| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
/* |
|
2
|
|
|
|
|
|
|
** 2003 Feb 4 |
|
3
|
|
|
|
|
|
|
** |
|
4
|
|
|
|
|
|
|
** The author disclaims copyright to this source code. In place of |
|
5
|
|
|
|
|
|
|
** a legal notice, here is a blessing: |
|
6
|
|
|
|
|
|
|
** |
|
7
|
|
|
|
|
|
|
** May you do good and not evil. |
|
8
|
|
|
|
|
|
|
** May you find forgiveness for yourself and forgive others. |
|
9
|
|
|
|
|
|
|
** May you share freely, never taking more than you give. |
|
10
|
|
|
|
|
|
|
** |
|
11
|
|
|
|
|
|
|
************************************************************************* |
|
12
|
|
|
|
|
|
|
** $Id: btree_rb.c,v 1.1.1.1 2004/08/08 15:03:57 matt Exp $ |
|
13
|
|
|
|
|
|
|
** |
|
14
|
|
|
|
|
|
|
** This file implements an in-core database using Red-Black balanced |
|
15
|
|
|
|
|
|
|
** binary trees. |
|
16
|
|
|
|
|
|
|
** |
|
17
|
|
|
|
|
|
|
** It was contributed to SQLite by anonymous on 2003-Feb-04 23:24:49 UTC. |
|
18
|
|
|
|
|
|
|
*/ |
|
19
|
|
|
|
|
|
|
#include "btree.h" |
|
20
|
|
|
|
|
|
|
#include "sqliteInt.h" |
|
21
|
|
|
|
|
|
|
#include |
|
22
|
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
/* |
|
24
|
|
|
|
|
|
|
** Omit this whole file if the SQLITE_OMIT_INMEMORYDB macro is |
|
25
|
|
|
|
|
|
|
** defined. This allows a lot of code to be omitted for installations |
|
26
|
|
|
|
|
|
|
** that do not need it. |
|
27
|
|
|
|
|
|
|
*/ |
|
28
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_INMEMORYDB |
|
29
|
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
typedef struct BtRbTree BtRbTree; |
|
32
|
|
|
|
|
|
|
typedef struct BtRbNode BtRbNode; |
|
33
|
|
|
|
|
|
|
typedef struct BtRollbackOp BtRollbackOp; |
|
34
|
|
|
|
|
|
|
typedef struct Rbtree Rbtree; |
|
35
|
|
|
|
|
|
|
typedef struct RbtCursor RbtCursor; |
|
36
|
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
/* Forward declarations */ |
|
38
|
|
|
|
|
|
|
static BtOps sqliteRbtreeOps; |
|
39
|
|
|
|
|
|
|
static BtCursorOps sqliteRbtreeCursorOps; |
|
40
|
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
/* |
|
42
|
|
|
|
|
|
|
* During each transaction (or checkpoint), a linked-list of |
|
43
|
|
|
|
|
|
|
* "rollback-operations" is accumulated. If the transaction is rolled back, |
|
44
|
|
|
|
|
|
|
* then the list of operations must be executed (to restore the database to |
|
45
|
|
|
|
|
|
|
* it's state before the transaction started). If the transaction is to be |
|
46
|
|
|
|
|
|
|
* committed, just delete the list. |
|
47
|
|
|
|
|
|
|
* |
|
48
|
|
|
|
|
|
|
* Each operation is represented as follows, depending on the value of eOp: |
|
49
|
|
|
|
|
|
|
* |
|
50
|
|
|
|
|
|
|
* ROLLBACK_INSERT -> Need to insert (pKey, pData) into table iTab. |
|
51
|
|
|
|
|
|
|
* ROLLBACK_DELETE -> Need to delete the record (pKey) into table iTab. |
|
52
|
|
|
|
|
|
|
* ROLLBACK_CREATE -> Need to create table iTab. |
|
53
|
|
|
|
|
|
|
* ROLLBACK_DROP -> Need to drop table iTab. |
|
54
|
|
|
|
|
|
|
*/ |
|
55
|
|
|
|
|
|
|
struct BtRollbackOp { |
|
56
|
|
|
|
|
|
|
u8 eOp; |
|
57
|
|
|
|
|
|
|
int iTab; |
|
58
|
|
|
|
|
|
|
int nKey; |
|
59
|
|
|
|
|
|
|
void *pKey; |
|
60
|
|
|
|
|
|
|
int nData; |
|
61
|
|
|
|
|
|
|
void *pData; |
|
62
|
|
|
|
|
|
|
BtRollbackOp *pNext; |
|
63
|
|
|
|
|
|
|
}; |
|
64
|
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
/* |
|
66
|
|
|
|
|
|
|
** Legal values for BtRollbackOp.eOp: |
|
67
|
|
|
|
|
|
|
*/ |
|
68
|
|
|
|
|
|
|
#define ROLLBACK_INSERT 1 /* Insert a record */ |
|
69
|
|
|
|
|
|
|
#define ROLLBACK_DELETE 2 /* Delete a record */ |
|
70
|
|
|
|
|
|
|
#define ROLLBACK_CREATE 3 /* Create a table */ |
|
71
|
|
|
|
|
|
|
#define ROLLBACK_DROP 4 /* Drop a table */ |
|
72
|
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
struct Rbtree { |
|
74
|
|
|
|
|
|
|
BtOps *pOps; /* Function table */ |
|
75
|
|
|
|
|
|
|
int aMetaData[SQLITE_N_BTREE_META]; |
|
76
|
|
|
|
|
|
|
|
|
77
|
|
|
|
|
|
|
int next_idx; /* next available table index */ |
|
78
|
|
|
|
|
|
|
Hash tblHash; /* All created tables, by index */ |
|
79
|
|
|
|
|
|
|
u8 isAnonymous; /* True if this Rbtree is to be deleted when closed */ |
|
80
|
|
|
|
|
|
|
u8 eTransState; /* State of this Rbtree wrt transactions */ |
|
81
|
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
BtRollbackOp *pTransRollback; |
|
83
|
|
|
|
|
|
|
BtRollbackOp *pCheckRollback; |
|
84
|
|
|
|
|
|
|
BtRollbackOp *pCheckRollbackTail; |
|
85
|
|
|
|
|
|
|
}; |
|
86
|
|
|
|
|
|
|
|
|
87
|
|
|
|
|
|
|
/* |
|
88
|
|
|
|
|
|
|
** Legal values for Rbtree.eTransState. |
|
89
|
|
|
|
|
|
|
*/ |
|
90
|
|
|
|
|
|
|
#define TRANS_NONE 0 /* No transaction is in progress */ |
|
91
|
|
|
|
|
|
|
#define TRANS_INTRANSACTION 1 /* A transaction is in progress */ |
|
92
|
|
|
|
|
|
|
#define TRANS_INCHECKPOINT 2 /* A checkpoint is in progress */ |
|
93
|
|
|
|
|
|
|
#define TRANS_ROLLBACK 3 /* We are currently rolling back a checkpoint or |
|
94
|
|
|
|
|
|
|
* transaction. */ |
|
95
|
|
|
|
|
|
|
|
|
96
|
|
|
|
|
|
|
struct RbtCursor { |
|
97
|
|
|
|
|
|
|
BtCursorOps *pOps; /* Function table */ |
|
98
|
|
|
|
|
|
|
Rbtree *pRbtree; |
|
99
|
|
|
|
|
|
|
BtRbTree *pTree; |
|
100
|
|
|
|
|
|
|
int iTree; /* Index of pTree in pRbtree */ |
|
101
|
|
|
|
|
|
|
BtRbNode *pNode; |
|
102
|
|
|
|
|
|
|
RbtCursor *pShared; /* List of all cursors on the same Rbtree */ |
|
103
|
|
|
|
|
|
|
u8 eSkip; /* Determines if next step operation is a no-op */ |
|
104
|
|
|
|
|
|
|
u8 wrFlag; /* True if this cursor is open for writing */ |
|
105
|
|
|
|
|
|
|
}; |
|
106
|
|
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
/* |
|
108
|
|
|
|
|
|
|
** Legal values for RbtCursor.eSkip. |
|
109
|
|
|
|
|
|
|
*/ |
|
110
|
|
|
|
|
|
|
#define SKIP_NONE 0 /* Always step the cursor */ |
|
111
|
|
|
|
|
|
|
#define SKIP_NEXT 1 /* The next sqliteRbtreeNext() is a no-op */ |
|
112
|
|
|
|
|
|
|
#define SKIP_PREV 2 /* The next sqliteRbtreePrevious() is a no-op */ |
|
113
|
|
|
|
|
|
|
#define SKIP_INVALID 3 /* Calls to Next() and Previous() are invalid */ |
|
114
|
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
struct BtRbTree { |
|
116
|
|
|
|
|
|
|
RbtCursor *pCursors; /* All cursors pointing to this tree */ |
|
117
|
|
|
|
|
|
|
BtRbNode *pHead; /* Head of the tree, or NULL */ |
|
118
|
|
|
|
|
|
|
}; |
|
119
|
|
|
|
|
|
|
|
|
120
|
|
|
|
|
|
|
struct BtRbNode { |
|
121
|
|
|
|
|
|
|
int nKey; |
|
122
|
|
|
|
|
|
|
void *pKey; |
|
123
|
|
|
|
|
|
|
int nData; |
|
124
|
|
|
|
|
|
|
void *pData; |
|
125
|
|
|
|
|
|
|
u8 isBlack; /* true for a black node, 0 for a red node */ |
|
126
|
|
|
|
|
|
|
BtRbNode *pParent; /* Nodes parent node, NULL for the tree head */ |
|
127
|
|
|
|
|
|
|
BtRbNode *pLeft; /* Nodes left child, or NULL */ |
|
128
|
|
|
|
|
|
|
BtRbNode *pRight; /* Nodes right child, or NULL */ |
|
129
|
|
|
|
|
|
|
|
|
130
|
|
|
|
|
|
|
int nBlackHeight; /* Only used during the red-black integrity check */ |
|
131
|
|
|
|
|
|
|
}; |
|
132
|
|
|
|
|
|
|
|
|
133
|
|
|
|
|
|
|
/* Forward declarations */ |
|
134
|
|
|
|
|
|
|
static int memRbtreeMoveto( |
|
135
|
|
|
|
|
|
|
RbtCursor* pCur, |
|
136
|
|
|
|
|
|
|
const void *pKey, |
|
137
|
|
|
|
|
|
|
int nKey, |
|
138
|
|
|
|
|
|
|
int *pRes |
|
139
|
|
|
|
|
|
|
); |
|
140
|
|
|
|
|
|
|
static int memRbtreeClearTable(Rbtree* tree, int n); |
|
141
|
|
|
|
|
|
|
static int memRbtreeNext(RbtCursor* pCur, int *pRes); |
|
142
|
|
|
|
|
|
|
static int memRbtreeLast(RbtCursor* pCur, int *pRes); |
|
143
|
|
|
|
|
|
|
static int memRbtreePrevious(RbtCursor* pCur, int *pRes); |
|
144
|
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
|
|
146
|
|
|
|
|
|
|
/* |
|
147
|
|
|
|
|
|
|
** This routine checks all cursors that point to the same table |
|
148
|
|
|
|
|
|
|
** as pCur points to. If any of those cursors were opened with |
|
149
|
|
|
|
|
|
|
** wrFlag==0 then this routine returns SQLITE_LOCKED. If all |
|
150
|
|
|
|
|
|
|
** cursors point to the same table were opened with wrFlag==1 |
|
151
|
|
|
|
|
|
|
** then this routine returns SQLITE_OK. |
|
152
|
|
|
|
|
|
|
** |
|
153
|
|
|
|
|
|
|
** In addition to checking for read-locks (where a read-lock |
|
154
|
|
|
|
|
|
|
** means a cursor opened with wrFlag==0) this routine also NULLs |
|
155
|
|
|
|
|
|
|
** out the pNode field of all other cursors. |
|
156
|
|
|
|
|
|
|
** This is necessary because an insert |
|
157
|
|
|
|
|
|
|
** or delete might change erase the node out from under |
|
158
|
|
|
|
|
|
|
** another cursor. |
|
159
|
|
|
|
|
|
|
*/ |
|
160
|
0
|
|
|
|
|
|
static int checkReadLocks(RbtCursor *pCur){ |
|
161
|
|
|
|
|
|
|
RbtCursor *p; |
|
162
|
|
|
|
|
|
|
assert( pCur->wrFlag ); |
|
163
|
0
|
0
|
|
|
|
|
for(p=pCur->pTree->pCursors; p; p=p->pShared){ |
|
164
|
0
|
0
|
|
|
|
|
if( p!=pCur ){ |
|
165
|
0
|
0
|
|
|
|
|
if( p->wrFlag==0 ) return SQLITE_LOCKED; |
|
166
|
0
|
|
|
|
|
|
p->pNode = 0; |
|
167
|
|
|
|
|
|
|
} |
|
168
|
|
|
|
|
|
|
} |
|
169
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
170
|
|
|
|
|
|
|
} |
|
171
|
|
|
|
|
|
|
|
|
172
|
|
|
|
|
|
|
/* |
|
173
|
|
|
|
|
|
|
* The key-compare function for the red-black trees. Returns as follows: |
|
174
|
|
|
|
|
|
|
* |
|
175
|
|
|
|
|
|
|
* (key1 < key2) -1 |
|
176
|
|
|
|
|
|
|
* (key1 == key2) 0 |
|
177
|
|
|
|
|
|
|
* (key1 > key2) 1 |
|
178
|
|
|
|
|
|
|
* |
|
179
|
|
|
|
|
|
|
* Keys are compared using memcmp(). If one key is an exact prefix of the |
|
180
|
|
|
|
|
|
|
* other, then the shorter key is less than the longer key. |
|
181
|
|
|
|
|
|
|
*/ |
|
182
|
0
|
|
|
|
|
|
static int key_compare(void const*pKey1, int nKey1, void const*pKey2, int nKey2) |
|
183
|
|
|
|
|
|
|
{ |
|
184
|
0
|
|
|
|
|
|
int mcmp = memcmp(pKey1, pKey2, (nKey1 <= nKey2)?nKey1:nKey2); |
|
185
|
0
|
0
|
|
|
|
|
if( mcmp == 0){ |
|
186
|
0
|
0
|
|
|
|
|
if( nKey1 == nKey2 ) return 0; |
|
187
|
0
|
0
|
|
|
|
|
return ((nKey1 < nKey2)?-1:1); |
|
188
|
|
|
|
|
|
|
} |
|
189
|
0
|
0
|
|
|
|
|
return ((mcmp>0)?1:-1); |
|
190
|
|
|
|
|
|
|
} |
|
191
|
|
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
/* |
|
193
|
|
|
|
|
|
|
* Perform the LEFT-rotate transformation on node X of tree pTree. This |
|
194
|
|
|
|
|
|
|
* transform is part of the red-black balancing code. |
|
195
|
|
|
|
|
|
|
* |
|
196
|
|
|
|
|
|
|
* | | |
|
197
|
|
|
|
|
|
|
* X Y |
|
198
|
|
|
|
|
|
|
* / \ / \ |
|
199
|
|
|
|
|
|
|
* a Y X c |
|
200
|
|
|
|
|
|
|
* / \ / \ |
|
201
|
|
|
|
|
|
|
* b c a b |
|
202
|
|
|
|
|
|
|
* |
|
203
|
|
|
|
|
|
|
* BEFORE AFTER |
|
204
|
|
|
|
|
|
|
*/ |
|
205
|
0
|
|
|
|
|
|
static void leftRotate(BtRbTree *pTree, BtRbNode *pX) |
|
206
|
|
|
|
|
|
|
{ |
|
207
|
|
|
|
|
|
|
BtRbNode *pY; |
|
208
|
|
|
|
|
|
|
BtRbNode *pb; |
|
209
|
0
|
|
|
|
|
|
pY = pX->pRight; |
|
210
|
0
|
|
|
|
|
|
pb = pY->pLeft; |
|
211
|
|
|
|
|
|
|
|
|
212
|
0
|
|
|
|
|
|
pY->pParent = pX->pParent; |
|
213
|
0
|
0
|
|
|
|
|
if( pX->pParent ){ |
|
214
|
0
|
0
|
|
|
|
|
if( pX->pParent->pLeft == pX ) pX->pParent->pLeft = pY; |
|
215
|
0
|
|
|
|
|
|
else pX->pParent->pRight = pY; |
|
216
|
|
|
|
|
|
|
} |
|
217
|
0
|
|
|
|
|
|
pY->pLeft = pX; |
|
218
|
0
|
|
|
|
|
|
pX->pParent = pY; |
|
219
|
0
|
|
|
|
|
|
pX->pRight = pb; |
|
220
|
0
|
0
|
|
|
|
|
if( pb ) pb->pParent = pX; |
|
221
|
0
|
0
|
|
|
|
|
if( pTree->pHead == pX ) pTree->pHead = pY; |
|
222
|
0
|
|
|
|
|
|
} |
|
223
|
|
|
|
|
|
|
|
|
224
|
|
|
|
|
|
|
/* |
|
225
|
|
|
|
|
|
|
* Perform the RIGHT-rotate transformation on node X of tree pTree. This |
|
226
|
|
|
|
|
|
|
* transform is part of the red-black balancing code. |
|
227
|
|
|
|
|
|
|
* |
|
228
|
|
|
|
|
|
|
* | | |
|
229
|
|
|
|
|
|
|
* X Y |
|
230
|
|
|
|
|
|
|
* / \ / \ |
|
231
|
|
|
|
|
|
|
* Y c a X |
|
232
|
|
|
|
|
|
|
* / \ / \ |
|
233
|
|
|
|
|
|
|
* a b b c |
|
234
|
|
|
|
|
|
|
* |
|
235
|
|
|
|
|
|
|
* BEFORE AFTER |
|
236
|
|
|
|
|
|
|
*/ |
|
237
|
0
|
|
|
|
|
|
static void rightRotate(BtRbTree *pTree, BtRbNode *pX) |
|
238
|
|
|
|
|
|
|
{ |
|
239
|
|
|
|
|
|
|
BtRbNode *pY; |
|
240
|
|
|
|
|
|
|
BtRbNode *pb; |
|
241
|
0
|
|
|
|
|
|
pY = pX->pLeft; |
|
242
|
0
|
|
|
|
|
|
pb = pY->pRight; |
|
243
|
|
|
|
|
|
|
|
|
244
|
0
|
|
|
|
|
|
pY->pParent = pX->pParent; |
|
245
|
0
|
0
|
|
|
|
|
if( pX->pParent ){ |
|
246
|
0
|
0
|
|
|
|
|
if( pX->pParent->pLeft == pX ) pX->pParent->pLeft = pY; |
|
247
|
0
|
|
|
|
|
|
else pX->pParent->pRight = pY; |
|
248
|
|
|
|
|
|
|
} |
|
249
|
0
|
|
|
|
|
|
pY->pRight = pX; |
|
250
|
0
|
|
|
|
|
|
pX->pParent = pY; |
|
251
|
0
|
|
|
|
|
|
pX->pLeft = pb; |
|
252
|
0
|
0
|
|
|
|
|
if( pb ) pb->pParent = pX; |
|
253
|
0
|
0
|
|
|
|
|
if( pTree->pHead == pX ) pTree->pHead = pY; |
|
254
|
0
|
|
|
|
|
|
} |
|
255
|
|
|
|
|
|
|
|
|
256
|
|
|
|
|
|
|
/* |
|
257
|
|
|
|
|
|
|
* A string-manipulation helper function for check_redblack_tree(). If (orig == |
|
258
|
|
|
|
|
|
|
* NULL) a copy of val is returned. If (orig != NULL) then a copy of the * |
|
259
|
|
|
|
|
|
|
* concatenation of orig and val is returned. The original orig is deleted |
|
260
|
|
|
|
|
|
|
* (using sqliteFree()). |
|
261
|
|
|
|
|
|
|
*/ |
|
262
|
0
|
|
|
|
|
|
static char *append_val(char * orig, char const * val){ |
|
263
|
|
|
|
|
|
|
char *z; |
|
264
|
0
|
0
|
|
|
|
|
if( !orig ){ |
|
265
|
0
|
|
|
|
|
|
z = sqliteStrDup( val ); |
|
266
|
|
|
|
|
|
|
} else{ |
|
267
|
0
|
|
|
|
|
|
z = 0; |
|
268
|
0
|
|
|
|
|
|
sqliteSetString(&z, orig, val, (char*)0); |
|
269
|
0
|
|
|
|
|
|
sqliteFree( orig ); |
|
270
|
|
|
|
|
|
|
} |
|
271
|
0
|
|
|
|
|
|
return z; |
|
272
|
|
|
|
|
|
|
} |
|
273
|
|
|
|
|
|
|
|
|
274
|
|
|
|
|
|
|
/* |
|
275
|
|
|
|
|
|
|
* Append a string representation of the entire node to orig and return it. |
|
276
|
|
|
|
|
|
|
* This is used to produce debugging information if check_redblack_tree() finds |
|
277
|
|
|
|
|
|
|
* a problem with a red-black binary tree. |
|
278
|
|
|
|
|
|
|
*/ |
|
279
|
0
|
|
|
|
|
|
static char *append_node(char * orig, BtRbNode *pNode, int indent) |
|
280
|
|
|
|
|
|
|
{ |
|
281
|
|
|
|
|
|
|
char buf[128]; |
|
282
|
|
|
|
|
|
|
int i; |
|
283
|
|
|
|
|
|
|
|
|
284
|
0
|
0
|
|
|
|
|
for( i=0; i
|
|
285
|
0
|
|
|
|
|
|
orig = append_val(orig, " "); |
|
286
|
|
|
|
|
|
|
} |
|
287
|
|
|
|
|
|
|
|
|
288
|
0
|
|
|
|
|
|
sprintf(buf, "%p", pNode); |
|
289
|
0
|
|
|
|
|
|
orig = append_val(orig, buf); |
|
290
|
|
|
|
|
|
|
|
|
291
|
0
|
0
|
|
|
|
|
if( pNode ){ |
|
292
|
0
|
|
|
|
|
|
indent += 3; |
|
293
|
0
|
0
|
|
|
|
|
if( pNode->isBlack ){ |
|
294
|
0
|
|
|
|
|
|
orig = append_val(orig, " B \n"); |
|
295
|
|
|
|
|
|
|
}else{ |
|
296
|
0
|
|
|
|
|
|
orig = append_val(orig, " R \n"); |
|
297
|
|
|
|
|
|
|
} |
|
298
|
0
|
|
|
|
|
|
orig = append_node( orig, pNode->pLeft, indent ); |
|
299
|
0
|
|
|
|
|
|
orig = append_node( orig, pNode->pRight, indent ); |
|
300
|
|
|
|
|
|
|
}else{ |
|
301
|
0
|
|
|
|
|
|
orig = append_val(orig, "\n"); |
|
302
|
|
|
|
|
|
|
} |
|
303
|
0
|
|
|
|
|
|
return orig; |
|
304
|
|
|
|
|
|
|
} |
|
305
|
|
|
|
|
|
|
|
|
306
|
|
|
|
|
|
|
/* |
|
307
|
|
|
|
|
|
|
* Print a representation of a node to stdout. This function is only included |
|
308
|
|
|
|
|
|
|
* so you can call it from within a debugger if things get really bad. It |
|
309
|
|
|
|
|
|
|
* is not called from anyplace in the code. |
|
310
|
|
|
|
|
|
|
*/ |
|
311
|
0
|
|
|
|
|
|
static void print_node(BtRbNode *pNode) |
|
312
|
|
|
|
|
|
|
{ |
|
313
|
0
|
|
|
|
|
|
char * str = append_node(0, pNode, 0); |
|
314
|
0
|
|
|
|
|
|
printf("%s", str); |
|
315
|
|
|
|
|
|
|
|
|
316
|
|
|
|
|
|
|
/* Suppress a warning message about print_node() being unused */ |
|
317
|
|
|
|
|
|
|
(void)print_node; |
|
318
|
0
|
|
|
|
|
|
} |
|
319
|
|
|
|
|
|
|
|
|
320
|
|
|
|
|
|
|
/* |
|
321
|
|
|
|
|
|
|
* Check the following properties of the red-black tree: |
|
322
|
|
|
|
|
|
|
* (1) - If a node is red, both of it's children are black |
|
323
|
|
|
|
|
|
|
* (2) - Each path from a given node to a leaf (NULL) node passes thru the |
|
324
|
|
|
|
|
|
|
* same number of black nodes |
|
325
|
|
|
|
|
|
|
* |
|
326
|
|
|
|
|
|
|
* If there is a problem, append a description (using append_val() ) to *msg. |
|
327
|
|
|
|
|
|
|
*/ |
|
328
|
0
|
|
|
|
|
|
static void check_redblack_tree(BtRbTree * tree, char ** msg) |
|
329
|
|
|
|
|
|
|
{ |
|
330
|
|
|
|
|
|
|
BtRbNode *pNode; |
|
331
|
|
|
|
|
|
|
|
|
332
|
|
|
|
|
|
|
/* 0 -> came from parent |
|
333
|
|
|
|
|
|
|
* 1 -> came from left |
|
334
|
|
|
|
|
|
|
* 2 -> came from right */ |
|
335
|
0
|
|
|
|
|
|
int prev_step = 0; |
|
336
|
|
|
|
|
|
|
|
|
337
|
0
|
|
|
|
|
|
pNode = tree->pHead; |
|
338
|
0
|
0
|
|
|
|
|
while( pNode ){ |
|
339
|
0
|
|
|
|
|
|
switch( prev_step ){ |
|
340
|
|
|
|
|
|
|
case 0: |
|
341
|
0
|
0
|
|
|
|
|
if( pNode->pLeft ){ |
|
342
|
0
|
|
|
|
|
|
pNode = pNode->pLeft; |
|
343
|
|
|
|
|
|
|
}else{ |
|
344
|
0
|
|
|
|
|
|
prev_step = 1; |
|
345
|
|
|
|
|
|
|
} |
|
346
|
0
|
|
|
|
|
|
break; |
|
347
|
|
|
|
|
|
|
case 1: |
|
348
|
0
|
0
|
|
|
|
|
if( pNode->pRight ){ |
|
349
|
0
|
|
|
|
|
|
pNode = pNode->pRight; |
|
350
|
0
|
|
|
|
|
|
prev_step = 0; |
|
351
|
|
|
|
|
|
|
}else{ |
|
352
|
0
|
|
|
|
|
|
prev_step = 2; |
|
353
|
|
|
|
|
|
|
} |
|
354
|
0
|
|
|
|
|
|
break; |
|
355
|
|
|
|
|
|
|
case 2: |
|
356
|
|
|
|
|
|
|
/* Check red-black property (1) */ |
|
357
|
0
|
0
|
|
|
|
|
if( !pNode->isBlack && |
|
|
|
0
|
|
|
|
|
|
|
358
|
0
|
0
|
|
|
|
|
( (pNode->pLeft && !pNode->pLeft->isBlack) || |
|
|
|
0
|
|
|
|
|
|
|
359
|
0
|
0
|
|
|
|
|
(pNode->pRight && !pNode->pRight->isBlack) ) |
|
360
|
|
|
|
|
|
|
){ |
|
361
|
|
|
|
|
|
|
char buf[128]; |
|
362
|
0
|
|
|
|
|
|
sprintf(buf, "Red node with red child at %p\n", pNode); |
|
363
|
0
|
|
|
|
|
|
*msg = append_val(*msg, buf); |
|
364
|
0
|
|
|
|
|
|
*msg = append_node(*msg, tree->pHead, 0); |
|
365
|
0
|
|
|
|
|
|
*msg = append_val(*msg, "\n"); |
|
366
|
|
|
|
|
|
|
} |
|
367
|
|
|
|
|
|
|
|
|
368
|
|
|
|
|
|
|
/* Check red-black property (2) */ |
|
369
|
|
|
|
|
|
|
{ |
|
370
|
0
|
|
|
|
|
|
int leftHeight = 0; |
|
371
|
0
|
|
|
|
|
|
int rightHeight = 0; |
|
372
|
0
|
0
|
|
|
|
|
if( pNode->pLeft ){ |
|
373
|
0
|
|
|
|
|
|
leftHeight += pNode->pLeft->nBlackHeight; |
|
374
|
0
|
|
|
|
|
|
leftHeight += (pNode->pLeft->isBlack?1:0); |
|
375
|
|
|
|
|
|
|
} |
|
376
|
0
|
0
|
|
|
|
|
if( pNode->pRight ){ |
|
377
|
0
|
|
|
|
|
|
rightHeight += pNode->pRight->nBlackHeight; |
|
378
|
0
|
|
|
|
|
|
rightHeight += (pNode->pRight->isBlack?1:0); |
|
379
|
|
|
|
|
|
|
} |
|
380
|
0
|
0
|
|
|
|
|
if( leftHeight != rightHeight ){ |
|
381
|
|
|
|
|
|
|
char buf[128]; |
|
382
|
0
|
|
|
|
|
|
sprintf(buf, "Different black-heights at %p\n", pNode); |
|
383
|
0
|
|
|
|
|
|
*msg = append_val(*msg, buf); |
|
384
|
0
|
|
|
|
|
|
*msg = append_node(*msg, tree->pHead, 0); |
|
385
|
0
|
|
|
|
|
|
*msg = append_val(*msg, "\n"); |
|
386
|
|
|
|
|
|
|
} |
|
387
|
0
|
|
|
|
|
|
pNode->nBlackHeight = leftHeight; |
|
388
|
|
|
|
|
|
|
} |
|
389
|
|
|
|
|
|
|
|
|
390
|
0
|
0
|
|
|
|
|
if( pNode->pParent ){ |
|
391
|
0
|
0
|
|
|
|
|
if( pNode == pNode->pParent->pLeft ) prev_step = 1; |
|
392
|
0
|
|
|
|
|
|
else prev_step = 2; |
|
393
|
|
|
|
|
|
|
} |
|
394
|
0
|
|
|
|
|
|
pNode = pNode->pParent; |
|
395
|
0
|
|
|
|
|
|
break; |
|
396
|
|
|
|
|
|
|
default: assert(0); |
|
397
|
|
|
|
|
|
|
} |
|
398
|
|
|
|
|
|
|
} |
|
399
|
0
|
|
|
|
|
|
} |
|
400
|
|
|
|
|
|
|
|
|
401
|
|
|
|
|
|
|
/* |
|
402
|
|
|
|
|
|
|
* Node pX has just been inserted into pTree (by code in sqliteRbtreeInsert()). |
|
403
|
|
|
|
|
|
|
* It is possible that pX is a red node with a red parent, which is a violation |
|
404
|
|
|
|
|
|
|
* of the red-black tree properties. This function performs rotations and |
|
405
|
|
|
|
|
|
|
* color changes to rebalance the tree |
|
406
|
|
|
|
|
|
|
*/ |
|
407
|
0
|
|
|
|
|
|
static void do_insert_balancing(BtRbTree *pTree, BtRbNode *pX) |
|
408
|
|
|
|
|
|
|
{ |
|
409
|
|
|
|
|
|
|
/* In the first iteration of this loop, pX points to the red node just |
|
410
|
|
|
|
|
|
|
* inserted in the tree. If the parent of pX exists (pX is not the root |
|
411
|
|
|
|
|
|
|
* node) and is red, then the properties of the red-black tree are |
|
412
|
|
|
|
|
|
|
* violated. |
|
413
|
|
|
|
|
|
|
* |
|
414
|
|
|
|
|
|
|
* At the start of any subsequent iterations, pX points to a red node |
|
415
|
|
|
|
|
|
|
* with a red parent. In all other respects the tree is a legal red-black |
|
416
|
|
|
|
|
|
|
* binary tree. */ |
|
417
|
0
|
0
|
|
|
|
|
while( pX != pTree->pHead && !pX->pParent->isBlack ){ |
|
|
|
0
|
|
|
|
|
|
|
418
|
|
|
|
|
|
|
BtRbNode *pUncle; |
|
419
|
|
|
|
|
|
|
BtRbNode *pGrandparent; |
|
420
|
|
|
|
|
|
|
|
|
421
|
|
|
|
|
|
|
/* Grandparent of pX must exist and must be black. */ |
|
422
|
0
|
|
|
|
|
|
pGrandparent = pX->pParent->pParent; |
|
423
|
|
|
|
|
|
|
assert( pGrandparent ); |
|
424
|
|
|
|
|
|
|
assert( pGrandparent->isBlack ); |
|
425
|
|
|
|
|
|
|
|
|
426
|
|
|
|
|
|
|
/* Uncle of pX may or may not exist. */ |
|
427
|
0
|
0
|
|
|
|
|
if( pX->pParent == pGrandparent->pLeft ) |
|
428
|
0
|
|
|
|
|
|
pUncle = pGrandparent->pRight; |
|
429
|
|
|
|
|
|
|
else |
|
430
|
0
|
|
|
|
|
|
pUncle = pGrandparent->pLeft; |
|
431
|
|
|
|
|
|
|
|
|
432
|
|
|
|
|
|
|
/* If the uncle of pX exists and is red, we do the following: |
|
433
|
|
|
|
|
|
|
* | | |
|
434
|
|
|
|
|
|
|
* G(b) G(r) |
|
435
|
|
|
|
|
|
|
* / \ / \ |
|
436
|
|
|
|
|
|
|
* U(r) P(r) U(b) P(b) |
|
437
|
|
|
|
|
|
|
* \ \ |
|
438
|
|
|
|
|
|
|
* X(r) X(r) |
|
439
|
|
|
|
|
|
|
* |
|
440
|
|
|
|
|
|
|
* BEFORE AFTER |
|
441
|
|
|
|
|
|
|
* pX is then set to G. If the parent of G is red, then the while loop |
|
442
|
|
|
|
|
|
|
* will run again. */ |
|
443
|
0
|
0
|
|
|
|
|
if( pUncle && !pUncle->isBlack ){ |
|
|
|
0
|
|
|
|
|
|
|
444
|
0
|
|
|
|
|
|
pGrandparent->isBlack = 0; |
|
445
|
0
|
|
|
|
|
|
pUncle->isBlack = 1; |
|
446
|
0
|
|
|
|
|
|
pX->pParent->isBlack = 1; |
|
447
|
0
|
|
|
|
|
|
pX = pGrandparent; |
|
448
|
|
|
|
|
|
|
}else{ |
|
449
|
|
|
|
|
|
|
|
|
450
|
0
|
0
|
|
|
|
|
if( pX->pParent == pGrandparent->pLeft ){ |
|
451
|
0
|
0
|
|
|
|
|
if( pX == pX->pParent->pRight ){ |
|
452
|
|
|
|
|
|
|
/* If pX is a right-child, do the following transform, essentially |
|
453
|
|
|
|
|
|
|
* to change pX into a left-child: |
|
454
|
|
|
|
|
|
|
* | | |
|
455
|
|
|
|
|
|
|
* G(b) G(b) |
|
456
|
|
|
|
|
|
|
* / \ / \ |
|
457
|
|
|
|
|
|
|
* P(r) U(b) X(r) U(b) |
|
458
|
|
|
|
|
|
|
* \ / |
|
459
|
|
|
|
|
|
|
* X(r) P(r) <-- new X |
|
460
|
|
|
|
|
|
|
* |
|
461
|
|
|
|
|
|
|
* BEFORE AFTER |
|
462
|
|
|
|
|
|
|
*/ |
|
463
|
0
|
|
|
|
|
|
pX = pX->pParent; |
|
464
|
0
|
|
|
|
|
|
leftRotate(pTree, pX); |
|
465
|
|
|
|
|
|
|
} |
|
466
|
|
|
|
|
|
|
|
|
467
|
|
|
|
|
|
|
/* Do the following transform, which balances the tree :) |
|
468
|
|
|
|
|
|
|
* | | |
|
469
|
|
|
|
|
|
|
* G(b) P(b) |
|
470
|
|
|
|
|
|
|
* / \ / \ |
|
471
|
|
|
|
|
|
|
* P(r) U(b) X(r) G(r) |
|
472
|
|
|
|
|
|
|
* / \ |
|
473
|
|
|
|
|
|
|
* X(r) U(b) |
|
474
|
|
|
|
|
|
|
* |
|
475
|
|
|
|
|
|
|
* BEFORE AFTER |
|
476
|
|
|
|
|
|
|
*/ |
|
477
|
|
|
|
|
|
|
assert( pGrandparent == pX->pParent->pParent ); |
|
478
|
0
|
|
|
|
|
|
pGrandparent->isBlack = 0; |
|
479
|
0
|
|
|
|
|
|
pX->pParent->isBlack = 1; |
|
480
|
0
|
|
|
|
|
|
rightRotate( pTree, pGrandparent ); |
|
481
|
|
|
|
|
|
|
|
|
482
|
|
|
|
|
|
|
}else{ |
|
483
|
|
|
|
|
|
|
/* This code is symetric to the illustrated case above. */ |
|
484
|
0
|
0
|
|
|
|
|
if( pX == pX->pParent->pLeft ){ |
|
485
|
0
|
|
|
|
|
|
pX = pX->pParent; |
|
486
|
0
|
|
|
|
|
|
rightRotate(pTree, pX); |
|
487
|
|
|
|
|
|
|
} |
|
488
|
|
|
|
|
|
|
assert( pGrandparent == pX->pParent->pParent ); |
|
489
|
0
|
|
|
|
|
|
pGrandparent->isBlack = 0; |
|
490
|
0
|
|
|
|
|
|
pX->pParent->isBlack = 1; |
|
491
|
0
|
|
|
|
|
|
leftRotate( pTree, pGrandparent ); |
|
492
|
|
|
|
|
|
|
} |
|
493
|
|
|
|
|
|
|
} |
|
494
|
|
|
|
|
|
|
} |
|
495
|
0
|
|
|
|
|
|
pTree->pHead->isBlack = 1; |
|
496
|
0
|
|
|
|
|
|
} |
|
497
|
|
|
|
|
|
|
|
|
498
|
|
|
|
|
|
|
/* |
|
499
|
|
|
|
|
|
|
* A child of pParent, which in turn had child pX, has just been removed from |
|
500
|
|
|
|
|
|
|
* pTree (the figure below depicts the operation, Z is being removed). pParent |
|
501
|
|
|
|
|
|
|
* or pX, or both may be NULL. |
|
502
|
|
|
|
|
|
|
* | | |
|
503
|
|
|
|
|
|
|
* P P |
|
504
|
|
|
|
|
|
|
* / \ / \ |
|
505
|
|
|
|
|
|
|
* Z X |
|
506
|
|
|
|
|
|
|
* / \ |
|
507
|
|
|
|
|
|
|
* X nil |
|
508
|
|
|
|
|
|
|
* |
|
509
|
|
|
|
|
|
|
* This function is only called if Z was black. In this case the red-black tree |
|
510
|
|
|
|
|
|
|
* properties have been violated, and pX has an "extra black". This function |
|
511
|
|
|
|
|
|
|
* performs rotations and color-changes to re-balance the tree. |
|
512
|
|
|
|
|
|
|
*/ |
|
513
|
|
|
|
|
|
|
static |
|
514
|
0
|
|
|
|
|
|
void do_delete_balancing(BtRbTree *pTree, BtRbNode *pX, BtRbNode *pParent) |
|
515
|
|
|
|
|
|
|
{ |
|
516
|
|
|
|
|
|
|
BtRbNode *pSib; |
|
517
|
|
|
|
|
|
|
|
|
518
|
|
|
|
|
|
|
/* TODO: Comment this code! */ |
|
519
|
0
|
0
|
|
|
|
|
while( pX != pTree->pHead && (!pX || pX->isBlack) ){ |
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
520
|
0
|
0
|
|
|
|
|
if( pX == pParent->pLeft ){ |
|
521
|
0
|
|
|
|
|
|
pSib = pParent->pRight; |
|
522
|
0
|
0
|
|
|
|
|
if( pSib && !(pSib->isBlack) ){ |
|
|
|
0
|
|
|
|
|
|
|
523
|
0
|
|
|
|
|
|
pSib->isBlack = 1; |
|
524
|
0
|
|
|
|
|
|
pParent->isBlack = 0; |
|
525
|
0
|
|
|
|
|
|
leftRotate(pTree, pParent); |
|
526
|
0
|
|
|
|
|
|
pSib = pParent->pRight; |
|
527
|
|
|
|
|
|
|
} |
|
528
|
0
|
0
|
|
|
|
|
if( !pSib ){ |
|
529
|
0
|
|
|
|
|
|
pX = pParent; |
|
530
|
0
|
0
|
|
|
|
|
}else if( |
|
531
|
0
|
0
|
|
|
|
|
(!pSib->pLeft || pSib->pLeft->isBlack) && |
|
|
|
0
|
|
|
|
|
|
|
532
|
0
|
0
|
|
|
|
|
(!pSib->pRight || pSib->pRight->isBlack) ) { |
|
533
|
0
|
|
|
|
|
|
pSib->isBlack = 0; |
|
534
|
0
|
|
|
|
|
|
pX = pParent; |
|
535
|
|
|
|
|
|
|
}else{ |
|
536
|
0
|
0
|
|
|
|
|
if( (!pSib->pRight || pSib->pRight->isBlack) ){ |
|
|
|
0
|
|
|
|
|
|
|
537
|
0
|
0
|
|
|
|
|
if( pSib->pLeft ) pSib->pLeft->isBlack = 1; |
|
538
|
0
|
|
|
|
|
|
pSib->isBlack = 0; |
|
539
|
0
|
|
|
|
|
|
rightRotate( pTree, pSib ); |
|
540
|
0
|
|
|
|
|
|
pSib = pParent->pRight; |
|
541
|
|
|
|
|
|
|
} |
|
542
|
0
|
|
|
|
|
|
pSib->isBlack = pParent->isBlack; |
|
543
|
0
|
|
|
|
|
|
pParent->isBlack = 1; |
|
544
|
0
|
0
|
|
|
|
|
if( pSib->pRight ) pSib->pRight->isBlack = 1; |
|
545
|
0
|
|
|
|
|
|
leftRotate(pTree, pParent); |
|
546
|
0
|
|
|
|
|
|
pX = pTree->pHead; |
|
547
|
|
|
|
|
|
|
} |
|
548
|
|
|
|
|
|
|
}else{ |
|
549
|
0
|
|
|
|
|
|
pSib = pParent->pLeft; |
|
550
|
0
|
0
|
|
|
|
|
if( pSib && !(pSib->isBlack) ){ |
|
|
|
0
|
|
|
|
|
|
|
551
|
0
|
|
|
|
|
|
pSib->isBlack = 1; |
|
552
|
0
|
|
|
|
|
|
pParent->isBlack = 0; |
|
553
|
0
|
|
|
|
|
|
rightRotate(pTree, pParent); |
|
554
|
0
|
|
|
|
|
|
pSib = pParent->pLeft; |
|
555
|
|
|
|
|
|
|
} |
|
556
|
0
|
0
|
|
|
|
|
if( !pSib ){ |
|
557
|
0
|
|
|
|
|
|
pX = pParent; |
|
558
|
0
|
0
|
|
|
|
|
}else if( |
|
559
|
0
|
0
|
|
|
|
|
(!pSib->pLeft || pSib->pLeft->isBlack) && |
|
|
|
0
|
|
|
|
|
|
|
560
|
0
|
0
|
|
|
|
|
(!pSib->pRight || pSib->pRight->isBlack) ){ |
|
561
|
0
|
|
|
|
|
|
pSib->isBlack = 0; |
|
562
|
0
|
|
|
|
|
|
pX = pParent; |
|
563
|
|
|
|
|
|
|
}else{ |
|
564
|
0
|
0
|
|
|
|
|
if( (!pSib->pLeft || pSib->pLeft->isBlack) ){ |
|
|
|
0
|
|
|
|
|
|
|
565
|
0
|
0
|
|
|
|
|
if( pSib->pRight ) pSib->pRight->isBlack = 1; |
|
566
|
0
|
|
|
|
|
|
pSib->isBlack = 0; |
|
567
|
0
|
|
|
|
|
|
leftRotate( pTree, pSib ); |
|
568
|
0
|
|
|
|
|
|
pSib = pParent->pLeft; |
|
569
|
|
|
|
|
|
|
} |
|
570
|
0
|
|
|
|
|
|
pSib->isBlack = pParent->isBlack; |
|
571
|
0
|
|
|
|
|
|
pParent->isBlack = 1; |
|
572
|
0
|
0
|
|
|
|
|
if( pSib->pLeft ) pSib->pLeft->isBlack = 1; |
|
573
|
0
|
|
|
|
|
|
rightRotate(pTree, pParent); |
|
574
|
0
|
|
|
|
|
|
pX = pTree->pHead; |
|
575
|
|
|
|
|
|
|
} |
|
576
|
|
|
|
|
|
|
} |
|
577
|
0
|
|
|
|
|
|
pParent = pX->pParent; |
|
578
|
|
|
|
|
|
|
} |
|
579
|
0
|
0
|
|
|
|
|
if( pX ) pX->isBlack = 1; |
|
580
|
0
|
|
|
|
|
|
} |
|
581
|
|
|
|
|
|
|
|
|
582
|
|
|
|
|
|
|
/* |
|
583
|
|
|
|
|
|
|
* Create table n in tree pRbtree. Table n must not exist. |
|
584
|
|
|
|
|
|
|
*/ |
|
585
|
0
|
|
|
|
|
|
static void btreeCreateTable(Rbtree* pRbtree, int n) |
|
586
|
|
|
|
|
|
|
{ |
|
587
|
0
|
|
|
|
|
|
BtRbTree *pNewTbl = sqliteMalloc(sizeof(BtRbTree)); |
|
588
|
0
|
|
|
|
|
|
sqliteHashInsert(&pRbtree->tblHash, 0, n, pNewTbl); |
|
589
|
0
|
|
|
|
|
|
} |
|
590
|
|
|
|
|
|
|
|
|
591
|
|
|
|
|
|
|
/* |
|
592
|
|
|
|
|
|
|
* Log a single "rollback-op" for the given Rbtree. See comments for struct |
|
593
|
|
|
|
|
|
|
* BtRollbackOp. |
|
594
|
|
|
|
|
|
|
*/ |
|
595
|
0
|
|
|
|
|
|
static void btreeLogRollbackOp(Rbtree* pRbtree, BtRollbackOp *pRollbackOp) |
|
596
|
|
|
|
|
|
|
{ |
|
597
|
|
|
|
|
|
|
assert( pRbtree->eTransState == TRANS_INCHECKPOINT || |
|
598
|
|
|
|
|
|
|
pRbtree->eTransState == TRANS_INTRANSACTION ); |
|
599
|
0
|
0
|
|
|
|
|
if( pRbtree->eTransState == TRANS_INTRANSACTION ){ |
|
600
|
0
|
|
|
|
|
|
pRollbackOp->pNext = pRbtree->pTransRollback; |
|
601
|
0
|
|
|
|
|
|
pRbtree->pTransRollback = pRollbackOp; |
|
602
|
|
|
|
|
|
|
} |
|
603
|
0
|
0
|
|
|
|
|
if( pRbtree->eTransState == TRANS_INCHECKPOINT ){ |
|
604
|
0
|
0
|
|
|
|
|
if( !pRbtree->pCheckRollback ){ |
|
605
|
0
|
|
|
|
|
|
pRbtree->pCheckRollbackTail = pRollbackOp; |
|
606
|
|
|
|
|
|
|
} |
|
607
|
0
|
|
|
|
|
|
pRollbackOp->pNext = pRbtree->pCheckRollback; |
|
608
|
0
|
|
|
|
|
|
pRbtree->pCheckRollback = pRollbackOp; |
|
609
|
|
|
|
|
|
|
} |
|
610
|
0
|
|
|
|
|
|
} |
|
611
|
|
|
|
|
|
|
|
|
612
|
0
|
|
|
|
|
|
int sqliteRbtreeOpen( |
|
613
|
|
|
|
|
|
|
const char *zFilename, |
|
614
|
|
|
|
|
|
|
int mode, |
|
615
|
|
|
|
|
|
|
int nPg, |
|
616
|
|
|
|
|
|
|
Btree **ppBtree |
|
617
|
|
|
|
|
|
|
){ |
|
618
|
0
|
|
|
|
|
|
Rbtree **ppRbtree = (Rbtree**)ppBtree; |
|
619
|
0
|
|
|
|
|
|
*ppRbtree = (Rbtree *)sqliteMalloc(sizeof(Rbtree)); |
|
620
|
0
|
0
|
|
|
|
|
if( sqlite_malloc_failed ) goto open_no_mem; |
|
621
|
0
|
|
|
|
|
|
sqliteHashInit(&(*ppRbtree)->tblHash, SQLITE_HASH_INT, 0); |
|
622
|
|
|
|
|
|
|
|
|
623
|
|
|
|
|
|
|
/* Create a binary tree for the SQLITE_MASTER table at location 2 */ |
|
624
|
0
|
|
|
|
|
|
btreeCreateTable(*ppRbtree, 2); |
|
625
|
0
|
0
|
|
|
|
|
if( sqlite_malloc_failed ) goto open_no_mem; |
|
626
|
0
|
|
|
|
|
|
(*ppRbtree)->next_idx = 3; |
|
627
|
0
|
|
|
|
|
|
(*ppRbtree)->pOps = &sqliteRbtreeOps; |
|
628
|
|
|
|
|
|
|
/* Set file type to 4; this is so that "attach ':memory:' as ...." does not |
|
629
|
|
|
|
|
|
|
** think that the database in uninitialised and refuse to attach |
|
630
|
|
|
|
|
|
|
*/ |
|
631
|
0
|
|
|
|
|
|
(*ppRbtree)->aMetaData[2] = 4; |
|
632
|
|
|
|
|
|
|
|
|
633
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
634
|
|
|
|
|
|
|
|
|
635
|
|
|
|
|
|
|
open_no_mem: |
|
636
|
0
|
|
|
|
|
|
*ppBtree = 0; |
|
637
|
0
|
|
|
|
|
|
return SQLITE_NOMEM; |
|
638
|
|
|
|
|
|
|
} |
|
639
|
|
|
|
|
|
|
|
|
640
|
|
|
|
|
|
|
/* |
|
641
|
|
|
|
|
|
|
* Create a new table in the supplied Rbtree. Set *n to the new table number. |
|
642
|
|
|
|
|
|
|
* Return SQLITE_OK if the operation is a success. |
|
643
|
|
|
|
|
|
|
*/ |
|
644
|
0
|
|
|
|
|
|
static int memRbtreeCreateTable(Rbtree* tree, int* n) |
|
645
|
|
|
|
|
|
|
{ |
|
646
|
|
|
|
|
|
|
assert( tree->eTransState != TRANS_NONE ); |
|
647
|
|
|
|
|
|
|
|
|
648
|
0
|
|
|
|
|
|
*n = tree->next_idx++; |
|
649
|
0
|
|
|
|
|
|
btreeCreateTable(tree, *n); |
|
650
|
0
|
0
|
|
|
|
|
if( sqlite_malloc_failed ) return SQLITE_NOMEM; |
|
651
|
|
|
|
|
|
|
|
|
652
|
|
|
|
|
|
|
/* Set up the rollback structure (if we are not doing this as part of a |
|
653
|
|
|
|
|
|
|
* rollback) */ |
|
654
|
0
|
0
|
|
|
|
|
if( tree->eTransState != TRANS_ROLLBACK ){ |
|
655
|
0
|
|
|
|
|
|
BtRollbackOp *pRollbackOp = sqliteMalloc(sizeof(BtRollbackOp)); |
|
656
|
0
|
0
|
|
|
|
|
if( pRollbackOp==0 ) return SQLITE_NOMEM; |
|
657
|
0
|
|
|
|
|
|
pRollbackOp->eOp = ROLLBACK_DROP; |
|
658
|
0
|
|
|
|
|
|
pRollbackOp->iTab = *n; |
|
659
|
0
|
|
|
|
|
|
btreeLogRollbackOp(tree, pRollbackOp); |
|
660
|
|
|
|
|
|
|
} |
|
661
|
|
|
|
|
|
|
|
|
662
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
663
|
|
|
|
|
|
|
} |
|
664
|
|
|
|
|
|
|
|
|
665
|
|
|
|
|
|
|
/* |
|
666
|
|
|
|
|
|
|
* Delete table n from the supplied Rbtree. |
|
667
|
|
|
|
|
|
|
*/ |
|
668
|
0
|
|
|
|
|
|
static int memRbtreeDropTable(Rbtree* tree, int n) |
|
669
|
|
|
|
|
|
|
{ |
|
670
|
|
|
|
|
|
|
BtRbTree *pTree; |
|
671
|
|
|
|
|
|
|
assert( tree->eTransState != TRANS_NONE ); |
|
672
|
|
|
|
|
|
|
|
|
673
|
0
|
|
|
|
|
|
memRbtreeClearTable(tree, n); |
|
674
|
0
|
|
|
|
|
|
pTree = sqliteHashInsert(&tree->tblHash, 0, n, 0); |
|
675
|
|
|
|
|
|
|
assert(pTree); |
|
676
|
|
|
|
|
|
|
assert( pTree->pCursors==0 ); |
|
677
|
0
|
|
|
|
|
|
sqliteFree(pTree); |
|
678
|
|
|
|
|
|
|
|
|
679
|
0
|
0
|
|
|
|
|
if( tree->eTransState != TRANS_ROLLBACK ){ |
|
680
|
0
|
|
|
|
|
|
BtRollbackOp *pRollbackOp = sqliteMalloc(sizeof(BtRollbackOp)); |
|
681
|
0
|
0
|
|
|
|
|
if( pRollbackOp==0 ) return SQLITE_NOMEM; |
|
682
|
0
|
|
|
|
|
|
pRollbackOp->eOp = ROLLBACK_CREATE; |
|
683
|
0
|
|
|
|
|
|
pRollbackOp->iTab = n; |
|
684
|
0
|
|
|
|
|
|
btreeLogRollbackOp(tree, pRollbackOp); |
|
685
|
|
|
|
|
|
|
} |
|
686
|
|
|
|
|
|
|
|
|
687
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
688
|
|
|
|
|
|
|
} |
|
689
|
|
|
|
|
|
|
|
|
690
|
0
|
|
|
|
|
|
static int memRbtreeKeyCompare(RbtCursor* pCur, const void *pKey, int nKey, |
|
691
|
|
|
|
|
|
|
int nIgnore, int *pRes) |
|
692
|
|
|
|
|
|
|
{ |
|
693
|
|
|
|
|
|
|
assert(pCur); |
|
694
|
|
|
|
|
|
|
|
|
695
|
0
|
0
|
|
|
|
|
if( !pCur->pNode ) { |
|
696
|
0
|
|
|
|
|
|
*pRes = -1; |
|
697
|
|
|
|
|
|
|
} else { |
|
698
|
0
|
0
|
|
|
|
|
if( (pCur->pNode->nKey - nIgnore) < 0 ){ |
|
699
|
0
|
|
|
|
|
|
*pRes = -1; |
|
700
|
|
|
|
|
|
|
}else{ |
|
701
|
0
|
|
|
|
|
|
*pRes = key_compare(pCur->pNode->pKey, pCur->pNode->nKey-nIgnore, |
|
702
|
|
|
|
|
|
|
pKey, nKey); |
|
703
|
|
|
|
|
|
|
} |
|
704
|
|
|
|
|
|
|
} |
|
705
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
706
|
|
|
|
|
|
|
} |
|
707
|
|
|
|
|
|
|
|
|
708
|
|
|
|
|
|
|
/* |
|
709
|
|
|
|
|
|
|
* Get a new cursor for table iTable of the supplied Rbtree. The wrFlag |
|
710
|
|
|
|
|
|
|
* parameter indicates that the cursor is open for writing. |
|
711
|
|
|
|
|
|
|
* |
|
712
|
|
|
|
|
|
|
* Note that RbtCursor.eSkip and RbtCursor.pNode both initialize to 0. |
|
713
|
|
|
|
|
|
|
*/ |
|
714
|
0
|
|
|
|
|
|
static int memRbtreeCursor( |
|
715
|
|
|
|
|
|
|
Rbtree* tree, |
|
716
|
|
|
|
|
|
|
int iTable, |
|
717
|
|
|
|
|
|
|
int wrFlag, |
|
718
|
|
|
|
|
|
|
RbtCursor **ppCur |
|
719
|
|
|
|
|
|
|
){ |
|
720
|
|
|
|
|
|
|
RbtCursor *pCur; |
|
721
|
|
|
|
|
|
|
assert(tree); |
|
722
|
0
|
|
|
|
|
|
pCur = *ppCur = sqliteMalloc(sizeof(RbtCursor)); |
|
723
|
0
|
0
|
|
|
|
|
if( sqlite_malloc_failed ) return SQLITE_NOMEM; |
|
724
|
0
|
|
|
|
|
|
pCur->pTree = sqliteHashFind(&tree->tblHash, 0, iTable); |
|
725
|
|
|
|
|
|
|
assert( pCur->pTree ); |
|
726
|
0
|
|
|
|
|
|
pCur->pRbtree = tree; |
|
727
|
0
|
|
|
|
|
|
pCur->iTree = iTable; |
|
728
|
0
|
|
|
|
|
|
pCur->pOps = &sqliteRbtreeCursorOps; |
|
729
|
0
|
|
|
|
|
|
pCur->wrFlag = wrFlag; |
|
730
|
0
|
|
|
|
|
|
pCur->pShared = pCur->pTree->pCursors; |
|
731
|
0
|
|
|
|
|
|
pCur->pTree->pCursors = pCur; |
|
732
|
|
|
|
|
|
|
|
|
733
|
|
|
|
|
|
|
assert( (*ppCur)->pTree ); |
|
734
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
735
|
|
|
|
|
|
|
} |
|
736
|
|
|
|
|
|
|
|
|
737
|
|
|
|
|
|
|
/* |
|
738
|
|
|
|
|
|
|
* Insert a new record into the Rbtree. The key is given by (pKey,nKey) |
|
739
|
|
|
|
|
|
|
* and the data is given by (pData,nData). The cursor is used only to |
|
740
|
|
|
|
|
|
|
* define what database the record should be inserted into. The cursor |
|
741
|
|
|
|
|
|
|
* is left pointing at the new record. |
|
742
|
|
|
|
|
|
|
* |
|
743
|
|
|
|
|
|
|
* If the key exists already in the tree, just replace the data. |
|
744
|
|
|
|
|
|
|
*/ |
|
745
|
0
|
|
|
|
|
|
static int memRbtreeInsert( |
|
746
|
|
|
|
|
|
|
RbtCursor* pCur, |
|
747
|
|
|
|
|
|
|
const void *pKey, |
|
748
|
|
|
|
|
|
|
int nKey, |
|
749
|
|
|
|
|
|
|
const void *pDataInput, |
|
750
|
|
|
|
|
|
|
int nData |
|
751
|
|
|
|
|
|
|
){ |
|
752
|
|
|
|
|
|
|
void * pData; |
|
753
|
|
|
|
|
|
|
int match; |
|
754
|
|
|
|
|
|
|
|
|
755
|
|
|
|
|
|
|
/* It is illegal to call sqliteRbtreeInsert() if we are |
|
756
|
|
|
|
|
|
|
** not in a transaction */ |
|
757
|
|
|
|
|
|
|
assert( pCur->pRbtree->eTransState != TRANS_NONE ); |
|
758
|
|
|
|
|
|
|
|
|
759
|
|
|
|
|
|
|
/* Make sure some other cursor isn't trying to read this same table */ |
|
760
|
0
|
0
|
|
|
|
|
if( checkReadLocks(pCur) ){ |
|
761
|
0
|
|
|
|
|
|
return SQLITE_LOCKED; /* The table pCur points to has a read lock */ |
|
762
|
|
|
|
|
|
|
} |
|
763
|
|
|
|
|
|
|
|
|
764
|
|
|
|
|
|
|
/* Take a copy of the input data now, in case we need it for the |
|
765
|
|
|
|
|
|
|
* replace case */ |
|
766
|
0
|
|
|
|
|
|
pData = sqliteMallocRaw(nData); |
|
767
|
0
|
0
|
|
|
|
|
if( sqlite_malloc_failed ) return SQLITE_NOMEM; |
|
768
|
0
|
|
|
|
|
|
memcpy(pData, pDataInput, nData); |
|
769
|
|
|
|
|
|
|
|
|
770
|
|
|
|
|
|
|
/* Move the cursor to a node near the key to be inserted. If the key already |
|
771
|
|
|
|
|
|
|
* exists in the table, then (match == 0). In this case we can just replace |
|
772
|
|
|
|
|
|
|
* the data associated with the entry, we don't need to manipulate the tree. |
|
773
|
|
|
|
|
|
|
* |
|
774
|
|
|
|
|
|
|
* If there is no exact match, then the cursor points at what would be either |
|
775
|
|
|
|
|
|
|
* the predecessor (match == -1) or successor (match == 1) of the |
|
776
|
|
|
|
|
|
|
* searched-for key, were it to be inserted. The new node becomes a child of |
|
777
|
|
|
|
|
|
|
* this node. |
|
778
|
|
|
|
|
|
|
* |
|
779
|
|
|
|
|
|
|
* The new node is initially red. |
|
780
|
|
|
|
|
|
|
*/ |
|
781
|
0
|
|
|
|
|
|
memRbtreeMoveto( pCur, pKey, nKey, &match); |
|
782
|
0
|
0
|
|
|
|
|
if( match ){ |
|
783
|
0
|
|
|
|
|
|
BtRbNode *pNode = sqliteMalloc(sizeof(BtRbNode)); |
|
784
|
0
|
0
|
|
|
|
|
if( pNode==0 ) return SQLITE_NOMEM; |
|
785
|
0
|
|
|
|
|
|
pNode->nKey = nKey; |
|
786
|
0
|
|
|
|
|
|
pNode->pKey = sqliteMallocRaw(nKey); |
|
787
|
0
|
0
|
|
|
|
|
if( sqlite_malloc_failed ) return SQLITE_NOMEM; |
|
788
|
0
|
|
|
|
|
|
memcpy(pNode->pKey, pKey, nKey); |
|
789
|
0
|
|
|
|
|
|
pNode->nData = nData; |
|
790
|
0
|
|
|
|
|
|
pNode->pData = pData; |
|
791
|
0
|
0
|
|
|
|
|
if( pCur->pNode ){ |
|
792
|
0
|
|
|
|
|
|
switch( match ){ |
|
793
|
|
|
|
|
|
|
case -1: |
|
794
|
|
|
|
|
|
|
assert( !pCur->pNode->pRight ); |
|
795
|
0
|
|
|
|
|
|
pNode->pParent = pCur->pNode; |
|
796
|
0
|
|
|
|
|
|
pCur->pNode->pRight = pNode; |
|
797
|
0
|
|
|
|
|
|
break; |
|
798
|
|
|
|
|
|
|
case 1: |
|
799
|
|
|
|
|
|
|
assert( !pCur->pNode->pLeft ); |
|
800
|
0
|
|
|
|
|
|
pNode->pParent = pCur->pNode; |
|
801
|
0
|
|
|
|
|
|
pCur->pNode->pLeft = pNode; |
|
802
|
0
|
|
|
|
|
|
break; |
|
803
|
|
|
|
|
|
|
default: |
|
804
|
|
|
|
|
|
|
assert(0); |
|
805
|
|
|
|
|
|
|
} |
|
806
|
|
|
|
|
|
|
}else{ |
|
807
|
0
|
|
|
|
|
|
pCur->pTree->pHead = pNode; |
|
808
|
|
|
|
|
|
|
} |
|
809
|
|
|
|
|
|
|
|
|
810
|
|
|
|
|
|
|
/* Point the cursor at the node just inserted, as per SQLite requirements */ |
|
811
|
0
|
|
|
|
|
|
pCur->pNode = pNode; |
|
812
|
|
|
|
|
|
|
|
|
813
|
|
|
|
|
|
|
/* A new node has just been inserted, so run the balancing code */ |
|
814
|
0
|
|
|
|
|
|
do_insert_balancing(pCur->pTree, pNode); |
|
815
|
|
|
|
|
|
|
|
|
816
|
|
|
|
|
|
|
/* Set up a rollback-op in case we have to roll this operation back */ |
|
817
|
0
|
0
|
|
|
|
|
if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){ |
|
818
|
0
|
|
|
|
|
|
BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) ); |
|
819
|
0
|
0
|
|
|
|
|
if( pOp==0 ) return SQLITE_NOMEM; |
|
820
|
0
|
|
|
|
|
|
pOp->eOp = ROLLBACK_DELETE; |
|
821
|
0
|
|
|
|
|
|
pOp->iTab = pCur->iTree; |
|
822
|
0
|
|
|
|
|
|
pOp->nKey = pNode->nKey; |
|
823
|
0
|
|
|
|
|
|
pOp->pKey = sqliteMallocRaw( pOp->nKey ); |
|
824
|
0
|
0
|
|
|
|
|
if( sqlite_malloc_failed ) return SQLITE_NOMEM; |
|
825
|
0
|
|
|
|
|
|
memcpy( pOp->pKey, pNode->pKey, pOp->nKey ); |
|
826
|
0
|
|
|
|
|
|
btreeLogRollbackOp(pCur->pRbtree, pOp); |
|
827
|
|
|
|
|
|
|
} |
|
828
|
|
|
|
|
|
|
|
|
829
|
|
|
|
|
|
|
}else{ |
|
830
|
|
|
|
|
|
|
/* No need to insert a new node in the tree, as the key already exists. |
|
831
|
|
|
|
|
|
|
* Just clobber the current nodes data. */ |
|
832
|
|
|
|
|
|
|
|
|
833
|
|
|
|
|
|
|
/* Set up a rollback-op in case we have to roll this operation back */ |
|
834
|
0
|
0
|
|
|
|
|
if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){ |
|
835
|
0
|
|
|
|
|
|
BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) ); |
|
836
|
0
|
0
|
|
|
|
|
if( pOp==0 ) return SQLITE_NOMEM; |
|
837
|
0
|
|
|
|
|
|
pOp->iTab = pCur->iTree; |
|
838
|
0
|
|
|
|
|
|
pOp->nKey = pCur->pNode->nKey; |
|
839
|
0
|
|
|
|
|
|
pOp->pKey = sqliteMallocRaw( pOp->nKey ); |
|
840
|
0
|
0
|
|
|
|
|
if( sqlite_malloc_failed ) return SQLITE_NOMEM; |
|
841
|
0
|
|
|
|
|
|
memcpy( pOp->pKey, pCur->pNode->pKey, pOp->nKey ); |
|
842
|
0
|
|
|
|
|
|
pOp->nData = pCur->pNode->nData; |
|
843
|
0
|
|
|
|
|
|
pOp->pData = pCur->pNode->pData; |
|
844
|
0
|
|
|
|
|
|
pOp->eOp = ROLLBACK_INSERT; |
|
845
|
0
|
|
|
|
|
|
btreeLogRollbackOp(pCur->pRbtree, pOp); |
|
846
|
|
|
|
|
|
|
}else{ |
|
847
|
0
|
|
|
|
|
|
sqliteFree( pCur->pNode->pData ); |
|
848
|
|
|
|
|
|
|
} |
|
849
|
|
|
|
|
|
|
|
|
850
|
|
|
|
|
|
|
/* Actually clobber the nodes data */ |
|
851
|
0
|
|
|
|
|
|
pCur->pNode->pData = pData; |
|
852
|
0
|
|
|
|
|
|
pCur->pNode->nData = nData; |
|
853
|
|
|
|
|
|
|
} |
|
854
|
|
|
|
|
|
|
|
|
855
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
856
|
|
|
|
|
|
|
} |
|
857
|
|
|
|
|
|
|
|
|
858
|
|
|
|
|
|
|
/* Move the cursor so that it points to an entry near pKey. |
|
859
|
|
|
|
|
|
|
** Return a success code. |
|
860
|
|
|
|
|
|
|
** |
|
861
|
|
|
|
|
|
|
** *pRes<0 The cursor is left pointing at an entry that |
|
862
|
|
|
|
|
|
|
** is smaller than pKey or if the table is empty |
|
863
|
|
|
|
|
|
|
** and the cursor is therefore left point to nothing. |
|
864
|
|
|
|
|
|
|
** |
|
865
|
|
|
|
|
|
|
** *pRes==0 The cursor is left pointing at an entry that |
|
866
|
|
|
|
|
|
|
** exactly matches pKey. |
|
867
|
|
|
|
|
|
|
** |
|
868
|
|
|
|
|
|
|
** *pRes>0 The cursor is left pointing at an entry that |
|
869
|
|
|
|
|
|
|
** is larger than pKey. |
|
870
|
|
|
|
|
|
|
*/ |
|
871
|
0
|
|
|
|
|
|
static int memRbtreeMoveto( |
|
872
|
|
|
|
|
|
|
RbtCursor* pCur, |
|
873
|
|
|
|
|
|
|
const void *pKey, |
|
874
|
|
|
|
|
|
|
int nKey, |
|
875
|
|
|
|
|
|
|
int *pRes |
|
876
|
|
|
|
|
|
|
){ |
|
877
|
0
|
|
|
|
|
|
BtRbNode *pTmp = 0; |
|
878
|
|
|
|
|
|
|
|
|
879
|
0
|
|
|
|
|
|
pCur->pNode = pCur->pTree->pHead; |
|
880
|
0
|
|
|
|
|
|
*pRes = -1; |
|
881
|
0
|
0
|
|
|
|
|
while( pCur->pNode && *pRes ) { |
|
|
|
0
|
|
|
|
|
|
|
882
|
0
|
|
|
|
|
|
*pRes = key_compare(pCur->pNode->pKey, pCur->pNode->nKey, pKey, nKey); |
|
883
|
0
|
|
|
|
|
|
pTmp = pCur->pNode; |
|
884
|
0
|
|
|
|
|
|
switch( *pRes ){ |
|
885
|
|
|
|
|
|
|
case 1: /* cursor > key */ |
|
886
|
0
|
|
|
|
|
|
pCur->pNode = pCur->pNode->pLeft; |
|
887
|
0
|
|
|
|
|
|
break; |
|
888
|
|
|
|
|
|
|
case -1: /* cursor < key */ |
|
889
|
0
|
|
|
|
|
|
pCur->pNode = pCur->pNode->pRight; |
|
890
|
0
|
|
|
|
|
|
break; |
|
891
|
|
|
|
|
|
|
} |
|
892
|
|
|
|
|
|
|
} |
|
893
|
|
|
|
|
|
|
|
|
894
|
|
|
|
|
|
|
/* If (pCur->pNode == NULL), then we have failed to find a match. Set |
|
895
|
|
|
|
|
|
|
* pCur->pNode to pTmp, which is either NULL (if the tree is empty) or the |
|
896
|
|
|
|
|
|
|
* last node traversed in the search. In either case the relation ship |
|
897
|
|
|
|
|
|
|
* between pTmp and the searched for key is already stored in *pRes. pTmp is |
|
898
|
|
|
|
|
|
|
* either the successor or predecessor of the key we tried to move to. */ |
|
899
|
0
|
0
|
|
|
|
|
if( !pCur->pNode ) pCur->pNode = pTmp; |
|
900
|
0
|
|
|
|
|
|
pCur->eSkip = SKIP_NONE; |
|
901
|
|
|
|
|
|
|
|
|
902
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
903
|
|
|
|
|
|
|
} |
|
904
|
|
|
|
|
|
|
|
|
905
|
|
|
|
|
|
|
|
|
906
|
|
|
|
|
|
|
/* |
|
907
|
|
|
|
|
|
|
** Delete the entry that the cursor is pointing to. |
|
908
|
|
|
|
|
|
|
** |
|
909
|
|
|
|
|
|
|
** The cursor is left pointing at either the next or the previous |
|
910
|
|
|
|
|
|
|
** entry. If the cursor is left pointing to the next entry, then |
|
911
|
|
|
|
|
|
|
** the pCur->eSkip flag is set to SKIP_NEXT which forces the next call to |
|
912
|
|
|
|
|
|
|
** sqliteRbtreeNext() to be a no-op. That way, you can always call |
|
913
|
|
|
|
|
|
|
** sqliteRbtreeNext() after a delete and the cursor will be left |
|
914
|
|
|
|
|
|
|
** pointing to the first entry after the deleted entry. Similarly, |
|
915
|
|
|
|
|
|
|
** pCur->eSkip is set to SKIP_PREV is the cursor is left pointing to |
|
916
|
|
|
|
|
|
|
** the entry prior to the deleted entry so that a subsequent call to |
|
917
|
|
|
|
|
|
|
** sqliteRbtreePrevious() will always leave the cursor pointing at the |
|
918
|
|
|
|
|
|
|
** entry immediately before the one that was deleted. |
|
919
|
|
|
|
|
|
|
*/ |
|
920
|
0
|
|
|
|
|
|
static int memRbtreeDelete(RbtCursor* pCur) |
|
921
|
|
|
|
|
|
|
{ |
|
922
|
|
|
|
|
|
|
BtRbNode *pZ; /* The one being deleted */ |
|
923
|
|
|
|
|
|
|
BtRbNode *pChild; /* The child of the spliced out node */ |
|
924
|
|
|
|
|
|
|
|
|
925
|
|
|
|
|
|
|
/* It is illegal to call sqliteRbtreeDelete() if we are |
|
926
|
|
|
|
|
|
|
** not in a transaction */ |
|
927
|
|
|
|
|
|
|
assert( pCur->pRbtree->eTransState != TRANS_NONE ); |
|
928
|
|
|
|
|
|
|
|
|
929
|
|
|
|
|
|
|
/* Make sure some other cursor isn't trying to read this same table */ |
|
930
|
0
|
0
|
|
|
|
|
if( checkReadLocks(pCur) ){ |
|
931
|
0
|
|
|
|
|
|
return SQLITE_LOCKED; /* The table pCur points to has a read lock */ |
|
932
|
|
|
|
|
|
|
} |
|
933
|
|
|
|
|
|
|
|
|
934
|
0
|
|
|
|
|
|
pZ = pCur->pNode; |
|
935
|
0
|
0
|
|
|
|
|
if( !pZ ){ |
|
936
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
937
|
|
|
|
|
|
|
} |
|
938
|
|
|
|
|
|
|
|
|
939
|
|
|
|
|
|
|
/* If we are not currently doing a rollback, set up a rollback op for this |
|
940
|
|
|
|
|
|
|
* deletion */ |
|
941
|
0
|
0
|
|
|
|
|
if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){ |
|
942
|
0
|
|
|
|
|
|
BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) ); |
|
943
|
0
|
0
|
|
|
|
|
if( pOp==0 ) return SQLITE_NOMEM; |
|
944
|
0
|
|
|
|
|
|
pOp->iTab = pCur->iTree; |
|
945
|
0
|
|
|
|
|
|
pOp->nKey = pZ->nKey; |
|
946
|
0
|
|
|
|
|
|
pOp->pKey = pZ->pKey; |
|
947
|
0
|
|
|
|
|
|
pOp->nData = pZ->nData; |
|
948
|
0
|
|
|
|
|
|
pOp->pData = pZ->pData; |
|
949
|
0
|
|
|
|
|
|
pOp->eOp = ROLLBACK_INSERT; |
|
950
|
0
|
|
|
|
|
|
btreeLogRollbackOp(pCur->pRbtree, pOp); |
|
951
|
|
|
|
|
|
|
} |
|
952
|
|
|
|
|
|
|
|
|
953
|
|
|
|
|
|
|
/* First do a standard binary-tree delete (node pZ is to be deleted). How |
|
954
|
|
|
|
|
|
|
* to do this depends on how many children pZ has: |
|
955
|
|
|
|
|
|
|
* |
|
956
|
|
|
|
|
|
|
* If pZ has no children or one child, then splice out pZ. If pZ has two |
|
957
|
|
|
|
|
|
|
* children, splice out the successor of pZ and replace the key and data of |
|
958
|
|
|
|
|
|
|
* pZ with the key and data of the spliced out successor. */ |
|
959
|
0
|
0
|
|
|
|
|
if( pZ->pLeft && pZ->pRight ){ |
|
|
|
0
|
|
|
|
|
|
|
960
|
|
|
|
|
|
|
BtRbNode *pTmp; |
|
961
|
|
|
|
|
|
|
int dummy; |
|
962
|
0
|
|
|
|
|
|
pCur->eSkip = SKIP_NONE; |
|
963
|
0
|
|
|
|
|
|
memRbtreeNext(pCur, &dummy); |
|
964
|
|
|
|
|
|
|
assert( dummy == 0 ); |
|
965
|
0
|
0
|
|
|
|
|
if( pCur->pRbtree->eTransState == TRANS_ROLLBACK ){ |
|
966
|
0
|
|
|
|
|
|
sqliteFree(pZ->pKey); |
|
967
|
0
|
|
|
|
|
|
sqliteFree(pZ->pData); |
|
968
|
|
|
|
|
|
|
} |
|
969
|
0
|
|
|
|
|
|
pZ->pData = pCur->pNode->pData; |
|
970
|
0
|
|
|
|
|
|
pZ->nData = pCur->pNode->nData; |
|
971
|
0
|
|
|
|
|
|
pZ->pKey = pCur->pNode->pKey; |
|
972
|
0
|
|
|
|
|
|
pZ->nKey = pCur->pNode->nKey; |
|
973
|
0
|
|
|
|
|
|
pTmp = pZ; |
|
974
|
0
|
|
|
|
|
|
pZ = pCur->pNode; |
|
975
|
0
|
|
|
|
|
|
pCur->pNode = pTmp; |
|
976
|
0
|
|
|
|
|
|
pCur->eSkip = SKIP_NEXT; |
|
977
|
|
|
|
|
|
|
}else{ |
|
978
|
|
|
|
|
|
|
int res; |
|
979
|
0
|
|
|
|
|
|
pCur->eSkip = SKIP_NONE; |
|
980
|
0
|
|
|
|
|
|
memRbtreeNext(pCur, &res); |
|
981
|
0
|
|
|
|
|
|
pCur->eSkip = SKIP_NEXT; |
|
982
|
0
|
0
|
|
|
|
|
if( res ){ |
|
983
|
0
|
|
|
|
|
|
memRbtreeLast(pCur, &res); |
|
984
|
0
|
|
|
|
|
|
memRbtreePrevious(pCur, &res); |
|
985
|
0
|
|
|
|
|
|
pCur->eSkip = SKIP_PREV; |
|
986
|
|
|
|
|
|
|
} |
|
987
|
0
|
0
|
|
|
|
|
if( pCur->pRbtree->eTransState == TRANS_ROLLBACK ){ |
|
988
|
0
|
|
|
|
|
|
sqliteFree(pZ->pKey); |
|
989
|
0
|
|
|
|
|
|
sqliteFree(pZ->pData); |
|
990
|
|
|
|
|
|
|
} |
|
991
|
|
|
|
|
|
|
} |
|
992
|
|
|
|
|
|
|
|
|
993
|
|
|
|
|
|
|
/* pZ now points at the node to be spliced out. This block does the |
|
994
|
|
|
|
|
|
|
* splicing. */ |
|
995
|
|
|
|
|
|
|
{ |
|
996
|
0
|
|
|
|
|
|
BtRbNode **ppParentSlot = 0; |
|
997
|
|
|
|
|
|
|
assert( !pZ->pLeft || !pZ->pRight ); /* pZ has at most one child */ |
|
998
|
0
|
0
|
|
|
|
|
pChild = ((pZ->pLeft)?pZ->pLeft:pZ->pRight); |
|
999
|
0
|
0
|
|
|
|
|
if( pZ->pParent ){ |
|
1000
|
|
|
|
|
|
|
assert( pZ == pZ->pParent->pLeft || pZ == pZ->pParent->pRight ); |
|
1001
|
0
|
|
|
|
|
|
ppParentSlot = ((pZ == pZ->pParent->pLeft) |
|
1002
|
0
|
0
|
|
|
|
|
?&pZ->pParent->pLeft:&pZ->pParent->pRight); |
|
1003
|
0
|
|
|
|
|
|
*ppParentSlot = pChild; |
|
1004
|
|
|
|
|
|
|
}else{ |
|
1005
|
0
|
|
|
|
|
|
pCur->pTree->pHead = pChild; |
|
1006
|
|
|
|
|
|
|
} |
|
1007
|
0
|
0
|
|
|
|
|
if( pChild ) pChild->pParent = pZ->pParent; |
|
1008
|
|
|
|
|
|
|
} |
|
1009
|
|
|
|
|
|
|
|
|
1010
|
|
|
|
|
|
|
/* pZ now points at the spliced out node. pChild is the only child of pZ, or |
|
1011
|
|
|
|
|
|
|
* NULL if pZ has no children. If pZ is black, and not the tree root, then we |
|
1012
|
|
|
|
|
|
|
* will have violated the "same number of black nodes in every path to a |
|
1013
|
|
|
|
|
|
|
* leaf" property of the red-black tree. The code in do_delete_balancing() |
|
1014
|
|
|
|
|
|
|
* repairs this. */ |
|
1015
|
0
|
0
|
|
|
|
|
if( pZ->isBlack ){ |
|
1016
|
0
|
|
|
|
|
|
do_delete_balancing(pCur->pTree, pChild, pZ->pParent); |
|
1017
|
|
|
|
|
|
|
} |
|
1018
|
|
|
|
|
|
|
|
|
1019
|
0
|
|
|
|
|
|
sqliteFree(pZ); |
|
1020
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
1021
|
|
|
|
|
|
|
} |
|
1022
|
|
|
|
|
|
|
|
|
1023
|
|
|
|
|
|
|
/* |
|
1024
|
|
|
|
|
|
|
* Empty table n of the Rbtree. |
|
1025
|
|
|
|
|
|
|
*/ |
|
1026
|
0
|
|
|
|
|
|
static int memRbtreeClearTable(Rbtree* tree, int n) |
|
1027
|
|
|
|
|
|
|
{ |
|
1028
|
|
|
|
|
|
|
BtRbTree *pTree; |
|
1029
|
|
|
|
|
|
|
BtRbNode *pNode; |
|
1030
|
|
|
|
|
|
|
|
|
1031
|
0
|
|
|
|
|
|
pTree = sqliteHashFind(&tree->tblHash, 0, n); |
|
1032
|
|
|
|
|
|
|
assert(pTree); |
|
1033
|
|
|
|
|
|
|
|
|
1034
|
0
|
|
|
|
|
|
pNode = pTree->pHead; |
|
1035
|
0
|
0
|
|
|
|
|
while( pNode ){ |
|
1036
|
0
|
0
|
|
|
|
|
if( pNode->pLeft ){ |
|
1037
|
0
|
|
|
|
|
|
pNode = pNode->pLeft; |
|
1038
|
|
|
|
|
|
|
} |
|
1039
|
0
|
0
|
|
|
|
|
else if( pNode->pRight ){ |
|
1040
|
0
|
|
|
|
|
|
pNode = pNode->pRight; |
|
1041
|
|
|
|
|
|
|
} |
|
1042
|
|
|
|
|
|
|
else { |
|
1043
|
0
|
|
|
|
|
|
BtRbNode *pTmp = pNode->pParent; |
|
1044
|
0
|
0
|
|
|
|
|
if( tree->eTransState == TRANS_ROLLBACK ){ |
|
1045
|
0
|
|
|
|
|
|
sqliteFree( pNode->pKey ); |
|
1046
|
0
|
|
|
|
|
|
sqliteFree( pNode->pData ); |
|
1047
|
|
|
|
|
|
|
}else{ |
|
1048
|
0
|
|
|
|
|
|
BtRollbackOp *pRollbackOp = sqliteMallocRaw(sizeof(BtRollbackOp)); |
|
1049
|
0
|
0
|
|
|
|
|
if( pRollbackOp==0 ) return SQLITE_NOMEM; |
|
1050
|
0
|
|
|
|
|
|
pRollbackOp->eOp = ROLLBACK_INSERT; |
|
1051
|
0
|
|
|
|
|
|
pRollbackOp->iTab = n; |
|
1052
|
0
|
|
|
|
|
|
pRollbackOp->nKey = pNode->nKey; |
|
1053
|
0
|
|
|
|
|
|
pRollbackOp->pKey = pNode->pKey; |
|
1054
|
0
|
|
|
|
|
|
pRollbackOp->nData = pNode->nData; |
|
1055
|
0
|
|
|
|
|
|
pRollbackOp->pData = pNode->pData; |
|
1056
|
0
|
|
|
|
|
|
btreeLogRollbackOp(tree, pRollbackOp); |
|
1057
|
|
|
|
|
|
|
} |
|
1058
|
0
|
|
|
|
|
|
sqliteFree( pNode ); |
|
1059
|
0
|
0
|
|
|
|
|
if( pTmp ){ |
|
1060
|
0
|
0
|
|
|
|
|
if( pTmp->pLeft == pNode ) pTmp->pLeft = 0; |
|
1061
|
0
|
0
|
|
|
|
|
else if( pTmp->pRight == pNode ) pTmp->pRight = 0; |
|
1062
|
|
|
|
|
|
|
} |
|
1063
|
0
|
|
|
|
|
|
pNode = pTmp; |
|
1064
|
|
|
|
|
|
|
} |
|
1065
|
|
|
|
|
|
|
} |
|
1066
|
|
|
|
|
|
|
|
|
1067
|
0
|
|
|
|
|
|
pTree->pHead = 0; |
|
1068
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
1069
|
|
|
|
|
|
|
} |
|
1070
|
|
|
|
|
|
|
|
|
1071
|
0
|
|
|
|
|
|
static int memRbtreeFirst(RbtCursor* pCur, int *pRes) |
|
1072
|
|
|
|
|
|
|
{ |
|
1073
|
0
|
0
|
|
|
|
|
if( pCur->pTree->pHead ){ |
|
1074
|
0
|
|
|
|
|
|
pCur->pNode = pCur->pTree->pHead; |
|
1075
|
0
|
0
|
|
|
|
|
while( pCur->pNode->pLeft ){ |
|
1076
|
0
|
|
|
|
|
|
pCur->pNode = pCur->pNode->pLeft; |
|
1077
|
|
|
|
|
|
|
} |
|
1078
|
|
|
|
|
|
|
} |
|
1079
|
0
|
0
|
|
|
|
|
if( pCur->pNode ){ |
|
1080
|
0
|
|
|
|
|
|
*pRes = 0; |
|
1081
|
|
|
|
|
|
|
}else{ |
|
1082
|
0
|
|
|
|
|
|
*pRes = 1; |
|
1083
|
|
|
|
|
|
|
} |
|
1084
|
0
|
|
|
|
|
|
pCur->eSkip = SKIP_NONE; |
|
1085
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
1086
|
|
|
|
|
|
|
} |
|
1087
|
|
|
|
|
|
|
|
|
1088
|
0
|
|
|
|
|
|
static int memRbtreeLast(RbtCursor* pCur, int *pRes) |
|
1089
|
|
|
|
|
|
|
{ |
|
1090
|
0
|
0
|
|
|
|
|
if( pCur->pTree->pHead ){ |
|
1091
|
0
|
|
|
|
|
|
pCur->pNode = pCur->pTree->pHead; |
|
1092
|
0
|
0
|
|
|
|
|
while( pCur->pNode->pRight ){ |
|
1093
|
0
|
|
|
|
|
|
pCur->pNode = pCur->pNode->pRight; |
|
1094
|
|
|
|
|
|
|
} |
|
1095
|
|
|
|
|
|
|
} |
|
1096
|
0
|
0
|
|
|
|
|
if( pCur->pNode ){ |
|
1097
|
0
|
|
|
|
|
|
*pRes = 0; |
|
1098
|
|
|
|
|
|
|
}else{ |
|
1099
|
0
|
|
|
|
|
|
*pRes = 1; |
|
1100
|
|
|
|
|
|
|
} |
|
1101
|
0
|
|
|
|
|
|
pCur->eSkip = SKIP_NONE; |
|
1102
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
1103
|
|
|
|
|
|
|
} |
|
1104
|
|
|
|
|
|
|
|
|
1105
|
|
|
|
|
|
|
/* |
|
1106
|
|
|
|
|
|
|
** Advance the cursor to the next entry in the database. If |
|
1107
|
|
|
|
|
|
|
** successful then set *pRes=0. If the cursor |
|
1108
|
|
|
|
|
|
|
** was already pointing to the last entry in the database before |
|
1109
|
|
|
|
|
|
|
** this routine was called, then set *pRes=1. |
|
1110
|
|
|
|
|
|
|
*/ |
|
1111
|
0
|
|
|
|
|
|
static int memRbtreeNext(RbtCursor* pCur, int *pRes) |
|
1112
|
|
|
|
|
|
|
{ |
|
1113
|
0
|
0
|
|
|
|
|
if( pCur->pNode && pCur->eSkip != SKIP_NEXT ){ |
|
|
|
0
|
|
|
|
|
|
|
1114
|
0
|
0
|
|
|
|
|
if( pCur->pNode->pRight ){ |
|
1115
|
0
|
|
|
|
|
|
pCur->pNode = pCur->pNode->pRight; |
|
1116
|
0
|
0
|
|
|
|
|
while( pCur->pNode->pLeft ) |
|
1117
|
0
|
|
|
|
|
|
pCur->pNode = pCur->pNode->pLeft; |
|
1118
|
|
|
|
|
|
|
}else{ |
|
1119
|
0
|
|
|
|
|
|
BtRbNode * pX = pCur->pNode; |
|
1120
|
0
|
|
|
|
|
|
pCur->pNode = pX->pParent; |
|
1121
|
0
|
0
|
|
|
|
|
while( pCur->pNode && (pCur->pNode->pRight == pX) ){ |
|
|
|
0
|
|
|
|
|
|
|
1122
|
0
|
|
|
|
|
|
pX = pCur->pNode; |
|
1123
|
0
|
|
|
|
|
|
pCur->pNode = pX->pParent; |
|
1124
|
|
|
|
|
|
|
} |
|
1125
|
|
|
|
|
|
|
} |
|
1126
|
|
|
|
|
|
|
} |
|
1127
|
0
|
|
|
|
|
|
pCur->eSkip = SKIP_NONE; |
|
1128
|
|
|
|
|
|
|
|
|
1129
|
0
|
0
|
|
|
|
|
if( !pCur->pNode ){ |
|
1130
|
0
|
|
|
|
|
|
*pRes = 1; |
|
1131
|
|
|
|
|
|
|
}else{ |
|
1132
|
0
|
|
|
|
|
|
*pRes = 0; |
|
1133
|
|
|
|
|
|
|
} |
|
1134
|
|
|
|
|
|
|
|
|
1135
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
1136
|
|
|
|
|
|
|
} |
|
1137
|
|
|
|
|
|
|
|
|
1138
|
0
|
|
|
|
|
|
static int memRbtreePrevious(RbtCursor* pCur, int *pRes) |
|
1139
|
|
|
|
|
|
|
{ |
|
1140
|
0
|
0
|
|
|
|
|
if( pCur->pNode && pCur->eSkip != SKIP_PREV ){ |
|
|
|
0
|
|
|
|
|
|
|
1141
|
0
|
0
|
|
|
|
|
if( pCur->pNode->pLeft ){ |
|
1142
|
0
|
|
|
|
|
|
pCur->pNode = pCur->pNode->pLeft; |
|
1143
|
0
|
0
|
|
|
|
|
while( pCur->pNode->pRight ) |
|
1144
|
0
|
|
|
|
|
|
pCur->pNode = pCur->pNode->pRight; |
|
1145
|
|
|
|
|
|
|
}else{ |
|
1146
|
0
|
|
|
|
|
|
BtRbNode * pX = pCur->pNode; |
|
1147
|
0
|
|
|
|
|
|
pCur->pNode = pX->pParent; |
|
1148
|
0
|
0
|
|
|
|
|
while( pCur->pNode && (pCur->pNode->pLeft == pX) ){ |
|
|
|
0
|
|
|
|
|
|
|
1149
|
0
|
|
|
|
|
|
pX = pCur->pNode; |
|
1150
|
0
|
|
|
|
|
|
pCur->pNode = pX->pParent; |
|
1151
|
|
|
|
|
|
|
} |
|
1152
|
|
|
|
|
|
|
} |
|
1153
|
|
|
|
|
|
|
} |
|
1154
|
0
|
|
|
|
|
|
pCur->eSkip = SKIP_NONE; |
|
1155
|
|
|
|
|
|
|
|
|
1156
|
0
|
0
|
|
|
|
|
if( !pCur->pNode ){ |
|
1157
|
0
|
|
|
|
|
|
*pRes = 1; |
|
1158
|
|
|
|
|
|
|
}else{ |
|
1159
|
0
|
|
|
|
|
|
*pRes = 0; |
|
1160
|
|
|
|
|
|
|
} |
|
1161
|
|
|
|
|
|
|
|
|
1162
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
1163
|
|
|
|
|
|
|
} |
|
1164
|
|
|
|
|
|
|
|
|
1165
|
0
|
|
|
|
|
|
static int memRbtreeKeySize(RbtCursor* pCur, int *pSize) |
|
1166
|
|
|
|
|
|
|
{ |
|
1167
|
0
|
0
|
|
|
|
|
if( pCur->pNode ){ |
|
1168
|
0
|
|
|
|
|
|
*pSize = pCur->pNode->nKey; |
|
1169
|
|
|
|
|
|
|
}else{ |
|
1170
|
0
|
|
|
|
|
|
*pSize = 0; |
|
1171
|
|
|
|
|
|
|
} |
|
1172
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
1173
|
|
|
|
|
|
|
} |
|
1174
|
|
|
|
|
|
|
|
|
1175
|
0
|
|
|
|
|
|
static int memRbtreeKey(RbtCursor* pCur, int offset, int amt, char *zBuf) |
|
1176
|
|
|
|
|
|
|
{ |
|
1177
|
0
|
0
|
|
|
|
|
if( !pCur->pNode ) return 0; |
|
1178
|
0
|
0
|
|
|
|
|
if( !pCur->pNode->pKey || ((amt + offset) <= pCur->pNode->nKey) ){ |
|
|
|
0
|
|
|
|
|
|
|
1179
|
0
|
|
|
|
|
|
memcpy(zBuf, ((char*)pCur->pNode->pKey)+offset, amt); |
|
1180
|
|
|
|
|
|
|
}else{ |
|
1181
|
0
|
|
|
|
|
|
memcpy(zBuf, ((char*)pCur->pNode->pKey)+offset, pCur->pNode->nKey-offset); |
|
1182
|
0
|
|
|
|
|
|
amt = pCur->pNode->nKey-offset; |
|
1183
|
|
|
|
|
|
|
} |
|
1184
|
0
|
|
|
|
|
|
return amt; |
|
1185
|
|
|
|
|
|
|
} |
|
1186
|
|
|
|
|
|
|
|
|
1187
|
0
|
|
|
|
|
|
static int memRbtreeDataSize(RbtCursor* pCur, int *pSize) |
|
1188
|
|
|
|
|
|
|
{ |
|
1189
|
0
|
0
|
|
|
|
|
if( pCur->pNode ){ |
|
1190
|
0
|
|
|
|
|
|
*pSize = pCur->pNode->nData; |
|
1191
|
|
|
|
|
|
|
}else{ |
|
1192
|
0
|
|
|
|
|
|
*pSize = 0; |
|
1193
|
|
|
|
|
|
|
} |
|
1194
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
1195
|
|
|
|
|
|
|
} |
|
1196
|
|
|
|
|
|
|
|
|
1197
|
0
|
|
|
|
|
|
static int memRbtreeData(RbtCursor *pCur, int offset, int amt, char *zBuf) |
|
1198
|
|
|
|
|
|
|
{ |
|
1199
|
0
|
0
|
|
|
|
|
if( !pCur->pNode ) return 0; |
|
1200
|
0
|
0
|
|
|
|
|
if( (amt + offset) <= pCur->pNode->nData ){ |
|
1201
|
0
|
|
|
|
|
|
memcpy(zBuf, ((char*)pCur->pNode->pData)+offset, amt); |
|
1202
|
|
|
|
|
|
|
}else{ |
|
1203
|
0
|
|
|
|
|
|
memcpy(zBuf, ((char*)pCur->pNode->pData)+offset ,pCur->pNode->nData-offset); |
|
1204
|
0
|
|
|
|
|
|
amt = pCur->pNode->nData-offset; |
|
1205
|
|
|
|
|
|
|
} |
|
1206
|
0
|
|
|
|
|
|
return amt; |
|
1207
|
|
|
|
|
|
|
} |
|
1208
|
|
|
|
|
|
|
|
|
1209
|
0
|
|
|
|
|
|
static int memRbtreeCloseCursor(RbtCursor* pCur) |
|
1210
|
|
|
|
|
|
|
{ |
|
1211
|
0
|
0
|
|
|
|
|
if( pCur->pTree->pCursors==pCur ){ |
|
1212
|
0
|
|
|
|
|
|
pCur->pTree->pCursors = pCur->pShared; |
|
1213
|
|
|
|
|
|
|
}else{ |
|
1214
|
0
|
|
|
|
|
|
RbtCursor *p = pCur->pTree->pCursors; |
|
1215
|
0
|
0
|
|
|
|
|
while( p && p->pShared!=pCur ){ p = p->pShared; } |
|
|
|
0
|
|
|
|
|
|
|
1216
|
|
|
|
|
|
|
assert( p!=0 ); |
|
1217
|
0
|
0
|
|
|
|
|
if( p ){ |
|
1218
|
0
|
|
|
|
|
|
p->pShared = pCur->pShared; |
|
1219
|
|
|
|
|
|
|
} |
|
1220
|
|
|
|
|
|
|
} |
|
1221
|
0
|
|
|
|
|
|
sqliteFree(pCur); |
|
1222
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
1223
|
|
|
|
|
|
|
} |
|
1224
|
|
|
|
|
|
|
|
|
1225
|
0
|
|
|
|
|
|
static int memRbtreeGetMeta(Rbtree* tree, int* aMeta) |
|
1226
|
|
|
|
|
|
|
{ |
|
1227
|
0
|
|
|
|
|
|
memcpy( aMeta, tree->aMetaData, sizeof(int) * SQLITE_N_BTREE_META ); |
|
1228
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
1229
|
|
|
|
|
|
|
} |
|
1230
|
|
|
|
|
|
|
|
|
1231
|
0
|
|
|
|
|
|
static int memRbtreeUpdateMeta(Rbtree* tree, int* aMeta) |
|
1232
|
|
|
|
|
|
|
{ |
|
1233
|
0
|
|
|
|
|
|
memcpy( tree->aMetaData, aMeta, sizeof(int) * SQLITE_N_BTREE_META ); |
|
1234
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
1235
|
|
|
|
|
|
|
} |
|
1236
|
|
|
|
|
|
|
|
|
1237
|
|
|
|
|
|
|
/* |
|
1238
|
|
|
|
|
|
|
* Check that each table in the Rbtree meets the requirements for a red-black |
|
1239
|
|
|
|
|
|
|
* binary tree. If an error is found, return an explanation of the problem in |
|
1240
|
|
|
|
|
|
|
* memory obtained from sqliteMalloc(). Parameters aRoot and nRoot are ignored. |
|
1241
|
|
|
|
|
|
|
*/ |
|
1242
|
0
|
|
|
|
|
|
static char *memRbtreeIntegrityCheck(Rbtree* tree, int* aRoot, int nRoot) |
|
1243
|
|
|
|
|
|
|
{ |
|
1244
|
0
|
|
|
|
|
|
char * msg = 0; |
|
1245
|
|
|
|
|
|
|
HashElem *p; |
|
1246
|
|
|
|
|
|
|
|
|
1247
|
0
|
0
|
|
|
|
|
for(p=sqliteHashFirst(&tree->tblHash); p; p=sqliteHashNext(p)){ |
|
1248
|
0
|
|
|
|
|
|
BtRbTree *pTree = sqliteHashData(p); |
|
1249
|
0
|
|
|
|
|
|
check_redblack_tree(pTree, &msg); |
|
1250
|
|
|
|
|
|
|
} |
|
1251
|
|
|
|
|
|
|
|
|
1252
|
0
|
|
|
|
|
|
return msg; |
|
1253
|
|
|
|
|
|
|
} |
|
1254
|
|
|
|
|
|
|
|
|
1255
|
0
|
|
|
|
|
|
static int memRbtreeSetCacheSize(Rbtree* tree, int sz) |
|
1256
|
|
|
|
|
|
|
{ |
|
1257
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
1258
|
|
|
|
|
|
|
} |
|
1259
|
|
|
|
|
|
|
|
|
1260
|
0
|
|
|
|
|
|
static int memRbtreeSetSafetyLevel(Rbtree *pBt, int level){ |
|
1261
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
1262
|
|
|
|
|
|
|
} |
|
1263
|
|
|
|
|
|
|
|
|
1264
|
0
|
|
|
|
|
|
static int memRbtreeBeginTrans(Rbtree* tree) |
|
1265
|
|
|
|
|
|
|
{ |
|
1266
|
0
|
0
|
|
|
|
|
if( tree->eTransState != TRANS_NONE ) |
|
1267
|
0
|
|
|
|
|
|
return SQLITE_ERROR; |
|
1268
|
|
|
|
|
|
|
|
|
1269
|
|
|
|
|
|
|
assert( tree->pTransRollback == 0 ); |
|
1270
|
0
|
|
|
|
|
|
tree->eTransState = TRANS_INTRANSACTION; |
|
1271
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
1272
|
|
|
|
|
|
|
} |
|
1273
|
|
|
|
|
|
|
|
|
1274
|
|
|
|
|
|
|
/* |
|
1275
|
|
|
|
|
|
|
** Delete a linked list of BtRollbackOp structures. |
|
1276
|
|
|
|
|
|
|
*/ |
|
1277
|
0
|
|
|
|
|
|
static void deleteRollbackList(BtRollbackOp *pOp){ |
|
1278
|
0
|
0
|
|
|
|
|
while( pOp ){ |
|
1279
|
0
|
|
|
|
|
|
BtRollbackOp *pTmp = pOp->pNext; |
|
1280
|
0
|
|
|
|
|
|
sqliteFree(pOp->pData); |
|
1281
|
0
|
|
|
|
|
|
sqliteFree(pOp->pKey); |
|
1282
|
0
|
|
|
|
|
|
sqliteFree(pOp); |
|
1283
|
0
|
|
|
|
|
|
pOp = pTmp; |
|
1284
|
|
|
|
|
|
|
} |
|
1285
|
0
|
|
|
|
|
|
} |
|
1286
|
|
|
|
|
|
|
|
|
1287
|
0
|
|
|
|
|
|
static int memRbtreeCommit(Rbtree* tree){ |
|
1288
|
|
|
|
|
|
|
/* Just delete pTransRollback and pCheckRollback */ |
|
1289
|
0
|
|
|
|
|
|
deleteRollbackList(tree->pCheckRollback); |
|
1290
|
0
|
|
|
|
|
|
deleteRollbackList(tree->pTransRollback); |
|
1291
|
0
|
|
|
|
|
|
tree->pTransRollback = 0; |
|
1292
|
0
|
|
|
|
|
|
tree->pCheckRollback = 0; |
|
1293
|
0
|
|
|
|
|
|
tree->pCheckRollbackTail = 0; |
|
1294
|
0
|
|
|
|
|
|
tree->eTransState = TRANS_NONE; |
|
1295
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
1296
|
|
|
|
|
|
|
} |
|
1297
|
|
|
|
|
|
|
|
|
1298
|
|
|
|
|
|
|
/* |
|
1299
|
|
|
|
|
|
|
* Close the supplied Rbtree. Delete everything associated with it. |
|
1300
|
|
|
|
|
|
|
*/ |
|
1301
|
0
|
|
|
|
|
|
static int memRbtreeClose(Rbtree* tree) |
|
1302
|
|
|
|
|
|
|
{ |
|
1303
|
|
|
|
|
|
|
HashElem *p; |
|
1304
|
0
|
|
|
|
|
|
memRbtreeCommit(tree); |
|
1305
|
0
|
0
|
|
|
|
|
while( (p=sqliteHashFirst(&tree->tblHash))!=0 ){ |
|
1306
|
0
|
|
|
|
|
|
tree->eTransState = TRANS_ROLLBACK; |
|
1307
|
0
|
|
|
|
|
|
memRbtreeDropTable(tree, sqliteHashKeysize(p)); |
|
1308
|
|
|
|
|
|
|
} |
|
1309
|
0
|
|
|
|
|
|
sqliteHashClear(&tree->tblHash); |
|
1310
|
0
|
|
|
|
|
|
sqliteFree(tree); |
|
1311
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
1312
|
|
|
|
|
|
|
} |
|
1313
|
|
|
|
|
|
|
|
|
1314
|
|
|
|
|
|
|
/* |
|
1315
|
|
|
|
|
|
|
* Execute and delete the supplied rollback-list on pRbtree. |
|
1316
|
|
|
|
|
|
|
*/ |
|
1317
|
0
|
|
|
|
|
|
static void execute_rollback_list(Rbtree *pRbtree, BtRollbackOp *pList) |
|
1318
|
|
|
|
|
|
|
{ |
|
1319
|
|
|
|
|
|
|
BtRollbackOp *pTmp; |
|
1320
|
|
|
|
|
|
|
RbtCursor cur; |
|
1321
|
|
|
|
|
|
|
int res; |
|
1322
|
|
|
|
|
|
|
|
|
1323
|
0
|
|
|
|
|
|
cur.pRbtree = pRbtree; |
|
1324
|
0
|
|
|
|
|
|
cur.wrFlag = 1; |
|
1325
|
0
|
0
|
|
|
|
|
while( pList ){ |
|
1326
|
0
|
|
|
|
|
|
switch( pList->eOp ){ |
|
1327
|
|
|
|
|
|
|
case ROLLBACK_INSERT: |
|
1328
|
0
|
|
|
|
|
|
cur.pTree = sqliteHashFind( &pRbtree->tblHash, 0, pList->iTab ); |
|
1329
|
|
|
|
|
|
|
assert(cur.pTree); |
|
1330
|
0
|
|
|
|
|
|
cur.iTree = pList->iTab; |
|
1331
|
0
|
|
|
|
|
|
cur.eSkip = SKIP_NONE; |
|
1332
|
0
|
|
|
|
|
|
memRbtreeInsert( &cur, pList->pKey, |
|
1333
|
0
|
|
|
|
|
|
pList->nKey, pList->pData, pList->nData ); |
|
1334
|
0
|
|
|
|
|
|
break; |
|
1335
|
|
|
|
|
|
|
case ROLLBACK_DELETE: |
|
1336
|
0
|
|
|
|
|
|
cur.pTree = sqliteHashFind( &pRbtree->tblHash, 0, pList->iTab ); |
|
1337
|
|
|
|
|
|
|
assert(cur.pTree); |
|
1338
|
0
|
|
|
|
|
|
cur.iTree = pList->iTab; |
|
1339
|
0
|
|
|
|
|
|
cur.eSkip = SKIP_NONE; |
|
1340
|
0
|
|
|
|
|
|
memRbtreeMoveto(&cur, pList->pKey, pList->nKey, &res); |
|
1341
|
|
|
|
|
|
|
assert(res == 0); |
|
1342
|
0
|
|
|
|
|
|
memRbtreeDelete( &cur ); |
|
1343
|
0
|
|
|
|
|
|
break; |
|
1344
|
|
|
|
|
|
|
case ROLLBACK_CREATE: |
|
1345
|
0
|
|
|
|
|
|
btreeCreateTable(pRbtree, pList->iTab); |
|
1346
|
0
|
|
|
|
|
|
break; |
|
1347
|
|
|
|
|
|
|
case ROLLBACK_DROP: |
|
1348
|
0
|
|
|
|
|
|
memRbtreeDropTable(pRbtree, pList->iTab); |
|
1349
|
0
|
|
|
|
|
|
break; |
|
1350
|
|
|
|
|
|
|
default: |
|
1351
|
|
|
|
|
|
|
assert(0); |
|
1352
|
|
|
|
|
|
|
} |
|
1353
|
0
|
|
|
|
|
|
sqliteFree(pList->pKey); |
|
1354
|
0
|
|
|
|
|
|
sqliteFree(pList->pData); |
|
1355
|
0
|
|
|
|
|
|
pTmp = pList->pNext; |
|
1356
|
0
|
|
|
|
|
|
sqliteFree(pList); |
|
1357
|
0
|
|
|
|
|
|
pList = pTmp; |
|
1358
|
|
|
|
|
|
|
} |
|
1359
|
0
|
|
|
|
|
|
} |
|
1360
|
|
|
|
|
|
|
|
|
1361
|
0
|
|
|
|
|
|
static int memRbtreeRollback(Rbtree* tree) |
|
1362
|
|
|
|
|
|
|
{ |
|
1363
|
0
|
|
|
|
|
|
tree->eTransState = TRANS_ROLLBACK; |
|
1364
|
0
|
|
|
|
|
|
execute_rollback_list(tree, tree->pCheckRollback); |
|
1365
|
0
|
|
|
|
|
|
execute_rollback_list(tree, tree->pTransRollback); |
|
1366
|
0
|
|
|
|
|
|
tree->pTransRollback = 0; |
|
1367
|
0
|
|
|
|
|
|
tree->pCheckRollback = 0; |
|
1368
|
0
|
|
|
|
|
|
tree->pCheckRollbackTail = 0; |
|
1369
|
0
|
|
|
|
|
|
tree->eTransState = TRANS_NONE; |
|
1370
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
1371
|
|
|
|
|
|
|
} |
|
1372
|
|
|
|
|
|
|
|
|
1373
|
0
|
|
|
|
|
|
static int memRbtreeBeginCkpt(Rbtree* tree) |
|
1374
|
|
|
|
|
|
|
{ |
|
1375
|
0
|
0
|
|
|
|
|
if( tree->eTransState != TRANS_INTRANSACTION ) |
|
1376
|
0
|
|
|
|
|
|
return SQLITE_ERROR; |
|
1377
|
|
|
|
|
|
|
|
|
1378
|
|
|
|
|
|
|
assert( tree->pCheckRollback == 0 ); |
|
1379
|
|
|
|
|
|
|
assert( tree->pCheckRollbackTail == 0 ); |
|
1380
|
0
|
|
|
|
|
|
tree->eTransState = TRANS_INCHECKPOINT; |
|
1381
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
1382
|
|
|
|
|
|
|
} |
|
1383
|
|
|
|
|
|
|
|
|
1384
|
0
|
|
|
|
|
|
static int memRbtreeCommitCkpt(Rbtree* tree) |
|
1385
|
|
|
|
|
|
|
{ |
|
1386
|
0
|
0
|
|
|
|
|
if( tree->eTransState == TRANS_INCHECKPOINT ){ |
|
1387
|
0
|
0
|
|
|
|
|
if( tree->pCheckRollback ){ |
|
1388
|
0
|
|
|
|
|
|
tree->pCheckRollbackTail->pNext = tree->pTransRollback; |
|
1389
|
0
|
|
|
|
|
|
tree->pTransRollback = tree->pCheckRollback; |
|
1390
|
0
|
|
|
|
|
|
tree->pCheckRollback = 0; |
|
1391
|
0
|
|
|
|
|
|
tree->pCheckRollbackTail = 0; |
|
1392
|
|
|
|
|
|
|
} |
|
1393
|
0
|
|
|
|
|
|
tree->eTransState = TRANS_INTRANSACTION; |
|
1394
|
|
|
|
|
|
|
} |
|
1395
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
1396
|
|
|
|
|
|
|
} |
|
1397
|
|
|
|
|
|
|
|
|
1398
|
0
|
|
|
|
|
|
static int memRbtreeRollbackCkpt(Rbtree* tree) |
|
1399
|
|
|
|
|
|
|
{ |
|
1400
|
0
|
0
|
|
|
|
|
if( tree->eTransState != TRANS_INCHECKPOINT ) return SQLITE_OK; |
|
1401
|
0
|
|
|
|
|
|
tree->eTransState = TRANS_ROLLBACK; |
|
1402
|
0
|
|
|
|
|
|
execute_rollback_list(tree, tree->pCheckRollback); |
|
1403
|
0
|
|
|
|
|
|
tree->pCheckRollback = 0; |
|
1404
|
0
|
|
|
|
|
|
tree->pCheckRollbackTail = 0; |
|
1405
|
0
|
|
|
|
|
|
tree->eTransState = TRANS_INTRANSACTION; |
|
1406
|
0
|
|
|
|
|
|
return SQLITE_OK; |
|
1407
|
|
|
|
|
|
|
} |
|
1408
|
|
|
|
|
|
|
|
|
1409
|
|
|
|
|
|
|
#ifdef SQLITE_TEST |
|
1410
|
|
|
|
|
|
|
static int memRbtreePageDump(Rbtree* tree, int pgno, int rec) |
|
1411
|
|
|
|
|
|
|
{ |
|
1412
|
|
|
|
|
|
|
assert(!"Cannot call sqliteRbtreePageDump"); |
|
1413
|
|
|
|
|
|
|
return SQLITE_OK; |
|
1414
|
|
|
|
|
|
|
} |
|
1415
|
|
|
|
|
|
|
|
|
1416
|
|
|
|
|
|
|
static int memRbtreeCursorDump(RbtCursor* pCur, int* aRes) |
|
1417
|
|
|
|
|
|
|
{ |
|
1418
|
|
|
|
|
|
|
assert(!"Cannot call sqliteRbtreeCursorDump"); |
|
1419
|
|
|
|
|
|
|
return SQLITE_OK; |
|
1420
|
|
|
|
|
|
|
} |
|
1421
|
|
|
|
|
|
|
#endif |
|
1422
|
|
|
|
|
|
|
|
|
1423
|
0
|
|
|
|
|
|
static struct Pager *memRbtreePager(Rbtree* tree) |
|
1424
|
|
|
|
|
|
|
{ |
|
1425
|
0
|
|
|
|
|
|
return 0; |
|
1426
|
|
|
|
|
|
|
} |
|
1427
|
|
|
|
|
|
|
|
|
1428
|
|
|
|
|
|
|
/* |
|
1429
|
|
|
|
|
|
|
** Return the full pathname of the underlying database file. |
|
1430
|
|
|
|
|
|
|
*/ |
|
1431
|
0
|
|
|
|
|
|
static const char *memRbtreeGetFilename(Rbtree *pBt){ |
|
1432
|
0
|
|
|
|
|
|
return 0; /* A NULL return indicates there is no underlying file */ |
|
1433
|
|
|
|
|
|
|
} |
|
1434
|
|
|
|
|
|
|
|
|
1435
|
|
|
|
|
|
|
/* |
|
1436
|
|
|
|
|
|
|
** The copy file function is not implemented for the in-memory database |
|
1437
|
|
|
|
|
|
|
*/ |
|
1438
|
0
|
|
|
|
|
|
static int memRbtreeCopyFile(Rbtree *pBt, Rbtree *pBt2){ |
|
1439
|
0
|
|
|
|
|
|
return SQLITE_INTERNAL; /* Not implemented */ |
|
1440
|
|
|
|
|
|
|
} |
|
1441
|
|
|
|
|
|
|
|
|
1442
|
|
|
|
|
|
|
static BtOps sqliteRbtreeOps = { |
|
1443
|
|
|
|
|
|
|
(int(*)(Btree*)) memRbtreeClose, |
|
1444
|
|
|
|
|
|
|
(int(*)(Btree*,int)) memRbtreeSetCacheSize, |
|
1445
|
|
|
|
|
|
|
(int(*)(Btree*,int)) memRbtreeSetSafetyLevel, |
|
1446
|
|
|
|
|
|
|
(int(*)(Btree*)) memRbtreeBeginTrans, |
|
1447
|
|
|
|
|
|
|
(int(*)(Btree*)) memRbtreeCommit, |
|
1448
|
|
|
|
|
|
|
(int(*)(Btree*)) memRbtreeRollback, |
|
1449
|
|
|
|
|
|
|
(int(*)(Btree*)) memRbtreeBeginCkpt, |
|
1450
|
|
|
|
|
|
|
(int(*)(Btree*)) memRbtreeCommitCkpt, |
|
1451
|
|
|
|
|
|
|
(int(*)(Btree*)) memRbtreeRollbackCkpt, |
|
1452
|
|
|
|
|
|
|
(int(*)(Btree*,int*)) memRbtreeCreateTable, |
|
1453
|
|
|
|
|
|
|
(int(*)(Btree*,int*)) memRbtreeCreateTable, |
|
1454
|
|
|
|
|
|
|
(int(*)(Btree*,int)) memRbtreeDropTable, |
|
1455
|
|
|
|
|
|
|
(int(*)(Btree*,int)) memRbtreeClearTable, |
|
1456
|
|
|
|
|
|
|
(int(*)(Btree*,int,int,BtCursor**)) memRbtreeCursor, |
|
1457
|
|
|
|
|
|
|
(int(*)(Btree*,int*)) memRbtreeGetMeta, |
|
1458
|
|
|
|
|
|
|
(int(*)(Btree*,int*)) memRbtreeUpdateMeta, |
|
1459
|
|
|
|
|
|
|
(char*(*)(Btree*,int*,int)) memRbtreeIntegrityCheck, |
|
1460
|
|
|
|
|
|
|
(const char*(*)(Btree*)) memRbtreeGetFilename, |
|
1461
|
|
|
|
|
|
|
(int(*)(Btree*,Btree*)) memRbtreeCopyFile, |
|
1462
|
|
|
|
|
|
|
(struct Pager*(*)(Btree*)) memRbtreePager, |
|
1463
|
|
|
|
|
|
|
#ifdef SQLITE_TEST |
|
1464
|
|
|
|
|
|
|
(int(*)(Btree*,int,int)) memRbtreePageDump, |
|
1465
|
|
|
|
|
|
|
#endif |
|
1466
|
|
|
|
|
|
|
}; |
|
1467
|
|
|
|
|
|
|
|
|
1468
|
|
|
|
|
|
|
static BtCursorOps sqliteRbtreeCursorOps = { |
|
1469
|
|
|
|
|
|
|
(int(*)(BtCursor*,const void*,int,int*)) memRbtreeMoveto, |
|
1470
|
|
|
|
|
|
|
(int(*)(BtCursor*)) memRbtreeDelete, |
|
1471
|
|
|
|
|
|
|
(int(*)(BtCursor*,const void*,int,const void*,int)) memRbtreeInsert, |
|
1472
|
|
|
|
|
|
|
(int(*)(BtCursor*,int*)) memRbtreeFirst, |
|
1473
|
|
|
|
|
|
|
(int(*)(BtCursor*,int*)) memRbtreeLast, |
|
1474
|
|
|
|
|
|
|
(int(*)(BtCursor*,int*)) memRbtreeNext, |
|
1475
|
|
|
|
|
|
|
(int(*)(BtCursor*,int*)) memRbtreePrevious, |
|
1476
|
|
|
|
|
|
|
(int(*)(BtCursor*,int*)) memRbtreeKeySize, |
|
1477
|
|
|
|
|
|
|
(int(*)(BtCursor*,int,int,char*)) memRbtreeKey, |
|
1478
|
|
|
|
|
|
|
(int(*)(BtCursor*,const void*,int,int,int*)) memRbtreeKeyCompare, |
|
1479
|
|
|
|
|
|
|
(int(*)(BtCursor*,int*)) memRbtreeDataSize, |
|
1480
|
|
|
|
|
|
|
(int(*)(BtCursor*,int,int,char*)) memRbtreeData, |
|
1481
|
|
|
|
|
|
|
(int(*)(BtCursor*)) memRbtreeCloseCursor, |
|
1482
|
|
|
|
|
|
|
#ifdef SQLITE_TEST |
|
1483
|
|
|
|
|
|
|
(int(*)(BtCursor*,int*)) memRbtreeCursorDump, |
|
1484
|
|
|
|
|
|
|
#endif |
|
1485
|
|
|
|
|
|
|
|
|
1486
|
|
|
|
|
|
|
}; |
|
1487
|
|
|
|
|
|
|
|
|
1488
|
|
|
|
|
|
|
#endif /* SQLITE_OMIT_INMEMORYDB */ |