| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
/* |
|
2
|
|
|
|
|
|
|
*+ |
|
3
|
|
|
|
|
|
|
* Name: |
|
4
|
|
|
|
|
|
|
* palDmat |
|
5
|
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
* Purpose: |
|
7
|
|
|
|
|
|
|
* Matrix inversion & solution of simultaneous equations |
|
8
|
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
* Language: |
|
10
|
|
|
|
|
|
|
* Starlink ANSI C |
|
11
|
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
* Type of Module: |
|
13
|
|
|
|
|
|
|
* Library routine |
|
14
|
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
* Invocation: |
|
16
|
|
|
|
|
|
|
* void palDmat( int n, double *a, double *y, double *d, int *jf, |
|
17
|
|
|
|
|
|
|
* int *iw ); |
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
* Arguments: |
|
20
|
|
|
|
|
|
|
* n = int (Given) |
|
21
|
|
|
|
|
|
|
* Number of simultaneous equations and number of unknowns. |
|
22
|
|
|
|
|
|
|
* a = double[] (Given & Returned) |
|
23
|
|
|
|
|
|
|
* A non-singular NxN matrix (implemented as a contiguous block |
|
24
|
|
|
|
|
|
|
* of memory). After calling this routine "a" contains the |
|
25
|
|
|
|
|
|
|
* inverse of the matrix. |
|
26
|
|
|
|
|
|
|
* y = double[] (Given & Returned) |
|
27
|
|
|
|
|
|
|
* On input the vector of N knowns. On exit this vector contains the |
|
28
|
|
|
|
|
|
|
* N solutions. |
|
29
|
|
|
|
|
|
|
* d = double * (Returned) |
|
30
|
|
|
|
|
|
|
* The determinant. |
|
31
|
|
|
|
|
|
|
* jf = int * (Returned) |
|
32
|
|
|
|
|
|
|
* The singularity flag. If the matrix is non-singular, jf=0 |
|
33
|
|
|
|
|
|
|
* is returned. If the matrix is singular, jf=-1 & d=0.0 are |
|
34
|
|
|
|
|
|
|
* returned. In the latter case, the contents of array "a" on |
|
35
|
|
|
|
|
|
|
* return are undefined. |
|
36
|
|
|
|
|
|
|
* iw = int[] (Given) |
|
37
|
|
|
|
|
|
|
* Integer workspace of size N. |
|
38
|
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
* Description: |
|
40
|
|
|
|
|
|
|
* Matrix inversion & solution of simultaneous equations |
|
41
|
|
|
|
|
|
|
* For the set of n simultaneous equations in n unknowns: |
|
42
|
|
|
|
|
|
|
* A.Y = X |
|
43
|
|
|
|
|
|
|
* this routine calculates the inverse of A, the determinant |
|
44
|
|
|
|
|
|
|
* of matrix A and the vector of N unknowns. |
|
45
|
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
* Authors: |
|
47
|
|
|
|
|
|
|
* PTW: Pat Wallace (STFC) |
|
48
|
|
|
|
|
|
|
* TIMJ: Tim Jenness (JAC, Hawaii) |
|
49
|
|
|
|
|
|
|
* {enter_new_authors_here} |
|
50
|
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
* History: |
|
52
|
|
|
|
|
|
|
* 2012-02-11 (TIMJ): |
|
53
|
|
|
|
|
|
|
* Combination of a port of the Fortran and a comparison |
|
54
|
|
|
|
|
|
|
* with the obfuscated GPL C routine. |
|
55
|
|
|
|
|
|
|
* Adapted with permission from the Fortran SLALIB library. |
|
56
|
|
|
|
|
|
|
* {enter_further_changes_here} |
|
57
|
|
|
|
|
|
|
|
|
58
|
|
|
|
|
|
|
* Notes: |
|
59
|
|
|
|
|
|
|
* - Implemented using Gaussian elimination with partial pivoting. |
|
60
|
|
|
|
|
|
|
* - Optimized for speed rather than accuracy with errors 1 to 4 |
|
61
|
|
|
|
|
|
|
* times those of routines optimized for accuracy. |
|
62
|
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
* Copyright: |
|
64
|
|
|
|
|
|
|
* Copyright (C) 2001 Rutherford Appleton Laboratory. |
|
65
|
|
|
|
|
|
|
* Copyright (C) 2012 Science and Technology Facilities Council. |
|
66
|
|
|
|
|
|
|
* All Rights Reserved. |
|
67
|
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
* Licence: |
|
69
|
|
|
|
|
|
|
* This program is free software: you can redistribute it and/or |
|
70
|
|
|
|
|
|
|
* modify it under the terms of the GNU Lesser General Public |
|
71
|
|
|
|
|
|
|
* License as published by the Free Software Foundation, either |
|
72
|
|
|
|
|
|
|
* version 3 of the License, or (at your option) any later |
|
73
|
|
|
|
|
|
|
* version. |
|
74
|
|
|
|
|
|
|
* |
|
75
|
|
|
|
|
|
|
* This program is distributed in the hope that it will be useful, |
|
76
|
|
|
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
77
|
|
|
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
78
|
|
|
|
|
|
|
* GNU Lesser General Public License for more details. |
|
79
|
|
|
|
|
|
|
* |
|
80
|
|
|
|
|
|
|
* You should have received a copy of the GNU Lesser General |
|
81
|
|
|
|
|
|
|
* License along with this program. If not, see |
|
82
|
|
|
|
|
|
|
* . |
|
83
|
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
* Bugs: |
|
85
|
|
|
|
|
|
|
* {note_any_bugs_here} |
|
86
|
|
|
|
|
|
|
*- |
|
87
|
|
|
|
|
|
|
*/ |
|
88
|
|
|
|
|
|
|
|
|
89
|
|
|
|
|
|
|
#include "pal.h" |
|
90
|
|
|
|
|
|
|
|
|
91
|
3
|
|
|
|
|
|
void palDmat ( int n, double *a, double *y, double *d, int *jf, int *iw ) { |
|
92
|
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
const double SFA = 1e-20; |
|
94
|
|
|
|
|
|
|
|
|
95
|
|
|
|
|
|
|
int k; |
|
96
|
|
|
|
|
|
|
double*aoff; |
|
97
|
|
|
|
|
|
|
|
|
98
|
3
|
|
|
|
|
|
*jf=0; |
|
99
|
3
|
|
|
|
|
|
*d=1.0; |
|
100
|
14
|
100
|
|
|
|
|
for(k=0,aoff=a; k
|
|
101
|
|
|
|
|
|
|
int imx; |
|
102
|
|
|
|
|
|
|
double * aoff2 = aoff; |
|
103
|
11
|
|
|
|
|
|
double amx=fabs(aoff[k]); |
|
104
|
|
|
|
|
|
|
imx=k; |
|
105
|
11
|
50
|
|
|
|
|
if(k!=n){ |
|
106
|
|
|
|
|
|
|
int i; |
|
107
|
|
|
|
|
|
|
double *apos2; |
|
108
|
26
|
100
|
|
|
|
|
for(i=k+1,apos2=aoff+n;i
|
|
109
|
15
|
|
|
|
|
|
double t=fabs(apos2[k]); |
|
110
|
15
|
100
|
|
|
|
|
if(t>amx){ |
|
111
|
|
|
|
|
|
|
amx=t; |
|
112
|
|
|
|
|
|
|
imx=i; |
|
113
|
|
|
|
|
|
|
aoff2=apos2; |
|
114
|
|
|
|
|
|
|
} |
|
115
|
|
|
|
|
|
|
} |
|
116
|
|
|
|
|
|
|
} |
|
117
|
11
|
50
|
|
|
|
|
if(amx
|
|
118
|
0
|
|
|
|
|
|
*jf=-1; |
|
119
|
|
|
|
|
|
|
} else { |
|
120
|
11
|
100
|
|
|
|
|
if(imx!=k){ |
|
121
|
|
|
|
|
|
|
double t; |
|
122
|
|
|
|
|
|
|
int j; |
|
123
|
28
|
100
|
|
|
|
|
for(j=0;j
|
|
124
|
22
|
|
|
|
|
|
t=aoff[j]; |
|
125
|
22
|
|
|
|
|
|
aoff[j]=aoff2[j]; |
|
126
|
22
|
|
|
|
|
|
aoff2[j]=t; |
|
127
|
|
|
|
|
|
|
} |
|
128
|
6
|
|
|
|
|
|
t=y[k]; |
|
129
|
6
|
|
|
|
|
|
y[k]=y[imx]; |
|
130
|
6
|
|
|
|
|
|
y[imx]=t;*d=-*d; |
|
131
|
|
|
|
|
|
|
} |
|
132
|
11
|
|
|
|
|
|
iw[k]=imx; |
|
133
|
11
|
|
|
|
|
|
*d*=aoff[k]; |
|
134
|
11
|
50
|
|
|
|
|
if(fabs(*d)
|
|
135
|
0
|
|
|
|
|
|
*jf=-1; |
|
136
|
|
|
|
|
|
|
} else { |
|
137
|
|
|
|
|
|
|
double yk; |
|
138
|
|
|
|
|
|
|
double * apos2; |
|
139
|
|
|
|
|
|
|
int i, j; |
|
140
|
11
|
|
|
|
|
|
aoff[k]=1.0/aoff[k]; |
|
141
|
52
|
100
|
|
|
|
|
for(j=0;j
|
|
142
|
41
|
100
|
|
|
|
|
if(j!=k){ |
|
143
|
30
|
|
|
|
|
|
aoff[j]*=aoff[k]; |
|
144
|
|
|
|
|
|
|
} |
|
145
|
|
|
|
|
|
|
} |
|
146
|
11
|
|
|
|
|
|
yk=y[k]*aoff[k]; |
|
147
|
11
|
|
|
|
|
|
y[k]=yk; |
|
148
|
52
|
100
|
|
|
|
|
for(i=0,apos2=a;i
|
|
149
|
41
|
100
|
|
|
|
|
if(i!=k){ |
|
150
|
144
|
100
|
|
|
|
|
for(j=0;j
|
|
151
|
114
|
100
|
|
|
|
|
if(j!=k){ |
|
152
|
84
|
|
|
|
|
|
apos2[j]-=apos2[k]*aoff[j]; |
|
153
|
|
|
|
|
|
|
} |
|
154
|
|
|
|
|
|
|
} |
|
155
|
30
|
|
|
|
|
|
y[i]-=apos2[k]*yk; |
|
156
|
|
|
|
|
|
|
} |
|
157
|
|
|
|
|
|
|
} |
|
158
|
52
|
100
|
|
|
|
|
for(i=0,apos2=a;i
|
|
159
|
41
|
100
|
|
|
|
|
if(i!=k){ |
|
160
|
30
|
|
|
|
|
|
apos2[k]*=-aoff[k]; |
|
161
|
|
|
|
|
|
|
} |
|
162
|
|
|
|
|
|
|
} |
|
163
|
|
|
|
|
|
|
} |
|
164
|
|
|
|
|
|
|
} |
|
165
|
|
|
|
|
|
|
} |
|
166
|
3
|
50
|
|
|
|
|
if(*jf!=0){ |
|
167
|
0
|
|
|
|
|
|
*d=0.0; |
|
168
|
|
|
|
|
|
|
} else { |
|
169
|
14
|
100
|
|
|
|
|
for(k=n;k-->0;){ |
|
170
|
11
|
|
|
|
|
|
int ki=iw[k]; |
|
171
|
11
|
100
|
|
|
|
|
if(k!=ki){ |
|
172
|
|
|
|
|
|
|
int i; |
|
173
|
|
|
|
|
|
|
double *apos = a; |
|
174
|
33
|
100
|
|
|
|
|
for(i=0;i
|
|
175
|
22
|
|
|
|
|
|
double t=apos[k]; |
|
176
|
22
|
|
|
|
|
|
apos[k]=apos[ki]; |
|
177
|
22
|
|
|
|
|
|
apos[ki]=t; |
|
178
|
|
|
|
|
|
|
} |
|
179
|
|
|
|
|
|
|
} |
|
180
|
|
|
|
|
|
|
} |
|
181
|
|
|
|
|
|
|
} |
|
182
|
3
|
|
|
|
|
|
} |