| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Geo::Spline; |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
=head1 NAME |
|
4
|
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
Geo::Spline - Calculate geographic locations between GPS fixes. |
|
6
|
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
=head1 SYNOPSIS |
|
8
|
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
use Geo::Spline; |
|
10
|
|
|
|
|
|
|
my $p0={time=>1160449100.67, #seconds |
|
11
|
|
|
|
|
|
|
lat=>39.197807, #degrees |
|
12
|
|
|
|
|
|
|
lon=>-77.263510, #degrees |
|
13
|
|
|
|
|
|
|
speed=>31.124, #m/s |
|
14
|
|
|
|
|
|
|
heading=>144.8300}; #degrees clockwise from North |
|
15
|
|
|
|
|
|
|
my $p1={time=>1160449225.66, |
|
16
|
|
|
|
|
|
|
lat=>39.167718, |
|
17
|
|
|
|
|
|
|
lon=>-77.242278, |
|
18
|
|
|
|
|
|
|
speed=>30.615, |
|
19
|
|
|
|
|
|
|
heading=>150.5300}; |
|
20
|
|
|
|
|
|
|
my $spline=Geo::Spline->new($p0, $p1); |
|
21
|
|
|
|
|
|
|
my %point=$spline->point(1160449150); |
|
22
|
|
|
|
|
|
|
print "Lat:", $point{"lat"}, ", Lon:", $point{"lon"}, "\n\n"; |
|
23
|
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
my @points=$spline->pointlist(); |
|
25
|
|
|
|
|
|
|
foreach (@points) { |
|
26
|
|
|
|
|
|
|
print "Lat:", $_->{"lat"}, ", Lon:", $_->{"lon"}, "\n"; |
|
27
|
|
|
|
|
|
|
} |
|
28
|
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
=head1 DESCRIPTION |
|
30
|
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
This program was developed to be able to calculate the position between two GPS fixes using a 2-dimensional 3rd order polynomial spline. |
|
32
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
f(t) = A + B(t-t0) + C(t-t0)^2 + D(t-t0)^3 #position in X and Y |
|
34
|
|
|
|
|
|
|
f'(t) = B + 2C(t-t0) + 3D(t-t0)^2 #velocity in X and Y |
|
35
|
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
I did some simple Math (for an engineer with a math minor) to come up with these formulas to calculate the unknowns from our knowns. |
|
37
|
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
A = x0 # when (t-t0)=0 in f(t) |
|
39
|
|
|
|
|
|
|
B = v0 # when (t-t0)=0 in f'(t) |
|
40
|
|
|
|
|
|
|
C = (x1-A-B(t1-t0)-D(t1-t0)^3)/(t1-t0)^2 # solve for C from f(t) |
|
41
|
|
|
|
|
|
|
C = (v1-B-3D(t1-t0)^2)/2(t1-t0) # solve for C from f'(t) |
|
42
|
|
|
|
|
|
|
D = (v1(t1-t0)+B(t1-t0)-2x1+2A)/(t1-t0)^3 # equate C=C then solve for D |
|
43
|
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
=cut |
|
45
|
|
|
|
|
|
|
|
|
46
|
1
|
|
|
1
|
|
512
|
use strict; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
38
|
|
|
47
|
1
|
|
|
1
|
|
6
|
use vars qw($VERSION); |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
40
|
|
|
48
|
1
|
|
|
1
|
|
751
|
use Geo::Constants qw{PI}; |
|
|
1
|
|
|
|
|
584
|
|
|
|
1
|
|
|
|
|
63
|
|
|
49
|
1
|
|
|
1
|
|
671
|
use Geo::Functions qw{deg_rad rad_deg round}; |
|
|
1
|
|
|
|
|
839
|
|
|
|
1
|
|
|
|
|
442
|
|
|
50
|
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
$VERSION = sprintf("%d.%02d", q{Revision: 0.16} =~ /(\d+)\.(\d+)/); |
|
52
|
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
=head1 CONSTRUCTOR |
|
54
|
|
|
|
|
|
|
|
|
55
|
|
|
|
|
|
|
=head2 new |
|
56
|
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
my $spline=Geo::Spline->new($p0, $p1); |
|
58
|
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
=cut |
|
60
|
|
|
|
|
|
|
|
|
61
|
|
|
|
|
|
|
sub new { |
|
62
|
1
|
|
|
1
|
1
|
471
|
my $this = shift(); |
|
63
|
1
|
|
33
|
|
|
8
|
my $class = ref($this) || $this; |
|
64
|
1
|
|
|
|
|
2
|
my $self = {}; |
|
65
|
1
|
|
|
|
|
2
|
bless $self, $class; |
|
66
|
1
|
|
|
|
|
5
|
$self->initialize(@_); |
|
67
|
1
|
|
|
|
|
3
|
return $self; |
|
68
|
|
|
|
|
|
|
} |
|
69
|
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
=head1 METHODS |
|
71
|
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
=cut |
|
73
|
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
sub initialize { |
|
75
|
1
|
|
|
1
|
0
|
4
|
my $self = shift(); |
|
76
|
1
|
|
|
|
|
7
|
$self->{'pt0'}=shift(); |
|
77
|
1
|
|
|
|
|
3
|
$self->{'pt1'}=shift(); |
|
78
|
1
|
|
|
|
|
2
|
my $ellipsoid=$self->ellipsoid("WGS84"); |
|
79
|
1
|
|
|
|
|
3
|
my $dt=$self->{'pt1'}->{'time'} - $self->{'pt0'}->{'time'}; |
|
80
|
1
|
50
|
|
|
|
4
|
die ("Delta time must be greater than zero.") if ($dt<=0); |
|
81
|
1
|
|
|
|
|
5
|
my ($A, $B, $C, $D)=$self->ABCD( |
|
82
|
|
|
|
|
|
|
$self->{'pt0'}->{'time'}, |
|
83
|
|
|
|
|
|
|
$self->{'pt0'}->{'lat'} * $ellipsoid->polar_circumference / 360, |
|
84
|
|
|
|
|
|
|
$self->{'pt0'}->{'speed'} * cos(rad_deg($self->{'pt0'}->{'heading'})), |
|
85
|
|
|
|
|
|
|
$self->{'pt1'}->{'time'}, |
|
86
|
|
|
|
|
|
|
$self->{'pt1'}->{'lat'} * $ellipsoid->polar_circumference / 360, |
|
87
|
|
|
|
|
|
|
$self->{'pt1'}->{'speed'} * cos(rad_deg($self->{'pt1'}->{'heading'}))); |
|
88
|
1
|
|
|
|
|
5
|
$self->{'Alat'}=$A; |
|
89
|
1
|
|
|
|
|
2
|
$self->{'Blat'}=$B; |
|
90
|
1
|
|
|
|
|
2
|
$self->{'Clat'}=$C; |
|
91
|
1
|
|
|
|
|
2
|
$self->{'Dlat'}=$D; |
|
92
|
1
|
|
|
|
|
5
|
($A, $B, $C, $D)=$self->ABCD( |
|
93
|
|
|
|
|
|
|
$self->{'pt0'}->{'time'}, |
|
94
|
|
|
|
|
|
|
$self->{'pt0'}->{'lon'} * $ellipsoid->equatorial_circumference / 360, |
|
95
|
|
|
|
|
|
|
$self->{'pt0'}->{'speed'} * sin(rad_deg($self->{'pt0'}->{'heading'})), |
|
96
|
|
|
|
|
|
|
$self->{'pt1'}->{'time'}, |
|
97
|
|
|
|
|
|
|
$self->{'pt1'}->{'lon'} * $ellipsoid->equatorial_circumference / 360, |
|
98
|
|
|
|
|
|
|
$self->{'pt1'}->{'speed'} * sin(rad_deg($self->{'pt1'}->{'heading'}))); |
|
99
|
1
|
|
|
|
|
4
|
$self->{'Alon'}=$A; |
|
100
|
1
|
|
|
|
|
2
|
$self->{'Blon'}=$B; |
|
101
|
1
|
|
|
|
|
2
|
$self->{'Clon'}=$C; |
|
102
|
1
|
|
|
|
|
2
|
$self->{'Dlon'}=$D; |
|
103
|
|
|
|
|
|
|
} |
|
104
|
|
|
|
|
|
|
|
|
105
|
|
|
|
|
|
|
=head2 ellipsoid |
|
106
|
|
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
Method to set or retrieve the current ellipsoid object. The ellipsoid is a Geo::Ellipsoids object. |
|
108
|
|
|
|
|
|
|
|
|
109
|
|
|
|
|
|
|
my $ellipsoid=$obj->ellipsoid; #Default is WGS84 |
|
110
|
|
|
|
|
|
|
|
|
111
|
|
|
|
|
|
|
$obj->ellipsoid('Clarke 1866'); #Built in ellipsoids from Geo::Ellipsoids |
|
112
|
|
|
|
|
|
|
$obj->ellipsoid({a=>1}); #Custom Sphere 1 unit radius |
|
113
|
|
|
|
|
|
|
|
|
114
|
|
|
|
|
|
|
=cut |
|
115
|
|
|
|
|
|
|
|
|
116
|
|
|
|
|
|
|
sub ellipsoid { |
|
117
|
1259
|
|
|
1259
|
1
|
1169
|
my $self = shift(); |
|
118
|
1259
|
100
|
|
|
|
2129
|
if (@_) { |
|
119
|
1
|
|
|
|
|
2
|
my $param=shift(); |
|
120
|
1
|
|
|
1
|
|
786
|
use Geo::Ellipsoids; |
|
|
1
|
|
|
|
|
2331
|
|
|
|
1
|
|
|
|
|
591
|
|
|
121
|
1
|
|
|
|
|
4
|
my $obj=Geo::Ellipsoids->new($param); |
|
122
|
1
|
|
|
|
|
214
|
$self->{'ellipsoid'}=$obj; |
|
123
|
|
|
|
|
|
|
} |
|
124
|
1259
|
|
|
|
|
1820
|
return $self->{'ellipsoid'}; |
|
125
|
|
|
|
|
|
|
} |
|
126
|
|
|
|
|
|
|
|
|
127
|
|
|
|
|
|
|
sub ABCD { |
|
128
|
2
|
|
|
2
|
0
|
102
|
my $self = shift(); |
|
129
|
2
|
|
|
|
|
5
|
my $t0 = shift(); |
|
130
|
2
|
|
|
|
|
3
|
my $x0 = shift(); |
|
131
|
2
|
|
|
|
|
8
|
my $v0 = shift(); |
|
132
|
2
|
|
|
|
|
3
|
my $t1 = shift(); |
|
133
|
2
|
|
|
|
|
3
|
my $x1 = shift(); |
|
134
|
2
|
|
|
|
|
3
|
my $v1 = shift(); |
|
135
|
|
|
|
|
|
|
#x=f(t)=A+B(t-t0)+C(t-t0)^2+D(t-t0)^3 |
|
136
|
|
|
|
|
|
|
#v=f'(t)=B+2C(t-t0)+3D(t-t0)^2 |
|
137
|
|
|
|
|
|
|
#A=x0 |
|
138
|
|
|
|
|
|
|
#B=v0 |
|
139
|
|
|
|
|
|
|
#C=(x1-A-B(t1-t0)-D(t1-t0)^3)/((t1-t0)^2) # from f(t) |
|
140
|
|
|
|
|
|
|
#C=(v1-B-3D(t1-t0)^2)/2(t1-t0) # from f'(t) |
|
141
|
|
|
|
|
|
|
#D=(v1t+Bt-2x1+2A)/t^3 # from C=C |
|
142
|
2
|
|
|
|
|
2
|
my $A=$x0; |
|
143
|
2
|
|
|
|
|
3
|
my $B=$v0; |
|
144
|
|
|
|
|
|
|
#=(C3*(A3-A2)+B6*(A3-A2)-2*B3+2*B5)/(A3-A2)^3 # for Excel |
|
145
|
2
|
|
|
|
|
24
|
my $D=($v1*($t1-$t0)+$B*($t1-$t0)-2*$x1+2*$A)/($t1-$t0)**3; |
|
146
|
|
|
|
|
|
|
#=(B3-B5-B6*(A3-A2)-B8*(A3-A2)^3)/(A3-A2)^2 # for Excel |
|
147
|
2
|
|
|
|
|
7
|
my $C=($x1-$A-$B*($t1-$t0)-$D*($t1-$t0)**3)/($t1-$t0)**2; |
|
148
|
2
|
|
|
|
|
6
|
return($A,$B,$C,$D); |
|
149
|
|
|
|
|
|
|
} |
|
150
|
|
|
|
|
|
|
|
|
151
|
|
|
|
|
|
|
=head2 point |
|
152
|
|
|
|
|
|
|
|
|
153
|
|
|
|
|
|
|
Method returns a single point from a single time. |
|
154
|
|
|
|
|
|
|
|
|
155
|
|
|
|
|
|
|
my $point=$spline->point($t1); |
|
156
|
|
|
|
|
|
|
my %point=$spline->point($t1); |
|
157
|
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
=cut |
|
159
|
|
|
|
|
|
|
|
|
160
|
|
|
|
|
|
|
sub point { |
|
161
|
1258
|
|
|
1258
|
1
|
2153
|
my $self=shift(); |
|
162
|
1258
|
|
|
|
|
1156
|
my $timereal=shift(); |
|
163
|
1258
|
|
|
|
|
1825
|
my $ellipsoid=$self->ellipsoid; |
|
164
|
1258
|
|
|
|
|
1980
|
my $t=$timereal-$self->{'pt0'}->{'time'}; |
|
165
|
1258
|
|
|
|
|
2171
|
my ($Alat, $Blat, $Clat, $Dlat)=($self->{'Alat'}, $self->{'Blat'},$self->{'Clat'},$self->{'Dlat'}); |
|
166
|
1258
|
|
|
|
|
1953
|
my ($Alon, $Blon, $Clon, $Dlon)=($self->{'Alon'}, $self->{'Blon'},$self->{'Clon'},$self->{'Dlon'}); |
|
167
|
1258
|
|
|
|
|
2610
|
my $lat=$Alat + $Blat * $t + $Clat * $t ** 2 + $Dlat * $t ** 3; |
|
168
|
1258
|
|
|
|
|
2017
|
my $lon=$Alon + $Blon * $t + $Clon * $t ** 2 + $Dlon * $t ** 3; |
|
169
|
1258
|
|
|
|
|
1694
|
my $vlat=$Blat + 2 * $Clat * $t + 3 * $Dlat * $t ** 2; |
|
170
|
1258
|
|
|
|
|
1625
|
my $vlon=$Blon + 2 * $Clon * $t + 3 * $Dlon * $t ** 2; |
|
171
|
1258
|
|
|
|
|
1595
|
my $speed=sqrt($vlat ** 2 + $vlon ** 2); |
|
172
|
1258
|
|
|
|
|
2453
|
my $heading=PI()/2 - atan2($vlat,$vlon); |
|
173
|
1258
|
|
|
|
|
4667
|
$heading=deg_rad($heading); |
|
174
|
1258
|
|
|
|
|
8403
|
$lat/=$ellipsoid->polar_circumference / 360; |
|
175
|
1258
|
|
|
|
|
12048
|
$lon/=$ellipsoid->equatorial_circumference / 360; |
|
176
|
1258
|
|
|
|
|
10500
|
my %pt=(time=>$timereal, |
|
177
|
|
|
|
|
|
|
lat=>$lat, |
|
178
|
|
|
|
|
|
|
lon=>$lon, |
|
179
|
|
|
|
|
|
|
speed=>$speed, |
|
180
|
|
|
|
|
|
|
heading=>$heading); |
|
181
|
1258
|
100
|
|
|
|
7856
|
return wantarray ? %pt : \%pt; |
|
182
|
|
|
|
|
|
|
} |
|
183
|
|
|
|
|
|
|
|
|
184
|
|
|
|
|
|
|
=head2 pointlist |
|
185
|
|
|
|
|
|
|
|
|
186
|
|
|
|
|
|
|
Method returns a list of points from a list of times. |
|
187
|
|
|
|
|
|
|
|
|
188
|
|
|
|
|
|
|
my $list=$spline->pointlist($t1,$t2,$t3); |
|
189
|
|
|
|
|
|
|
my @list=$spline->pointlist($t1,$t2,$t3); |
|
190
|
|
|
|
|
|
|
|
|
191
|
|
|
|
|
|
|
=cut |
|
192
|
|
|
|
|
|
|
|
|
193
|
|
|
|
|
|
|
sub pointlist { |
|
194
|
4
|
|
|
4
|
1
|
2580
|
my $self=shift(); |
|
195
|
4
|
|
|
|
|
58
|
my @list=@_; |
|
196
|
4
|
100
|
|
|
|
14
|
@list=$self->timelist() if (scalar(@list)== 0); |
|
197
|
4
|
|
|
|
|
10
|
my @points=(); |
|
198
|
4
|
|
|
|
|
7
|
foreach (@list) { |
|
199
|
1256
|
|
|
|
|
2148
|
push @points, {$self->point($_)}; |
|
200
|
|
|
|
|
|
|
} |
|
201
|
4
|
100
|
|
|
|
456
|
return wantarray ? @points : \@points; |
|
202
|
|
|
|
|
|
|
} |
|
203
|
|
|
|
|
|
|
|
|
204
|
|
|
|
|
|
|
=head2 timelist |
|
205
|
|
|
|
|
|
|
|
|
206
|
|
|
|
|
|
|
Method returns a list of times (n+1). The default will return a list with an integer number of seconds between spline end points. |
|
207
|
|
|
|
|
|
|
|
|
208
|
|
|
|
|
|
|
my $list=$spline->timelist($samples); |
|
209
|
|
|
|
|
|
|
my @list=$spline->timelist(); |
|
210
|
|
|
|
|
|
|
|
|
211
|
|
|
|
|
|
|
=cut |
|
212
|
|
|
|
|
|
|
|
|
213
|
|
|
|
|
|
|
sub timelist { |
|
214
|
6
|
|
|
6
|
1
|
795
|
my $self=shift(); |
|
215
|
6
|
|
|
|
|
12
|
my $t0=$self->{'pt0'}->{'time'}; |
|
216
|
6
|
|
|
|
|
8
|
my $t1=$self->{'pt1'}->{'time'}; |
|
217
|
6
|
|
|
|
|
7
|
my $dt=$t1-$t0; |
|
218
|
6
|
|
66
|
|
|
20
|
my $count=shift() || round($dt); |
|
219
|
6
|
|
|
|
|
28
|
my @list; |
|
220
|
6
|
|
|
|
|
10
|
foreach(0..$count) { |
|
221
|
1506
|
|
|
|
|
1370
|
my $t=$t0+$dt*($_/$count); |
|
222
|
1506
|
|
|
|
|
1527
|
push @list, $t; |
|
223
|
|
|
|
|
|
|
} |
|
224
|
6
|
100
|
|
|
|
323
|
return wantarray ? @list : \@list; |
|
225
|
|
|
|
|
|
|
} |
|
226
|
|
|
|
|
|
|
|
|
227
|
|
|
|
|
|
|
1; |
|
228
|
|
|
|
|
|
|
|
|
229
|
|
|
|
|
|
|
__END__ |