| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Crypt::Perl::RSA::Generate; |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
=encoding utf-8 |
|
4
|
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
=head1 NAME |
|
6
|
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
Crypt::Perl::RSA::Generate - RSA key generation |
|
8
|
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
=head1 SYNOPSIS |
|
10
|
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
use Crypt::Perl::RSA::Generate (); |
|
12
|
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
#$prkey is a Crypt::Perl::RSA::PrivateKey instance. |
|
14
|
|
|
|
|
|
|
my $prkey = Crypt::Perl::RSA::Generate::create(2048); |
|
15
|
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
=head1 DISCUSSION |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
Unfortunately, this is quite slow in Perl—too slow, in fact, if you |
|
19
|
|
|
|
|
|
|
don’t have either L or L. |
|
20
|
|
|
|
|
|
|
The logic here will still run under pure Perl, but it’ll take too long |
|
21
|
|
|
|
|
|
|
to be practical. |
|
22
|
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
The current L backend is slated to be replaced |
|
24
|
|
|
|
|
|
|
with L; once that happens, pure-Perl operation should |
|
25
|
|
|
|
|
|
|
be much more feasible. |
|
26
|
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
=head1 ALTERNATIVES |
|
28
|
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
=over 4 |
|
30
|
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
=item L - probably the fastest way to generate RSA |
|
32
|
|
|
|
|
|
|
keys in perl. (It relies on XS, so this project can’t use it.) |
|
33
|
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
=item Use the C binary L directly, |
|
35
|
|
|
|
|
|
|
e.g., C. Most *NIX systems can do this. |
|
36
|
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
=back |
|
38
|
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
NOTE: As of December 2016, L is NOT suitable for key |
|
40
|
|
|
|
|
|
|
generation because it can only generate keys with up to a 512-bit modulus. |
|
41
|
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
=cut |
|
43
|
|
|
|
|
|
|
|
|
44
|
1
|
|
|
1
|
|
338
|
use strict; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
20
|
|
|
45
|
1
|
|
|
1
|
|
4
|
use warnings; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
17
|
|
|
46
|
|
|
|
|
|
|
|
|
47
|
1
|
|
|
1
|
|
439
|
use Math::ProvablePrime (); |
|
|
1
|
|
|
|
|
11351
|
|
|
|
1
|
|
|
|
|
18
|
|
|
48
|
|
|
|
|
|
|
|
|
49
|
1
|
|
|
1
|
|
6
|
use Crypt::Perl::BigInt (); |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
12
|
|
|
50
|
1
|
|
|
1
|
|
366
|
use Crypt::Perl::RSA::PrivateKey (); |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
14
|
|
|
51
|
1
|
|
|
1
|
|
5
|
use Crypt::Perl::X (); |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
22
|
|
|
52
|
|
|
|
|
|
|
|
|
53
|
1
|
|
|
1
|
|
4
|
use constant PUBLIC_EXPONENTS => ( 65537, 3 ); |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
286
|
|
|
54
|
|
|
|
|
|
|
|
|
55
|
|
|
|
|
|
|
sub create { |
|
56
|
0
|
|
|
0
|
0
|
|
my ($mod_bits, $exp) = @_; |
|
57
|
|
|
|
|
|
|
|
|
58
|
0
|
0
|
|
|
|
|
die Crypt::Perl::X::create('Generic', "Need modulus length!") if !$mod_bits; |
|
59
|
|
|
|
|
|
|
|
|
60
|
0
|
|
0
|
|
|
|
$exp ||= (PUBLIC_EXPONENTS())[0]; |
|
61
|
|
|
|
|
|
|
|
|
62
|
0
|
0
|
|
|
|
|
if (!grep { $exp eq $_ } PUBLIC_EXPONENTS()) { |
|
|
0
|
|
|
|
|
|
|
|
63
|
0
|
|
|
|
|
|
my @allowed = PUBLIC_EXPONENTS(); |
|
64
|
0
|
|
|
|
|
|
die Crypt::Perl::X::create('Generic', "Invalid public exponent ($exp); should be one of: [@allowed]"); |
|
65
|
|
|
|
|
|
|
} |
|
66
|
|
|
|
|
|
|
|
|
67
|
0
|
|
|
|
|
|
my $qs = $mod_bits >> 1; |
|
68
|
0
|
0
|
|
|
|
|
(ref $exp) or $exp = Crypt::Perl::BigInt->new($exp); |
|
69
|
|
|
|
|
|
|
|
|
70
|
0
|
|
|
|
|
|
while (1) { |
|
71
|
0
|
|
|
|
|
|
my ($p, $q, $p1, $q1); |
|
72
|
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
#Create a random number, ($mod_bits - $qs) bits long. |
|
74
|
|
|
|
|
|
|
{ |
|
75
|
0
|
|
|
|
|
|
$p = _get_random_prime($mod_bits - $qs); |
|
76
|
0
|
|
|
|
|
|
$p1 = $p->copy()->bdec(); |
|
77
|
|
|
|
|
|
|
|
|
78
|
|
|
|
|
|
|
#($p - 1) needs not to be a multiple of $exp |
|
79
|
0
|
0
|
|
|
|
|
redo if $p1->copy()->bmod($exp)->is_zero(); |
|
80
|
|
|
|
|
|
|
} |
|
81
|
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
{ |
|
83
|
0
|
|
|
|
|
|
$q = _get_random_prime($qs); |
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
84
|
0
|
|
|
|
|
|
$q1 = $q->copy()->bdec(); |
|
85
|
|
|
|
|
|
|
|
|
86
|
|
|
|
|
|
|
#Same restriction as on $p applies to $q. |
|
87
|
|
|
|
|
|
|
#Let’s also make sure these are two different numbers! |
|
88
|
0
|
0
|
0
|
|
|
|
redo if $q1->copy()->bmod($exp)->is_zero() || $q->beq($p); |
|
89
|
|
|
|
|
|
|
} |
|
90
|
|
|
|
|
|
|
|
|
91
|
|
|
|
|
|
|
#$p should be > $q |
|
92
|
0
|
0
|
|
|
|
|
if ($p->blt($q)) { |
|
93
|
0
|
|
|
|
|
|
my $t = $p; |
|
94
|
0
|
|
|
|
|
|
$p = $q; |
|
95
|
0
|
|
|
|
|
|
$q = $t; |
|
96
|
|
|
|
|
|
|
|
|
97
|
0
|
|
|
|
|
|
$t = $p1; |
|
98
|
0
|
|
|
|
|
|
$p1 = $q1; |
|
99
|
0
|
|
|
|
|
|
$q1 = $t; |
|
100
|
|
|
|
|
|
|
} |
|
101
|
|
|
|
|
|
|
|
|
102
|
0
|
|
|
|
|
|
my $phi = $p1->copy()->bmul($q1); |
|
103
|
|
|
|
|
|
|
|
|
104
|
0
|
|
|
|
|
|
my $d = $exp->copy()->bmodinv($phi); |
|
105
|
|
|
|
|
|
|
|
|
106
|
0
|
|
|
|
|
|
my $obj = Crypt::Perl::RSA::PrivateKey->new( |
|
107
|
|
|
|
|
|
|
{ |
|
108
|
|
|
|
|
|
|
version => 0, |
|
109
|
|
|
|
|
|
|
modulus => $p->copy()->bmul($q), |
|
110
|
|
|
|
|
|
|
publicExponent => $exp, |
|
111
|
|
|
|
|
|
|
privateExponent => $d, |
|
112
|
|
|
|
|
|
|
prime1 => $p, |
|
113
|
|
|
|
|
|
|
prime2 => $q, |
|
114
|
|
|
|
|
|
|
exponent1 => $d->copy()->bmod($p1), |
|
115
|
|
|
|
|
|
|
exponent2 => $d->copy()->bmod($q1), |
|
116
|
|
|
|
|
|
|
coefficient => $q->copy()->bmodinv($p), |
|
117
|
|
|
|
|
|
|
}, |
|
118
|
|
|
|
|
|
|
); |
|
119
|
|
|
|
|
|
|
|
|
120
|
0
|
|
|
|
|
|
return $obj; |
|
121
|
|
|
|
|
|
|
} |
|
122
|
|
|
|
|
|
|
} |
|
123
|
|
|
|
|
|
|
|
|
124
|
|
|
|
|
|
|
sub _get_random_prime { |
|
125
|
0
|
|
|
0
|
|
|
return Crypt::Perl::BigInt->new( Math::ProvablePrime::find(@_) ); |
|
126
|
|
|
|
|
|
|
} |
|
127
|
|
|
|
|
|
|
|
|
128
|
|
|
|
|
|
|
1; |