| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Calendar::Any::Util::Lunar; |
|
2
|
|
|
|
|
|
|
{ |
|
3
|
|
|
|
|
|
|
$Calendar::Any::Util::Lunar::VERSION = '0.5'; |
|
4
|
|
|
|
|
|
|
} |
|
5
|
2
|
|
|
2
|
|
26102
|
use Calendar::Any::Util::Solar; |
|
|
2
|
|
|
|
|
7
|
|
|
|
2
|
|
|
|
|
138
|
|
|
6
|
2
|
|
|
2
|
|
12
|
use Calendar::Any::Gregorian; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
44
|
|
|
7
|
2
|
|
|
2
|
|
10
|
use Math::Trig qw(deg2rad); |
|
|
2
|
|
|
|
|
3
|
|
|
|
2
|
|
|
|
|
174
|
|
|
8
|
2
|
|
|
2
|
|
11
|
use POSIX qw/floor/; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
17
|
|
|
9
|
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
require Exporter; |
|
11
|
|
|
|
|
|
|
our @ISA = qw(Exporter); |
|
12
|
|
|
|
|
|
|
our %EXPORT_TAGS = ( 'all' => [ qw( |
|
13
|
|
|
|
|
|
|
new_moon_date |
|
14
|
|
|
|
|
|
|
) ] ); |
|
15
|
|
|
|
|
|
|
our @EXPORT_OK = ( @{ $EXPORT_TAGS{'all'} } ); |
|
16
|
|
|
|
|
|
|
|
|
17
|
|
|
|
|
|
|
#========================================================== |
|
18
|
|
|
|
|
|
|
# Input : Calendar Object or absolute_date, timezone |
|
19
|
|
|
|
|
|
|
# Output : *absolute date* that first new moon on or after |
|
20
|
|
|
|
|
|
|
# input date |
|
21
|
|
|
|
|
|
|
# Desc : |
|
22
|
|
|
|
|
|
|
#========================================================== |
|
23
|
|
|
|
|
|
|
sub new_moon_date { |
|
24
|
2
|
|
|
2
|
0
|
8
|
my $d = shift; |
|
25
|
2
|
|
|
|
|
3
|
my $tz = shift; |
|
26
|
2
|
|
|
|
|
4
|
my $date; |
|
27
|
2
|
100
|
66
|
|
|
20
|
if ( ref $d && ref $d eq 'Calendar::Any::Gregorian' ) { |
|
28
|
1
|
|
|
|
|
2
|
$date = $d; |
|
29
|
|
|
|
|
|
|
} else { |
|
30
|
1
|
50
|
|
|
|
14
|
$date = Calendar::Any::Gregorian->new(ref $d ? $d->absolute_date : $d); |
|
31
|
|
|
|
|
|
|
} |
|
32
|
2
|
|
|
|
|
28
|
$d = $date->astro_date(); |
|
33
|
2
|
|
|
|
|
9
|
my $year = $date->year + $date->day_of_year / 365.25; |
|
34
|
2
|
|
|
|
|
21
|
my $k = floor(($year-2000)*12.3685); |
|
35
|
2
|
|
|
|
|
8
|
$date = _new_moon_time($k, $tz); |
|
36
|
2
|
|
|
|
|
11
|
while ( $date <$d ) { |
|
37
|
1
|
|
|
|
|
2
|
$k++; |
|
38
|
1
|
|
|
|
|
2
|
$date = _new_moon_time($k, $tz); |
|
39
|
|
|
|
|
|
|
} |
|
40
|
|
|
|
|
|
|
# TODO: daylight time offset |
|
41
|
2
|
|
|
|
|
15
|
return Calendar::Any->new_from_Astro($date)->absolute_date; |
|
42
|
|
|
|
|
|
|
} |
|
43
|
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
sub _new_moon_time { |
|
45
|
3
|
|
|
3
|
|
6
|
my $k = shift; |
|
46
|
3
|
|
|
|
|
5
|
my $tz = shift; |
|
47
|
3
|
50
|
|
|
|
8
|
defined($tz) || ($tz = $Calendar::Any::Util::Solar::timezone); |
|
48
|
3
|
|
|
|
|
7
|
my $T = $k / 1236.85; |
|
49
|
3
|
|
|
|
|
5
|
my $T2 = $T * $T; |
|
50
|
3
|
|
|
|
|
5
|
my $T3 = $T2 * $T; |
|
51
|
3
|
|
|
|
|
7
|
my $T4 = $T2 * $T2; |
|
52
|
3
|
|
|
|
|
15
|
my $JDE = 2451550.09765 + 29.530588853*$k |
|
53
|
|
|
|
|
|
|
+ 0.0001337*$T2 - 0.000000150*$T3 + 0.00000000073*$T4; |
|
54
|
3
|
|
|
|
|
6
|
my $E = 1 - 0.002516*$T - 0.0000074*$T2; |
|
55
|
3
|
|
|
|
|
19
|
my $sun_anomaly = deg2rad(2.5534 + 29.10535669*$k - 0.0000218*$T2 |
|
56
|
|
|
|
|
|
|
- 0.00000011*$T3); |
|
57
|
3
|
|
|
|
|
44
|
my $moon_anomaly = deg2rad(201.5643 +385.81693528*$k + 0.0107438*$T2 |
|
58
|
|
|
|
|
|
|
+ 0.00001239*$T3 - 0.000000058*$T4); |
|
59
|
3
|
|
|
|
|
29
|
my $moon_argument = deg2rad(160.7108 + 390.67050274*$k - 0.0016341*$T2 |
|
60
|
|
|
|
|
|
|
- 0.00000227*$T3 + 0.000000011*$T4); |
|
61
|
3
|
|
|
|
|
26
|
my $omega = deg2rad(124.7746 - 1.56375580*$k + 0.0020691*$T2 + 0.00000215*$T3); |
|
62
|
3
|
|
|
|
|
38
|
my $A1 = deg2rad(299.77 + 0.107408 * $k - 0.009173 * $T2); |
|
63
|
3
|
|
|
|
|
24
|
my $A2 = deg2rad(251.88 + 0.016321 * $k); |
|
64
|
3
|
|
|
|
|
23
|
my $A3 = deg2rad(251.83 + 26.641886 * $k); |
|
65
|
3
|
|
|
|
|
25
|
my $A4 = deg2rad(349.42 + 36.412478 * $k); |
|
66
|
3
|
|
|
|
|
29
|
my $A5 = deg2rad( 84.66 + 18.206239 * $k); |
|
67
|
3
|
|
|
|
|
23
|
my $A6 = deg2rad(141.74 + 53.303771 * $k); |
|
68
|
3
|
|
|
|
|
22
|
my $A7 = deg2rad(207.14 + 2.453732 * $k); |
|
69
|
3
|
|
|
|
|
22
|
my $A8 = deg2rad(154.84 + 7.306860 * $k); |
|
70
|
3
|
|
|
|
|
23
|
my $A9 = deg2rad( 34.52 + 27.261239 * $k); |
|
71
|
3
|
|
|
|
|
22
|
my $A10 = deg2rad(207.19 + 0.121824 * $k); |
|
72
|
3
|
|
|
|
|
23
|
my $A11 = deg2rad(291.34 + 1.844379 * $k); |
|
73
|
3
|
|
|
|
|
37
|
my $A12 = deg2rad(161.72 + 24.198154 * $k); |
|
74
|
3
|
|
|
|
|
22
|
my $A13 = deg2rad(239.56 + 25.513099 * $k); |
|
75
|
3
|
|
|
|
|
28
|
my $A14 = deg2rad(331.55 + 3.592518 * $k); |
|
76
|
|
|
|
|
|
|
|
|
77
|
3
|
|
|
|
|
120
|
my $correction = -0.40720*sin($moon_anomaly) |
|
78
|
|
|
|
|
|
|
+ 0.17241 * $E *sin($sun_anomaly) |
|
79
|
|
|
|
|
|
|
+ 0.01608 * sin(2 * $moon_anomaly) |
|
80
|
|
|
|
|
|
|
+ 0.01039 * sin(2*$moon_argument) |
|
81
|
|
|
|
|
|
|
+ 0.00739 * $E * sin( $moon_anomaly - $sun_anomaly) |
|
82
|
|
|
|
|
|
|
- 0.00514 * $E * sin($moon_anomaly + $sun_anomaly) |
|
83
|
|
|
|
|
|
|
+ 0.00208 * $E * $E * sin(2*$sun_anomaly) |
|
84
|
|
|
|
|
|
|
- 0.00111 * sin($moon_anomaly - 2*$moon_argument) |
|
85
|
|
|
|
|
|
|
- 0.00057 * sin($moon_anomaly + 2*$moon_argument) |
|
86
|
|
|
|
|
|
|
+ 0.00056 * $E * sin(2*$moon_anomaly+ $sun_anomaly) |
|
87
|
|
|
|
|
|
|
- 0.00042 * sin(3*$moon_anomaly) |
|
88
|
|
|
|
|
|
|
+ 0.00042 * $E * sin($sun_anomaly+ 2* $moon_argument) |
|
89
|
|
|
|
|
|
|
+ 0.00038 * $E * sin($sun_anomaly - 2* $moon_argument) |
|
90
|
|
|
|
|
|
|
- 0.00024 * $E * sin(2*$moon_anomaly - $sun_anomaly) |
|
91
|
|
|
|
|
|
|
- 0.00017 * sin($omega) |
|
92
|
|
|
|
|
|
|
- 0.00007 * sin($moon_anomaly + 2*$sun_anomaly) |
|
93
|
|
|
|
|
|
|
+ 0.00004 * sin(2*$moon_anomaly - 2*$moon_argument) |
|
94
|
|
|
|
|
|
|
+ 0.00004 * sin(3*$sun_anomaly) |
|
95
|
|
|
|
|
|
|
+ 0.00003 * sin($moon_anomaly+ $sun_anomaly -2 *$moon_argument) |
|
96
|
|
|
|
|
|
|
+ 0.00003 * sin(2*$moon_anomaly + 2* $moon_argument) |
|
97
|
|
|
|
|
|
|
- 0.00003 * sin($moon_anomaly + $sun_anomaly + 2* $moon_argument) |
|
98
|
|
|
|
|
|
|
+ 0.00003 * sin($moon_anomaly - $sun_anomaly + 2*$moon_argument) |
|
99
|
|
|
|
|
|
|
- 0.00002 * sin($moon_anomaly - $sun_anomaly - 2* $moon_argument) |
|
100
|
|
|
|
|
|
|
- 0.00002 * sin(3*$moon_anomaly + $sun_anomaly) |
|
101
|
|
|
|
|
|
|
+ 0.00002 * sin(4*$moon_anomaly); |
|
102
|
|
|
|
|
|
|
|
|
103
|
3
|
|
|
|
|
26
|
my $additional = 0 |
|
104
|
|
|
|
|
|
|
+ 0.000325 * sin($A1) |
|
105
|
|
|
|
|
|
|
+ 0.000165 * sin($A2) |
|
106
|
|
|
|
|
|
|
+ 0.000164 * sin($A3) |
|
107
|
|
|
|
|
|
|
+ 0.000126 * sin($A4) |
|
108
|
|
|
|
|
|
|
+ 0.000110 * sin($A5) |
|
109
|
|
|
|
|
|
|
+ 0.000062 * sin($A6) |
|
110
|
|
|
|
|
|
|
+ 0.000060 * sin($A7) |
|
111
|
|
|
|
|
|
|
+ 0.000056 * sin($A8) |
|
112
|
|
|
|
|
|
|
+ 0.000047 * sin($A9) |
|
113
|
|
|
|
|
|
|
+ 0.000042 * sin($A10) |
|
114
|
|
|
|
|
|
|
+ 0.000040 * sin($A11) |
|
115
|
|
|
|
|
|
|
+ 0.000037 * sin($A12) |
|
116
|
|
|
|
|
|
|
+ 0.000035 * sin($A13) |
|
117
|
|
|
|
|
|
|
+ 0.000023 * sin($A14); |
|
118
|
3
|
|
|
|
|
10
|
my $newJDE = $JDE +$correction+$additional; |
|
119
|
3
|
|
|
|
|
17
|
my $ec = Calendar::Any::Util::Solar::_ephemeris_correction( |
|
120
|
|
|
|
|
|
|
Calendar::Any->new_from_Astro($newJDE)->to_Gregorian->year |
|
121
|
|
|
|
|
|
|
); |
|
122
|
3
|
|
|
|
|
29
|
return $newJDE - Calendar::Any::Util::Solar::_ephemeris_correction( |
|
123
|
|
|
|
|
|
|
Calendar::Any->new_from_Astro($newJDE)->to_Gregorian->year |
|
124
|
|
|
|
|
|
|
) + $tz/60/24; |
|
125
|
|
|
|
|
|
|
} |
|
126
|
|
|
|
|
|
|
|
|
127
|
|
|
|
|
|
|
1; |
|
128
|
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
__END__ |