| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# |
|
2
|
|
|
|
|
|
|
# Complex numbers and associated mathematical functions |
|
3
|
|
|
|
|
|
|
# -- Raphael Manfredi Since Sep 1996 |
|
4
|
|
|
|
|
|
|
# -- Jarkko Hietaniemi Since Mar 1997 |
|
5
|
|
|
|
|
|
|
# -- Daniel S. Lewart Since Sep 1997 |
|
6
|
|
|
|
|
|
|
# |
|
7
|
|
|
|
|
|
|
|
|
8
|
|
|
|
|
|
|
package Math::Complex; |
|
9
|
|
|
|
|
|
|
|
|
10
|
3
|
|
|
3
|
|
30559
|
{ use 5.006; } |
|
|
3
|
|
|
|
|
10
|
|
|
|
3
|
|
|
|
|
115
|
|
|
11
|
3
|
|
|
3
|
|
15
|
use strict; |
|
|
3
|
|
|
|
|
5
|
|
|
|
3
|
|
|
|
|
122
|
|
|
12
|
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
our $VERSION = 1.59; |
|
14
|
|
|
|
|
|
|
|
|
15
|
3
|
|
|
3
|
|
15
|
use Config; |
|
|
3
|
|
|
|
|
6
|
|
|
|
3
|
|
|
|
|
1002
|
|
|
16
|
|
|
|
|
|
|
|
|
17
|
|
|
|
|
|
|
our($Inf, $ExpInf); |
|
18
|
|
|
|
|
|
|
BEGIN { |
|
19
|
3
|
|
|
3
|
|
21
|
my %DBL_MAX = |
|
20
|
|
|
|
|
|
|
( |
|
21
|
|
|
|
|
|
|
4 => '1.70141183460469229e+38', |
|
22
|
|
|
|
|
|
|
8 => '1.7976931348623157e+308', |
|
23
|
|
|
|
|
|
|
# AFAICT the 10, 12, and 16-byte long doubles |
|
24
|
|
|
|
|
|
|
# all have the same maximum. |
|
25
|
|
|
|
|
|
|
10 => '1.1897314953572317650857593266280070162E+4932', |
|
26
|
|
|
|
|
|
|
12 => '1.1897314953572317650857593266280070162E+4932', |
|
27
|
|
|
|
|
|
|
16 => '1.1897314953572317650857593266280070162E+4932', |
|
28
|
|
|
|
|
|
|
); |
|
29
|
3
|
|
0
|
|
|
2863
|
my $nvsize = $Config{nvsize} || |
|
30
|
|
|
|
|
|
|
($Config{uselongdouble} && $Config{longdblsize}) || |
|
31
|
|
|
|
|
|
|
$Config{doublesize}; |
|
32
|
3
|
50
|
|
|
|
10173
|
die "Math::Complex: Could not figure out nvsize\n" |
|
33
|
|
|
|
|
|
|
unless defined $nvsize; |
|
34
|
3
|
50
|
|
|
|
19
|
die "Math::Complex: Cannot not figure out max nv (nvsize = $nvsize)\n" |
|
35
|
|
|
|
|
|
|
unless defined $DBL_MAX{$nvsize}; |
|
36
|
3
|
|
|
|
|
159
|
my $DBL_MAX = eval $DBL_MAX{$nvsize}; |
|
37
|
3
|
50
|
|
|
|
14
|
die "Math::Complex: Could not figure out max nv (nvsize = $nvsize)\n" |
|
38
|
|
|
|
|
|
|
unless defined $DBL_MAX; |
|
39
|
3
|
|
|
|
|
6
|
my $BIGGER_THAN_THIS = 1e30; # Must find something bigger than this. |
|
40
|
3
|
50
|
|
|
|
16
|
if ($^O eq 'unicosmk') { |
|
41
|
0
|
|
|
|
|
0
|
$Inf = $DBL_MAX; |
|
42
|
|
|
|
|
|
|
} else { |
|
43
|
3
|
|
|
|
|
529
|
local $SIG{FPE} = { }; |
|
44
|
3
|
|
|
|
|
58
|
local $!; |
|
45
|
|
|
|
|
|
|
# We do want an arithmetic overflow, Inf INF inf Infinity. |
|
46
|
3
|
|
|
|
|
18
|
for my $t ( |
|
47
|
|
|
|
|
|
|
'exp(99999)', # Enough even with 128-bit long doubles. |
|
48
|
|
|
|
|
|
|
'inf', |
|
49
|
|
|
|
|
|
|
'Inf', |
|
50
|
|
|
|
|
|
|
'INF', |
|
51
|
|
|
|
|
|
|
'infinity', |
|
52
|
|
|
|
|
|
|
'Infinity', |
|
53
|
|
|
|
|
|
|
'INFINITY', |
|
54
|
|
|
|
|
|
|
'1e99999', |
|
55
|
|
|
|
|
|
|
) { |
|
56
|
3
|
|
|
|
|
13
|
local $^W = 0; |
|
57
|
3
|
|
|
|
|
191
|
my $i = eval "$t+1.0"; |
|
58
|
3
|
50
|
33
|
|
|
33
|
if (defined $i && $i > $BIGGER_THAN_THIS) { |
|
59
|
3
|
|
|
|
|
6
|
$Inf = $i; |
|
60
|
3
|
|
|
|
|
12
|
last; |
|
61
|
|
|
|
|
|
|
} |
|
62
|
|
|
|
|
|
|
} |
|
63
|
3
|
50
|
|
|
|
23
|
$Inf = $DBL_MAX unless defined $Inf; # Oh well, close enough. |
|
64
|
3
|
50
|
|
|
|
11
|
die "Math::Complex: Could not get Infinity" |
|
65
|
|
|
|
|
|
|
unless $Inf > $BIGGER_THAN_THIS; |
|
66
|
3
|
|
|
|
|
109
|
$ExpInf = exp(99999); |
|
67
|
|
|
|
|
|
|
} |
|
68
|
|
|
|
|
|
|
# print "# On this machine, Inf = '$Inf'\n"; |
|
69
|
|
|
|
|
|
|
} |
|
70
|
|
|
|
|
|
|
|
|
71
|
3
|
|
|
3
|
|
21
|
use Scalar::Util qw(set_prototype); |
|
|
3
|
|
|
|
|
5
|
|
|
|
3
|
|
|
|
|
502
|
|
|
72
|
|
|
|
|
|
|
|
|
73
|
3
|
|
|
3
|
|
18
|
use warnings; |
|
|
3
|
|
|
|
|
5
|
|
|
|
3
|
|
|
|
|
89
|
|
|
74
|
3
|
|
|
3
|
|
12
|
no warnings 'syntax'; # To avoid the (_) warnings. |
|
|
3
|
|
|
|
|
5
|
|
|
|
3
|
|
|
|
|
419
|
|
|
75
|
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
BEGIN { |
|
77
|
|
|
|
|
|
|
# For certain functions that we override, in 5.10 or better |
|
78
|
|
|
|
|
|
|
# we can set a smarter prototype that will handle the lexical $_ |
|
79
|
|
|
|
|
|
|
# (also a 5.10+ feature). |
|
80
|
3
|
50
|
|
3
|
|
20
|
if ($] >= 5.010000) { |
|
81
|
3
|
|
|
|
|
20
|
set_prototype \&abs, '_'; |
|
82
|
3
|
|
|
|
|
14
|
set_prototype \&cos, '_'; |
|
83
|
3
|
|
|
|
|
11
|
set_prototype \&exp, '_'; |
|
84
|
3
|
|
|
|
|
10
|
set_prototype \&log, '_'; |
|
85
|
3
|
|
|
|
|
10
|
set_prototype \&sin, '_'; |
|
86
|
3
|
|
|
|
|
1529
|
set_prototype \&sqrt, '_'; |
|
87
|
|
|
|
|
|
|
} |
|
88
|
|
|
|
|
|
|
} |
|
89
|
|
|
|
|
|
|
|
|
90
|
|
|
|
|
|
|
my $i; |
|
91
|
|
|
|
|
|
|
my %LOGN; |
|
92
|
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
# Regular expression for floating point numbers. |
|
94
|
|
|
|
|
|
|
# These days we could use Scalar::Util::lln(), I guess. |
|
95
|
|
|
|
|
|
|
my $gre = qr'\s*([\+\-]?(?:(?:(?:\d+(?:_\d+)*(?:\.\d*(?:_\d+)*)?|\.\d+(?:_\d+)*)(?:[eE][\+\-]?\d+(?:_\d+)*)?))|inf)'i; |
|
96
|
|
|
|
|
|
|
|
|
97
|
|
|
|
|
|
|
require Exporter; |
|
98
|
|
|
|
|
|
|
|
|
99
|
|
|
|
|
|
|
our @ISA = qw(Exporter); |
|
100
|
|
|
|
|
|
|
|
|
101
|
|
|
|
|
|
|
my @trig = qw( |
|
102
|
|
|
|
|
|
|
pi |
|
103
|
|
|
|
|
|
|
tan |
|
104
|
|
|
|
|
|
|
csc cosec sec cot cotan |
|
105
|
|
|
|
|
|
|
asin acos atan |
|
106
|
|
|
|
|
|
|
acsc acosec asec acot acotan |
|
107
|
|
|
|
|
|
|
sinh cosh tanh |
|
108
|
|
|
|
|
|
|
csch cosech sech coth cotanh |
|
109
|
|
|
|
|
|
|
asinh acosh atanh |
|
110
|
|
|
|
|
|
|
acsch acosech asech acoth acotanh |
|
111
|
|
|
|
|
|
|
); |
|
112
|
|
|
|
|
|
|
|
|
113
|
|
|
|
|
|
|
our @EXPORT = (qw( |
|
114
|
|
|
|
|
|
|
i Re Im rho theta arg |
|
115
|
|
|
|
|
|
|
sqrt log ln |
|
116
|
|
|
|
|
|
|
log10 logn cbrt root |
|
117
|
|
|
|
|
|
|
cplx cplxe |
|
118
|
|
|
|
|
|
|
atan2 |
|
119
|
|
|
|
|
|
|
), |
|
120
|
|
|
|
|
|
|
@trig); |
|
121
|
|
|
|
|
|
|
|
|
122
|
|
|
|
|
|
|
my @pi = qw(pi pi2 pi4 pip2 pip4 Inf); |
|
123
|
|
|
|
|
|
|
|
|
124
|
|
|
|
|
|
|
our @EXPORT_OK = @pi; |
|
125
|
|
|
|
|
|
|
|
|
126
|
|
|
|
|
|
|
our %EXPORT_TAGS = ( |
|
127
|
|
|
|
|
|
|
'trig' => [@trig], |
|
128
|
|
|
|
|
|
|
'pi' => [@pi], |
|
129
|
|
|
|
|
|
|
); |
|
130
|
|
|
|
|
|
|
|
|
131
|
|
|
|
|
|
|
use overload |
|
132
|
3
|
|
|
|
|
74
|
'=' => \&_copy, |
|
133
|
|
|
|
|
|
|
'+=' => \&_plus, |
|
134
|
|
|
|
|
|
|
'+' => \&_plus, |
|
135
|
|
|
|
|
|
|
'-=' => \&_minus, |
|
136
|
|
|
|
|
|
|
'-' => \&_minus, |
|
137
|
|
|
|
|
|
|
'*=' => \&_multiply, |
|
138
|
|
|
|
|
|
|
'*' => \&_multiply, |
|
139
|
|
|
|
|
|
|
'/=' => \&_divide, |
|
140
|
|
|
|
|
|
|
'/' => \&_divide, |
|
141
|
|
|
|
|
|
|
'**=' => \&_power, |
|
142
|
|
|
|
|
|
|
'**' => \&_power, |
|
143
|
|
|
|
|
|
|
'==' => \&_numeq, |
|
144
|
|
|
|
|
|
|
'<=>' => \&_spaceship, |
|
145
|
|
|
|
|
|
|
'neg' => \&_negate, |
|
146
|
|
|
|
|
|
|
'~' => \&_conjugate, |
|
147
|
|
|
|
|
|
|
'abs' => \&abs, |
|
148
|
|
|
|
|
|
|
'sqrt' => \&sqrt, |
|
149
|
|
|
|
|
|
|
'exp' => \&exp, |
|
150
|
|
|
|
|
|
|
'log' => \&log, |
|
151
|
|
|
|
|
|
|
'sin' => \&sin, |
|
152
|
|
|
|
|
|
|
'cos' => \&cos, |
|
153
|
|
|
|
|
|
|
'atan2' => \&atan2, |
|
154
|
3
|
|
|
3
|
|
6109
|
'""' => \&_stringify; |
|
|
3
|
|
|
|
|
3262
|
|
|
155
|
|
|
|
|
|
|
|
|
156
|
|
|
|
|
|
|
# |
|
157
|
|
|
|
|
|
|
# Package "privates" |
|
158
|
|
|
|
|
|
|
# |
|
159
|
|
|
|
|
|
|
|
|
160
|
|
|
|
|
|
|
my %DISPLAY_FORMAT = ('style' => 'cartesian', |
|
161
|
|
|
|
|
|
|
'polar_pretty_print' => 1); |
|
162
|
|
|
|
|
|
|
my $eps = 1e-14; # Epsilon |
|
163
|
|
|
|
|
|
|
|
|
164
|
|
|
|
|
|
|
# |
|
165
|
|
|
|
|
|
|
# Object attributes (internal): |
|
166
|
|
|
|
|
|
|
# cartesian [real, imaginary] -- cartesian form |
|
167
|
|
|
|
|
|
|
# polar [rho, theta] -- polar form |
|
168
|
|
|
|
|
|
|
# c_dirty cartesian form not up-to-date |
|
169
|
|
|
|
|
|
|
# p_dirty polar form not up-to-date |
|
170
|
|
|
|
|
|
|
# display display format (package's global when not set) |
|
171
|
|
|
|
|
|
|
# |
|
172
|
|
|
|
|
|
|
|
|
173
|
|
|
|
|
|
|
# Die on bad *make() arguments. |
|
174
|
|
|
|
|
|
|
|
|
175
|
|
|
|
|
|
|
sub _cannot_make { |
|
176
|
0
|
|
|
0
|
|
0
|
die "@{[(caller(1))[3]]}: Cannot take $_[0] of '$_[1]'.\n"; |
|
|
0
|
|
|
|
|
0
|
|
|
177
|
|
|
|
|
|
|
} |
|
178
|
|
|
|
|
|
|
|
|
179
|
|
|
|
|
|
|
sub _make { |
|
180
|
748
|
|
|
748
|
|
981
|
my $arg = shift; |
|
181
|
748
|
|
|
|
|
837
|
my ($p, $q); |
|
182
|
|
|
|
|
|
|
|
|
183
|
748
|
100
|
|
|
|
4431
|
if ($arg =~ /^$gre$/) { |
|
|
|
100
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
184
|
570
|
|
|
|
|
1237
|
($p, $q) = ($1, 0); |
|
185
|
|
|
|
|
|
|
} elsif ($arg =~ /^(?:$gre)?$gre\s*i\s*$/) { |
|
186
|
177
|
|
100
|
|
|
865
|
($p, $q) = ($1 || 0, $2); |
|
187
|
|
|
|
|
|
|
} elsif ($arg =~ /^\s*\(\s*$gre\s*(?:,\s*$gre\s*)?\)\s*$/) { |
|
188
|
1
|
|
50
|
|
|
5
|
($p, $q) = ($1, $2 || 0); |
|
189
|
|
|
|
|
|
|
} |
|
190
|
|
|
|
|
|
|
|
|
191
|
748
|
50
|
|
|
|
1721
|
if (defined $p) { |
|
192
|
748
|
|
|
|
|
1480
|
$p =~ s/^\+//; |
|
193
|
748
|
|
|
|
|
900
|
$p =~ s/^(-?)inf$/"${1}9**9**9"/e; |
|
|
0
|
|
|
|
|
0
|
|
|
194
|
748
|
|
|
|
|
1317
|
$q =~ s/^\+//; |
|
195
|
748
|
|
|
|
|
907
|
$q =~ s/^(-?)inf$/"${1}9**9**9"/e; |
|
|
0
|
|
|
|
|
0
|
|
|
196
|
|
|
|
|
|
|
} |
|
197
|
|
|
|
|
|
|
|
|
198
|
748
|
|
|
|
|
2639
|
return ($p, $q); |
|
199
|
|
|
|
|
|
|
} |
|
200
|
|
|
|
|
|
|
|
|
201
|
|
|
|
|
|
|
sub _emake { |
|
202
|
13
|
|
|
13
|
|
23
|
my $arg = shift; |
|
203
|
13
|
|
|
|
|
13
|
my ($p, $q); |
|
204
|
|
|
|
|
|
|
|
|
205
|
13
|
100
|
|
|
|
342
|
if ($arg =~ /^\s*\[\s*$gre\s*(?:,\s*$gre\s*)?\]\s*$/) { |
|
|
|
100
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
206
|
6
|
|
100
|
|
|
53
|
($p, $q) = ($1, $2 || 0); |
|
207
|
|
|
|
|
|
|
} elsif ($arg =~ m!^\s*\[\s*$gre\s*(?:,\s*([-+]?\d*\s*)?pi(?:/\s*(\d+))?\s*)?\]\s*$!) { |
|
208
|
6
|
100
|
100
|
|
|
75
|
($p, $q) = ($1, ($2 eq '-' ? -1 : ($2 || 1)) * pi() / ($3 || 1)); |
|
|
|
|
50
|
|
|
|
|
|
209
|
|
|
|
|
|
|
} elsif ($arg =~ /^\s*\[\s*$gre\s*\]\s*$/) { |
|
210
|
0
|
|
|
|
|
0
|
($p, $q) = ($1, 0); |
|
211
|
|
|
|
|
|
|
} elsif ($arg =~ /^\s*$gre\s*$/) { |
|
212
|
1
|
|
|
|
|
27
|
($p, $q) = ($1, 0); |
|
213
|
|
|
|
|
|
|
} |
|
214
|
|
|
|
|
|
|
|
|
215
|
13
|
50
|
|
|
|
36
|
if (defined $p) { |
|
216
|
13
|
|
|
|
|
19
|
$p =~ s/^\+//; |
|
217
|
13
|
|
|
|
|
34
|
$q =~ s/^\+//; |
|
218
|
13
|
|
|
|
|
14
|
$p =~ s/^(-?)inf$/"${1}9**9**9"/e; |
|
|
0
|
|
|
|
|
0
|
|
|
219
|
13
|
|
|
|
|
28
|
$q =~ s/^(-?)inf$/"${1}9**9**9"/e; |
|
|
0
|
|
|
|
|
0
|
|
|
220
|
|
|
|
|
|
|
} |
|
221
|
|
|
|
|
|
|
|
|
222
|
13
|
|
|
|
|
52
|
return ($p, $q); |
|
223
|
|
|
|
|
|
|
} |
|
224
|
|
|
|
|
|
|
|
|
225
|
|
|
|
|
|
|
sub _copy { |
|
226
|
1
|
|
|
1
|
|
7
|
my $self = shift; |
|
227
|
1
|
|
|
|
|
4
|
my $clone = {%$self}; |
|
228
|
1
|
50
|
|
|
|
4
|
if ($self->{'cartesian'}) { |
|
229
|
1
|
|
|
|
|
8
|
$clone->{'cartesian'} = [@{$self->{'cartesian'}}]; |
|
|
1
|
|
|
|
|
5
|
|
|
230
|
|
|
|
|
|
|
} |
|
231
|
1
|
50
|
|
|
|
4
|
if ($self->{'polar'}) { |
|
232
|
0
|
|
|
|
|
0
|
$clone->{'polar'} = [@{$self->{'polar'}}]; |
|
|
0
|
|
|
|
|
0
|
|
|
233
|
|
|
|
|
|
|
} |
|
234
|
1
|
|
|
|
|
2
|
bless $clone,__PACKAGE__; |
|
235
|
1
|
|
|
|
|
5
|
return $clone; |
|
236
|
|
|
|
|
|
|
} |
|
237
|
|
|
|
|
|
|
|
|
238
|
|
|
|
|
|
|
# |
|
239
|
|
|
|
|
|
|
# ->make |
|
240
|
|
|
|
|
|
|
# |
|
241
|
|
|
|
|
|
|
# Create a new complex number (cartesian form) |
|
242
|
|
|
|
|
|
|
# |
|
243
|
|
|
|
|
|
|
sub make { |
|
244
|
6500
|
|
|
6500
|
0
|
16308
|
my $self = bless {}, shift; |
|
245
|
6500
|
|
|
|
|
8027
|
my ($re, $im); |
|
246
|
6500
|
100
|
|
|
|
21235
|
if (@_ == 0) { |
|
|
|
100
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
247
|
2
|
|
|
|
|
4
|
($re, $im) = (0, 0); |
|
248
|
|
|
|
|
|
|
} elsif (@_ == 1) { |
|
249
|
757
|
100
|
|
|
|
1981
|
return (ref $self)->emake($_[0]) |
|
250
|
|
|
|
|
|
|
if ($_[0] =~ /^\s*\[/); |
|
251
|
748
|
|
|
|
|
2083
|
($re, $im) = _make($_[0]); |
|
252
|
|
|
|
|
|
|
} elsif (@_ == 2) { |
|
253
|
5741
|
|
|
|
|
9830
|
($re, $im) = @_; |
|
254
|
|
|
|
|
|
|
} |
|
255
|
6491
|
50
|
|
|
|
14051
|
if (defined $re) { |
|
256
|
6491
|
50
|
|
|
|
57606
|
_cannot_make("real part", $re) unless $re =~ /^$gre$/; |
|
257
|
|
|
|
|
|
|
} |
|
258
|
6491
|
|
100
|
|
|
24874
|
$im ||= 0; |
|
259
|
6491
|
50
|
|
|
|
43502
|
_cannot_make("imaginary part", $im) unless $im =~ /^$gre$/; |
|
260
|
6491
|
|
|
|
|
19967
|
$self->_set_cartesian([$re, $im ]); |
|
261
|
6491
|
|
|
|
|
13504
|
$self->display_format('cartesian'); |
|
262
|
|
|
|
|
|
|
|
|
263
|
6491
|
|
|
|
|
51224
|
return $self; |
|
264
|
|
|
|
|
|
|
} |
|
265
|
|
|
|
|
|
|
|
|
266
|
|
|
|
|
|
|
# |
|
267
|
|
|
|
|
|
|
# ->emake |
|
268
|
|
|
|
|
|
|
# |
|
269
|
|
|
|
|
|
|
# Create a new complex number (exponential form) |
|
270
|
|
|
|
|
|
|
# |
|
271
|
|
|
|
|
|
|
sub emake { |
|
272
|
551
|
|
|
551
|
0
|
2097
|
my $self = bless {}, shift; |
|
273
|
551
|
|
|
|
|
633
|
my ($rho, $theta); |
|
274
|
551
|
100
|
|
|
|
1880
|
if (@_ == 0) { |
|
|
|
100
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
275
|
2
|
|
|
|
|
5
|
($rho, $theta) = (0, 0); |
|
276
|
|
|
|
|
|
|
} elsif (@_ == 1) { |
|
277
|
13
|
50
|
33
|
|
|
57
|
return (ref $self)->make($_[0]) |
|
278
|
|
|
|
|
|
|
if ($_[0] =~ /^\s*\(/ || $_[0] =~ /i\s*$/); |
|
279
|
13
|
|
|
|
|
45
|
($rho, $theta) = _emake($_[0]); |
|
280
|
|
|
|
|
|
|
} elsif (@_ == 2) { |
|
281
|
536
|
|
|
|
|
1003
|
($rho, $theta) = @_; |
|
282
|
|
|
|
|
|
|
} |
|
283
|
551
|
50
|
33
|
|
|
2217
|
if (defined $rho && defined $theta) { |
|
284
|
551
|
100
|
|
|
|
1239
|
if ($rho < 0) { |
|
285
|
2
|
|
|
|
|
7
|
$rho = -$rho; |
|
286
|
2
|
50
|
|
|
|
13
|
$theta = ($theta <= 0) ? $theta + pi() : $theta - pi(); |
|
287
|
|
|
|
|
|
|
} |
|
288
|
|
|
|
|
|
|
} |
|
289
|
551
|
50
|
|
|
|
889
|
if (defined $rho) { |
|
290
|
551
|
50
|
|
|
|
5477
|
_cannot_make("rho", $rho) unless $rho =~ /^$gre$/; |
|
291
|
|
|
|
|
|
|
} |
|
292
|
551
|
|
100
|
|
|
1137
|
$theta ||= 0; |
|
293
|
551
|
50
|
|
|
|
4178
|
_cannot_make("theta", $theta) unless $theta =~ /^$gre$/; |
|
294
|
551
|
|
|
|
|
1673
|
$self->_set_polar([$rho, $theta]); |
|
295
|
551
|
|
|
|
|
1123
|
$self->display_format('polar'); |
|
296
|
|
|
|
|
|
|
|
|
297
|
551
|
|
|
|
|
2860
|
return $self; |
|
298
|
|
|
|
|
|
|
} |
|
299
|
|
|
|
|
|
|
|
|
300
|
1
|
|
|
1
|
0
|
205728
|
sub new { &make } # For backward compatibility only. |
|
301
|
|
|
|
|
|
|
|
|
302
|
|
|
|
|
|
|
# |
|
303
|
|
|
|
|
|
|
# cplx |
|
304
|
|
|
|
|
|
|
# |
|
305
|
|
|
|
|
|
|
# Creates a complex number from a (re, im) tuple. |
|
306
|
|
|
|
|
|
|
# This avoids the burden of writing Math::Complex->make(re, im). |
|
307
|
|
|
|
|
|
|
# |
|
308
|
|
|
|
|
|
|
sub cplx { |
|
309
|
1594
|
|
|
1594
|
0
|
59082
|
return __PACKAGE__->make(@_); |
|
310
|
|
|
|
|
|
|
} |
|
311
|
|
|
|
|
|
|
|
|
312
|
|
|
|
|
|
|
# |
|
313
|
|
|
|
|
|
|
# cplxe |
|
314
|
|
|
|
|
|
|
# |
|
315
|
|
|
|
|
|
|
# Creates a complex number from a (rho, theta) tuple. |
|
316
|
|
|
|
|
|
|
# This avoids the burden of writing Math::Complex->emake(rho, theta). |
|
317
|
|
|
|
|
|
|
# |
|
318
|
|
|
|
|
|
|
sub cplxe { |
|
319
|
249
|
|
|
249
|
0
|
2791
|
return __PACKAGE__->emake(@_); |
|
320
|
|
|
|
|
|
|
} |
|
321
|
|
|
|
|
|
|
|
|
322
|
|
|
|
|
|
|
# |
|
323
|
|
|
|
|
|
|
# pi |
|
324
|
|
|
|
|
|
|
# |
|
325
|
|
|
|
|
|
|
# The number defined as pi = 180 degrees |
|
326
|
|
|
|
|
|
|
# |
|
327
|
|
|
|
|
|
|
sub pi () { 4 * CORE::atan2(1, 1) } |
|
328
|
|
|
|
|
|
|
|
|
329
|
|
|
|
|
|
|
# |
|
330
|
|
|
|
|
|
|
# pi2 |
|
331
|
|
|
|
|
|
|
# |
|
332
|
|
|
|
|
|
|
# The full circle |
|
333
|
|
|
|
|
|
|
# |
|
334
|
|
|
|
|
|
|
sub pi2 () { 2 * pi } |
|
335
|
|
|
|
|
|
|
|
|
336
|
|
|
|
|
|
|
# |
|
337
|
|
|
|
|
|
|
# pi4 |
|
338
|
|
|
|
|
|
|
# |
|
339
|
|
|
|
|
|
|
# The full circle twice. |
|
340
|
|
|
|
|
|
|
# |
|
341
|
|
|
|
|
|
|
sub pi4 () { 4 * pi } |
|
342
|
|
|
|
|
|
|
|
|
343
|
|
|
|
|
|
|
# |
|
344
|
|
|
|
|
|
|
# pip2 |
|
345
|
|
|
|
|
|
|
# |
|
346
|
|
|
|
|
|
|
# The quarter circle |
|
347
|
|
|
|
|
|
|
# |
|
348
|
|
|
|
|
|
|
sub pip2 () { pi / 2 } |
|
349
|
|
|
|
|
|
|
|
|
350
|
|
|
|
|
|
|
# |
|
351
|
|
|
|
|
|
|
# pip4 |
|
352
|
|
|
|
|
|
|
# |
|
353
|
|
|
|
|
|
|
# The eighth circle. |
|
354
|
|
|
|
|
|
|
# |
|
355
|
|
|
|
|
|
|
sub pip4 () { pi / 4 } |
|
356
|
|
|
|
|
|
|
|
|
357
|
|
|
|
|
|
|
# |
|
358
|
|
|
|
|
|
|
# _uplog10 |
|
359
|
|
|
|
|
|
|
# |
|
360
|
|
|
|
|
|
|
# Used in log10(). |
|
361
|
|
|
|
|
|
|
# |
|
362
|
|
|
|
|
|
|
sub _uplog10 () { 1 / CORE::log(10) } |
|
363
|
|
|
|
|
|
|
|
|
364
|
|
|
|
|
|
|
# |
|
365
|
|
|
|
|
|
|
# i |
|
366
|
|
|
|
|
|
|
# |
|
367
|
|
|
|
|
|
|
# The number defined as i*i = -1; |
|
368
|
|
|
|
|
|
|
# |
|
369
|
|
|
|
|
|
|
sub i () { |
|
370
|
552
|
100
|
|
552
|
0
|
3068
|
return $i if ($i); |
|
371
|
1
|
|
|
|
|
6
|
$i = bless {}; |
|
372
|
1
|
|
|
|
|
6
|
$i->{'cartesian'} = [0, 1]; |
|
373
|
1
|
|
|
|
|
5
|
$i->{'polar'} = [1, pip2]; |
|
374
|
1
|
|
|
|
|
3
|
$i->{c_dirty} = 0; |
|
375
|
1
|
|
|
|
|
5
|
$i->{p_dirty} = 0; |
|
376
|
1
|
|
|
|
|
7
|
return $i; |
|
377
|
|
|
|
|
|
|
} |
|
378
|
|
|
|
|
|
|
|
|
379
|
|
|
|
|
|
|
# |
|
380
|
|
|
|
|
|
|
# _ip2 |
|
381
|
|
|
|
|
|
|
# |
|
382
|
|
|
|
|
|
|
# Half of i. |
|
383
|
|
|
|
|
|
|
# |
|
384
|
70
|
|
|
70
|
|
110
|
sub _ip2 () { i / 2 } |
|
385
|
|
|
|
|
|
|
|
|
386
|
|
|
|
|
|
|
# |
|
387
|
|
|
|
|
|
|
# Attribute access/set routines |
|
388
|
|
|
|
|
|
|
# |
|
389
|
|
|
|
|
|
|
|
|
390
|
14755
|
100
|
|
14755
|
|
55215
|
sub _cartesian {$_[0]->{c_dirty} ? |
|
391
|
|
|
|
|
|
|
$_[0]->_update_cartesian : $_[0]->{'cartesian'}} |
|
392
|
1813
|
100
|
|
1813
|
|
6671
|
sub _polar {$_[0]->{p_dirty} ? |
|
393
|
|
|
|
|
|
|
$_[0]->_update_polar : $_[0]->{'polar'}} |
|
394
|
|
|
|
|
|
|
|
|
395
|
6505
|
|
|
6505
|
|
14203
|
sub _set_cartesian { $_[0]->{p_dirty}++; $_[0]->{c_dirty} = 0; |
|
|
6505
|
|
|
|
|
10344
|
|
|
396
|
6505
|
|
|
|
|
12495
|
$_[0]->{'cartesian'} = $_[1] } |
|
397
|
551
|
|
|
551
|
|
1167
|
sub _set_polar { $_[0]->{c_dirty}++; $_[0]->{p_dirty} = 0; |
|
|
551
|
|
|
|
|
920
|
|
|
398
|
551
|
|
|
|
|
970
|
$_[0]->{'polar'} = $_[1] } |
|
399
|
|
|
|
|
|
|
|
|
400
|
|
|
|
|
|
|
# |
|
401
|
|
|
|
|
|
|
# ->_update_cartesian |
|
402
|
|
|
|
|
|
|
# |
|
403
|
|
|
|
|
|
|
# Recompute and return the cartesian form, given accurate polar form. |
|
404
|
|
|
|
|
|
|
# |
|
405
|
|
|
|
|
|
|
sub _update_cartesian { |
|
406
|
501
|
|
|
501
|
|
590
|
my $self = shift; |
|
407
|
501
|
|
|
|
|
532
|
my ($r, $t) = @{$self->{'polar'}}; |
|
|
501
|
|
|
|
|
997
|
|
|
408
|
501
|
|
|
|
|
688
|
$self->{c_dirty} = 0; |
|
409
|
501
|
|
|
|
|
2967
|
return $self->{'cartesian'} = [$r * CORE::cos($t), $r * CORE::sin($t)]; |
|
410
|
|
|
|
|
|
|
} |
|
411
|
|
|
|
|
|
|
|
|
412
|
|
|
|
|
|
|
# |
|
413
|
|
|
|
|
|
|
# |
|
414
|
|
|
|
|
|
|
# ->_update_polar |
|
415
|
|
|
|
|
|
|
# |
|
416
|
|
|
|
|
|
|
# Recompute and return the polar form, given accurate cartesian form. |
|
417
|
|
|
|
|
|
|
# |
|
418
|
|
|
|
|
|
|
sub _update_polar { |
|
419
|
1144
|
|
|
1144
|
|
1392
|
my $self = shift; |
|
420
|
1144
|
|
|
|
|
1142
|
my ($x, $y) = @{$self->{'cartesian'}}; |
|
|
1144
|
|
|
|
|
2417
|
|
|
421
|
1144
|
|
|
|
|
1807
|
$self->{p_dirty} = 0; |
|
422
|
1144
|
100
|
100
|
|
|
8651
|
return $self->{'polar'} = [0, 0] if $x == 0 && $y == 0; |
|
423
|
831
|
|
|
|
|
16985
|
return $self->{'polar'} = [CORE::sqrt($x*$x + $y*$y), |
|
424
|
|
|
|
|
|
|
CORE::atan2($y, $x)]; |
|
425
|
|
|
|
|
|
|
} |
|
426
|
|
|
|
|
|
|
|
|
427
|
|
|
|
|
|
|
# |
|
428
|
|
|
|
|
|
|
# (_plus) |
|
429
|
|
|
|
|
|
|
# |
|
430
|
|
|
|
|
|
|
# Computes z1+z2. |
|
431
|
|
|
|
|
|
|
# |
|
432
|
|
|
|
|
|
|
sub _plus { |
|
433
|
484
|
|
|
484
|
|
849
|
my ($z1, $z2, $regular) = @_; |
|
434
|
484
|
|
|
|
|
499
|
my ($re1, $im1) = @{$z1->_cartesian}; |
|
|
484
|
|
|
|
|
1042
|
|
|
435
|
484
|
100
|
|
|
|
1198
|
$z2 = cplx($z2) unless ref $z2; |
|
436
|
484
|
50
|
|
|
|
2740
|
my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); |
|
|
484
|
|
|
|
|
913
|
|
|
437
|
484
|
100
|
|
|
|
1788
|
unless (defined $regular) { |
|
438
|
7
|
|
|
|
|
27
|
$z1->_set_cartesian([$re1 + $re2, $im1 + $im2]); |
|
439
|
7
|
|
|
|
|
108
|
return $z1; |
|
440
|
|
|
|
|
|
|
} |
|
441
|
477
|
|
|
|
|
1838
|
return (ref $z1)->make($re1 + $re2, $im1 + $im2); |
|
442
|
|
|
|
|
|
|
} |
|
443
|
|
|
|
|
|
|
|
|
444
|
|
|
|
|
|
|
# |
|
445
|
|
|
|
|
|
|
# (_minus) |
|
446
|
|
|
|
|
|
|
# |
|
447
|
|
|
|
|
|
|
# Computes z1-z2. |
|
448
|
|
|
|
|
|
|
# |
|
449
|
|
|
|
|
|
|
sub _minus { |
|
450
|
1063
|
|
|
1063
|
|
5912
|
my ($z1, $z2, $inverted) = @_; |
|
451
|
1063
|
|
|
|
|
1274
|
my ($re1, $im1) = @{$z1->_cartesian}; |
|
|
1063
|
|
|
|
|
2025
|
|
|
452
|
1063
|
100
|
|
|
|
2593
|
$z2 = cplx($z2) unless ref $z2; |
|
453
|
1063
|
|
|
|
|
1422
|
my ($re2, $im2) = @{$z2->_cartesian}; |
|
|
1063
|
|
|
|
|
2110
|
|
|
454
|
1063
|
100
|
|
|
|
2279
|
unless (defined $inverted) { |
|
455
|
7
|
|
|
|
|
20
|
$z1->_set_cartesian([$re1 - $re2, $im1 - $im2]); |
|
456
|
7
|
|
|
|
|
82
|
return $z1; |
|
457
|
|
|
|
|
|
|
} |
|
458
|
1056
|
100
|
|
|
|
5356
|
return $inverted ? |
|
459
|
|
|
|
|
|
|
(ref $z1)->make($re2 - $re1, $im2 - $im1) : |
|
460
|
|
|
|
|
|
|
(ref $z1)->make($re1 - $re2, $im1 - $im2); |
|
461
|
|
|
|
|
|
|
|
|
462
|
|
|
|
|
|
|
} |
|
463
|
|
|
|
|
|
|
|
|
464
|
|
|
|
|
|
|
# |
|
465
|
|
|
|
|
|
|
# (_multiply) |
|
466
|
|
|
|
|
|
|
# |
|
467
|
|
|
|
|
|
|
# Computes z1*z2. |
|
468
|
|
|
|
|
|
|
# |
|
469
|
|
|
|
|
|
|
sub _multiply { |
|
470
|
531
|
|
|
531
|
|
1040
|
my ($z1, $z2, $regular) = @_; |
|
471
|
531
|
100
|
100
|
|
|
2495
|
if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { |
|
|
|
|
100
|
|
|
|
|
|
472
|
|
|
|
|
|
|
# if both polar better use polar to avoid rounding errors |
|
473
|
32
|
|
|
|
|
41
|
my ($r1, $t1) = @{$z1->_polar}; |
|
|
32
|
|
|
|
|
76
|
|
|
474
|
32
|
|
|
|
|
47
|
my ($r2, $t2) = @{$z2->_polar}; |
|
|
32
|
|
|
|
|
66
|
|
|
475
|
32
|
|
|
|
|
60
|
my $t = $t1 + $t2; |
|
476
|
32
|
100
|
|
|
|
96
|
if ($t > pi()) { $t -= pi2 } |
|
|
8
|
50
|
|
|
|
14
|
|
|
477
|
0
|
|
|
|
|
0
|
elsif ($t <= -pi()) { $t += pi2 } |
|
478
|
32
|
50
|
|
|
|
66
|
unless (defined $regular) { |
|
479
|
0
|
|
|
|
|
0
|
$z1->_set_polar([$r1 * $r2, $t]); |
|
480
|
0
|
|
|
|
|
0
|
return $z1; |
|
481
|
|
|
|
|
|
|
} |
|
482
|
32
|
|
|
|
|
118
|
return (ref $z1)->emake($r1 * $r2, $t); |
|
483
|
|
|
|
|
|
|
} else { |
|
484
|
499
|
|
|
|
|
527
|
my ($x1, $y1) = @{$z1->_cartesian}; |
|
|
499
|
|
|
|
|
1100
|
|
|
485
|
499
|
100
|
|
|
|
1124
|
if (ref $z2) { |
|
486
|
302
|
|
|
|
|
280
|
my ($x2, $y2) = @{$z2->_cartesian}; |
|
|
302
|
|
|
|
|
497
|
|
|
487
|
302
|
|
|
|
|
1523
|
return (ref $z1)->make($x1*$x2-$y1*$y2, $x1*$y2+$y1*$x2); |
|
488
|
|
|
|
|
|
|
} else { |
|
489
|
197
|
|
|
|
|
708
|
return (ref $z1)->make($x1*$z2, $y1*$z2); |
|
490
|
|
|
|
|
|
|
} |
|
491
|
|
|
|
|
|
|
} |
|
492
|
|
|
|
|
|
|
} |
|
493
|
|
|
|
|
|
|
|
|
494
|
|
|
|
|
|
|
# |
|
495
|
|
|
|
|
|
|
# _divbyzero |
|
496
|
|
|
|
|
|
|
# |
|
497
|
|
|
|
|
|
|
# Die on division by zero. |
|
498
|
|
|
|
|
|
|
# |
|
499
|
|
|
|
|
|
|
sub _divbyzero { |
|
500
|
16
|
|
|
16
|
|
32
|
my $mess = "$_[0]: Division by zero.\n"; |
|
501
|
|
|
|
|
|
|
|
|
502
|
16
|
100
|
|
|
|
31
|
if (defined $_[1]) { |
|
503
|
10
|
|
|
|
|
15
|
$mess .= "(Because in the definition of $_[0], the divisor "; |
|
504
|
10
|
100
|
|
|
|
22
|
$mess .= "$_[1] " unless ("$_[1]" eq '0'); |
|
505
|
10
|
|
|
|
|
11
|
$mess .= "is 0)\n"; |
|
506
|
|
|
|
|
|
|
} |
|
507
|
|
|
|
|
|
|
|
|
508
|
16
|
|
|
|
|
85
|
my @up = caller(1); |
|
509
|
|
|
|
|
|
|
|
|
510
|
16
|
|
|
|
|
40
|
$mess .= "Died at $up[1] line $up[2].\n"; |
|
511
|
|
|
|
|
|
|
|
|
512
|
16
|
|
|
|
|
311
|
die $mess; |
|
513
|
|
|
|
|
|
|
} |
|
514
|
|
|
|
|
|
|
|
|
515
|
|
|
|
|
|
|
# |
|
516
|
|
|
|
|
|
|
# (_divide) |
|
517
|
|
|
|
|
|
|
# |
|
518
|
|
|
|
|
|
|
# Computes z1/z2. |
|
519
|
|
|
|
|
|
|
# |
|
520
|
|
|
|
|
|
|
sub _divide { |
|
521
|
983
|
|
|
983
|
|
2005
|
my ($z1, $z2, $inverted) = @_; |
|
522
|
983
|
100
|
100
|
|
|
3915
|
if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { |
|
|
|
|
66
|
|
|
|
|
|
523
|
|
|
|
|
|
|
# if both polar better use polar to avoid rounding errors |
|
524
|
2
|
|
|
|
|
3
|
my ($r1, $t1) = @{$z1->_polar}; |
|
|
2
|
|
|
|
|
5
|
|
|
525
|
2
|
|
|
|
|
3
|
my ($r2, $t2) = @{$z2->_polar}; |
|
|
2
|
|
|
|
|
6
|
|
|
526
|
2
|
|
|
|
|
3
|
my $t; |
|
527
|
2
|
50
|
|
|
|
6
|
if ($inverted) { |
|
528
|
0
|
0
|
|
|
|
0
|
_divbyzero "$z2/0" if ($r1 == 0); |
|
529
|
0
|
|
|
|
|
0
|
$t = $t2 - $t1; |
|
530
|
0
|
0
|
|
|
|
0
|
if ($t > pi()) { $t -= pi2 } |
|
|
0
|
0
|
|
|
|
0
|
|
|
531
|
0
|
|
|
|
|
0
|
elsif ($t <= -pi()) { $t += pi2 } |
|
532
|
0
|
|
|
|
|
0
|
return (ref $z1)->emake($r2 / $r1, $t); |
|
533
|
|
|
|
|
|
|
} else { |
|
534
|
2
|
50
|
|
|
|
6
|
_divbyzero "$z1/0" if ($r2 == 0); |
|
535
|
2
|
|
|
|
|
4
|
$t = $t1 - $t2; |
|
536
|
2
|
50
|
|
|
|
9
|
if ($t > pi()) { $t -= pi2 } |
|
|
0
|
50
|
|
|
|
0
|
|
|
537
|
0
|
|
|
|
|
0
|
elsif ($t <= -pi()) { $t += pi2 } |
|
538
|
2
|
|
|
|
|
6
|
return (ref $z1)->emake($r1 / $r2, $t); |
|
539
|
|
|
|
|
|
|
} |
|
540
|
|
|
|
|
|
|
} else { |
|
541
|
981
|
|
|
|
|
999
|
my ($d, $x2, $y2); |
|
542
|
981
|
100
|
|
|
|
1606
|
if ($inverted) { |
|
543
|
463
|
|
|
|
|
516
|
($x2, $y2) = @{$z1->_cartesian}; |
|
|
463
|
|
|
|
|
890
|
|
|
544
|
463
|
|
|
|
|
912
|
$d = $x2*$x2 + $y2*$y2; |
|
545
|
463
|
50
|
|
|
|
945
|
_divbyzero "$z2/0" if $d == 0; |
|
546
|
463
|
|
|
|
|
1755
|
return (ref $z1)->make(($x2*$z2)/$d, -($y2*$z2)/$d); |
|
547
|
|
|
|
|
|
|
} else { |
|
548
|
518
|
|
|
|
|
508
|
my ($x1, $y1) = @{$z1->_cartesian}; |
|
|
518
|
|
|
|
|
941
|
|
|
549
|
518
|
100
|
|
|
|
1180
|
if (ref $z2) { |
|
550
|
333
|
|
|
|
|
332
|
($x2, $y2) = @{$z2->_cartesian}; |
|
|
333
|
|
|
|
|
543
|
|
|
551
|
333
|
|
|
|
|
624
|
$d = $x2*$x2 + $y2*$y2; |
|
552
|
333
|
50
|
|
|
|
649
|
_divbyzero "$z1/0" if $d == 0; |
|
553
|
333
|
|
|
|
|
513
|
my $u = ($x1*$x2 + $y1*$y2)/$d; |
|
554
|
333
|
|
|
|
|
608
|
my $v = ($y1*$x2 - $x1*$y2)/$d; |
|
555
|
333
|
|
|
|
|
911
|
return (ref $z1)->make($u, $v); |
|
556
|
|
|
|
|
|
|
} else { |
|
557
|
185
|
100
|
|
|
|
350
|
_divbyzero "$z1/0" if $z2 == 0; |
|
558
|
184
|
|
|
|
|
587
|
return (ref $z1)->make($x1/$z2, $y1/$z2); |
|
559
|
|
|
|
|
|
|
} |
|
560
|
|
|
|
|
|
|
} |
|
561
|
|
|
|
|
|
|
} |
|
562
|
|
|
|
|
|
|
} |
|
563
|
|
|
|
|
|
|
|
|
564
|
|
|
|
|
|
|
# |
|
565
|
|
|
|
|
|
|
# (_power) |
|
566
|
|
|
|
|
|
|
# |
|
567
|
|
|
|
|
|
|
# Computes z1**z2 = exp(z2 * log z1)). |
|
568
|
|
|
|
|
|
|
# |
|
569
|
|
|
|
|
|
|
sub _power { |
|
570
|
97
|
|
|
97
|
|
2029
|
my ($z1, $z2, $inverted) = @_; |
|
571
|
97
|
50
|
|
|
|
173
|
if ($inverted) { |
|
572
|
0
|
0
|
0
|
|
|
0
|
return 1 if $z1 == 0 || $z2 == 1; |
|
573
|
0
|
0
|
0
|
|
|
0
|
return 0 if $z2 == 0 && Re($z1) > 0; |
|
574
|
|
|
|
|
|
|
} else { |
|
575
|
97
|
100
|
100
|
|
|
306
|
return 1 if $z2 == 0 || $z1 == 1; |
|
576
|
87
|
100
|
66
|
|
|
159
|
return 0 if $z1 == 0 && Re($z2) > 0; |
|
577
|
|
|
|
|
|
|
} |
|
578
|
83
|
50
|
|
|
|
227
|
my $w = $inverted ? &exp($z1 * &log($z2)) |
|
579
|
|
|
|
|
|
|
: &exp($z2 * &log($z1)); |
|
580
|
|
|
|
|
|
|
# If both arguments cartesian, return cartesian, else polar. |
|
581
|
83
|
|
|
|
|
160
|
return $z1->{c_dirty} == 0 && |
|
582
|
|
|
|
|
|
|
(not ref $z2 or $z2->{c_dirty} == 0) ? |
|
583
|
83
|
50
|
33
|
|
|
758
|
cplx(@{$w->_cartesian}) : $w; |
|
584
|
|
|
|
|
|
|
} |
|
585
|
|
|
|
|
|
|
|
|
586
|
|
|
|
|
|
|
# |
|
587
|
|
|
|
|
|
|
# (_spaceship) |
|
588
|
|
|
|
|
|
|
# |
|
589
|
|
|
|
|
|
|
# Computes z1 <=> z2. |
|
590
|
|
|
|
|
|
|
# Sorts on the real part first, then on the imaginary part. Thus 2-4i < 3+8i. |
|
591
|
|
|
|
|
|
|
# |
|
592
|
|
|
|
|
|
|
sub _spaceship { |
|
593
|
4
|
|
|
4
|
|
33
|
my ($z1, $z2, $inverted) = @_; |
|
594
|
4
|
50
|
|
|
|
12
|
my ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0); |
|
|
4
|
|
|
|
|
12
|
|
|
595
|
4
|
50
|
|
|
|
12
|
my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); |
|
|
4
|
|
|
|
|
8
|
|
|
596
|
4
|
50
|
|
|
|
11
|
my $sgn = $inverted ? -1 : 1; |
|
597
|
4
|
100
|
|
|
|
44
|
return $sgn * ($re1 <=> $re2) if $re1 != $re2; |
|
598
|
2
|
|
|
|
|
36
|
return $sgn * ($im1 <=> $im2); |
|
599
|
|
|
|
|
|
|
} |
|
600
|
|
|
|
|
|
|
|
|
601
|
|
|
|
|
|
|
# |
|
602
|
|
|
|
|
|
|
# (_numeq) |
|
603
|
|
|
|
|
|
|
# |
|
604
|
|
|
|
|
|
|
# Computes z1 == z2. |
|
605
|
|
|
|
|
|
|
# |
|
606
|
|
|
|
|
|
|
# (Required in addition to _spaceship() because of NaNs.) |
|
607
|
|
|
|
|
|
|
sub _numeq { |
|
608
|
1599
|
|
|
1599
|
|
3181
|
my ($z1, $z2, $inverted) = @_; |
|
609
|
1599
|
50
|
|
|
|
3282
|
my ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0); |
|
|
1599
|
|
|
|
|
2924
|
|
|
610
|
1599
|
100
|
|
|
|
3824
|
my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); |
|
|
467
|
|
|
|
|
721
|
|
|
611
|
1599
|
100
|
100
|
|
|
7964
|
return $re1 == $re2 && $im1 == $im2 ? 1 : 0; |
|
612
|
|
|
|
|
|
|
} |
|
613
|
|
|
|
|
|
|
|
|
614
|
|
|
|
|
|
|
# |
|
615
|
|
|
|
|
|
|
# (_negate) |
|
616
|
|
|
|
|
|
|
# |
|
617
|
|
|
|
|
|
|
# Computes -z. |
|
618
|
|
|
|
|
|
|
# |
|
619
|
|
|
|
|
|
|
sub _negate { |
|
620
|
183
|
|
|
183
|
|
594
|
my ($z) = @_; |
|
621
|
183
|
100
|
|
|
|
435
|
if ($z->{c_dirty}) { |
|
622
|
1
|
|
|
|
|
2
|
my ($r, $t) = @{$z->_polar}; |
|
|
1
|
|
|
|
|
3
|
|
|
623
|
1
|
50
|
|
|
|
7
|
$t = ($t <= 0) ? $t + pi : $t - pi; |
|
624
|
1
|
|
|
|
|
4
|
return (ref $z)->emake($r, $t); |
|
625
|
|
|
|
|
|
|
} |
|
626
|
182
|
|
|
|
|
210
|
my ($re, $im) = @{$z->_cartesian}; |
|
|
182
|
|
|
|
|
386
|
|
|
627
|
182
|
|
|
|
|
589
|
return (ref $z)->make(-$re, -$im); |
|
628
|
|
|
|
|
|
|
} |
|
629
|
|
|
|
|
|
|
|
|
630
|
|
|
|
|
|
|
# |
|
631
|
|
|
|
|
|
|
# (_conjugate) |
|
632
|
|
|
|
|
|
|
# |
|
633
|
|
|
|
|
|
|
# Compute complex's _conjugate. |
|
634
|
|
|
|
|
|
|
# |
|
635
|
|
|
|
|
|
|
sub _conjugate { |
|
636
|
18
|
|
|
18
|
|
11503
|
my ($z) = @_; |
|
637
|
18
|
100
|
|
|
|
78
|
if ($z->{c_dirty}) { |
|
638
|
3
|
|
|
|
|
6
|
my ($r, $t) = @{$z->_polar}; |
|
|
3
|
|
|
|
|
8
|
|
|
639
|
3
|
|
|
|
|
15
|
return (ref $z)->emake($r, -$t); |
|
640
|
|
|
|
|
|
|
} |
|
641
|
15
|
|
|
|
|
26
|
my ($re, $im) = @{$z->_cartesian}; |
|
|
15
|
|
|
|
|
57
|
|
|
642
|
15
|
|
|
|
|
78
|
return (ref $z)->make($re, -$im); |
|
643
|
|
|
|
|
|
|
} |
|
644
|
|
|
|
|
|
|
|
|
645
|
|
|
|
|
|
|
# |
|
646
|
|
|
|
|
|
|
# (abs) |
|
647
|
|
|
|
|
|
|
# |
|
648
|
|
|
|
|
|
|
# Compute or set complex's norm (rho). |
|
649
|
|
|
|
|
|
|
# |
|
650
|
|
|
|
|
|
|
sub abs { |
|
651
|
811
|
100
|
|
811
|
0
|
3201
|
my ($z, $rho) = @_ ? @_ : $_; |
|
652
|
811
|
100
|
|
|
|
2221
|
unless (ref $z) { |
|
653
|
1
|
50
|
|
|
|
4
|
if (@_ == 2) { |
|
654
|
0
|
|
|
|
|
0
|
$_[0] = $_[1]; |
|
655
|
|
|
|
|
|
|
} else { |
|
656
|
1
|
|
|
|
|
11
|
return CORE::abs($z); |
|
657
|
|
|
|
|
|
|
} |
|
658
|
|
|
|
|
|
|
} |
|
659
|
810
|
100
|
|
|
|
1485
|
if (defined $rho) { |
|
660
|
1
|
|
|
|
|
2
|
$z->{'polar'} = [ $rho, ${$z->_polar}[1] ]; |
|
|
1
|
|
|
|
|
3
|
|
|
661
|
1
|
|
|
|
|
3
|
$z->{p_dirty} = 0; |
|
662
|
1
|
|
|
|
|
2
|
$z->{c_dirty} = 1; |
|
663
|
1
|
|
|
|
|
11
|
return $rho; |
|
664
|
|
|
|
|
|
|
} else { |
|
665
|
809
|
|
|
|
|
736
|
return ${$z->_polar}[0]; |
|
|
809
|
|
|
|
|
1437
|
|
|
666
|
|
|
|
|
|
|
} |
|
667
|
|
|
|
|
|
|
} |
|
668
|
|
|
|
|
|
|
|
|
669
|
|
|
|
|
|
|
sub _theta { |
|
670
|
40
|
|
|
40
|
|
41
|
my $theta = $_[0]; |
|
671
|
|
|
|
|
|
|
|
|
672
|
40
|
50
|
|
|
|
149
|
if ($$theta > pi()) { $$theta -= pi2 } |
|
|
0
|
50
|
|
|
|
0
|
|
|
673
|
0
|
|
|
|
|
0
|
elsif ($$theta <= -pi()) { $$theta += pi2 } |
|
674
|
|
|
|
|
|
|
} |
|
675
|
|
|
|
|
|
|
|
|
676
|
|
|
|
|
|
|
# |
|
677
|
|
|
|
|
|
|
# arg |
|
678
|
|
|
|
|
|
|
# |
|
679
|
|
|
|
|
|
|
# Compute or set complex's argument (theta). |
|
680
|
|
|
|
|
|
|
# |
|
681
|
|
|
|
|
|
|
sub arg { |
|
682
|
40
|
|
|
40
|
0
|
79
|
my ($z, $theta) = @_; |
|
683
|
40
|
50
|
|
|
|
90
|
return $z unless ref $z; |
|
684
|
40
|
100
|
|
|
|
61
|
if (defined $theta) { |
|
685
|
1
|
|
|
|
|
4
|
_theta(\$theta); |
|
686
|
1
|
|
|
|
|
1
|
$z->{'polar'} = [ ${$z->_polar}[0], $theta ]; |
|
|
1
|
|
|
|
|
3
|
|
|
687
|
1
|
|
|
|
|
3
|
$z->{p_dirty} = 0; |
|
688
|
1
|
|
|
|
|
2
|
$z->{c_dirty} = 1; |
|
689
|
|
|
|
|
|
|
} else { |
|
690
|
39
|
|
|
|
|
41
|
$theta = ${$z->_polar}[1]; |
|
|
39
|
|
|
|
|
63
|
|
|
691
|
39
|
|
|
|
|
81
|
_theta(\$theta); |
|
692
|
|
|
|
|
|
|
} |
|
693
|
40
|
|
|
|
|
186
|
return $theta; |
|
694
|
|
|
|
|
|
|
} |
|
695
|
|
|
|
|
|
|
|
|
696
|
|
|
|
|
|
|
# |
|
697
|
|
|
|
|
|
|
# (sqrt) |
|
698
|
|
|
|
|
|
|
# |
|
699
|
|
|
|
|
|
|
# Compute sqrt(z). |
|
700
|
|
|
|
|
|
|
# |
|
701
|
|
|
|
|
|
|
# It is quite tempting to use wantarray here so that in list context |
|
702
|
|
|
|
|
|
|
# sqrt() would return the two solutions. This, however, would |
|
703
|
|
|
|
|
|
|
# break things like |
|
704
|
|
|
|
|
|
|
# |
|
705
|
|
|
|
|
|
|
# print "sqrt(z) = ", sqrt($z), "\n"; |
|
706
|
|
|
|
|
|
|
# |
|
707
|
|
|
|
|
|
|
# The two values would be printed side by side without no intervening |
|
708
|
|
|
|
|
|
|
# whitespace, quite confusing. |
|
709
|
|
|
|
|
|
|
# Therefore if you want the two solutions use the root(). |
|
710
|
|
|
|
|
|
|
# |
|
711
|
|
|
|
|
|
|
sub sqrt { |
|
712
|
168
|
100
|
|
168
|
0
|
1436
|
my ($z) = @_ ? $_[0] : $_; |
|
713
|
168
|
100
|
|
|
|
311
|
my ($re, $im) = ref $z ? @{$z->_cartesian} : ($z, 0); |
|
|
145
|
|
|
|
|
258
|
|
|
714
|
168
|
100
|
|
|
|
721
|
return $re < 0 ? cplx(0, CORE::sqrt(-$re)) : CORE::sqrt($re) |
|
|
|
100
|
|
|
|
|
|
|
715
|
|
|
|
|
|
|
if $im == 0; |
|
716
|
80
|
|
|
|
|
93
|
my ($r, $t) = @{$z->_polar}; |
|
|
80
|
|
|
|
|
168
|
|
|
717
|
80
|
|
|
|
|
302
|
return (ref $z)->emake(CORE::sqrt($r), $t/2); |
|
718
|
|
|
|
|
|
|
} |
|
719
|
|
|
|
|
|
|
|
|
720
|
|
|
|
|
|
|
# |
|
721
|
|
|
|
|
|
|
# cbrt |
|
722
|
|
|
|
|
|
|
# |
|
723
|
|
|
|
|
|
|
# Compute cbrt(z) (cubic root). |
|
724
|
|
|
|
|
|
|
# |
|
725
|
|
|
|
|
|
|
# Why are we not returning three values? The same answer as for sqrt(). |
|
726
|
|
|
|
|
|
|
# |
|
727
|
|
|
|
|
|
|
sub cbrt { |
|
728
|
22
|
|
|
22
|
0
|
2373
|
my ($z) = @_; |
|
729
|
22
|
50
|
|
|
|
112
|
return $z < 0 ? |
|
|
|
50
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
730
|
|
|
|
|
|
|
-CORE::exp(CORE::log(-$z)/3) : |
|
731
|
|
|
|
|
|
|
($z > 0 ? CORE::exp(CORE::log($z)/3): 0) |
|
732
|
|
|
|
|
|
|
unless ref $z; |
|
733
|
11
|
|
|
|
|
29
|
my ($r, $t) = @{$z->_polar}; |
|
|
11
|
|
|
|
|
26
|
|
|
734
|
11
|
50
|
|
|
|
34
|
return 0 if $r == 0; |
|
735
|
11
|
|
|
|
|
66
|
return (ref $z)->emake(CORE::exp(CORE::log($r)/3), $t/3); |
|
736
|
|
|
|
|
|
|
} |
|
737
|
|
|
|
|
|
|
|
|
738
|
|
|
|
|
|
|
# |
|
739
|
|
|
|
|
|
|
# _rootbad |
|
740
|
|
|
|
|
|
|
# |
|
741
|
|
|
|
|
|
|
# Die on bad root. |
|
742
|
|
|
|
|
|
|
# |
|
743
|
|
|
|
|
|
|
sub _rootbad { |
|
744
|
4
|
|
|
4
|
|
22
|
my $mess = "Root '$_[0]' illegal, root rank must be positive integer.\n"; |
|
745
|
|
|
|
|
|
|
|
|
746
|
4
|
|
|
|
|
18
|
my @up = caller(1); |
|
747
|
|
|
|
|
|
|
|
|
748
|
4
|
|
|
|
|
13
|
$mess .= "Died at $up[1] line $up[2].\n"; |
|
749
|
|
|
|
|
|
|
|
|
750
|
4
|
|
|
|
|
69
|
die $mess; |
|
751
|
|
|
|
|
|
|
} |
|
752
|
|
|
|
|
|
|
|
|
753
|
|
|
|
|
|
|
# |
|
754
|
|
|
|
|
|
|
# root |
|
755
|
|
|
|
|
|
|
# |
|
756
|
|
|
|
|
|
|
# Computes all nth root for z, returning an array whose size is n. |
|
757
|
|
|
|
|
|
|
# `n' must be a positive integer. |
|
758
|
|
|
|
|
|
|
# |
|
759
|
|
|
|
|
|
|
# The roots are given by (for k = 0..n-1): |
|
760
|
|
|
|
|
|
|
# |
|
761
|
|
|
|
|
|
|
# z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n)) |
|
762
|
|
|
|
|
|
|
# |
|
763
|
|
|
|
|
|
|
sub root { |
|
764
|
60
|
|
|
60
|
0
|
11270
|
my ($z, $n, $k) = @_; |
|
765
|
60
|
100
|
66
|
|
|
320
|
_rootbad($n) if ($n < 1 or int($n) != $n); |
|
766
|
55
|
|
|
|
|
109
|
my ($r, $t) = ref $z ? |
|
767
|
56
|
50
|
|
|
|
136
|
@{$z->_polar} : (CORE::abs($z), $z >= 0 ? 0 : pi); |
|
|
|
100
|
|
|
|
|
|
|
768
|
56
|
|
|
|
|
113
|
my $theta_inc = pi2 / $n; |
|
769
|
56
|
|
|
|
|
212
|
my $rho = $r ** (1/$n); |
|
770
|
56
|
|
100
|
|
|
252
|
my $cartesian = ref $z && $z->{c_dirty} == 0; |
|
771
|
56
|
100
|
|
|
|
150
|
if (@_ == 2) { |
|
|
|
50
|
|
|
|
|
|
|
772
|
34
|
|
|
|
|
38
|
my @root; |
|
773
|
34
|
|
|
|
|
108
|
for (my $i = 0, my $theta = $t / $n; |
|
774
|
|
|
|
|
|
|
$i < $n; |
|
775
|
|
|
|
|
|
|
$i++, $theta += $theta_inc) { |
|
776
|
190
|
|
|
|
|
325
|
my $w = cplxe($rho, $theta); |
|
777
|
|
|
|
|
|
|
# Yes, $cartesian is loop invariant. |
|
778
|
190
|
100
|
|
|
|
363
|
push @root, $cartesian ? cplx(@{$w->_cartesian}) : $w; |
|
|
179
|
|
|
|
|
318
|
|
|
779
|
|
|
|
|
|
|
} |
|
780
|
34
|
|
|
|
|
221
|
return @root; |
|
781
|
|
|
|
|
|
|
} elsif (@_ == 3) { |
|
782
|
22
|
|
|
|
|
56
|
my $w = cplxe($rho, $t / $n + $k * $theta_inc); |
|
783
|
22
|
50
|
|
|
|
40
|
return $cartesian ? cplx(@{$w->_cartesian}) : $w; |
|
|
22
|
|
|
|
|
31
|
|
|
784
|
|
|
|
|
|
|
} |
|
785
|
|
|
|
|
|
|
} |
|
786
|
|
|
|
|
|
|
|
|
787
|
|
|
|
|
|
|
# |
|
788
|
|
|
|
|
|
|
# Re |
|
789
|
|
|
|
|
|
|
# |
|
790
|
|
|
|
|
|
|
# Return or set Re(z). |
|
791
|
|
|
|
|
|
|
# |
|
792
|
|
|
|
|
|
|
sub Re { |
|
793
|
32
|
|
|
32
|
0
|
173
|
my ($z, $Re) = @_; |
|
794
|
32
|
50
|
|
|
|
71
|
return $z unless ref $z; |
|
795
|
32
|
100
|
|
|
|
59
|
if (defined $Re) { |
|
796
|
1
|
|
|
|
|
2
|
$z->{'cartesian'} = [ $Re, ${$z->_cartesian}[1] ]; |
|
|
1
|
|
|
|
|
4
|
|
|
797
|
1
|
|
|
|
|
3
|
$z->{c_dirty} = 0; |
|
798
|
1
|
|
|
|
|
11
|
$z->{p_dirty} = 1; |
|
799
|
|
|
|
|
|
|
} else { |
|
800
|
31
|
|
|
|
|
32
|
return ${$z->_cartesian}[0]; |
|
|
31
|
|
|
|
|
62
|
|
|
801
|
|
|
|
|
|
|
} |
|
802
|
|
|
|
|
|
|
} |
|
803
|
|
|
|
|
|
|
|
|
804
|
|
|
|
|
|
|
# |
|
805
|
|
|
|
|
|
|
# Im |
|
806
|
|
|
|
|
|
|
# |
|
807
|
|
|
|
|
|
|
# Return or set Im(z). |
|
808
|
|
|
|
|
|
|
# |
|
809
|
|
|
|
|
|
|
sub Im { |
|
810
|
38
|
|
|
38
|
0
|
320
|
my ($z, $Im) = @_; |
|
811
|
38
|
50
|
|
|
|
135
|
return 0 unless ref $z; |
|
812
|
38
|
100
|
|
|
|
70
|
if (defined $Im) { |
|
813
|
6
|
|
|
|
|
9
|
$z->{'cartesian'} = [ ${$z->_cartesian}[0], $Im ]; |
|
|
6
|
|
|
|
|
11
|
|
|
814
|
6
|
|
|
|
|
12
|
$z->{c_dirty} = 0; |
|
815
|
6
|
|
|
|
|
22
|
$z->{p_dirty} = 1; |
|
816
|
|
|
|
|
|
|
} else { |
|
817
|
32
|
|
|
|
|
65
|
return ${$z->_cartesian}[1]; |
|
|
32
|
|
|
|
|
70
|
|
|
818
|
|
|
|
|
|
|
} |
|
819
|
|
|
|
|
|
|
} |
|
820
|
|
|
|
|
|
|
|
|
821
|
|
|
|
|
|
|
# |
|
822
|
|
|
|
|
|
|
# rho |
|
823
|
|
|
|
|
|
|
# |
|
824
|
|
|
|
|
|
|
# Return or set rho(w). |
|
825
|
|
|
|
|
|
|
# |
|
826
|
|
|
|
|
|
|
sub rho { |
|
827
|
2
|
|
|
2
|
0
|
14
|
Math::Complex::abs(@_); |
|
828
|
|
|
|
|
|
|
} |
|
829
|
|
|
|
|
|
|
|
|
830
|
|
|
|
|
|
|
# |
|
831
|
|
|
|
|
|
|
# theta |
|
832
|
|
|
|
|
|
|
# |
|
833
|
|
|
|
|
|
|
# Return or set theta(w). |
|
834
|
|
|
|
|
|
|
# |
|
835
|
|
|
|
|
|
|
sub theta { |
|
836
|
2
|
|
|
2
|
0
|
306
|
Math::Complex::arg(@_); |
|
837
|
|
|
|
|
|
|
} |
|
838
|
|
|
|
|
|
|
|
|
839
|
|
|
|
|
|
|
# |
|
840
|
|
|
|
|
|
|
# (exp) |
|
841
|
|
|
|
|
|
|
# |
|
842
|
|
|
|
|
|
|
# Computes exp(z). |
|
843
|
|
|
|
|
|
|
# |
|
844
|
|
|
|
|
|
|
sub exp { |
|
845
|
161
|
100
|
|
161
|
0
|
4823
|
my ($z) = @_ ? @_ : $_; |
|
846
|
161
|
100
|
|
|
|
328
|
return CORE::exp($z) unless ref $z; |
|
847
|
160
|
|
|
|
|
172
|
my ($x, $y) = @{$z->_cartesian}; |
|
|
160
|
|
|
|
|
305
|
|
|
848
|
160
|
|
|
|
|
587
|
return (ref $z)->emake(CORE::exp($x), $y); |
|
849
|
|
|
|
|
|
|
} |
|
850
|
|
|
|
|
|
|
|
|
851
|
|
|
|
|
|
|
# |
|
852
|
|
|
|
|
|
|
# _logofzero |
|
853
|
|
|
|
|
|
|
# |
|
854
|
|
|
|
|
|
|
# Die on logarithm of zero. |
|
855
|
|
|
|
|
|
|
# |
|
856
|
|
|
|
|
|
|
sub _logofzero { |
|
857
|
5
|
|
|
5
|
|
11
|
my $mess = "$_[0]: Logarithm of zero.\n"; |
|
858
|
|
|
|
|
|
|
|
|
859
|
5
|
100
|
|
|
|
10
|
if (defined $_[1]) { |
|
860
|
1
|
|
|
|
|
3
|
$mess .= "(Because in the definition of $_[0], the argument "; |
|
861
|
1
|
50
|
|
|
|
5
|
$mess .= "$_[1] " unless ($_[1] eq '0'); |
|
862
|
1
|
|
|
|
|
2
|
$mess .= "is 0)\n"; |
|
863
|
|
|
|
|
|
|
} |
|
864
|
|
|
|
|
|
|
|
|
865
|
5
|
|
|
|
|
28
|
my @up = caller(1); |
|
866
|
|
|
|
|
|
|
|
|
867
|
5
|
|
|
|
|
16
|
$mess .= "Died at $up[1] line $up[2].\n"; |
|
868
|
|
|
|
|
|
|
|
|
869
|
5
|
|
|
|
|
106
|
die $mess; |
|
870
|
|
|
|
|
|
|
} |
|
871
|
|
|
|
|
|
|
|
|
872
|
|
|
|
|
|
|
# |
|
873
|
|
|
|
|
|
|
# (log) |
|
874
|
|
|
|
|
|
|
# |
|
875
|
|
|
|
|
|
|
# Compute log(z). |
|
876
|
|
|
|
|
|
|
# |
|
877
|
|
|
|
|
|
|
sub log { |
|
878
|
517
|
100
|
|
517
|
0
|
6405
|
my ($z) = @_ ? @_ : $_; |
|
879
|
517
|
100
|
|
|
|
1098
|
unless (ref $z) { |
|
880
|
45
|
50
|
|
|
|
92
|
_logofzero("log") if $z == 0; |
|
881
|
45
|
50
|
|
|
|
162
|
return $z > 0 ? CORE::log($z) : cplx(CORE::log(-$z), pi); |
|
882
|
|
|
|
|
|
|
} |
|
883
|
472
|
|
|
|
|
496
|
my ($r, $t) = @{$z->_polar}; |
|
|
472
|
|
|
|
|
847
|
|
|
884
|
472
|
100
|
|
|
|
1193
|
_logofzero("log") if $r == 0; |
|
885
|
471
|
50
|
|
|
|
1400
|
if ($t > pi()) { $t -= pi2 } |
|
|
0
|
50
|
|
|
|
0
|
|
|
886
|
0
|
|
|
|
|
0
|
elsif ($t <= -pi()) { $t += pi2 } |
|
887
|
471
|
|
|
|
|
1955
|
return (ref $z)->make(CORE::log($r), $t); |
|
888
|
|
|
|
|
|
|
} |
|
889
|
|
|
|
|
|
|
|
|
890
|
|
|
|
|
|
|
# |
|
891
|
|
|
|
|
|
|
# ln |
|
892
|
|
|
|
|
|
|
# |
|
893
|
|
|
|
|
|
|
# Alias for log(). |
|
894
|
|
|
|
|
|
|
# |
|
895
|
11
|
|
|
11
|
0
|
1687
|
sub ln { Math::Complex::log(@_) } |
|
896
|
|
|
|
|
|
|
|
|
897
|
|
|
|
|
|
|
# |
|
898
|
|
|
|
|
|
|
# log10 |
|
899
|
|
|
|
|
|
|
# |
|
900
|
|
|
|
|
|
|
# Compute log10(z). |
|
901
|
|
|
|
|
|
|
# |
|
902
|
|
|
|
|
|
|
|
|
903
|
|
|
|
|
|
|
sub log10 { |
|
904
|
11
|
|
|
11
|
0
|
1799
|
return Math::Complex::log($_[0]) * _uplog10; |
|
905
|
|
|
|
|
|
|
} |
|
906
|
|
|
|
|
|
|
|
|
907
|
|
|
|
|
|
|
# |
|
908
|
|
|
|
|
|
|
# logn |
|
909
|
|
|
|
|
|
|
# |
|
910
|
|
|
|
|
|
|
# Compute logn(z,n) = log(z) / log(n) |
|
911
|
|
|
|
|
|
|
# |
|
912
|
|
|
|
|
|
|
sub logn { |
|
913
|
22
|
|
|
22
|
0
|
3291
|
my ($z, $n) = @_; |
|
914
|
22
|
50
|
|
|
|
58
|
$z = cplx($z, 0) unless ref $z; |
|
915
|
22
|
|
|
|
|
28
|
my $logn = $LOGN{$n}; |
|
916
|
22
|
100
|
|
|
|
48
|
$logn = $LOGN{$n} = CORE::log($n) unless defined $logn; # Cache log(n) |
|
917
|
22
|
|
|
|
|
35
|
return &log($z) / $logn; |
|
918
|
|
|
|
|
|
|
} |
|
919
|
|
|
|
|
|
|
|
|
920
|
|
|
|
|
|
|
# |
|
921
|
|
|
|
|
|
|
# (cos) |
|
922
|
|
|
|
|
|
|
# |
|
923
|
|
|
|
|
|
|
# Compute cos(z) = (exp(iz) + exp(-iz))/2. |
|
924
|
|
|
|
|
|
|
# |
|
925
|
|
|
|
|
|
|
sub cos { |
|
926
|
193
|
100
|
|
193
|
0
|
5734
|
my ($z) = @_ ? @_ : $_; |
|
927
|
193
|
100
|
|
|
|
464
|
return CORE::cos($z) unless ref $z; |
|
928
|
188
|
|
|
|
|
181
|
my ($x, $y) = @{$z->_cartesian}; |
|
|
188
|
|
|
|
|
332
|
|
|
929
|
188
|
|
|
|
|
383
|
my $ey = CORE::exp($y); |
|
930
|
188
|
|
|
|
|
296
|
my $sx = CORE::sin($x); |
|
931
|
188
|
|
|
|
|
718
|
my $cx = CORE::cos($x); |
|
932
|
188
|
50
|
|
|
|
368
|
my $ey_1 = $ey ? 1 / $ey : Inf(); |
|
933
|
188
|
|
|
|
|
697
|
return (ref $z)->make($cx * ($ey + $ey_1)/2, |
|
934
|
|
|
|
|
|
|
$sx * ($ey_1 - $ey)/2); |
|
935
|
|
|
|
|
|
|
} |
|
936
|
|
|
|
|
|
|
|
|
937
|
|
|
|
|
|
|
# |
|
938
|
|
|
|
|
|
|
# (sin) |
|
939
|
|
|
|
|
|
|
# |
|
940
|
|
|
|
|
|
|
# Compute sin(z) = (exp(iz) - exp(-iz))/2. |
|
941
|
|
|
|
|
|
|
# |
|
942
|
|
|
|
|
|
|
sub sin { |
|
943
|
216
|
100
|
|
216
|
0
|
2068
|
my ($z) = @_ ? @_ : $_; |
|
944
|
216
|
100
|
|
|
|
580
|
return CORE::sin($z) unless ref $z; |
|
945
|
209
|
|
|
|
|
226
|
my ($x, $y) = @{$z->_cartesian}; |
|
|
209
|
|
|
|
|
423
|
|
|
946
|
209
|
|
|
|
|
615
|
my $ey = CORE::exp($y); |
|
947
|
209
|
|
|
|
|
485
|
my $sx = CORE::sin($x); |
|
948
|
209
|
|
|
|
|
683
|
my $cx = CORE::cos($x); |
|
949
|
209
|
50
|
|
|
|
418
|
my $ey_1 = $ey ? 1 / $ey : Inf(); |
|
950
|
209
|
|
|
|
|
832
|
return (ref $z)->make($sx * ($ey + $ey_1)/2, |
|
951
|
|
|
|
|
|
|
$cx * ($ey - $ey_1)/2); |
|
952
|
|
|
|
|
|
|
} |
|
953
|
|
|
|
|
|
|
|
|
954
|
|
|
|
|
|
|
# |
|
955
|
|
|
|
|
|
|
# tan |
|
956
|
|
|
|
|
|
|
# |
|
957
|
|
|
|
|
|
|
# Compute tan(z) = sin(z) / cos(z). |
|
958
|
|
|
|
|
|
|
# |
|
959
|
|
|
|
|
|
|
sub tan { |
|
960
|
41
|
|
|
41
|
0
|
3424
|
my ($z) = @_; |
|
961
|
41
|
|
|
|
|
93
|
my $cz = &cos($z); |
|
962
|
41
|
50
|
|
|
|
109
|
_divbyzero "tan($z)", "cos($z)" if $cz == 0; |
|
963
|
41
|
|
|
|
|
86
|
return &sin($z) / $cz; |
|
964
|
|
|
|
|
|
|
} |
|
965
|
|
|
|
|
|
|
|
|
966
|
|
|
|
|
|
|
# |
|
967
|
|
|
|
|
|
|
# sec |
|
968
|
|
|
|
|
|
|
# |
|
969
|
|
|
|
|
|
|
# Computes the secant sec(z) = 1 / cos(z). |
|
970
|
|
|
|
|
|
|
# |
|
971
|
|
|
|
|
|
|
sub sec { |
|
972
|
34
|
|
|
34
|
0
|
2316
|
my ($z) = @_; |
|
973
|
34
|
|
|
|
|
65
|
my $cz = &cos($z); |
|
974
|
34
|
50
|
|
|
|
86
|
_divbyzero "sec($z)", "cos($z)" if ($cz == 0); |
|
975
|
34
|
|
|
|
|
72
|
return 1 / $cz; |
|
976
|
|
|
|
|
|
|
} |
|
977
|
|
|
|
|
|
|
|
|
978
|
|
|
|
|
|
|
# |
|
979
|
|
|
|
|
|
|
# csc |
|
980
|
|
|
|
|
|
|
# |
|
981
|
|
|
|
|
|
|
# Computes the cosecant csc(z) = 1 / sin(z). |
|
982
|
|
|
|
|
|
|
# |
|
983
|
|
|
|
|
|
|
sub csc { |
|
984
|
56
|
|
|
56
|
0
|
4932
|
my ($z) = @_; |
|
985
|
56
|
|
|
|
|
146
|
my $sz = &sin($z); |
|
986
|
56
|
100
|
|
|
|
148
|
_divbyzero "csc($z)", "sin($z)" if ($sz == 0); |
|
987
|
55
|
|
|
|
|
113
|
return 1 / $sz; |
|
988
|
|
|
|
|
|
|
} |
|
989
|
|
|
|
|
|
|
|
|
990
|
|
|
|
|
|
|
# |
|
991
|
|
|
|
|
|
|
# cosec |
|
992
|
|
|
|
|
|
|
# |
|
993
|
|
|
|
|
|
|
# Alias for csc(). |
|
994
|
|
|
|
|
|
|
# |
|
995
|
11
|
|
|
11
|
0
|
70
|
sub cosec { Math::Complex::csc(@_) } |
|
996
|
|
|
|
|
|
|
|
|
997
|
|
|
|
|
|
|
# |
|
998
|
|
|
|
|
|
|
# cot |
|
999
|
|
|
|
|
|
|
# |
|
1000
|
|
|
|
|
|
|
# Computes cot(z) = cos(z) / sin(z). |
|
1001
|
|
|
|
|
|
|
# |
|
1002
|
|
|
|
|
|
|
sub cot { |
|
1003
|
56
|
|
|
56
|
0
|
4399
|
my ($z) = @_; |
|
1004
|
56
|
|
|
|
|
100
|
my $sz = &sin($z); |
|
1005
|
56
|
100
|
|
|
|
137
|
_divbyzero "cot($z)", "sin($z)" if ($sz == 0); |
|
1006
|
55
|
|
|
|
|
108
|
return &cos($z) / $sz; |
|
1007
|
|
|
|
|
|
|
} |
|
1008
|
|
|
|
|
|
|
|
|
1009
|
|
|
|
|
|
|
# |
|
1010
|
|
|
|
|
|
|
# cotan |
|
1011
|
|
|
|
|
|
|
# |
|
1012
|
|
|
|
|
|
|
# Alias for cot(). |
|
1013
|
|
|
|
|
|
|
# |
|
1014
|
11
|
|
|
11
|
0
|
78
|
sub cotan { Math::Complex::cot(@_) } |
|
1015
|
|
|
|
|
|
|
|
|
1016
|
|
|
|
|
|
|
# |
|
1017
|
|
|
|
|
|
|
# acos |
|
1018
|
|
|
|
|
|
|
# |
|
1019
|
|
|
|
|
|
|
# Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)). |
|
1020
|
|
|
|
|
|
|
# |
|
1021
|
|
|
|
|
|
|
sub acos { |
|
1022
|
99
|
|
|
99
|
0
|
2685
|
my $z = $_[0]; |
|
1023
|
99
|
100
|
66
|
|
|
500
|
return CORE::atan2(CORE::sqrt(1-$z*$z), $z) |
|
1024
|
|
|
|
|
|
|
if (! ref $z) && CORE::abs($z) <= 1; |
|
1025
|
71
|
50
|
|
|
|
174
|
$z = cplx($z, 0) unless ref $z; |
|
1026
|
71
|
|
|
|
|
73
|
my ($x, $y) = @{$z->_cartesian}; |
|
|
71
|
|
|
|
|
268
|
|
|
1027
|
71
|
100
|
66
|
|
|
263
|
return 0 if $x == 1 && $y == 0; |
|
1028
|
69
|
|
|
|
|
171
|
my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y); |
|
1029
|
69
|
|
|
|
|
146
|
my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y); |
|
1030
|
69
|
|
|
|
|
88
|
my $alpha = ($t1 + $t2)/2; |
|
1031
|
69
|
|
|
|
|
86
|
my $beta = ($t1 - $t2)/2; |
|
1032
|
69
|
50
|
|
|
|
125
|
$alpha = 1 if $alpha < 1; |
|
1033
|
69
|
50
|
|
|
|
184
|
if ($beta > 1) { $beta = 1 } |
|
|
0
|
50
|
|
|
|
0
|
|
|
1034
|
0
|
|
|
|
|
0
|
elsif ($beta < -1) { $beta = -1 } |
|
1035
|
69
|
|
|
|
|
163
|
my $u = CORE::atan2(CORE::sqrt(1-$beta*$beta), $beta); |
|
1036
|
69
|
|
|
|
|
181
|
my $v = CORE::log($alpha + CORE::sqrt($alpha*$alpha-1)); |
|
1037
|
69
|
100
|
100
|
|
|
293
|
$v = -$v if $y > 0 || ($y == 0 && $x < -1); |
|
|
|
|
66
|
|
|
|
|
|
1038
|
69
|
|
|
|
|
181
|
return (ref $z)->make($u, $v); |
|
1039
|
|
|
|
|
|
|
} |
|
1040
|
|
|
|
|
|
|
|
|
1041
|
|
|
|
|
|
|
# |
|
1042
|
|
|
|
|
|
|
# asin |
|
1043
|
|
|
|
|
|
|
# |
|
1044
|
|
|
|
|
|
|
# Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)). |
|
1045
|
|
|
|
|
|
|
# |
|
1046
|
|
|
|
|
|
|
sub asin { |
|
1047
|
106
|
|
|
106
|
0
|
3159
|
my $z = $_[0]; |
|
1048
|
106
|
100
|
100
|
|
|
431
|
return CORE::atan2($z, CORE::sqrt(1-$z*$z)) |
|
1049
|
|
|
|
|
|
|
if (! ref $z) && CORE::abs($z) <= 1; |
|
1050
|
94
|
100
|
|
|
|
208
|
$z = cplx($z, 0) unless ref $z; |
|
1051
|
94
|
|
|
|
|
91
|
my ($x, $y) = @{$z->_cartesian}; |
|
|
94
|
|
|
|
|
213
|
|
|
1052
|
94
|
100
|
100
|
|
|
307
|
return 0 if $x == 0 && $y == 0; |
|
1053
|
93
|
|
|
|
|
210
|
my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y); |
|
1054
|
93
|
|
|
|
|
147
|
my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y); |
|
1055
|
93
|
|
|
|
|
141
|
my $alpha = ($t1 + $t2)/2; |
|
1056
|
93
|
|
|
|
|
130
|
my $beta = ($t1 - $t2)/2; |
|
1057
|
93
|
50
|
|
|
|
195
|
$alpha = 1 if $alpha < 1; |
|
1058
|
93
|
50
|
|
|
|
227
|
if ($beta > 1) { $beta = 1 } |
|
|
0
|
50
|
|
|
|
0
|
|
|
1059
|
0
|
|
|
|
|
0
|
elsif ($beta < -1) { $beta = -1 } |
|
1060
|
93
|
|
|
|
|
340
|
my $u = CORE::atan2($beta, CORE::sqrt(1-$beta*$beta)); |
|
1061
|
93
|
|
|
|
|
210
|
my $v = -CORE::log($alpha + CORE::sqrt($alpha*$alpha-1)); |
|
1062
|
93
|
100
|
100
|
|
|
824
|
$v = -$v if $y > 0 || ($y == 0 && $x < -1); |
|
|
|
|
66
|
|
|
|
|
|
1063
|
93
|
|
|
|
|
258
|
return (ref $z)->make($u, $v); |
|
1064
|
|
|
|
|
|
|
} |
|
1065
|
|
|
|
|
|
|
|
|
1066
|
|
|
|
|
|
|
# |
|
1067
|
|
|
|
|
|
|
# atan |
|
1068
|
|
|
|
|
|
|
# |
|
1069
|
|
|
|
|
|
|
# Computes the arc tangent atan(z) = i/2 log((i+z) / (i-z)). |
|
1070
|
|
|
|
|
|
|
# |
|
1071
|
|
|
|
|
|
|
sub atan { |
|
1072
|
75
|
|
|
75
|
0
|
2580
|
my ($z) = @_; |
|
1073
|
75
|
100
|
|
|
|
348
|
return CORE::atan2($z, 1) unless ref $z; |
|
1074
|
74
|
50
|
|
|
|
145
|
my ($x, $y) = ref $z ? @{$z->_cartesian} : ($z, 0); |
|
|
74
|
|
|
|
|
136
|
|
|
1075
|
74
|
100
|
100
|
|
|
268
|
return 0 if $x == 0 && $y == 0; |
|
1076
|
73
|
100
|
|
|
|
530
|
_divbyzero "atan(i)" if ( $z == i); |
|
1077
|
71
|
100
|
|
|
|
180
|
_logofzero "atan(-i)" if (-$z == i); # -i is a bad file test... |
|
1078
|
70
|
|
|
|
|
289
|
my $log = &log((i + $z) / (i - $z)); |
|
1079
|
70
|
|
|
|
|
535
|
return _ip2 * $log; |
|
1080
|
|
|
|
|
|
|
} |
|
1081
|
|
|
|
|
|
|
|
|
1082
|
|
|
|
|
|
|
# |
|
1083
|
|
|
|
|
|
|
# asec |
|
1084
|
|
|
|
|
|
|
# |
|
1085
|
|
|
|
|
|
|
# Computes the arc secant asec(z) = acos(1 / z). |
|
1086
|
|
|
|
|
|
|
# |
|
1087
|
|
|
|
|
|
|
sub asec { |
|
1088
|
34
|
|
|
34
|
0
|
4189
|
my ($z) = @_; |
|
1089
|
34
|
100
|
|
|
|
86
|
_divbyzero "asec($z)", $z if ($z == 0); |
|
1090
|
33
|
|
|
|
|
72
|
return acos(1 / $z); |
|
1091
|
|
|
|
|
|
|
} |
|
1092
|
|
|
|
|
|
|
|
|
1093
|
|
|
|
|
|
|
# |
|
1094
|
|
|
|
|
|
|
# acsc |
|
1095
|
|
|
|
|
|
|
# |
|
1096
|
|
|
|
|
|
|
# Computes the arc cosecant acsc(z) = asin(1 / z). |
|
1097
|
|
|
|
|
|
|
# |
|
1098
|
|
|
|
|
|
|
sub acsc { |
|
1099
|
56
|
|
|
56
|
0
|
7311
|
my ($z) = @_; |
|
1100
|
56
|
100
|
|
|
|
168
|
_divbyzero "acsc($z)", $z if ($z == 0); |
|
1101
|
55
|
|
|
|
|
141
|
return asin(1 / $z); |
|
1102
|
|
|
|
|
|
|
} |
|
1103
|
|
|
|
|
|
|
|
|
1104
|
|
|
|
|
|
|
# |
|
1105
|
|
|
|
|
|
|
# acosec |
|
1106
|
|
|
|
|
|
|
# |
|
1107
|
|
|
|
|
|
|
# Alias for acsc(). |
|
1108
|
|
|
|
|
|
|
# |
|
1109
|
11
|
|
|
11
|
0
|
98
|
sub acosec { Math::Complex::acsc(@_) } |
|
1110
|
|
|
|
|
|
|
|
|
1111
|
|
|
|
|
|
|
# |
|
1112
|
|
|
|
|
|
|
# acot |
|
1113
|
|
|
|
|
|
|
# |
|
1114
|
|
|
|
|
|
|
# Computes the arc cotangent acot(z) = atan(1 / z) |
|
1115
|
|
|
|
|
|
|
# |
|
1116
|
|
|
|
|
|
|
sub acot { |
|
1117
|
47
|
|
|
47
|
0
|
4410
|
my ($z) = @_; |
|
1118
|
47
|
100
|
|
|
|
106
|
_divbyzero "acot(0)" if $z == 0; |
|
1119
|
46
|
50
|
|
|
|
121
|
return ($z >= 0) ? CORE::atan2(1, $z) : CORE::atan2(-1, -$z) |
|
|
|
100
|
|
|
|
|
|
|
1120
|
|
|
|
|
|
|
unless ref $z; |
|
1121
|
45
|
100
|
|
|
|
76
|
_divbyzero "acot(i)" if ($z - i == 0); |
|
1122
|
44
|
100
|
|
|
|
175
|
_logofzero "acot(-i)" if ($z + i == 0); |
|
1123
|
43
|
|
|
|
|
176
|
return atan(1 / $z); |
|
1124
|
|
|
|
|
|
|
} |
|
1125
|
|
|
|
|
|
|
|
|
1126
|
|
|
|
|
|
|
# |
|
1127
|
|
|
|
|
|
|
# acotan |
|
1128
|
|
|
|
|
|
|
# |
|
1129
|
|
|
|
|
|
|
# Alias for acot(). |
|
1130
|
|
|
|
|
|
|
# |
|
1131
|
11
|
|
|
11
|
0
|
97
|
sub acotan { Math::Complex::acot(@_) } |
|
1132
|
|
|
|
|
|
|
|
|
1133
|
|
|
|
|
|
|
# |
|
1134
|
|
|
|
|
|
|
# cosh |
|
1135
|
|
|
|
|
|
|
# |
|
1136
|
|
|
|
|
|
|
# Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2. |
|
1137
|
|
|
|
|
|
|
# |
|
1138
|
|
|
|
|
|
|
sub cosh { |
|
1139
|
197
|
|
|
197
|
0
|
3914
|
my ($z) = @_; |
|
1140
|
197
|
|
|
|
|
215
|
my $ex; |
|
1141
|
197
|
100
|
|
|
|
435
|
unless (ref $z) { |
|
1142
|
23
|
|
|
|
|
62
|
$ex = CORE::exp($z); |
|
1143
|
23
|
100
|
|
|
|
111
|
return $ex ? ($ex == $ExpInf ? Inf() : ($ex + 1/$ex)/2) : Inf(); |
|
|
|
100
|
|
|
|
|
|
|
1144
|
|
|
|
|
|
|
} |
|
1145
|
174
|
|
|
|
|
184
|
my ($x, $y) = @{$z->_cartesian}; |
|
|
174
|
|
|
|
|
315
|
|
|
1146
|
174
|
|
|
|
|
376
|
$ex = CORE::exp($x); |
|
1147
|
174
|
50
|
|
|
|
431
|
my $ex_1 = $ex ? 1 / $ex : Inf(); |
|
1148
|
174
|
|
|
|
|
843
|
return (ref $z)->make(CORE::cos($y) * ($ex + $ex_1)/2, |
|
1149
|
|
|
|
|
|
|
CORE::sin($y) * ($ex - $ex_1)/2); |
|
1150
|
|
|
|
|
|
|
} |
|
1151
|
|
|
|
|
|
|
|
|
1152
|
|
|
|
|
|
|
# |
|
1153
|
|
|
|
|
|
|
# sinh |
|
1154
|
|
|
|
|
|
|
# |
|
1155
|
|
|
|
|
|
|
# Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2. |
|
1156
|
|
|
|
|
|
|
# |
|
1157
|
|
|
|
|
|
|
sub sinh { |
|
1158
|
219
|
|
|
219
|
0
|
3135
|
my ($z) = @_; |
|
1159
|
219
|
|
|
|
|
335
|
my $ex; |
|
1160
|
219
|
100
|
|
|
|
519
|
unless (ref $z) { |
|
1161
|
23
|
100
|
|
|
|
57
|
return 0 if $z == 0; |
|
1162
|
21
|
|
|
|
|
43
|
$ex = CORE::exp($z); |
|
1163
|
21
|
100
|
|
|
|
88
|
return $ex ? ($ex == $ExpInf ? Inf() : ($ex - 1/$ex)/2) : -Inf(); |
|
|
|
100
|
|
|
|
|
|
|
1164
|
|
|
|
|
|
|
} |
|
1165
|
196
|
|
|
|
|
198
|
my ($x, $y) = @{$z->_cartesian}; |
|
|
196
|
|
|
|
|
349
|
|
|
1166
|
196
|
|
|
|
|
380
|
my $cy = CORE::cos($y); |
|
1167
|
196
|
|
|
|
|
291
|
my $sy = CORE::sin($y); |
|
1168
|
196
|
|
|
|
|
272
|
$ex = CORE::exp($x); |
|
1169
|
196
|
50
|
|
|
|
395
|
my $ex_1 = $ex ? 1 / $ex : Inf(); |
|
1170
|
196
|
|
|
|
|
881
|
return (ref $z)->make(CORE::cos($y) * ($ex - $ex_1)/2, |
|
1171
|
|
|
|
|
|
|
CORE::sin($y) * ($ex + $ex_1)/2); |
|
1172
|
|
|
|
|
|
|
} |
|
1173
|
|
|
|
|
|
|
|
|
1174
|
|
|
|
|
|
|
# |
|
1175
|
|
|
|
|
|
|
# tanh |
|
1176
|
|
|
|
|
|
|
# |
|
1177
|
|
|
|
|
|
|
# Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z). |
|
1178
|
|
|
|
|
|
|
# |
|
1179
|
|
|
|
|
|
|
sub tanh { |
|
1180
|
42
|
|
|
42
|
0
|
2642
|
my ($z) = @_; |
|
1181
|
42
|
|
|
|
|
75
|
my $cz = cosh($z); |
|
1182
|
42
|
50
|
|
|
|
112
|
_divbyzero "tanh($z)", "cosh($z)" if ($cz == 0); |
|
1183
|
42
|
|
|
|
|
76
|
my $sz = sinh($z); |
|
1184
|
42
|
100
|
|
|
|
98
|
return 1 if $cz == $sz; |
|
1185
|
40
|
100
|
|
|
|
90
|
return -1 if $cz == -$sz; |
|
1186
|
38
|
|
|
|
|
160
|
return $sz / $cz; |
|
1187
|
|
|
|
|
|
|
} |
|
1188
|
|
|
|
|
|
|
|
|
1189
|
|
|
|
|
|
|
# |
|
1190
|
|
|
|
|
|
|
# sech |
|
1191
|
|
|
|
|
|
|
# |
|
1192
|
|
|
|
|
|
|
# Computes the hyperbolic secant sech(z) = 1 / cosh(z). |
|
1193
|
|
|
|
|
|
|
# |
|
1194
|
|
|
|
|
|
|
sub sech { |
|
1195
|
36
|
|
|
36
|
0
|
1476
|
my ($z) = @_; |
|
1196
|
36
|
|
|
|
|
71
|
my $cz = cosh($z); |
|
1197
|
36
|
50
|
|
|
|
93
|
_divbyzero "sech($z)", "cosh($z)" if ($cz == 0); |
|
1198
|
36
|
|
|
|
|
91
|
return 1 / $cz; |
|
1199
|
|
|
|
|
|
|
} |
|
1200
|
|
|
|
|
|
|
|
|
1201
|
|
|
|
|
|
|
# |
|
1202
|
|
|
|
|
|
|
# csch |
|
1203
|
|
|
|
|
|
|
# |
|
1204
|
|
|
|
|
|
|
# Computes the hyperbolic cosecant csch(z) = 1 / sinh(z). |
|
1205
|
|
|
|
|
|
|
# |
|
1206
|
|
|
|
|
|
|
sub csch { |
|
1207
|
56
|
|
|
56
|
0
|
2225
|
my ($z) = @_; |
|
1208
|
56
|
|
|
|
|
113
|
my $sz = sinh($z); |
|
1209
|
56
|
100
|
|
|
|
155
|
_divbyzero "csch($z)", "sinh($z)" if ($sz == 0); |
|
1210
|
55
|
|
|
|
|
129
|
return 1 / $sz; |
|
1211
|
|
|
|
|
|
|
} |
|
1212
|
|
|
|
|
|
|
|
|
1213
|
|
|
|
|
|
|
# |
|
1214
|
|
|
|
|
|
|
# cosech |
|
1215
|
|
|
|
|
|
|
# |
|
1216
|
|
|
|
|
|
|
# Alias for csch(). |
|
1217
|
|
|
|
|
|
|
# |
|
1218
|
10
|
|
|
10
|
0
|
61
|
sub cosech { Math::Complex::csch(@_) } |
|
1219
|
|
|
|
|
|
|
|
|
1220
|
|
|
|
|
|
|
# |
|
1221
|
|
|
|
|
|
|
# coth |
|
1222
|
|
|
|
|
|
|
# |
|
1223
|
|
|
|
|
|
|
# Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z). |
|
1224
|
|
|
|
|
|
|
# |
|
1225
|
|
|
|
|
|
|
sub coth { |
|
1226
|
56
|
|
|
56
|
0
|
2218
|
my ($z) = @_; |
|
1227
|
56
|
|
|
|
|
456
|
my $sz = sinh($z); |
|
1228
|
56
|
100
|
|
|
|
217
|
_divbyzero "coth($z)", "sinh($z)" if $sz == 0; |
|
1229
|
55
|
|
|
|
|
112
|
my $cz = cosh($z); |
|
1230
|
55
|
100
|
|
|
|
137
|
return 1 if $cz == $sz; |
|
1231
|
53
|
100
|
|
|
|
290
|
return -1 if $cz == -$sz; |
|
1232
|
51
|
|
|
|
|
249
|
return $cz / $sz; |
|
1233
|
|
|
|
|
|
|
} |
|
1234
|
|
|
|
|
|
|
|
|
1235
|
|
|
|
|
|
|
# |
|
1236
|
|
|
|
|
|
|
# cotanh |
|
1237
|
|
|
|
|
|
|
# |
|
1238
|
|
|
|
|
|
|
# Alias for coth(). |
|
1239
|
|
|
|
|
|
|
# |
|
1240
|
10
|
|
|
10
|
0
|
62
|
sub cotanh { Math::Complex::coth(@_) } |
|
1241
|
|
|
|
|
|
|
|
|
1242
|
|
|
|
|
|
|
# |
|
1243
|
|
|
|
|
|
|
# acosh |
|
1244
|
|
|
|
|
|
|
# |
|
1245
|
|
|
|
|
|
|
# Computes the area/inverse hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)). |
|
1246
|
|
|
|
|
|
|
# |
|
1247
|
|
|
|
|
|
|
sub acosh { |
|
1248
|
61
|
|
|
61
|
0
|
2095
|
my ($z) = @_; |
|
1249
|
61
|
100
|
|
|
|
151
|
unless (ref $z) { |
|
1250
|
2
|
|
|
|
|
8
|
$z = cplx($z, 0); |
|
1251
|
|
|
|
|
|
|
} |
|
1252
|
61
|
|
|
|
|
70
|
my ($re, $im) = @{$z->_cartesian}; |
|
|
61
|
|
|
|
|
113
|
|
|
1253
|
61
|
100
|
|
|
|
154
|
if ($im == 0) { |
|
1254
|
32
|
100
|
|
|
|
262
|
return CORE::log($re + CORE::sqrt($re*$re - 1)) |
|
1255
|
|
|
|
|
|
|
if $re >= 1; |
|
1256
|
18
|
100
|
|
|
|
82
|
return cplx(0, CORE::atan2(CORE::sqrt(1 - $re*$re), $re)) |
|
1257
|
|
|
|
|
|
|
if CORE::abs($re) < 1; |
|
1258
|
|
|
|
|
|
|
} |
|
1259
|
34
|
|
|
|
|
82
|
my $t = &sqrt($z * $z - 1) + $z; |
|
1260
|
|
|
|
|
|
|
# Try Taylor if looking bad (this usually means that |
|
1261
|
|
|
|
|
|
|
# $z was large negative, therefore the sqrt is really |
|
1262
|
|
|
|
|
|
|
# close to abs(z), summing that with z...) |
|
1263
|
34
|
50
|
|
|
|
248
|
$t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7) |
|
1264
|
|
|
|
|
|
|
if $t == 0; |
|
1265
|
34
|
|
|
|
|
77
|
my $u = &log($t); |
|
1266
|
34
|
100
|
100
|
|
|
165
|
$u->Im(-$u->Im) if $re < 0 && $im == 0; |
|
1267
|
34
|
100
|
|
|
|
264
|
return $re < 0 ? -$u : $u; |
|
1268
|
|
|
|
|
|
|
} |
|
1269
|
|
|
|
|
|
|
|
|
1270
|
|
|
|
|
|
|
# |
|
1271
|
|
|
|
|
|
|
# asinh |
|
1272
|
|
|
|
|
|
|
# |
|
1273
|
|
|
|
|
|
|
# Computes the area/inverse hyperbolic sine asinh(z) = log(z + sqrt(z*z+1)) |
|
1274
|
|
|
|
|
|
|
# |
|
1275
|
|
|
|
|
|
|
sub asinh { |
|
1276
|
74
|
|
|
74
|
0
|
945
|
my ($z) = @_; |
|
1277
|
74
|
100
|
|
|
|
167
|
unless (ref $z) { |
|
1278
|
3
|
|
|
|
|
8
|
my $t = $z + CORE::sqrt($z*$z + 1); |
|
1279
|
3
|
50
|
|
|
|
17
|
return CORE::log($t) if $t; |
|
1280
|
|
|
|
|
|
|
} |
|
1281
|
71
|
|
|
|
|
172
|
my $t = &sqrt($z * $z + 1) + $z; |
|
1282
|
|
|
|
|
|
|
# Try Taylor if looking bad (this usually means that |
|
1283
|
|
|
|
|
|
|
# $z was large negative, therefore the sqrt is really |
|
1284
|
|
|
|
|
|
|
# close to abs(z), summing that with z...) |
|
1285
|
71
|
50
|
|
|
|
475
|
$t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7) |
|
1286
|
|
|
|
|
|
|
if $t == 0; |
|
1287
|
71
|
|
|
|
|
140
|
return &log($t); |
|
1288
|
|
|
|
|
|
|
} |
|
1289
|
|
|
|
|
|
|
|
|
1290
|
|
|
|
|
|
|
# |
|
1291
|
|
|
|
|
|
|
# atanh |
|
1292
|
|
|
|
|
|
|
# |
|
1293
|
|
|
|
|
|
|
# Computes the area/inverse hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)). |
|
1294
|
|
|
|
|
|
|
# |
|
1295
|
|
|
|
|
|
|
sub atanh { |
|
1296
|
34
|
|
|
34
|
0
|
2465
|
my ($z) = @_; |
|
1297
|
34
|
100
|
|
|
|
88
|
unless (ref $z) { |
|
1298
|
3
|
100
|
|
|
|
16
|
return CORE::log((1 + $z)/(1 - $z))/2 if CORE::abs($z) < 1; |
|
1299
|
2
|
|
|
|
|
6
|
$z = cplx($z, 0); |
|
1300
|
|
|
|
|
|
|
} |
|
1301
|
33
|
100
|
|
|
|
79
|
_divbyzero 'atanh(1)', "1 - $z" if (1 - $z == 0); |
|
1302
|
32
|
100
|
|
|
|
119
|
_logofzero 'atanh(-1)' if (1 + $z == 0); |
|
1303
|
31
|
|
|
|
|
115
|
return 0.5 * &log((1 + $z) / (1 - $z)); |
|
1304
|
|
|
|
|
|
|
} |
|
1305
|
|
|
|
|
|
|
|
|
1306
|
|
|
|
|
|
|
# |
|
1307
|
|
|
|
|
|
|
# asech |
|
1308
|
|
|
|
|
|
|
# |
|
1309
|
|
|
|
|
|
|
# Computes the area/inverse hyperbolic secant asech(z) = acosh(1 / z). |
|
1310
|
|
|
|
|
|
|
# |
|
1311
|
|
|
|
|
|
|
sub asech { |
|
1312
|
28
|
|
|
28
|
0
|
2437
|
my ($z) = @_; |
|
1313
|
28
|
100
|
|
|
|
73
|
_divbyzero 'asech(0)', "$z" if ($z == 0); |
|
1314
|
27
|
|
|
|
|
59
|
return acosh(1 / $z); |
|
1315
|
|
|
|
|
|
|
} |
|
1316
|
|
|
|
|
|
|
|
|
1317
|
|
|
|
|
|
|
# |
|
1318
|
|
|
|
|
|
|
# acsch |
|
1319
|
|
|
|
|
|
|
# |
|
1320
|
|
|
|
|
|
|
# Computes the area/inverse hyperbolic cosecant acsch(z) = asinh(1 / z). |
|
1321
|
|
|
|
|
|
|
# |
|
1322
|
|
|
|
|
|
|
sub acsch { |
|
1323
|
41
|
|
|
41
|
0
|
3677
|
my ($z) = @_; |
|
1324
|
41
|
100
|
|
|
|
93
|
_divbyzero 'acsch(0)', $z if ($z == 0); |
|
1325
|
40
|
|
|
|
|
88
|
return asinh(1 / $z); |
|
1326
|
|
|
|
|
|
|
} |
|
1327
|
|
|
|
|
|
|
|
|
1328
|
|
|
|
|
|
|
# |
|
1329
|
|
|
|
|
|
|
# acosech |
|
1330
|
|
|
|
|
|
|
# |
|
1331
|
|
|
|
|
|
|
# Alias for acosh(). |
|
1332
|
|
|
|
|
|
|
# |
|
1333
|
6
|
|
|
6
|
0
|
47
|
sub acosech { Math::Complex::acsch(@_) } |
|
1334
|
|
|
|
|
|
|
|
|
1335
|
|
|
|
|
|
|
# |
|
1336
|
|
|
|
|
|
|
# acoth |
|
1337
|
|
|
|
|
|
|
# |
|
1338
|
|
|
|
|
|
|
# Computes the area/inverse hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)). |
|
1339
|
|
|
|
|
|
|
# |
|
1340
|
|
|
|
|
|
|
sub acoth { |
|
1341
|
40
|
|
|
40
|
0
|
3872
|
my ($z) = @_; |
|
1342
|
40
|
100
|
|
|
|
105
|
_divbyzero 'acoth(0)' if ($z == 0); |
|
1343
|
39
|
100
|
|
|
|
137
|
unless (ref $z) { |
|
1344
|
3
|
100
|
|
|
|
14
|
return CORE::log(($z + 1)/($z - 1))/2 if CORE::abs($z) > 1; |
|
1345
|
2
|
|
|
|
|
3
|
$z = cplx($z, 0); |
|
1346
|
|
|
|
|
|
|
} |
|
1347
|
38
|
100
|
|
|
|
166
|
_divbyzero 'acoth(1)', "$z - 1" if ($z - 1 == 0); |
|
1348
|
37
|
100
|
|
|
|
157
|
_logofzero 'acoth(-1)', "1 + $z" if (1 + $z == 0); |
|
1349
|
36
|
|
|
|
|
146
|
return &log((1 + $z) / ($z - 1)) / 2; |
|
1350
|
|
|
|
|
|
|
} |
|
1351
|
|
|
|
|
|
|
|
|
1352
|
|
|
|
|
|
|
# |
|
1353
|
|
|
|
|
|
|
# acotanh |
|
1354
|
|
|
|
|
|
|
# |
|
1355
|
|
|
|
|
|
|
# Alias for acot(). |
|
1356
|
|
|
|
|
|
|
# |
|
1357
|
6
|
|
|
6
|
0
|
71
|
sub acotanh { Math::Complex::acoth(@_) } |
|
1358
|
|
|
|
|
|
|
|
|
1359
|
|
|
|
|
|
|
# |
|
1360
|
|
|
|
|
|
|
# (atan2) |
|
1361
|
|
|
|
|
|
|
# |
|
1362
|
|
|
|
|
|
|
# Compute atan(z1/z2), minding the right quadrant. |
|
1363
|
|
|
|
|
|
|
# |
|
1364
|
|
|
|
|
|
|
sub atan2 { |
|
1365
|
40
|
|
|
40
|
0
|
1124
|
my ($z1, $z2, $inverted) = @_; |
|
1366
|
40
|
|
|
|
|
49
|
my ($re1, $im1, $re2, $im2); |
|
1367
|
40
|
50
|
|
|
|
76
|
if ($inverted) { |
|
1368
|
0
|
0
|
|
|
|
0
|
($re1, $im1) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); |
|
|
0
|
|
|
|
|
0
|
|
|
1369
|
0
|
0
|
|
|
|
0
|
($re2, $im2) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0); |
|
|
0
|
|
|
|
|
0
|
|
|
1370
|
|
|
|
|
|
|
} else { |
|
1371
|
40
|
100
|
|
|
|
92
|
($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0); |
|
|
3
|
|
|
|
|
7
|
|
|
1372
|
40
|
100
|
|
|
|
92
|
($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); |
|
|
3
|
|
|
|
|
5
|
|
|
1373
|
|
|
|
|
|
|
} |
|
1374
|
40
|
100
|
100
|
|
|
171
|
if ($im1 || $im2) { |
|
1375
|
|
|
|
|
|
|
# In MATLAB the imaginary parts are ignored. |
|
1376
|
|
|
|
|
|
|
# warn "atan2: Imaginary parts ignored"; |
|
1377
|
|
|
|
|
|
|
# http://documents.wolfram.com/mathematica/functions/ArcTan |
|
1378
|
|
|
|
|
|
|
# NOTE: Mathematica ArcTan[x,y] while atan2(y,x) |
|
1379
|
4
|
|
|
|
|
9
|
my $s = $z1 * $z1 + $z2 * $z2; |
|
1380
|
4
|
50
|
|
|
|
22
|
_divbyzero("atan2") if $s == 0; |
|
1381
|
4
|
|
|
|
|
8
|
my $i = &i; |
|
1382
|
4
|
|
|
|
|
12
|
my $r = $z2 + $z1 * $i; |
|
1383
|
4
|
|
|
|
|
17
|
return -$i * &log($r / &sqrt( $s )); |
|
1384
|
|
|
|
|
|
|
} |
|
1385
|
36
|
|
|
|
|
285
|
return CORE::atan2($re1, $re2); |
|
1386
|
|
|
|
|
|
|
} |
|
1387
|
|
|
|
|
|
|
|
|
1388
|
|
|
|
|
|
|
# |
|
1389
|
|
|
|
|
|
|
# display_format |
|
1390
|
|
|
|
|
|
|
# ->display_format |
|
1391
|
|
|
|
|
|
|
# |
|
1392
|
|
|
|
|
|
|
# Set (get if no argument) the display format for all complex numbers that |
|
1393
|
|
|
|
|
|
|
# don't happen to have overridden it via ->display_format |
|
1394
|
|
|
|
|
|
|
# |
|
1395
|
|
|
|
|
|
|
# When called as an object method, this actually sets the display format for |
|
1396
|
|
|
|
|
|
|
# the current object. |
|
1397
|
|
|
|
|
|
|
# |
|
1398
|
|
|
|
|
|
|
# Valid object formats are 'c' and 'p' for cartesian and polar. The first |
|
1399
|
|
|
|
|
|
|
# letter is used actually, so the type can be fully spelled out for clarity. |
|
1400
|
|
|
|
|
|
|
# |
|
1401
|
|
|
|
|
|
|
sub display_format { |
|
1402
|
18463
|
|
|
18463
|
0
|
24650
|
my $self = shift; |
|
1403
|
18463
|
|
|
|
|
49688
|
my %display_format = %DISPLAY_FORMAT; |
|
1404
|
|
|
|
|
|
|
|
|
1405
|
18463
|
100
|
|
|
|
42714
|
if (ref $self) { # Called as an object method |
|
1406
|
18462
|
100
|
|
|
|
44390
|
if (exists $self->{display_format}) { |
|
1407
|
11419
|
|
|
|
|
10818
|
my %obj = %{$self->{display_format}}; |
|
|
11419
|
|
|
|
|
34621
|
|
|
1408
|
11419
|
|
|
|
|
39081
|
@display_format{keys %obj} = values %obj; |
|
1409
|
|
|
|
|
|
|
} |
|
1410
|
|
|
|
|
|
|
} |
|
1411
|
18463
|
100
|
|
|
|
35826
|
if (@_ == 1) { |
|
1412
|
7043
|
|
|
|
|
11424
|
$display_format{style} = shift; |
|
1413
|
|
|
|
|
|
|
} else { |
|
1414
|
11420
|
|
|
|
|
14681
|
my %new = @_; |
|
1415
|
11420
|
|
|
|
|
18454
|
@display_format{keys %new} = values %new; |
|
1416
|
|
|
|
|
|
|
} |
|
1417
|
|
|
|
|
|
|
|
|
1418
|
18463
|
100
|
|
|
|
35469
|
if (ref $self) { # Called as an object method |
|
1419
|
18462
|
|
|
|
|
56127
|
$self->{display_format} = { %display_format }; |
|
1420
|
|
|
|
|
|
|
return |
|
1421
|
|
|
|
|
|
|
wantarray ? |
|
1422
|
18462
|
100
|
|
|
|
66928
|
%{$self->{display_format}} : |
|
|
5713
|
|
|
|
|
24447
|
|
|
1423
|
|
|
|
|
|
|
$self->{display_format}->{style}; |
|
1424
|
|
|
|
|
|
|
} |
|
1425
|
|
|
|
|
|
|
|
|
1426
|
|
|
|
|
|
|
# Called as a class method |
|
1427
|
1
|
|
|
|
|
3
|
%DISPLAY_FORMAT = %display_format; |
|
1428
|
|
|
|
|
|
|
return |
|
1429
|
|
|
|
|
|
|
wantarray ? |
|
1430
|
1
|
50
|
|
|
|
16
|
%DISPLAY_FORMAT : |
|
1431
|
|
|
|
|
|
|
$DISPLAY_FORMAT{style}; |
|
1432
|
|
|
|
|
|
|
} |
|
1433
|
|
|
|
|
|
|
|
|
1434
|
|
|
|
|
|
|
# |
|
1435
|
|
|
|
|
|
|
# (_stringify) |
|
1436
|
|
|
|
|
|
|
# |
|
1437
|
|
|
|
|
|
|
# Show nicely formatted complex number under its cartesian or polar form, |
|
1438
|
|
|
|
|
|
|
# depending on the current display format: |
|
1439
|
|
|
|
|
|
|
# |
|
1440
|
|
|
|
|
|
|
# . If a specific display format has been recorded for this object, use it. |
|
1441
|
|
|
|
|
|
|
# . Otherwise, use the generic current default for all complex numbers, |
|
1442
|
|
|
|
|
|
|
# which is a package global variable. |
|
1443
|
|
|
|
|
|
|
# |
|
1444
|
|
|
|
|
|
|
sub _stringify { |
|
1445
|
5699
|
|
|
5699
|
|
23266
|
my ($z) = shift; |
|
1446
|
|
|
|
|
|
|
|
|
1447
|
5699
|
|
|
|
|
11215
|
my $style = $z->display_format; |
|
1448
|
|
|
|
|
|
|
|
|
1449
|
5699
|
50
|
|
|
|
11647
|
$style = $DISPLAY_FORMAT{style} unless defined $style; |
|
1450
|
|
|
|
|
|
|
|
|
1451
|
5699
|
100
|
|
|
|
17268
|
return $z->_stringify_polar if $style =~ /^p/i; |
|
1452
|
5431
|
|
|
|
|
10571
|
return $z->_stringify_cartesian; |
|
1453
|
|
|
|
|
|
|
} |
|
1454
|
|
|
|
|
|
|
|
|
1455
|
|
|
|
|
|
|
# |
|
1456
|
|
|
|
|
|
|
# ->_stringify_cartesian |
|
1457
|
|
|
|
|
|
|
# |
|
1458
|
|
|
|
|
|
|
# Stringify as a cartesian representation 'a+bi'. |
|
1459
|
|
|
|
|
|
|
# |
|
1460
|
|
|
|
|
|
|
sub _stringify_cartesian { |
|
1461
|
5438
|
|
|
5438
|
|
6191
|
my $z = shift; |
|
1462
|
5438
|
|
|
|
|
6158
|
my ($x, $y) = @{$z->_cartesian}; |
|
|
5438
|
|
|
|
|
8830
|
|
|
1463
|
5438
|
|
|
|
|
6347
|
my ($re, $im); |
|
1464
|
|
|
|
|
|
|
|
|
1465
|
5438
|
|
|
|
|
9533
|
my %format = $z->display_format; |
|
1466
|
5438
|
|
|
|
|
8751
|
my $format = $format{format}; |
|
1467
|
|
|
|
|
|
|
|
|
1468
|
5438
|
100
|
|
|
|
9673
|
if ($x) { |
|
1469
|
3966
|
50
|
|
|
|
14749
|
if ($x =~ /^NaN[QS]?$/i) { |
|
1470
|
0
|
|
|
|
|
0
|
$re = $x; |
|
1471
|
|
|
|
|
|
|
} else { |
|
1472
|
3966
|
50
|
|
|
|
12162
|
if ($x =~ /^-?\Q$Inf\E$/oi) { |
|
1473
|
0
|
|
|
|
|
0
|
$re = $x; |
|
1474
|
|
|
|
|
|
|
} else { |
|
1475
|
3966
|
100
|
|
|
|
8020
|
$re = defined $format ? sprintf($format, $x) : $x; |
|
1476
|
|
|
|
|
|
|
} |
|
1477
|
|
|
|
|
|
|
} |
|
1478
|
|
|
|
|
|
|
} else { |
|
1479
|
1472
|
|
|
|
|
1928
|
undef $re; |
|
1480
|
|
|
|
|
|
|
} |
|
1481
|
|
|
|
|
|
|
|
|
1482
|
5438
|
100
|
|
|
|
7735
|
if ($y) { |
|
1483
|
3565
|
50
|
|
|
|
9692
|
if ($y =~ /^(NaN[QS]?)$/i) { |
|
1484
|
0
|
|
|
|
|
0
|
$im = $y; |
|
1485
|
|
|
|
|
|
|
} else { |
|
1486
|
3565
|
50
|
|
|
|
9137
|
if ($y =~ /^-?\Q$Inf\E$/oi) { |
|
1487
|
0
|
|
|
|
|
0
|
$im = $y; |
|
1488
|
|
|
|
|
|
|
} else { |
|
1489
|
3565
|
100
|
|
|
|
9791
|
$im = |
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
1490
|
|
|
|
|
|
|
defined $format ? |
|
1491
|
|
|
|
|
|
|
sprintf($format, $y) : |
|
1492
|
|
|
|
|
|
|
($y == 1 ? "" : ($y == -1 ? "-" : $y)); |
|
1493
|
|
|
|
|
|
|
} |
|
1494
|
|
|
|
|
|
|
} |
|
1495
|
3565
|
|
|
|
|
7161
|
$im .= "i"; |
|
1496
|
|
|
|
|
|
|
} else { |
|
1497
|
1873
|
|
|
|
|
2347
|
undef $im; |
|
1498
|
|
|
|
|
|
|
} |
|
1499
|
|
|
|
|
|
|
|
|
1500
|
5438
|
|
|
|
|
5784
|
my $str = $re; |
|
1501
|
|
|
|
|
|
|
|
|
1502
|
5438
|
100
|
|
|
|
9215
|
if (defined $im) { |
|
|
|
100
|
|
|
|
|
|
|
1503
|
3565
|
100
|
33
|
|
|
9950
|
if ($y < 0) { |
|
|
|
50
|
|
|
|
|
|
|
1504
|
1049
|
|
|
|
|
3891
|
$str .= $im; |
|
1505
|
|
|
|
|
|
|
} elsif ($y > 0 || $im =~ /^NaN[QS]?i$/i) { |
|
1506
|
2516
|
100
|
|
|
|
9627
|
$str .= "+" if defined $re; |
|
1507
|
2516
|
|
|
|
|
3593
|
$str .= $im; |
|
1508
|
|
|
|
|
|
|
} |
|
1509
|
|
|
|
|
|
|
} elsif (!defined $re) { |
|
1510
|
94
|
|
|
|
|
114
|
$str = "0"; |
|
1511
|
|
|
|
|
|
|
} |
|
1512
|
|
|
|
|
|
|
|
|
1513
|
5438
|
|
|
|
|
135914
|
return $str; |
|
1514
|
|
|
|
|
|
|
} |
|
1515
|
|
|
|
|
|
|
|
|
1516
|
|
|
|
|
|
|
|
|
1517
|
|
|
|
|
|
|
# |
|
1518
|
|
|
|
|
|
|
# ->_stringify_polar |
|
1519
|
|
|
|
|
|
|
# |
|
1520
|
|
|
|
|
|
|
# Stringify as a polar representation '[r,t]'. |
|
1521
|
|
|
|
|
|
|
# |
|
1522
|
|
|
|
|
|
|
sub _stringify_polar { |
|
1523
|
273
|
|
|
273
|
|
390
|
my $z = shift; |
|
1524
|
273
|
|
|
|
|
304
|
my ($r, $t) = @{$z->_polar}; |
|
|
273
|
|
|
|
|
435
|
|
|
1525
|
273
|
|
|
|
|
303
|
my $theta; |
|
1526
|
|
|
|
|
|
|
|
|
1527
|
273
|
|
|
|
|
491
|
my %format = $z->display_format; |
|
1528
|
273
|
|
|
|
|
453
|
my $format = $format{format}; |
|
1529
|
|
|
|
|
|
|
|
|
1530
|
273
|
50
|
33
|
|
|
3071
|
if ($t =~ /^NaN[QS]?$/i || $t =~ /^-?\Q$Inf\E$/oi) { |
|
|
|
100
|
66
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
1531
|
0
|
|
|
|
|
0
|
$theta = $t; |
|
1532
|
|
|
|
|
|
|
} elsif ($t == pi) { |
|
1533
|
5
|
|
|
|
|
11
|
$theta = "pi"; |
|
1534
|
|
|
|
|
|
|
} elsif ($r == 0 || $t == 0) { |
|
1535
|
12
|
50
|
|
|
|
24
|
$theta = defined $format ? sprintf($format, $t) : $t; |
|
1536
|
|
|
|
|
|
|
} |
|
1537
|
|
|
|
|
|
|
|
|
1538
|
273
|
100
|
|
|
|
948
|
return "[$r,$theta]" if defined $theta; |
|
1539
|
|
|
|
|
|
|
|
|
1540
|
|
|
|
|
|
|
# |
|
1541
|
|
|
|
|
|
|
# Try to identify pi/n and friends. |
|
1542
|
|
|
|
|
|
|
# |
|
1543
|
|
|
|
|
|
|
|
|
1544
|
256
|
|
|
|
|
554
|
$t -= int(CORE::abs($t) / pi2) * pi2; |
|
1545
|
|
|
|
|
|
|
|
|
1546
|
256
|
100
|
66
|
|
|
1703
|
if ($format{polar_pretty_print} && $t) { |
|
1547
|
252
|
|
|
|
|
252
|
my ($a, $b); |
|
1548
|
252
|
|
|
|
|
401
|
for $a (2..9) { |
|
1549
|
1616
|
|
|
|
|
1829
|
$b = $t * $a / pi; |
|
1550
|
1616
|
100
|
|
|
|
6587
|
if ($b =~ /^-?\d+$/) { |
|
1551
|
60
|
100
|
|
|
|
154
|
$b = $b < 0 ? "-" : "" if CORE::abs($b) == 1; |
|
|
|
100
|
|
|
|
|
|
|
1552
|
60
|
|
|
|
|
105
|
$theta = "${b}pi/$a"; |
|
1553
|
60
|
|
|
|
|
90
|
last; |
|
1554
|
|
|
|
|
|
|
} |
|
1555
|
|
|
|
|
|
|
} |
|
1556
|
|
|
|
|
|
|
} |
|
1557
|
|
|
|
|
|
|
|
|
1558
|
256
|
100
|
|
|
|
531
|
if (defined $format) { |
|
1559
|
2
|
|
|
|
|
7
|
$r = sprintf($format, $r); |
|
1560
|
2
|
50
|
|
|
|
7
|
$theta = sprintf($format, $t) unless defined $theta; |
|
1561
|
|
|
|
|
|
|
} else { |
|
1562
|
254
|
100
|
|
|
|
609
|
$theta = $t unless defined $theta; |
|
1563
|
|
|
|
|
|
|
} |
|
1564
|
|
|
|
|
|
|
|
|
1565
|
256
|
|
|
|
|
7940
|
return "[$r,$theta]"; |
|
1566
|
|
|
|
|
|
|
} |
|
1567
|
|
|
|
|
|
|
|
|
1568
|
|
|
|
|
|
|
sub Inf { |
|
1569
|
46
|
|
|
46
|
1
|
735
|
return $Inf; |
|
1570
|
|
|
|
|
|
|
} |
|
1571
|
|
|
|
|
|
|
|
|
1572
|
|
|
|
|
|
|
1; |
|
1573
|
|
|
|
|
|
|
__END__ |