| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
/* |
|
2
|
|
|
|
|
|
|
*+ |
|
3
|
|
|
|
|
|
|
* Name: |
|
4
|
|
|
|
|
|
|
* palFitxy |
|
5
|
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
* Purpose: |
|
7
|
|
|
|
|
|
|
* Fit a linear model to relate two sets of [x,y] coordinates. |
|
8
|
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
* Language: |
|
10
|
|
|
|
|
|
|
* Starlink ANSI C |
|
11
|
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
* Type of Module: |
|
13
|
|
|
|
|
|
|
* Library routine |
|
14
|
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
* Invocation: |
|
16
|
|
|
|
|
|
|
* palFitxy ( int itype, int np, double xye[][2], double xym[][2], |
|
17
|
|
|
|
|
|
|
* double coeffs[6], int *j ) |
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
* Arguments: |
|
20
|
|
|
|
|
|
|
* itype = int (Given) |
|
21
|
|
|
|
|
|
|
* type of model: 4 or 6 (note 1) |
|
22
|
|
|
|
|
|
|
* np = int (Given) |
|
23
|
|
|
|
|
|
|
* number of samples (note 2) |
|
24
|
|
|
|
|
|
|
* xye = double[np][2] (Given) |
|
25
|
|
|
|
|
|
|
* expected [x,y] for each sample |
|
26
|
|
|
|
|
|
|
* xym = double[np][2] (Given) |
|
27
|
|
|
|
|
|
|
* measured [x,y] for each sample |
|
28
|
|
|
|
|
|
|
* coeffs = double[6] (Returned) |
|
29
|
|
|
|
|
|
|
* coefficients of model (note 3) |
|
30
|
|
|
|
|
|
|
* j = int * (Returned) |
|
31
|
|
|
|
|
|
|
* status: |
|
32
|
|
|
|
|
|
|
* - 0 = OK |
|
33
|
|
|
|
|
|
|
* - -1 = illegal itype |
|
34
|
|
|
|
|
|
|
* - -2 = insufficient data |
|
35
|
|
|
|
|
|
|
* - -3 = no solution |
|
36
|
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
* Description: |
|
38
|
|
|
|
|
|
|
* Fits a linear model to relate two sets of [X,Y] coordinates. |
|
39
|
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
* Notes: |
|
41
|
|
|
|
|
|
|
* 1) itype, which must be either 4 or 6, selects the type of model |
|
42
|
|
|
|
|
|
|
* fitted. Both allowed itype values produce a model coeffs which |
|
43
|
|
|
|
|
|
|
* consists of six coefficients, namely the zero points and, for |
|
44
|
|
|
|
|
|
|
* each of xe and ye, the coefficient of xm and ym. For itype=6, |
|
45
|
|
|
|
|
|
|
* all six coefficients are independent, modelling squash and shear |
|
46
|
|
|
|
|
|
|
* as well as origin, scale, and orientation. However, itype=4 |
|
47
|
|
|
|
|
|
|
* selects the "solid body rotation" option; the model coeffs |
|
48
|
|
|
|
|
|
|
* still consists of the same six coefficients, but now two of |
|
49
|
|
|
|
|
|
|
* them are used twice (appropriately signed). Origin, scale |
|
50
|
|
|
|
|
|
|
* and orientation are still modelled, but not squash or shear - |
|
51
|
|
|
|
|
|
|
* the units of x and y have to be the same. |
|
52
|
|
|
|
|
|
|
* |
|
53
|
|
|
|
|
|
|
* 2) For itype=4, np must be at least 2. For itype=6, np must be at |
|
54
|
|
|
|
|
|
|
* least 3. |
|
55
|
|
|
|
|
|
|
* |
|
56
|
|
|
|
|
|
|
* 3) The model is returned in the array coeffs. Naming the |
|
57
|
|
|
|
|
|
|
* elements of coeffs as follows: |
|
58
|
|
|
|
|
|
|
* --- |
|
59
|
|
|
|
|
|
|
* coeffs[0] = A |
|
60
|
|
|
|
|
|
|
* coeffs[1] = B |
|
61
|
|
|
|
|
|
|
* coeffs[2] = C |
|
62
|
|
|
|
|
|
|
* coeffs[3] = D |
|
63
|
|
|
|
|
|
|
* coeffs[4] = E |
|
64
|
|
|
|
|
|
|
* coeffs[5] = F |
|
65
|
|
|
|
|
|
|
* --- |
|
66
|
|
|
|
|
|
|
* the model is: |
|
67
|
|
|
|
|
|
|
* --- |
|
68
|
|
|
|
|
|
|
* xe = A + B * xm + C * ym |
|
69
|
|
|
|
|
|
|
* ye = D + E * xm + F * ym |
|
70
|
|
|
|
|
|
|
* --- |
|
71
|
|
|
|
|
|
|
* For the "solid body rotation" option (itype=4), the |
|
72
|
|
|
|
|
|
|
* magnitudes of B and F, and of C and E, are equal. The |
|
73
|
|
|
|
|
|
|
* signs of these coefficients depend on whether there is a |
|
74
|
|
|
|
|
|
|
* sign reversal between xe,ye and xm,ym; fits are performed |
|
75
|
|
|
|
|
|
|
* with and without a sign reversal and the best one chosen. |
|
76
|
|
|
|
|
|
|
* |
|
77
|
|
|
|
|
|
|
* 4) Error status values j=-1 and -2 leave coeffs unchanged; |
|
78
|
|
|
|
|
|
|
* if j=-3 coeffs may have been changed. |
|
79
|
|
|
|
|
|
|
|
|
80
|
|
|
|
|
|
|
* See also: |
|
81
|
|
|
|
|
|
|
* palPxy, palInvf, palXy2xy and palDcmpf |
|
82
|
|
|
|
|
|
|
|
|
83
|
|
|
|
|
|
|
* Authors: |
|
84
|
|
|
|
|
|
|
* PTW: Pat Wallace (STFC) |
|
85
|
|
|
|
|
|
|
* GSB: Graham Bell (EAO) |
|
86
|
|
|
|
|
|
|
|
|
87
|
|
|
|
|
|
|
* History: |
|
88
|
|
|
|
|
|
|
* 2001-11-30 (PTW): |
|
89
|
|
|
|
|
|
|
* SLALIB implementation. |
|
90
|
|
|
|
|
|
|
* 2005-09-08 (PTW): |
|
91
|
|
|
|
|
|
|
* Fix compiler uninitialised warnings. |
|
92
|
|
|
|
|
|
|
* 2018-10-23 (GSB): |
|
93
|
|
|
|
|
|
|
* Initial version in C. |
|
94
|
|
|
|
|
|
|
|
|
95
|
|
|
|
|
|
|
* Copyright: |
|
96
|
|
|
|
|
|
|
* Copyright (C) 2005 P.T.Wallace. All rights reserved. |
|
97
|
|
|
|
|
|
|
* Copyright (C) 2018 East Asian Observatory. |
|
98
|
|
|
|
|
|
|
* |
|
99
|
|
|
|
|
|
|
* Licence: |
|
100
|
|
|
|
|
|
|
* This program is free software; you can redistribute it and/or modify |
|
101
|
|
|
|
|
|
|
* it under the terms of the GNU General Public License as published by |
|
102
|
|
|
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or |
|
103
|
|
|
|
|
|
|
* (at your option) any later version. |
|
104
|
|
|
|
|
|
|
* |
|
105
|
|
|
|
|
|
|
* This program is distributed in the hope that it will be useful, |
|
106
|
|
|
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
107
|
|
|
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
108
|
|
|
|
|
|
|
* GNU General Public License for more details. |
|
109
|
|
|
|
|
|
|
* |
|
110
|
|
|
|
|
|
|
* You should have received a copy of the GNU General Public License |
|
111
|
|
|
|
|
|
|
* along with this program (see SLA_CONDITIONS); if not, write to the |
|
112
|
|
|
|
|
|
|
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, |
|
113
|
|
|
|
|
|
|
* Boston, MA 02110-1301 USA |
|
114
|
|
|
|
|
|
|
*- |
|
115
|
|
|
|
|
|
|
*/ |
|
116
|
|
|
|
|
|
|
|
|
117
|
|
|
|
|
|
|
#include "pal.h" |
|
118
|
|
|
|
|
|
|
|
|
119
|
2
|
|
|
|
|
|
void palFitxy ( int itype, int np, double xye[][2], double xym[][2], |
|
120
|
|
|
|
|
|
|
double coeffs[6], int *j) { |
|
121
|
|
|
|
|
|
|
|
|
122
|
|
|
|
|
|
|
int i, jstat, iw[4], nsol; |
|
123
|
|
|
|
|
|
|
double a, b, c, d, aold, bold, cold, dold, sold, |
|
124
|
|
|
|
|
|
|
p, sxe, sxexm, sxeym, sye, syeym, syexm, sxm, |
|
125
|
|
|
|
|
|
|
sym, sxmxm, sxmym, symym, xe, ye, |
|
126
|
|
|
|
|
|
|
xm, ym, v[4], dm3[3][3], dm4[4][4], det, |
|
127
|
|
|
|
|
|
|
sgn, sxxyy, sxyyx, sx2y2, sdr2, xr, yr; |
|
128
|
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
/* Preset the status */ |
|
130
|
2
|
|
|
|
|
|
*j = 0; |
|
131
|
|
|
|
|
|
|
|
|
132
|
|
|
|
|
|
|
/* Variable initializations to avoid compiler warnings */ |
|
133
|
|
|
|
|
|
|
a = 0.0; |
|
134
|
|
|
|
|
|
|
b = 0.0; |
|
135
|
|
|
|
|
|
|
c = 0.0; |
|
136
|
|
|
|
|
|
|
d = 0.0; |
|
137
|
|
|
|
|
|
|
aold = 0.0; |
|
138
|
|
|
|
|
|
|
bold = 0.0; |
|
139
|
|
|
|
|
|
|
cold = 0.0; |
|
140
|
|
|
|
|
|
|
dold = 0.0; |
|
141
|
|
|
|
|
|
|
sold = 0.0; |
|
142
|
|
|
|
|
|
|
|
|
143
|
|
|
|
|
|
|
/* Float the number of samples */ |
|
144
|
2
|
|
|
|
|
|
p = (double) np; |
|
145
|
|
|
|
|
|
|
|
|
146
|
|
|
|
|
|
|
/* Check ITYPE */ |
|
147
|
2
|
100
|
|
|
|
|
if (itype == 6) { |
|
148
|
|
|
|
|
|
|
/* Six-coefficient linear model */ |
|
149
|
|
|
|
|
|
|
|
|
150
|
|
|
|
|
|
|
/* Check enough samples */ |
|
151
|
1
|
50
|
|
|
|
|
if (np >= 3) { |
|
152
|
|
|
|
|
|
|
|
|
153
|
|
|
|
|
|
|
/* Form summations */ |
|
154
|
|
|
|
|
|
|
sxe = 0.0; |
|
155
|
|
|
|
|
|
|
sxexm = 0.0; |
|
156
|
|
|
|
|
|
|
sxeym = 0.0; |
|
157
|
|
|
|
|
|
|
sye = 0.0; |
|
158
|
|
|
|
|
|
|
syeym = 0.0; |
|
159
|
|
|
|
|
|
|
syexm = 0.0; |
|
160
|
|
|
|
|
|
|
sxm = 0.0; |
|
161
|
|
|
|
|
|
|
sym = 0.0; |
|
162
|
|
|
|
|
|
|
sxmxm = 0.0; |
|
163
|
|
|
|
|
|
|
sxmym = 0.0; |
|
164
|
|
|
|
|
|
|
symym = 0.0; |
|
165
|
|
|
|
|
|
|
|
|
166
|
9
|
100
|
|
|
|
|
for (i = 0; i < np; i++) { |
|
167
|
8
|
|
|
|
|
|
xe = xye[i][0]; |
|
168
|
8
|
|
|
|
|
|
ye = xye[i][1]; |
|
169
|
8
|
|
|
|
|
|
xm = xym[i][0]; |
|
170
|
8
|
|
|
|
|
|
ym = xym[i][1]; |
|
171
|
8
|
|
|
|
|
|
sxe = sxe + xe; |
|
172
|
8
|
|
|
|
|
|
sxexm = sxexm + xe * xm; |
|
173
|
8
|
|
|
|
|
|
sxeym = sxeym + xe * ym; |
|
174
|
8
|
|
|
|
|
|
sye = sye + ye; |
|
175
|
8
|
|
|
|
|
|
syeym = syeym + ye * ym; |
|
176
|
8
|
|
|
|
|
|
syexm = syexm + ye * xm; |
|
177
|
8
|
|
|
|
|
|
sxm = sxm + xm; |
|
178
|
8
|
|
|
|
|
|
sym = sym + ym; |
|
179
|
8
|
|
|
|
|
|
sxmxm = sxmxm + xm * xm; |
|
180
|
8
|
|
|
|
|
|
sxmym = sxmym + xm * ym; |
|
181
|
8
|
|
|
|
|
|
symym = symym + ym * ym; |
|
182
|
|
|
|
|
|
|
} |
|
183
|
|
|
|
|
|
|
|
|
184
|
|
|
|
|
|
|
/* Solve for A, B, C in xe = A + B * xm + C * ym */ |
|
185
|
1
|
|
|
|
|
|
v[0] = sxe; |
|
186
|
1
|
|
|
|
|
|
v[1] = sxexm; |
|
187
|
1
|
|
|
|
|
|
v[2] = sxeym; |
|
188
|
1
|
|
|
|
|
|
dm3[0][0] = p; |
|
189
|
1
|
|
|
|
|
|
dm3[0][1] = sxm; |
|
190
|
1
|
|
|
|
|
|
dm3[0][2] = sym; |
|
191
|
1
|
|
|
|
|
|
dm3[1][0] = sxm; |
|
192
|
1
|
|
|
|
|
|
dm3[1][1] = sxmxm; |
|
193
|
1
|
|
|
|
|
|
dm3[1][2] = sxmym; |
|
194
|
1
|
|
|
|
|
|
dm3[2][0] = sym; |
|
195
|
1
|
|
|
|
|
|
dm3[2][1] = sxmym; |
|
196
|
1
|
|
|
|
|
|
dm3[2][2] = symym; |
|
197
|
|
|
|
|
|
|
|
|
198
|
1
|
|
|
|
|
|
palDmat(3, *dm3, v, &det, &jstat, iw); |
|
199
|
|
|
|
|
|
|
|
|
200
|
1
|
50
|
|
|
|
|
if (jstat == 0) { |
|
201
|
4
|
100
|
|
|
|
|
for (i = 0; i < 3; i ++) { |
|
202
|
3
|
|
|
|
|
|
coeffs[i] = v[i]; |
|
203
|
|
|
|
|
|
|
} |
|
204
|
|
|
|
|
|
|
|
|
205
|
|
|
|
|
|
|
/* Solve for D, E, F in ye = D + E * xm + F * ym */ |
|
206
|
1
|
|
|
|
|
|
v[0] = sye; |
|
207
|
1
|
|
|
|
|
|
v[1] = syexm; |
|
208
|
1
|
|
|
|
|
|
v[2] = syeym; |
|
209
|
|
|
|
|
|
|
|
|
210
|
1
|
|
|
|
|
|
palDmxv(dm3, v, coeffs + 3); |
|
211
|
|
|
|
|
|
|
} else { |
|
212
|
|
|
|
|
|
|
/* No 6-coefficient solution possible */ |
|
213
|
0
|
|
|
|
|
|
*j = -3; |
|
214
|
|
|
|
|
|
|
} |
|
215
|
|
|
|
|
|
|
} else { |
|
216
|
|
|
|
|
|
|
/* Insufficient data for 6-coefficient fit */ |
|
217
|
0
|
|
|
|
|
|
*j = -2; |
|
218
|
|
|
|
|
|
|
} |
|
219
|
1
|
50
|
|
|
|
|
} else if (itype == 4) { |
|
220
|
|
|
|
|
|
|
/* Four-coefficient solid body rotation model */ |
|
221
|
|
|
|
|
|
|
|
|
222
|
|
|
|
|
|
|
/* Check enough samples */ |
|
223
|
1
|
50
|
|
|
|
|
if (np >= 2) { |
|
224
|
|
|
|
|
|
|
|
|
225
|
|
|
|
|
|
|
/* Try two solutions, first without then with flip in X */ |
|
226
|
3
|
100
|
|
|
|
|
for (nsol = 0; nsol < 2; nsol ++) { |
|
227
|
2
|
100
|
|
|
|
|
if (nsol == 0) { |
|
228
|
|
|
|
|
|
|
sgn = 1.0; |
|
229
|
|
|
|
|
|
|
} else { |
|
230
|
|
|
|
|
|
|
sgn = -1.0; |
|
231
|
|
|
|
|
|
|
} |
|
232
|
|
|
|
|
|
|
|
|
233
|
|
|
|
|
|
|
/* Form summations */ |
|
234
|
|
|
|
|
|
|
sxe = 0.0; |
|
235
|
|
|
|
|
|
|
sxxyy = 0.0; |
|
236
|
|
|
|
|
|
|
sxyyx = 0.0; |
|
237
|
|
|
|
|
|
|
sye = 0.0; |
|
238
|
|
|
|
|
|
|
sxm = 0.0; |
|
239
|
|
|
|
|
|
|
sym = 0.0; |
|
240
|
|
|
|
|
|
|
sx2y2 = 0.0; |
|
241
|
|
|
|
|
|
|
|
|
242
|
18
|
100
|
|
|
|
|
for (i = 0; i < np; i ++) { |
|
243
|
16
|
|
|
|
|
|
xe = xye[i][0] * sgn; |
|
244
|
16
|
|
|
|
|
|
ye = xye[i][1]; |
|
245
|
16
|
|
|
|
|
|
xm = xym[i][0]; |
|
246
|
16
|
|
|
|
|
|
ym = xym[i][1]; |
|
247
|
16
|
|
|
|
|
|
sxe = sxe + xe; |
|
248
|
16
|
|
|
|
|
|
sxxyy = sxxyy + xe * xm + ye * ym; |
|
249
|
16
|
|
|
|
|
|
sxyyx = sxyyx + xe * ym - ye * xm; |
|
250
|
16
|
|
|
|
|
|
sye = sye + ye; |
|
251
|
16
|
|
|
|
|
|
sxm = sxm + xm; |
|
252
|
16
|
|
|
|
|
|
sym = sym + ym; |
|
253
|
16
|
|
|
|
|
|
sx2y2 = sx2y2 + xm * xm + ym * ym; |
|
254
|
|
|
|
|
|
|
} |
|
255
|
|
|
|
|
|
|
|
|
256
|
|
|
|
|
|
|
/* Solve for A, B, C, D in: +/- xe = A + B * xm - C * ym |
|
257
|
|
|
|
|
|
|
+ ye = D + C * xm + B * ym */ |
|
258
|
2
|
|
|
|
|
|
v[0] = sxe; |
|
259
|
2
|
|
|
|
|
|
v[1] = sxxyy; |
|
260
|
2
|
|
|
|
|
|
v[2] = sxyyx; |
|
261
|
2
|
|
|
|
|
|
v[3] = sye; |
|
262
|
2
|
|
|
|
|
|
dm4[0][0] = p; |
|
263
|
2
|
|
|
|
|
|
dm4[0][1] = sxm; |
|
264
|
2
|
|
|
|
|
|
dm4[0][2] = -sym; |
|
265
|
2
|
|
|
|
|
|
dm4[0][3] = 0.0; |
|
266
|
2
|
|
|
|
|
|
dm4[1][0] = sxm; |
|
267
|
2
|
|
|
|
|
|
dm4[1][1] = sx2y2; |
|
268
|
2
|
|
|
|
|
|
dm4[1][2] = 0.0; |
|
269
|
2
|
|
|
|
|
|
dm4[1][3] = sym; |
|
270
|
2
|
|
|
|
|
|
dm4[2][0] = sym; |
|
271
|
2
|
|
|
|
|
|
dm4[2][1] = 0.0; |
|
272
|
2
|
|
|
|
|
|
dm4[2][2] = -sx2y2; |
|
273
|
2
|
|
|
|
|
|
dm4[2][3] = -sxm; |
|
274
|
2
|
|
|
|
|
|
dm4[3][0] = 0.0; |
|
275
|
2
|
|
|
|
|
|
dm4[3][1] = sym; |
|
276
|
2
|
|
|
|
|
|
dm4[3][2] = sxm; |
|
277
|
2
|
|
|
|
|
|
dm4[3][3] = p; |
|
278
|
|
|
|
|
|
|
|
|
279
|
2
|
|
|
|
|
|
palDmat(4, *dm4, v, &det, &jstat, iw); |
|
280
|
|
|
|
|
|
|
|
|
281
|
2
|
50
|
|
|
|
|
if (jstat == 0) { |
|
282
|
2
|
|
|
|
|
|
a = v[0]; |
|
283
|
2
|
|
|
|
|
|
b = v[1]; |
|
284
|
2
|
|
|
|
|
|
c = v[2]; |
|
285
|
2
|
|
|
|
|
|
d = v[3]; |
|
286
|
|
|
|
|
|
|
|
|
287
|
|
|
|
|
|
|
/* Determine sum of radial errors squared */ |
|
288
|
|
|
|
|
|
|
sdr2 = 0.0; |
|
289
|
18
|
100
|
|
|
|
|
for (i = 0; i < np; i ++) { |
|
290
|
16
|
|
|
|
|
|
xm = xym[i][0]; |
|
291
|
16
|
|
|
|
|
|
ym = xym[i][1]; |
|
292
|
16
|
|
|
|
|
|
xr = a + b * xm - c * ym - xye[i][0] * sgn; |
|
293
|
16
|
|
|
|
|
|
yr = d + c * xm + b * ym - xye[i][1]; |
|
294
|
16
|
|
|
|
|
|
sdr2 = sdr2 + xr * xr + yr * yr; |
|
295
|
|
|
|
|
|
|
} |
|
296
|
|
|
|
|
|
|
|
|
297
|
|
|
|
|
|
|
} else { |
|
298
|
|
|
|
|
|
|
/* Singular: set flag */ |
|
299
|
|
|
|
|
|
|
sdr2 = -1.0; |
|
300
|
|
|
|
|
|
|
} |
|
301
|
|
|
|
|
|
|
|
|
302
|
|
|
|
|
|
|
/* If first pass and non-singular, save variables */ |
|
303
|
2
|
100
|
|
|
|
|
if (nsol == 0 && jstat == 0) { |
|
|
|
50
|
|
|
|
|
|
|
304
|
|
|
|
|
|
|
aold = a; |
|
305
|
|
|
|
|
|
|
bold = b; |
|
306
|
|
|
|
|
|
|
cold = c; |
|
307
|
|
|
|
|
|
|
dold = d; |
|
308
|
|
|
|
|
|
|
sold = sdr2; |
|
309
|
|
|
|
|
|
|
} |
|
310
|
|
|
|
|
|
|
} |
|
311
|
|
|
|
|
|
|
|
|
312
|
|
|
|
|
|
|
/* Pick the best of the two solutions */ |
|
313
|
1
|
50
|
|
|
|
|
if (sold >= 0.0 && (sold <= sdr2 || np == 2)) { |
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
314
|
0
|
|
|
|
|
|
coeffs[0] = aold; |
|
315
|
0
|
|
|
|
|
|
coeffs[1] = bold; |
|
316
|
0
|
|
|
|
|
|
coeffs[2] = -cold; |
|
317
|
0
|
|
|
|
|
|
coeffs[3] = dold; |
|
318
|
0
|
|
|
|
|
|
coeffs[4] = cold; |
|
319
|
0
|
|
|
|
|
|
coeffs[5] = bold; |
|
320
|
1
|
50
|
|
|
|
|
} else if (jstat == 0) { |
|
321
|
1
|
|
|
|
|
|
coeffs[0] = -a; |
|
322
|
1
|
|
|
|
|
|
coeffs[1] = -b; |
|
323
|
1
|
|
|
|
|
|
coeffs[2] = c; |
|
324
|
1
|
|
|
|
|
|
coeffs[3] = d; |
|
325
|
1
|
|
|
|
|
|
coeffs[4] = c; |
|
326
|
1
|
|
|
|
|
|
coeffs[5] = b; |
|
327
|
|
|
|
|
|
|
} else { |
|
328
|
|
|
|
|
|
|
/* No 4-coefficient fit possible */ |
|
329
|
0
|
|
|
|
|
|
*j = -3; |
|
330
|
|
|
|
|
|
|
} |
|
331
|
|
|
|
|
|
|
} else { |
|
332
|
|
|
|
|
|
|
/* Insufficient data for 4-coefficient fit */ |
|
333
|
0
|
|
|
|
|
|
*j = -2; |
|
334
|
|
|
|
|
|
|
} |
|
335
|
|
|
|
|
|
|
} else { |
|
336
|
|
|
|
|
|
|
/* Illegal itype - not 4 or 6 */ |
|
337
|
0
|
|
|
|
|
|
*j = -1; |
|
338
|
|
|
|
|
|
|
} |
|
339
|
2
|
|
|
|
|
|
} |