y) ? GCD($y, $x % $y) : $x; |
|
152
|
|
|
|
|
|
|
} |
|
153
|
|
|
|
|
|
|
|
|
154
|
|
|
|
|
|
|
=head2 simplify($n,$d) |
|
155
|
|
|
|
|
|
|
|
|
156
|
|
|
|
|
|
|
Reduces fraction C<$n/$d> to simplest terms. |
|
157
|
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
Example: |
|
159
|
|
|
|
|
|
|
|
|
160
|
|
|
|
|
|
|
my @x = simplify(25,100); # @x is (1,4) |
|
161
|
|
|
|
|
|
|
|
|
162
|
|
|
|
|
|
|
=cut |
|
163
|
|
|
|
|
|
|
|
|
164
|
|
|
|
|
|
|
sub simplify { |
|
165
|
25
|
|
|
25
|
1
|
42
|
my ($n, $d) = @_; |
|
166
|
25
|
|
|
|
|
51
|
my $gcd = GCD($n,$d); |
|
167
|
25
|
|
|
|
|
95
|
return ($n / $gcd, $d / $gcd); |
|
168
|
|
|
|
|
|
|
} |
|
169
|
|
|
|
|
|
|
|
|
170
|
|
|
|
|
|
|
=head2 primes() |
|
171
|
|
|
|
|
|
|
|
|
172
|
|
|
|
|
|
|
Returns a list of all prime numbers below 1000. |
|
173
|
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
=cut |
|
175
|
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
sub primes { |
|
177
|
1161
|
|
|
1161
|
1
|
34362
|
return qw( |
|
178
|
|
|
|
|
|
|
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 |
|
179
|
|
|
|
|
|
|
97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 |
|
180
|
|
|
|
|
|
|
181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 |
|
181
|
|
|
|
|
|
|
277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 |
|
182
|
|
|
|
|
|
|
383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 |
|
183
|
|
|
|
|
|
|
487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 |
|
184
|
|
|
|
|
|
|
601 607 613 617 619 631 641 643 647 653 659 661 673 677 683 691 701 |
|
185
|
|
|
|
|
|
|
709 719 727 733 739 743 751 757 761 769 773 787 797 809 811 821 823 |
|
186
|
|
|
|
|
|
|
827 829 839 853 857 859 863 877 881 883 887 907 911 919 929 937 941 |
|
187
|
|
|
|
|
|
|
947 953 967 971 977 983 991 997 |
|
188
|
|
|
|
|
|
|
); |
|
189
|
|
|
|
|
|
|
} |
|
190
|
|
|
|
|
|
|
|
|
191
|
|
|
|
|
|
|
=head2 prime_factors($n) |
|
192
|
|
|
|
|
|
|
|
|
193
|
|
|
|
|
|
|
Returns the prime factors of C<$n> as a list of (prime,multiplicity) pairs. |
|
194
|
|
|
|
|
|
|
The list is sorted by increasing prime number. |
|
195
|
|
|
|
|
|
|
|
|
196
|
|
|
|
|
|
|
Example: |
|
197
|
|
|
|
|
|
|
|
|
198
|
|
|
|
|
|
|
my @pf = prime_factors(120); # 120 = 2 * 2 * 2 * 3 * 5 |
|
199
|
|
|
|
|
|
|
# @pf = ([2,3],[3,1],[5,1]) |
|
200
|
|
|
|
|
|
|
|
|
201
|
|
|
|
|
|
|
=cut |
|
202
|
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
sub prime_factors { |
|
204
|
1148
|
|
|
1148
|
1
|
2122
|
my $n = shift; |
|
205
|
1148
|
|
|
|
|
1790
|
my @primes = primes(); |
|
206
|
1148
|
|
|
|
|
8208
|
my %pf; |
|
207
|
1148
|
|
|
|
|
2275
|
for my $i (0 .. $#primes) { |
|
208
|
14483
|
|
|
|
|
14417
|
my $p = $primes[$i]; |
|
209
|
14483
|
|
|
|
|
25903
|
while ($n % $p == 0) { |
|
210
|
5493
|
|
|
|
|
7468
|
$pf{$p}++; |
|
211
|
5493
|
|
|
|
|
11877
|
$n /= $p; |
|
212
|
|
|
|
|
|
|
} |
|
213
|
14483
|
100
|
|
|
|
26292
|
last if $n == 1; |
|
214
|
|
|
|
|
|
|
} |
|
215
|
1148
|
50
|
|
|
|
2208
|
return unless $n == 1; |
|
216
|
1148
|
|
|
|
|
3587
|
return map { [ $_, $pf{$_} ] } sort { $a <=> $b } keys %pf; |
|
|
3628
|
|
|
|
|
17541
|
|
|
|
3518
|
|
|
|
|
5457
|
|
|
217
|
|
|
|
|
|
|
} |
|
218
|
|
|
|
|
|
|
|
|
219
|
|
|
|
|
|
|
=head2 decompose($n) |
|
220
|
|
|
|
|
|
|
|
|
221
|
|
|
|
|
|
|
If C<$n> is a composite number, returns ($p,$q) such that: |
|
222
|
|
|
|
|
|
|
|
|
223
|
|
|
|
|
|
|
* $p != 1 |
|
224
|
|
|
|
|
|
|
* $q != 1 |
|
225
|
|
|
|
|
|
|
* $p x $q == $n |
|
226
|
|
|
|
|
|
|
|
|
227
|
|
|
|
|
|
|
=cut |
|
228
|
|
|
|
|
|
|
|
|
229
|
|
|
|
|
|
|
sub decompose { |
|
230
|
5
|
|
|
5
|
1
|
20
|
my @pf = reverse map { ($_->[0]) x $_->[1] } prime_factors($_[0]); |
|
|
10
|
|
|
|
|
28
|
|
|
231
|
5
|
|
|
|
|
14
|
my ($p, $q) = (1, 1); |
|
232
|
5
|
|
|
|
|
9
|
for my $f (@pf) { |
|
233
|
11
|
100
|
|
|
|
28
|
if ($p < $q) { $p *= $f } |
|
|
6
|
|
|
|
|
12
|
|
|
234
|
5
|
|
|
|
|
11
|
else { $q *= $f } |
|
235
|
|
|
|
|
|
|
} |
|
236
|
5
|
|
|
|
|
10
|
return sort { $a <=> $b } $p, $q; |
|
|
5
|
|
|
|
|
26
|
|
|
237
|
|
|
|
|
|
|
} |
|
238
|
|
|
|
|
|
|
|
|
239
|
|
|
|
|
|
|
=head2 sigma(@pairs) |
|
240
|
|
|
|
|
|
|
|
|
241
|
|
|
|
|
|
|
Helper function for determining whether a number is "practical" or not. |
|
242
|
|
|
|
|
|
|
|
|
243
|
|
|
|
|
|
|
=cut |
|
244
|
|
|
|
|
|
|
|
|
245
|
|
|
|
|
|
|
sub sigma { |
|
246
|
|
|
|
|
|
|
# see http://en.wikipedia.org/wiki/Divisor_function |
|
247
|
2156
|
|
|
2156
|
1
|
6412
|
my @pairs = @_; |
|
248
|
|
|
|
|
|
|
my $term = sub { |
|
249
|
3464
|
|
|
3464
|
|
4719
|
my ($p,$a) = @_; |
|
250
|
3464
|
|
|
|
|
20212
|
return (($p ** ($a + 1)) - 1) / ($p - 1); |
|
251
|
2156
|
|
|
|
|
7352
|
}; |
|
252
|
2156
|
|
|
1308
|
|
6151
|
return reduce { $a * $b } map { $term->(@$_) } @pairs; |
|
|
1308
|
|
|
|
|
8044
|
|
|
|
3464
|
|
|
|
|
6385
|
|
|
253
|
|
|
|
|
|
|
} |
|
254
|
|
|
|
|
|
|
|
|
255
|
|
|
|
|
|
|
=head1 STRATEGIES |
|
256
|
|
|
|
|
|
|
|
|
257
|
|
|
|
|
|
|
Fibonacci, in his Liber Abaci, identifies seven different methods for |
|
258
|
|
|
|
|
|
|
converting common to Egyptian fractions: |
|
259
|
|
|
|
|
|
|
|
|
260
|
|
|
|
|
|
|
=over 4 |
|
261
|
|
|
|
|
|
|
|
|
262
|
|
|
|
|
|
|
=item 1. |
|
263
|
|
|
|
|
|
|
|
|
264
|
|
|
|
|
|
|
=item 2. |
|
265
|
|
|
|
|
|
|
|
|
266
|
|
|
|
|
|
|
=item 3. |
|
267
|
|
|
|
|
|
|
|
|
268
|
|
|
|
|
|
|
=item 4. |
|
269
|
|
|
|
|
|
|
|
|
270
|
|
|
|
|
|
|
=item 5. |
|
271
|
|
|
|
|
|
|
|
|
272
|
|
|
|
|
|
|
=item 6. |
|
273
|
|
|
|
|
|
|
|
|
274
|
|
|
|
|
|
|
=item 7. |
|
275
|
|
|
|
|
|
|
|
|
276
|
|
|
|
|
|
|
=back |
|
277
|
|
|
|
|
|
|
|
|
278
|
|
|
|
|
|
|
The strategies as implemented below have the following features in common: |
|
279
|
|
|
|
|
|
|
|
|
280
|
|
|
|
|
|
|
=over 4 |
|
281
|
|
|
|
|
|
|
|
|
282
|
|
|
|
|
|
|
=item * |
|
283
|
|
|
|
|
|
|
|
|
284
|
|
|
|
|
|
|
Each function call has a signature of the form C($numerator, |
|
285
|
|
|
|
|
|
|
$denominator)>. |
|
286
|
|
|
|
|
|
|
|
|
287
|
|
|
|
|
|
|
=item * |
|
288
|
|
|
|
|
|
|
|
|
289
|
|
|
|
|
|
|
The return value from a successful strategy call is the list C<($numerator, |
|
290
|
|
|
|
|
|
|
$denominator, @egyptian)>: the new numerator, the new denominator, and |
|
291
|
|
|
|
|
|
|
zero or more new Egyptian factors extracted from the input fraction. |
|
292
|
|
|
|
|
|
|
|
|
293
|
|
|
|
|
|
|
=item * |
|
294
|
|
|
|
|
|
|
|
|
295
|
|
|
|
|
|
|
Some strategies are not applicable to all inputs. If the strategy |
|
296
|
|
|
|
|
|
|
determines that it cannot determine the next number in the expansion, it |
|
297
|
|
|
|
|
|
|
throws an exception (via C) to indicate the strategy is unsuitable. |
|
298
|
|
|
|
|
|
|
|
|
299
|
|
|
|
|
|
|
=back |
|
300
|
|
|
|
|
|
|
|
|
301
|
|
|
|
|
|
|
=cut |
|
302
|
|
|
|
|
|
|
|
|
303
|
|
|
|
|
|
|
=head2 s_trivial($n,$d) |
|
304
|
|
|
|
|
|
|
|
|
305
|
|
|
|
|
|
|
Strategy for dealing with "trivial" expansions--if C<$n> is C<1>, then this |
|
306
|
|
|
|
|
|
|
fraction is already in Egyptian form. |
|
307
|
|
|
|
|
|
|
|
|
308
|
|
|
|
|
|
|
Example: |
|
309
|
|
|
|
|
|
|
|
|
310
|
|
|
|
|
|
|
my @x = s_trivial(1,5); # @x = (0,1,5) |
|
311
|
|
|
|
|
|
|
|
|
312
|
|
|
|
|
|
|
=cut |
|
313
|
|
|
|
|
|
|
|
|
314
|
|
|
|
|
|
|
sub s_trivial { |
|
315
|
55
|
|
|
55
|
1
|
1023
|
my ($n,$d) = @_; |
|
316
|
55
|
100
|
66
|
|
|
249
|
if (defined($n) && $n == 1) { |
|
317
|
4
|
|
|
|
|
14
|
return (0,1,$d); |
|
318
|
|
|
|
|
|
|
} |
|
319
|
51
|
|
|
|
|
396
|
die "unsuitable strategy"; |
|
320
|
|
|
|
|
|
|
} |
|
321
|
|
|
|
|
|
|
|
|
322
|
|
|
|
|
|
|
=head2 s_small_prime($n,$d) |
|
323
|
|
|
|
|
|
|
|
|
324
|
|
|
|
|
|
|
For a numerator of 2 with odd prime denominator d, one can use this |
|
325
|
|
|
|
|
|
|
expansion: |
|
326
|
|
|
|
|
|
|
|
|
327
|
|
|
|
|
|
|
2/d = 2/(d + 1) + 2/d(d + 1) |
|
328
|
|
|
|
|
|
|
|
|
329
|
|
|
|
|
|
|
=cut |
|
330
|
|
|
|
|
|
|
|
|
331
|
|
|
|
|
|
|
sub s_small_prime { |
|
332
|
52
|
|
|
52
|
1
|
1800
|
my ($n,$d) = @_; |
|
333
|
52
|
100
|
66
|
|
|
497
|
if ($n == 2 && $d > 2 && $d < 30 && $PRIMES{$d}) { |
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
334
|
9
|
|
|
|
|
19
|
my $x = ($d + 1) / 2; |
|
335
|
9
|
|
|
|
|
44
|
return (0, 1, $x, $d * $x); |
|
336
|
|
|
|
|
|
|
} |
|
337
|
|
|
|
|
|
|
else { |
|
338
|
43
|
|
|
|
|
248
|
die "unsuitable strategy"; |
|
339
|
|
|
|
|
|
|
} |
|
340
|
|
|
|
|
|
|
} |
|
341
|
|
|
|
|
|
|
|
|
342
|
|
|
|
|
|
|
=head2 s_practical($n,$d) |
|
343
|
|
|
|
|
|
|
|
|
344
|
|
|
|
|
|
|
Attempts to find a multiplier C<$M> such that the scaled denominator C<$M * |
|
345
|
|
|
|
|
|
|
$d> is a practical number. This lets us break up the scaled numerator C<$M |
|
346
|
|
|
|
|
|
|
* $numer> as in this example: |
|
347
|
|
|
|
|
|
|
|
|
348
|
|
|
|
|
|
|
examining 2/9: |
|
349
|
|
|
|
|
|
|
9 * 2 is 18, and 18 is a practical number |
|
350
|
|
|
|
|
|
|
choose $M = 2 |
|
351
|
|
|
|
|
|
|
|
|
352
|
|
|
|
|
|
|
scale 2/9 => 4/18 |
|
353
|
|
|
|
|
|
|
= 3/18 + 1/18 |
|
354
|
|
|
|
|
|
|
= 1/6 + 1/18 |
|
355
|
|
|
|
|
|
|
|
|
356
|
|
|
|
|
|
|
By definition, all numbers N < P, where P is practical, can be represented |
|
357
|
|
|
|
|
|
|
as a sum of distinct divisors of P. |
|
358
|
|
|
|
|
|
|
|
|
359
|
|
|
|
|
|
|
=cut |
|
360
|
|
|
|
|
|
|
|
|
361
|
|
|
|
|
|
|
sub s_practical { |
|
362
|
43
|
|
|
43
|
1
|
1073
|
my ($n,$d) = @_; |
|
363
|
|
|
|
|
|
|
|
|
364
|
|
|
|
|
|
|
# look for a multiple of $d that is a practical number |
|
365
|
43
|
|
|
541
|
|
711
|
my $M = first { is_practical($_ * $d) } 1 .. $d; |
|
|
541
|
|
|
|
|
968
|
|
|
366
|
43
|
50
|
|
|
|
321
|
die "unsuitable strategy" unless $M; |
|
367
|
|
|
|
|
|
|
|
|
368
|
43
|
|
|
|
|
118
|
$n *= $M; |
|
369
|
43
|
|
|
|
|
75
|
$d *= $M; |
|
370
|
|
|
|
|
|
|
|
|
371
|
43
|
|
|
|
|
1366
|
my @divisors = grep { $d % $_ == 0 } 1 .. $d; |
|
|
37412
|
|
|
|
|
56081
|
|
|
372
|
|
|
|
|
|
|
|
|
373
|
43
|
|
|
|
|
1015
|
my @N; |
|
374
|
|
|
|
|
|
|
my %seen; |
|
375
|
43
|
|
|
|
|
135
|
while ($n) { |
|
376
|
122
|
|
|
|
|
204
|
@divisors = grep { $_ <= $n } @divisors; |
|
|
888
|
|
|
|
|
1383
|
|
|
377
|
122
|
|
|
|
|
354
|
my $x = max @divisors; |
|
378
|
122
|
|
|
|
|
180
|
push @N, $x; |
|
379
|
122
|
|
|
|
|
175
|
$n -= $x; |
|
380
|
122
|
|
|
|
|
202
|
@divisors = grep { $_ < $x } @divisors; |
|
|
529
|
|
|
|
|
1014
|
|
|
381
|
|
|
|
|
|
|
} |
|
382
|
43
|
|
|
|
|
68
|
my @e = map { $d / $_ } @N; |
|
|
122
|
|
|
|
|
302
|
|
|
383
|
43
|
|
|
|
|
263
|
return (0, 1, @e); |
|
384
|
|
|
|
|
|
|
} |
|
385
|
|
|
|
|
|
|
|
|
386
|
|
|
|
|
|
|
=head2 s_practical_strict($n,$d) |
|
387
|
|
|
|
|
|
|
|
|
388
|
|
|
|
|
|
|
|
|
389
|
|
|
|
|
|
|
|
|
390
|
|
|
|
|
|
|
|
|
391
|
|
|
|
|
|
|
=cut |
|
392
|
|
|
|
|
|
|
|
|
393
|
|
|
|
|
|
|
sub s_practical_strict { |
|
394
|
42
|
|
|
42
|
1
|
116
|
my ($N,$D) = @_; |
|
395
|
|
|
|
|
|
|
|
|
396
|
|
|
|
|
|
|
# find multiples of $d that are practical numbers |
|
397
|
42
|
|
|
|
|
242
|
my @mult = grep { is_practical($_ * $D) } 1 .. $D; |
|
|
2521
|
|
|
|
|
4373
|
|
|
398
|
|
|
|
|
|
|
|
|
399
|
42
|
50
|
|
|
|
210
|
die "unsuitable strategy" unless @mult; |
|
400
|
|
|
|
|
|
|
|
|
401
|
|
|
|
|
|
|
MULTIPLE: |
|
402
|
42
|
|
|
|
|
76
|
for my $M (@mult) { |
|
403
|
785
|
|
|
|
|
1293
|
my $n = $N * $M; |
|
404
|
785
|
|
|
|
|
927
|
my $d = $D * $M; |
|
405
|
|
|
|
|
|
|
|
|
406
|
|
|
|
|
|
|
# find the divisors of $d |
|
407
|
785
|
|
|
|
|
77614
|
my @div = grep { $d % $_ == 0 } 1 .. $d; |
|
|
2211796
|
|
|
|
|
3061151
|
|
|
408
|
|
|
|
|
|
|
|
|
409
|
|
|
|
|
|
|
# expand $n into a sum of divisors of $d |
|
410
|
785
|
|
|
|
|
60411
|
my @N; |
|
411
|
785
|
|
|
|
|
2456
|
while ($n) { |
|
412
|
785
|
50
|
|
|
|
4613
|
next MULTIPLE unless @N; |
|
413
|
0
|
|
|
|
|
0
|
@div = grep { $_ <= $n } @div; |
|
|
0
|
|
|
|
|
0
|
|
|
414
|
0
|
|
|
|
|
0
|
my $x = max @div; |
|
415
|
0
|
|
|
|
|
0
|
push @N, $x; |
|
416
|
0
|
|
|
|
|
0
|
$n -= $x; |
|
417
|
0
|
|
|
|
|
0
|
@div = grep { $_ < $x } @div; |
|
|
0
|
|
|
|
|
0
|
|
|
418
|
|
|
|
|
|
|
} |
|
419
|
0
|
|
|
|
|
0
|
my @e = map { $d / $_ } @N; |
|
|
0
|
|
|
|
|
0
|
|
|
420
|
|
|
|
|
|
|
|
|
421
|
0
|
0
|
|
|
|
0
|
next MULTIPLE if $e[0] != $M; |
|
422
|
0
|
0
|
|
|
|
0
|
next MULTIPLE if grep { $d % $_ } @e[1 .. $#e]; # FIXME |
|
|
0
|
|
|
|
|
0
|
|
|
423
|
|
|
|
|
|
|
|
|
424
|
|
|
|
|
|
|
# o |
|
425
|
|
|
|
|
|
|
# 4. As an observation a1, ..., ai were always divisors of the |
|
426
|
|
|
|
|
|
|
# denominator a of the first partition 1/a |
|
427
|
|
|
|
|
|
|
|
|
428
|
0
|
|
|
|
|
0
|
return (0, 1, @e); |
|
429
|
|
|
|
|
|
|
} |
|
430
|
42
|
|
|
|
|
768
|
die "unsuitable strategy"; |
|
431
|
|
|
|
|
|
|
} |
|
432
|
|
|
|
|
|
|
|
|
433
|
|
|
|
|
|
|
=head2 is_practical($n) |
|
434
|
|
|
|
|
|
|
|
|
435
|
|
|
|
|
|
|
Returns a true value if C<$n> is a practical number. |
|
436
|
|
|
|
|
|
|
|
|
437
|
|
|
|
|
|
|
=cut |
|
438
|
|
|
|
|
|
|
|
|
439
|
|
|
|
|
|
|
my $_practical; |
|
440
|
|
|
|
|
|
|
sub is_practical { |
|
441
|
3090
|
|
|
3090
|
1
|
17565
|
my $n = shift; |
|
442
|
3090
|
100
|
|
|
|
7296
|
unless (exists $_practical->{$n}) { |
|
443
|
2199
|
|
|
|
|
2992
|
$_practical->{$n} = _is_practical($n); |
|
444
|
|
|
|
|
|
|
} |
|
445
|
3090
|
|
|
|
|
7001
|
return $_practical->{$n}; |
|
446
|
|
|
|
|
|
|
} |
|
447
|
|
|
|
|
|
|
|
|
448
|
|
|
|
|
|
|
sub _is_practical { |
|
449
|
2199
|
|
|
2199
|
|
2425
|
my $n = shift; |
|
450
|
2199
|
100
|
|
|
|
3806
|
return 1 if $n == 1; # edge case |
|
451
|
2198
|
100
|
|
|
|
5738
|
return 0 if $n % 2 == 1; # no odd practicals except 1 |
|
452
|
1142
|
|
|
|
|
1750
|
my @pf = prime_factors($n); |
|
453
|
1142
|
|
|
|
|
3539
|
foreach my $i (1 .. $#pf) { |
|
454
|
2136
|
|
|
|
|
3222
|
my $p = $pf[$i][0]; |
|
455
|
2136
|
100
|
|
|
|
5029
|
return 0 if ($p > 1 + sigma( @pf[0 .. $i-1])); |
|
456
|
|
|
|
|
|
|
} |
|
457
|
682
|
|
|
|
|
2883
|
return 1; |
|
458
|
|
|
|
|
|
|
} |
|
459
|
|
|
|
|
|
|
|
|
460
|
|
|
|
|
|
|
=head2 s_composite($n,$d) |
|
461
|
|
|
|
|
|
|
|
|
462
|
|
|
|
|
|
|
From L: |
|
463
|
|
|
|
|
|
|
|
|
464
|
|
|
|
|
|
|
=over 4 |
|
465
|
|
|
|
|
|
|
|
|
466
|
|
|
|
|
|
|
For composite denominators, factored as p×q, one can expand 2/pq using the |
|
467
|
|
|
|
|
|
|
identity 2/pq = 1/aq + 1/apq, where a = (p+1)/2. Clearly p must be odd. |
|
468
|
|
|
|
|
|
|
|
|
469
|
|
|
|
|
|
|
For instance, applying this method for d = pq = 21 gives p=3, q=7, and |
|
470
|
|
|
|
|
|
|
a=(3+1)/2=2, producing the expansion 2/21 = 1/14 + 1/42. |
|
471
|
|
|
|
|
|
|
|
|
472
|
|
|
|
|
|
|
=back |
|
473
|
|
|
|
|
|
|
|
|
474
|
|
|
|
|
|
|
=cut |
|
475
|
|
|
|
|
|
|
|
|
476
|
|
|
|
|
|
|
sub s_composite { |
|
477
|
2
|
|
|
2
|
1
|
1407
|
my ($n,$d) = @_; |
|
478
|
2
|
100
|
|
|
|
19
|
die "unsuitable strategy" if $PRIMES{$d}; |
|
479
|
1
|
|
|
|
|
4
|
my ($p,$q) = decompose($d); |
|
480
|
|
|
|
|
|
|
|
|
481
|
|
|
|
|
|
|
# is $p odd |
|
482
|
1
|
50
|
|
|
|
5
|
if ($p % 2 == 1) { |
|
483
|
1
|
|
|
|
|
2
|
my $a = ($p + 1) / 2; |
|
484
|
1
|
|
|
|
|
8
|
return (0, 1, $a * $q, $a * $p * $q); |
|
485
|
|
|
|
|
|
|
} |
|
486
|
|
|
|
|
|
|
|
|
487
|
|
|
|
|
|
|
# is $q odd |
|
488
|
0
|
0
|
|
|
|
0
|
if ($q % 2 == 1) { |
|
489
|
0
|
|
|
|
|
0
|
my $a = ($q + 1) / 2; |
|
490
|
0
|
|
|
|
|
0
|
return (0, 1, $a * $p, $a * $p * $q); |
|
491
|
|
|
|
|
|
|
} |
|
492
|
|
|
|
|
|
|
|
|
493
|
0
|
|
|
|
|
0
|
die "unsuitable strategy"; |
|
494
|
|
|
|
|
|
|
} |
|
495
|
|
|
|
|
|
|
|
|
496
|
|
|
|
|
|
|
=head2 s_greedy($n,$d) |
|
497
|
|
|
|
|
|
|
|
|
498
|
|
|
|
|
|
|
Implements Fibonacci's greedy algorithm for computing Egyptian fractions: |
|
499
|
|
|
|
|
|
|
|
|
500
|
|
|
|
|
|
|
n/d => 1/ceil(d/n) + ((-d)%n)/(d*ceil(d/n)) |
|
501
|
|
|
|
|
|
|
|
|
502
|
|
|
|
|
|
|
Example: |
|
503
|
|
|
|
|
|
|
|
|
504
|
|
|
|
|
|
|
# performing the greedy expansion of 3/7: |
|
505
|
|
|
|
|
|
|
# ceil(7/3) = 3 |
|
506
|
|
|
|
|
|
|
# new numerator = (-7)%3 = 2 |
|
507
|
|
|
|
|
|
|
# new denominator = 7 * 3 = 21 |
|
508
|
|
|
|
|
|
|
# so 3/7 => 1/3 + 2/21 |
|
509
|
|
|
|
|
|
|
|
|
510
|
|
|
|
|
|
|
my ($n,$d,$e) = greedy(2,7); |
|
511
|
|
|
|
|
|
|
print "$n/$d ($e)"; # prints "2/21 (3)" |
|
512
|
|
|
|
|
|
|
|
|
513
|
|
|
|
|
|
|
=cut |
|
514
|
|
|
|
|
|
|
|
|
515
|
|
|
|
|
|
|
sub s_greedy { |
|
516
|
13
|
|
|
13
|
|
13405
|
use POSIX 'ceil'; |
|
|
13
|
|
|
|
|
118585
|
|
|
|
13
|
|
|
|
|
99
|
|
|
517
|
5
|
|
|
5
|
1
|
6610
|
my ($n,$d) = @_; |
|
518
|
5
|
|
|
|
|
39
|
my $e = ceil( $d / $n ); |
|
519
|
5
|
|
|
|
|
24
|
($n, $d) = simplify((-1 * $d) % $n, $d * $e); |
|
520
|
5
|
|
|
|
|
18
|
return ($n, $d, $e); |
|
521
|
|
|
|
|
|
|
} |
|
522
|
|
|
|
|
|
|
|
|
523
|
|
|
|
|
|
|
=head1 AUTHOR |
|
524
|
|
|
|
|
|
|
|
|
525
|
|
|
|
|
|
|
John Trammell, C<< gmail com> >> |
|
526
|
|
|
|
|
|
|
|
|
527
|
|
|
|
|
|
|
=head1 BUGS |
|
528
|
|
|
|
|
|
|
|
|
529
|
|
|
|
|
|
|
Please report any bugs or feature requests to C
|
|
530
|
|
|
|
|
|
|
rt.cpan.org>, or through |
|
531
|
|
|
|
|
|
|
the web interface at |
|
532
|
|
|
|
|
|
|
L. I |
|
533
|
|
|
|
|
|
|
will be notified, and then you'll automatically be notified of progress on your |
|
534
|
|
|
|
|
|
|
bug as I make changes. |
|
535
|
|
|
|
|
|
|
|
|
536
|
|
|
|
|
|
|
=head1 SUPPORT |
|
537
|
|
|
|
|
|
|
|
|
538
|
|
|
|
|
|
|
You can find documentation for this module with the perldoc command. |
|
539
|
|
|
|
|
|
|
|
|
540
|
|
|
|
|
|
|
perldoc Math::Fraction::Egyptian |
|
541
|
|
|
|
|
|
|
|
|
542
|
|
|
|
|
|
|
You can also look for information at: |
|
543
|
|
|
|
|
|
|
|
|
544
|
|
|
|
|
|
|
=over 4 |
|
545
|
|
|
|
|
|
|
|
|
546
|
|
|
|
|
|
|
=item * GitHub |
|
547
|
|
|
|
|
|
|
|
|
548
|
|
|
|
|
|
|
L |
|
549
|
|
|
|
|
|
|
|
|
550
|
|
|
|
|
|
|
=item * RT: CPAN's request tracker |
|
551
|
|
|
|
|
|
|
|
|
552
|
|
|
|
|
|
|
L |
|
553
|
|
|
|
|
|
|
|
|
554
|
|
|
|
|
|
|
=item * AnnoCPAN: Annotated CPAN documentation |
|
555
|
|
|
|
|
|
|
|
|
556
|
|
|
|
|
|
|
L |
|
557
|
|
|
|
|
|
|
|
|
558
|
|
|
|
|
|
|
=item * CPAN Ratings |
|
559
|
|
|
|
|
|
|
|
|
560
|
|
|
|
|
|
|
L |
|
561
|
|
|
|
|
|
|
|
|
562
|
|
|
|
|
|
|
=item * Search CPAN |
|
563
|
|
|
|
|
|
|
|
|
564
|
|
|
|
|
|
|
L |
|
565
|
|
|
|
|
|
|
|
|
566
|
|
|
|
|
|
|
=back |
|
567
|
|
|
|
|
|
|
|
|
568
|
|
|
|
|
|
|
=head1 RESOURCES |
|
569
|
|
|
|
|
|
|
|
|
570
|
|
|
|
|
|
|
=over 4 |
|
571
|
|
|
|
|
|
|
|
|
572
|
|
|
|
|
|
|
=item L |
|
573
|
|
|
|
|
|
|
|
|
574
|
|
|
|
|
|
|
=item L |
|
575
|
|
|
|
|
|
|
|
|
576
|
|
|
|
|
|
|
=item L |
|
577
|
|
|
|
|
|
|
|
|
578
|
|
|
|
|
|
|
=item L |
|
579
|
|
|
|
|
|
|
|
|
580
|
|
|
|
|
|
|
=item L |
|
581
|
|
|
|
|
|
|
|
|
582
|
|
|
|
|
|
|
=item L |
|
583
|
|
|
|
|
|
|
|
|
584
|
|
|
|
|
|
|
=item L |
|
585
|
|
|
|
|
|
|
|
|
586
|
|
|
|
|
|
|
=item L |
|
587
|
|
|
|
|
|
|
|
|
588
|
|
|
|
|
|
|
=back |
|
589
|
|
|
|
|
|
|
|
|
590
|
|
|
|
|
|
|
=head1 ACKNOWLEDGEMENTS |
|
591
|
|
|
|
|
|
|
|
|
592
|
|
|
|
|
|
|
Thanks to Project Euler, L, for stretching my mind |
|
593
|
|
|
|
|
|
|
into obscure areas of mathematics. C<< :-) >> |
|
594
|
|
|
|
|
|
|
|
|
595
|
|
|
|
|
|
|
=head1 COPYRIGHT & LICENSE |
|
596
|
|
|
|
|
|
|
|
|
597
|
|
|
|
|
|
|
Copyright 2008 John Trammell, all rights reserved. |
|
598
|
|
|
|
|
|
|
|
|
599
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify it |
|
600
|
|
|
|
|
|
|
under the same terms as Perl itself. |
|
601
|
|
|
|
|
|
|
|
|
602
|
|
|
|
|
|
|
=cut |
|
603
|
|
|
|
|
|
|
|
|
604
|
|
|
|
|
|
|
1; |
|
605
|
|
|
|
|
|
|
|