| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
/* |
|
2
|
|
|
|
|
|
|
*+ |
|
3
|
|
|
|
|
|
|
* Name: |
|
4
|
|
|
|
|
|
|
* palPv2el |
|
5
|
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
* Purpose: |
|
7
|
|
|
|
|
|
|
* Position velocity to heliocentirc osculating elements |
|
8
|
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
* Language: |
|
10
|
|
|
|
|
|
|
* Starlink ANSI C |
|
11
|
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
* Type of Module: |
|
13
|
|
|
|
|
|
|
* Library routine |
|
14
|
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
* Invocation: |
|
16
|
|
|
|
|
|
|
* void palPv2el ( const double pv[6], double date, double pmass, int jformr, |
|
17
|
|
|
|
|
|
|
* int *jform, double *epoch, double *orbinc, |
|
18
|
|
|
|
|
|
|
* double *anode, double *perih, double *aorq, double *e, |
|
19
|
|
|
|
|
|
|
* double *aorl, double *dm, int *jstat ); |
|
20
|
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
* Arguments: |
|
22
|
|
|
|
|
|
|
* pv = const double [6] (Given) |
|
23
|
|
|
|
|
|
|
* Heliocentric x,y,z,xdot,ydot,zdot of date, |
|
24
|
|
|
|
|
|
|
* J2000 equatorial triad (AU,AU/s; Note 1) |
|
25
|
|
|
|
|
|
|
* date = double (Given) |
|
26
|
|
|
|
|
|
|
* Date (TT Modified Julian Date = JD-2400000.5) |
|
27
|
|
|
|
|
|
|
* pmass = double (Given) |
|
28
|
|
|
|
|
|
|
* Mass of the planet (Sun=1; Note 2) |
|
29
|
|
|
|
|
|
|
* jformr = int (Given) |
|
30
|
|
|
|
|
|
|
* Requested element set (1-3; Note 3) |
|
31
|
|
|
|
|
|
|
* jform = int * (Returned) |
|
32
|
|
|
|
|
|
|
* Element set actually returned (1-3; Note 4) |
|
33
|
|
|
|
|
|
|
* epoch = double * (Returned) |
|
34
|
|
|
|
|
|
|
* Epoch of elements (TT MJD) |
|
35
|
|
|
|
|
|
|
* orbinc = double * (Returned) |
|
36
|
|
|
|
|
|
|
* inclination (radians) |
|
37
|
|
|
|
|
|
|
* anode = double * (Returned) |
|
38
|
|
|
|
|
|
|
* longitude of the ascending node (radians) |
|
39
|
|
|
|
|
|
|
* perih = double * (Returned) |
|
40
|
|
|
|
|
|
|
* longitude or argument of perihelion (radians) |
|
41
|
|
|
|
|
|
|
* aorq = double * (Returned) |
|
42
|
|
|
|
|
|
|
* mean distance or perihelion distance (AU) |
|
43
|
|
|
|
|
|
|
* e = double * (Returned) |
|
44
|
|
|
|
|
|
|
* eccentricity |
|
45
|
|
|
|
|
|
|
* aorl = double * (Returned) |
|
46
|
|
|
|
|
|
|
* mean anomaly or longitude (radians, JFORM=1,2 only) |
|
47
|
|
|
|
|
|
|
* dm = double * (Returned) |
|
48
|
|
|
|
|
|
|
* daily motion (radians, JFORM=1 only) |
|
49
|
|
|
|
|
|
|
* jstat = int * (Returned) |
|
50
|
|
|
|
|
|
|
* status: 0 = OK |
|
51
|
|
|
|
|
|
|
* - -1 = illegal PMASS |
|
52
|
|
|
|
|
|
|
* - -2 = illegal JFORMR |
|
53
|
|
|
|
|
|
|
* - -3 = position/velocity out of range |
|
54
|
|
|
|
|
|
|
|
|
55
|
|
|
|
|
|
|
* Description: |
|
56
|
|
|
|
|
|
|
* Heliocentric osculating elements obtained from instantaneous position |
|
57
|
|
|
|
|
|
|
* and velocity. |
|
58
|
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
* Authors: |
|
60
|
|
|
|
|
|
|
* PTW: Pat Wallace (STFC) |
|
61
|
|
|
|
|
|
|
* TIMJ: Tim Jenness (JAC, Hawaii) |
|
62
|
|
|
|
|
|
|
* {enter_new_authors_here} |
|
63
|
|
|
|
|
|
|
|
|
64
|
|
|
|
|
|
|
* Notes: |
|
65
|
|
|
|
|
|
|
* - The PV 6-vector is with respect to the mean equator and equinox of |
|
66
|
|
|
|
|
|
|
* epoch J2000. The orbital elements produced are with respect to |
|
67
|
|
|
|
|
|
|
* the J2000 ecliptic and mean equinox. |
|
68
|
|
|
|
|
|
|
* - The mass, PMASS, is important only for the larger planets. For |
|
69
|
|
|
|
|
|
|
* most purposes (e.g. asteroids) use 0D0. Values less than zero |
|
70
|
|
|
|
|
|
|
* are illegal. |
|
71
|
|
|
|
|
|
|
* - Three different element-format options are supported: |
|
72
|
|
|
|
|
|
|
* |
|
73
|
|
|
|
|
|
|
* Option JFORM=1, suitable for the major planets: |
|
74
|
|
|
|
|
|
|
* |
|
75
|
|
|
|
|
|
|
* EPOCH = epoch of elements (TT MJD) |
|
76
|
|
|
|
|
|
|
* ORBINC = inclination i (radians) |
|
77
|
|
|
|
|
|
|
* ANODE = longitude of the ascending node, big omega (radians) |
|
78
|
|
|
|
|
|
|
* PERIH = longitude of perihelion, curly pi (radians) |
|
79
|
|
|
|
|
|
|
* AORQ = mean distance, a (AU) |
|
80
|
|
|
|
|
|
|
* E = eccentricity, e |
|
81
|
|
|
|
|
|
|
* AORL = mean longitude L (radians) |
|
82
|
|
|
|
|
|
|
* DM = daily motion (radians) |
|
83
|
|
|
|
|
|
|
* |
|
84
|
|
|
|
|
|
|
* Option JFORM=2, suitable for minor planets: |
|
85
|
|
|
|
|
|
|
* |
|
86
|
|
|
|
|
|
|
* EPOCH = epoch of elements (TT MJD) |
|
87
|
|
|
|
|
|
|
* ORBINC = inclination i (radians) |
|
88
|
|
|
|
|
|
|
* ANODE = longitude of the ascending node, big omega (radians) |
|
89
|
|
|
|
|
|
|
* PERIH = argument of perihelion, little omega (radians) |
|
90
|
|
|
|
|
|
|
* AORQ = mean distance, a (AU) |
|
91
|
|
|
|
|
|
|
* E = eccentricity, e |
|
92
|
|
|
|
|
|
|
* AORL = mean anomaly M (radians) |
|
93
|
|
|
|
|
|
|
* |
|
94
|
|
|
|
|
|
|
* Option JFORM=3, suitable for comets: |
|
95
|
|
|
|
|
|
|
* |
|
96
|
|
|
|
|
|
|
* EPOCH = epoch of perihelion (TT MJD) |
|
97
|
|
|
|
|
|
|
* ORBINC = inclination i (radians) |
|
98
|
|
|
|
|
|
|
* ANODE = longitude of the ascending node, big omega (radians) |
|
99
|
|
|
|
|
|
|
* PERIH = argument of perihelion, little omega (radians) |
|
100
|
|
|
|
|
|
|
* AORQ = perihelion distance, q (AU) |
|
101
|
|
|
|
|
|
|
* E = eccentricity, e |
|
102
|
|
|
|
|
|
|
* |
|
103
|
|
|
|
|
|
|
* - It may not be possible to generate elements in the form |
|
104
|
|
|
|
|
|
|
* requested through JFORMR. The caller is notified of the form |
|
105
|
|
|
|
|
|
|
* of elements actually returned by means of the JFORM argument: |
|
106
|
|
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
* JFORMR JFORM meaning |
|
108
|
|
|
|
|
|
|
* |
|
109
|
|
|
|
|
|
|
* 1 1 OK - elements are in the requested format |
|
110
|
|
|
|
|
|
|
* 1 2 never happens |
|
111
|
|
|
|
|
|
|
* 1 3 orbit not elliptical |
|
112
|
|
|
|
|
|
|
* |
|
113
|
|
|
|
|
|
|
* 2 1 never happens |
|
114
|
|
|
|
|
|
|
* 2 2 OK - elements are in the requested format |
|
115
|
|
|
|
|
|
|
* 2 3 orbit not elliptical |
|
116
|
|
|
|
|
|
|
* |
|
117
|
|
|
|
|
|
|
* 3 1 never happens |
|
118
|
|
|
|
|
|
|
* 3 2 never happens |
|
119
|
|
|
|
|
|
|
* 3 3 OK - elements are in the requested format |
|
120
|
|
|
|
|
|
|
* |
|
121
|
|
|
|
|
|
|
* - The arguments returned for each value of JFORM (cf Note 5: JFORM |
|
122
|
|
|
|
|
|
|
* may not be the same as JFORMR) are as follows: |
|
123
|
|
|
|
|
|
|
* |
|
124
|
|
|
|
|
|
|
* JFORM 1 2 3 |
|
125
|
|
|
|
|
|
|
* EPOCH t0 t0 T |
|
126
|
|
|
|
|
|
|
* ORBINC i i i |
|
127
|
|
|
|
|
|
|
* ANODE Omega Omega Omega |
|
128
|
|
|
|
|
|
|
* PERIH curly pi omega omega |
|
129
|
|
|
|
|
|
|
* AORQ a a q |
|
130
|
|
|
|
|
|
|
* E e e e |
|
131
|
|
|
|
|
|
|
* AORL L M - |
|
132
|
|
|
|
|
|
|
* DM n - - |
|
133
|
|
|
|
|
|
|
* |
|
134
|
|
|
|
|
|
|
* where: |
|
135
|
|
|
|
|
|
|
* |
|
136
|
|
|
|
|
|
|
* t0 is the epoch of the elements (MJD, TT) |
|
137
|
|
|
|
|
|
|
* T " epoch of perihelion (MJD, TT) |
|
138
|
|
|
|
|
|
|
* i " inclination (radians) |
|
139
|
|
|
|
|
|
|
* Omega " longitude of the ascending node (radians) |
|
140
|
|
|
|
|
|
|
* curly pi " longitude of perihelion (radians) |
|
141
|
|
|
|
|
|
|
* omega " argument of perihelion (radians) |
|
142
|
|
|
|
|
|
|
* a " mean distance (AU) |
|
143
|
|
|
|
|
|
|
* q " perihelion distance (AU) |
|
144
|
|
|
|
|
|
|
* e " eccentricity |
|
145
|
|
|
|
|
|
|
* L " longitude (radians, 0-2pi) |
|
146
|
|
|
|
|
|
|
* M " mean anomaly (radians, 0-2pi) |
|
147
|
|
|
|
|
|
|
* n " daily motion (radians) |
|
148
|
|
|
|
|
|
|
* - means no value is set |
|
149
|
|
|
|
|
|
|
* |
|
150
|
|
|
|
|
|
|
* - At very small inclinations, the longitude of the ascending node |
|
151
|
|
|
|
|
|
|
* ANODE becomes indeterminate and under some circumstances may be |
|
152
|
|
|
|
|
|
|
* set arbitrarily to zero. Similarly, if the orbit is close to |
|
153
|
|
|
|
|
|
|
* circular, the true anomaly becomes indeterminate and under some |
|
154
|
|
|
|
|
|
|
* circumstances may be set arbitrarily to zero. In such cases, |
|
155
|
|
|
|
|
|
|
* the other elements are automatically adjusted to compensate, |
|
156
|
|
|
|
|
|
|
* and so the elements remain a valid description of the orbit. |
|
157
|
|
|
|
|
|
|
* - The osculating epoch for the returned elements is the argument |
|
158
|
|
|
|
|
|
|
* DATE. |
|
159
|
|
|
|
|
|
|
* |
|
160
|
|
|
|
|
|
|
* - Reference: Sterne, Theodore E., "An Introduction to Celestial |
|
161
|
|
|
|
|
|
|
* Mechanics", Interscience Publishers, 1960 |
|
162
|
|
|
|
|
|
|
|
|
163
|
|
|
|
|
|
|
* History: |
|
164
|
|
|
|
|
|
|
* 2012-03-09 (TIMJ): |
|
165
|
|
|
|
|
|
|
* Initial version converted from SLA/F. |
|
166
|
|
|
|
|
|
|
* Adapted with permission from the Fortran SLALIB library. |
|
167
|
|
|
|
|
|
|
* {enter_further_changes_here} |
|
168
|
|
|
|
|
|
|
|
|
169
|
|
|
|
|
|
|
* Copyright: |
|
170
|
|
|
|
|
|
|
* Copyright (C) 2005 Patrick T. Wallace |
|
171
|
|
|
|
|
|
|
* Copyright (C) 2012 Science and Technology Facilities Council. |
|
172
|
|
|
|
|
|
|
* All Rights Reserved. |
|
173
|
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
* Licence: |
|
175
|
|
|
|
|
|
|
* This program is free software; you can redistribute it and/or |
|
176
|
|
|
|
|
|
|
* modify it under the terms of the GNU General Public License as |
|
177
|
|
|
|
|
|
|
* published by the Free Software Foundation; either version 3 of |
|
178
|
|
|
|
|
|
|
* the License, or (at your option) any later version. |
|
179
|
|
|
|
|
|
|
* |
|
180
|
|
|
|
|
|
|
* This program is distributed in the hope that it will be |
|
181
|
|
|
|
|
|
|
* useful, but WITHOUT ANY WARRANTY; without even the implied |
|
182
|
|
|
|
|
|
|
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR |
|
183
|
|
|
|
|
|
|
* PURPOSE. See the GNU General Public License for more details. |
|
184
|
|
|
|
|
|
|
* |
|
185
|
|
|
|
|
|
|
* You should have received a copy of the GNU General Public License |
|
186
|
|
|
|
|
|
|
* along with this program; if not, write to the Free Software |
|
187
|
|
|
|
|
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, |
|
188
|
|
|
|
|
|
|
* MA 02110-1301, USA. |
|
189
|
|
|
|
|
|
|
|
|
190
|
|
|
|
|
|
|
* Bugs: |
|
191
|
|
|
|
|
|
|
* {note_any_bugs_here} |
|
192
|
|
|
|
|
|
|
*- |
|
193
|
|
|
|
|
|
|
*/ |
|
194
|
|
|
|
|
|
|
|
|
195
|
|
|
|
|
|
|
#include |
|
196
|
|
|
|
|
|
|
|
|
197
|
|
|
|
|
|
|
#include "pal1sofa.h" |
|
198
|
|
|
|
|
|
|
#include "pal.h" |
|
199
|
|
|
|
|
|
|
#include "palmac.h" |
|
200
|
|
|
|
|
|
|
|
|
201
|
2
|
|
|
|
|
|
void palPv2el ( const double pv[6], double date, double pmass, int jformr, |
|
202
|
|
|
|
|
|
|
int *jform, double *epoch, double *orbinc, |
|
203
|
|
|
|
|
|
|
double *anode, double *perih, double *aorq, double *e, |
|
204
|
|
|
|
|
|
|
double *aorl, double *dm, int *jstat ) { |
|
205
|
|
|
|
|
|
|
|
|
206
|
|
|
|
|
|
|
/* Sin and cos of J2000 mean obliquity (IAU 1976) */ |
|
207
|
|
|
|
|
|
|
const double SE = 0.3977771559319137; |
|
208
|
|
|
|
|
|
|
const double CE = 0.9174820620691818; |
|
209
|
|
|
|
|
|
|
|
|
210
|
|
|
|
|
|
|
/* Minimum allowed distance (AU) and speed (AU/day) */ |
|
211
|
|
|
|
|
|
|
const double RMIN = 1e-3; |
|
212
|
|
|
|
|
|
|
const double VMIN = 1e-8; |
|
213
|
|
|
|
|
|
|
|
|
214
|
|
|
|
|
|
|
/* How close to unity the eccentricity has to be to call it a parabola */ |
|
215
|
|
|
|
|
|
|
const double PARAB = 1.0e-8; |
|
216
|
|
|
|
|
|
|
|
|
217
|
|
|
|
|
|
|
double X,Y,Z,XD,YD,ZD,R,V2,V,RDV,GMU,HX,HY,HZ, |
|
218
|
|
|
|
|
|
|
HX2PY2,H2,H,OI,BIGOM,AR,ECC,S,C,AT,U,OM, |
|
219
|
|
|
|
|
|
|
GAR3,EM1,EP1,HAT,SHAT,CHAT,AE,AM,DN,PL, |
|
220
|
|
|
|
|
|
|
EL,Q,TP,THAT,THHF,F; |
|
221
|
|
|
|
|
|
|
|
|
222
|
|
|
|
|
|
|
int JF; |
|
223
|
|
|
|
|
|
|
|
|
224
|
|
|
|
|
|
|
/* Validate arguments PMASS and JFORMR.*/ |
|
225
|
2
|
50
|
|
|
|
|
if (pmass < 0.0) { |
|
226
|
0
|
|
|
|
|
|
*jstat = -1; |
|
227
|
0
|
|
|
|
|
|
return; |
|
228
|
|
|
|
|
|
|
} |
|
229
|
2
|
50
|
|
|
|
|
if (jformr < 1 || jformr > 3) { |
|
230
|
0
|
|
|
|
|
|
*jstat = -2; |
|
231
|
0
|
|
|
|
|
|
return; |
|
232
|
|
|
|
|
|
|
} |
|
233
|
|
|
|
|
|
|
|
|
234
|
|
|
|
|
|
|
/* Provisionally assume the elements will be in the chosen form. */ |
|
235
|
|
|
|
|
|
|
JF = jformr; |
|
236
|
|
|
|
|
|
|
|
|
237
|
|
|
|
|
|
|
/* Rotate the position from equatorial to ecliptic coordinates. */ |
|
238
|
2
|
|
|
|
|
|
X = pv[0]; |
|
239
|
2
|
|
|
|
|
|
Y = pv[1]*CE+pv[2]*SE; |
|
240
|
2
|
|
|
|
|
|
Z = -pv[1]*SE+pv[2]*CE; |
|
241
|
|
|
|
|
|
|
|
|
242
|
|
|
|
|
|
|
/* Rotate the velocity similarly, scaling to AU/day. */ |
|
243
|
2
|
|
|
|
|
|
XD = PAL__SPD*pv[3]; |
|
244
|
2
|
|
|
|
|
|
YD = PAL__SPD*(pv[4]*CE+pv[5]*SE); |
|
245
|
2
|
|
|
|
|
|
ZD = PAL__SPD*(-pv[4]*SE+pv[5]*CE); |
|
246
|
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
/* Distance and speed. */ |
|
248
|
2
|
|
|
|
|
|
R = sqrt(X*X+Y*Y+Z*Z); |
|
249
|
2
|
|
|
|
|
|
V2 = XD*XD+YD*YD+ZD*ZD; |
|
250
|
2
|
|
|
|
|
|
V = sqrt(V2); |
|
251
|
|
|
|
|
|
|
|
|
252
|
|
|
|
|
|
|
/* Reject unreasonably small values. */ |
|
253
|
2
|
50
|
|
|
|
|
if (R < RMIN || V < VMIN) { |
|
|
|
50
|
|
|
|
|
|
|
254
|
0
|
|
|
|
|
|
*jstat = -3; |
|
255
|
0
|
|
|
|
|
|
return; |
|
256
|
|
|
|
|
|
|
} |
|
257
|
|
|
|
|
|
|
|
|
258
|
|
|
|
|
|
|
/* R dot V. */ |
|
259
|
2
|
|
|
|
|
|
RDV = X*XD+Y*YD+Z*ZD; |
|
260
|
|
|
|
|
|
|
|
|
261
|
|
|
|
|
|
|
/* Mu. */ |
|
262
|
2
|
|
|
|
|
|
GMU = (1.0+pmass)*PAL__GCON*PAL__GCON; |
|
263
|
|
|
|
|
|
|
|
|
264
|
|
|
|
|
|
|
/* Vector angular momentum per unit reduced mass. */ |
|
265
|
2
|
|
|
|
|
|
HX = Y*ZD-Z*YD; |
|
266
|
2
|
|
|
|
|
|
HY = Z*XD-X*ZD; |
|
267
|
2
|
|
|
|
|
|
HZ = X*YD-Y*XD; |
|
268
|
|
|
|
|
|
|
|
|
269
|
|
|
|
|
|
|
/* Areal constant. */ |
|
270
|
2
|
|
|
|
|
|
HX2PY2 = HX*HX+HY*HY; |
|
271
|
2
|
|
|
|
|
|
H2 = HX2PY2+HZ*HZ; |
|
272
|
2
|
|
|
|
|
|
H = sqrt(H2); |
|
273
|
|
|
|
|
|
|
|
|
274
|
|
|
|
|
|
|
/* Inclination. */ |
|
275
|
2
|
|
|
|
|
|
OI = atan2(sqrt(HX2PY2),HZ); |
|
276
|
|
|
|
|
|
|
|
|
277
|
|
|
|
|
|
|
/* Longitude of ascending node. */ |
|
278
|
2
|
50
|
|
|
|
|
if (HX != 0.0 || HY != 0.0) { |
|
279
|
2
|
|
|
|
|
|
BIGOM = atan2(HX,-HY); |
|
280
|
|
|
|
|
|
|
} else { |
|
281
|
|
|
|
|
|
|
BIGOM=0.0; |
|
282
|
|
|
|
|
|
|
} |
|
283
|
|
|
|
|
|
|
|
|
284
|
|
|
|
|
|
|
/* Reciprocal of mean distance etc. */ |
|
285
|
2
|
|
|
|
|
|
AR = 2.0/R-V2/GMU; |
|
286
|
|
|
|
|
|
|
|
|
287
|
|
|
|
|
|
|
/* Eccentricity. */ |
|
288
|
2
|
50
|
|
|
|
|
ECC = sqrt(DMAX(1.0-AR*H2/GMU,0.0)); |
|
289
|
|
|
|
|
|
|
|
|
290
|
|
|
|
|
|
|
/* True anomaly. */ |
|
291
|
2
|
|
|
|
|
|
S = H*RDV; |
|
292
|
2
|
|
|
|
|
|
C = H2-R*GMU; |
|
293
|
2
|
50
|
|
|
|
|
if (S != 0.0 || C != 0.0) { |
|
294
|
2
|
|
|
|
|
|
AT = atan2(S,C); |
|
295
|
|
|
|
|
|
|
} else { |
|
296
|
|
|
|
|
|
|
AT = 0.0; |
|
297
|
|
|
|
|
|
|
} |
|
298
|
|
|
|
|
|
|
|
|
299
|
|
|
|
|
|
|
/* Argument of the latitude. */ |
|
300
|
2
|
|
|
|
|
|
S = sin(BIGOM); |
|
301
|
2
|
|
|
|
|
|
C = cos(BIGOM); |
|
302
|
2
|
|
|
|
|
|
U = atan2((-X*S+Y*C)*cos(OI)+Z*sin(OI),X*C+Y*S); |
|
303
|
|
|
|
|
|
|
|
|
304
|
|
|
|
|
|
|
/* Argument of perihelion. */ |
|
305
|
2
|
|
|
|
|
|
OM = U-AT; |
|
306
|
|
|
|
|
|
|
|
|
307
|
|
|
|
|
|
|
/* Capture near-parabolic cases. */ |
|
308
|
2
|
50
|
|
|
|
|
if (fabs(ECC-1.0) < PARAB) ECC=1.0; |
|
309
|
|
|
|
|
|
|
|
|
310
|
|
|
|
|
|
|
/* Comply with JFORMR = 1 or 2 only if orbit is elliptical. */ |
|
311
|
2
|
50
|
|
|
|
|
if (ECC > 1.0) JF=3; |
|
312
|
|
|
|
|
|
|
|
|
313
|
|
|
|
|
|
|
/* Functions. */ |
|
314
|
2
|
|
|
|
|
|
GAR3 = GMU*AR*AR*AR; |
|
315
|
2
|
|
|
|
|
|
EM1 = ECC-1.0; |
|
316
|
2
|
|
|
|
|
|
EP1 = ECC+1.0; |
|
317
|
2
|
|
|
|
|
|
HAT = AT/2.0; |
|
318
|
2
|
|
|
|
|
|
SHAT = sin(HAT); |
|
319
|
2
|
|
|
|
|
|
CHAT = cos(HAT); |
|
320
|
|
|
|
|
|
|
|
|
321
|
|
|
|
|
|
|
/* Variable initializations to avoid compiler warnings. */ |
|
322
|
|
|
|
|
|
|
AM = 0.0; |
|
323
|
|
|
|
|
|
|
DN = 0.0; |
|
324
|
|
|
|
|
|
|
PL = 0.0; |
|
325
|
|
|
|
|
|
|
EL = 0.0; |
|
326
|
|
|
|
|
|
|
Q = 0.0; |
|
327
|
|
|
|
|
|
|
TP = 0.0; |
|
328
|
|
|
|
|
|
|
|
|
329
|
|
|
|
|
|
|
/* Ellipse? */ |
|
330
|
2
|
50
|
|
|
|
|
if (ECC < 1.0 ) { |
|
331
|
|
|
|
|
|
|
|
|
332
|
|
|
|
|
|
|
/* Eccentric anomaly. */ |
|
333
|
2
|
|
|
|
|
|
AE = 2.0*atan2(sqrt(-EM1)*SHAT,sqrt(EP1)*CHAT); |
|
334
|
|
|
|
|
|
|
|
|
335
|
|
|
|
|
|
|
/* Mean anomaly. */ |
|
336
|
2
|
|
|
|
|
|
AM = AE-ECC*sin(AE); |
|
337
|
|
|
|
|
|
|
|
|
338
|
|
|
|
|
|
|
/* Daily motion. */ |
|
339
|
2
|
|
|
|
|
|
DN = sqrt(GAR3); |
|
340
|
|
|
|
|
|
|
} |
|
341
|
|
|
|
|
|
|
|
|
342
|
|
|
|
|
|
|
/* "Major planet" element set? */ |
|
343
|
2
|
50
|
|
|
|
|
if (JF == 1) { |
|
344
|
|
|
|
|
|
|
|
|
345
|
|
|
|
|
|
|
/* Longitude of perihelion. */ |
|
346
|
0
|
|
|
|
|
|
PL = BIGOM+OM; |
|
347
|
|
|
|
|
|
|
|
|
348
|
|
|
|
|
|
|
/* Longitude at epoch. */ |
|
349
|
0
|
|
|
|
|
|
EL = PL+AM; |
|
350
|
|
|
|
|
|
|
} |
|
351
|
|
|
|
|
|
|
|
|
352
|
|
|
|
|
|
|
/* "Comet" element set? */ |
|
353
|
2
|
50
|
|
|
|
|
if (JF == 3) { |
|
354
|
|
|
|
|
|
|
|
|
355
|
|
|
|
|
|
|
/* Perihelion distance. */ |
|
356
|
2
|
|
|
|
|
|
Q = H2/(GMU*EP1); |
|
357
|
|
|
|
|
|
|
|
|
358
|
|
|
|
|
|
|
/* Ellipse, parabola, hyperbola? */ |
|
359
|
2
|
50
|
|
|
|
|
if (ECC < 1.0) { |
|
360
|
|
|
|
|
|
|
|
|
361
|
|
|
|
|
|
|
/* Ellipse: epoch of perihelion. */ |
|
362
|
2
|
|
|
|
|
|
TP = date-AM/DN; |
|
363
|
|
|
|
|
|
|
|
|
364
|
|
|
|
|
|
|
} else { |
|
365
|
|
|
|
|
|
|
|
|
366
|
|
|
|
|
|
|
/* Parabola or hyperbola: evaluate tan ( ( true anomaly ) / 2 ) */ |
|
367
|
0
|
|
|
|
|
|
THAT = SHAT/CHAT; |
|
368
|
0
|
0
|
|
|
|
|
if (ECC == 1.0) { |
|
369
|
|
|
|
|
|
|
|
|
370
|
|
|
|
|
|
|
/* Parabola: epoch of perihelion. */ |
|
371
|
0
|
|
|
|
|
|
TP = date-THAT*(1.0+THAT*THAT/3.0)*H*H2/(2.0*GMU*GMU); |
|
372
|
|
|
|
|
|
|
|
|
373
|
|
|
|
|
|
|
} else { |
|
374
|
|
|
|
|
|
|
|
|
375
|
|
|
|
|
|
|
/* Hyperbola: epoch of perihelion. */ |
|
376
|
0
|
|
|
|
|
|
THHF = sqrt(EM1/EP1)*THAT; |
|
377
|
0
|
|
|
|
|
|
F = log(1.0+THHF)-log(1.0-THHF); |
|
378
|
0
|
|
|
|
|
|
TP = date-(ECC*sinh(F)-F)/sqrt(-GAR3); |
|
379
|
|
|
|
|
|
|
} |
|
380
|
|
|
|
|
|
|
} |
|
381
|
|
|
|
|
|
|
} |
|
382
|
|
|
|
|
|
|
|
|
383
|
|
|
|
|
|
|
/* Return the appropriate set of elements. */ |
|
384
|
2
|
|
|
|
|
|
*jform = JF; |
|
385
|
2
|
|
|
|
|
|
*orbinc = OI; |
|
386
|
2
|
|
|
|
|
|
*anode = eraAnp(BIGOM); |
|
387
|
2
|
|
|
|
|
|
*e = ECC; |
|
388
|
2
|
50
|
|
|
|
|
if (JF == 1) { |
|
389
|
0
|
|
|
|
|
|
*perih = eraAnp(PL); |
|
390
|
0
|
|
|
|
|
|
*aorl = eraAnp(EL); |
|
391
|
0
|
|
|
|
|
|
*dm = DN; |
|
392
|
|
|
|
|
|
|
} else { |
|
393
|
2
|
|
|
|
|
|
*perih = eraAnp(OM); |
|
394
|
2
|
50
|
|
|
|
|
if (JF == 2) *aorl = eraAnp(AM); |
|
395
|
|
|
|
|
|
|
} |
|
396
|
2
|
50
|
|
|
|
|
if (JF != 3) { |
|
397
|
0
|
|
|
|
|
|
*epoch = date; |
|
398
|
0
|
|
|
|
|
|
*aorq = 1.0/AR; |
|
399
|
|
|
|
|
|
|
} else { |
|
400
|
2
|
|
|
|
|
|
*epoch = TP; |
|
401
|
2
|
|
|
|
|
|
*aorq = Q; |
|
402
|
|
|
|
|
|
|
} |
|
403
|
2
|
|
|
|
|
|
*jstat = 0; |
|
404
|
|
|
|
|
|
|
|
|
405
|
|
|
|
|
|
|
} |