| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Astro::Montenbruck::RiseSet::Plarise; |
|
2
|
|
|
|
|
|
|
|
|
3
|
3
|
|
|
3
|
|
17
|
use strict; |
|
|
3
|
|
|
|
|
6
|
|
|
|
3
|
|
|
|
|
79
|
|
|
4
|
3
|
|
|
3
|
|
12
|
use warnings; |
|
|
3
|
|
|
|
|
5
|
|
|
|
3
|
|
|
|
|
74
|
|
|
5
|
3
|
|
|
3
|
|
13
|
no warnings qw/experimental/; |
|
|
3
|
|
|
|
|
6
|
|
|
|
3
|
|
|
|
|
93
|
|
|
6
|
3
|
|
|
3
|
|
12
|
use feature qw/switch/; |
|
|
3
|
|
|
|
|
6
|
|
|
|
3
|
|
|
|
|
229
|
|
|
7
|
|
|
|
|
|
|
|
|
8
|
3
|
|
|
3
|
|
18
|
use Exporter qw/import/; |
|
|
3
|
|
|
|
|
5
|
|
|
|
3
|
|
|
|
|
77
|
|
|
9
|
3
|
|
|
3
|
|
13
|
use Readonly; |
|
|
3
|
|
|
|
|
5
|
|
|
|
3
|
|
|
|
|
221
|
|
|
10
|
|
|
|
|
|
|
|
|
11
|
3
|
|
|
3
|
|
15
|
use Math::Trig qw/:pi deg2rad rad2deg acos/; |
|
|
3
|
|
|
|
|
5
|
|
|
|
3
|
|
|
|
|
359
|
|
|
12
|
|
|
|
|
|
|
|
|
13
|
3
|
|
|
3
|
|
20
|
use Astro::Montenbruck::MathUtils qw/to_range/; |
|
|
3
|
|
|
|
|
6
|
|
|
|
3
|
|
|
|
|
145
|
|
|
14
|
3
|
|
|
3
|
|
17
|
use Astro::Montenbruck::Time qw/cal2jd jd_cent/; |
|
|
3
|
|
|
|
|
5
|
|
|
|
3
|
|
|
|
|
138
|
|
|
15
|
3
|
|
|
3
|
|
1143
|
use Astro::Montenbruck::Time::Sidereal qw/ramc/; |
|
|
3
|
|
|
|
|
6
|
|
|
|
3
|
|
|
|
|
139
|
|
|
16
|
3
|
|
|
3
|
|
18
|
use Astro::Montenbruck::RiseSet::Constants qw/:events :states/; |
|
|
3
|
|
|
|
|
6
|
|
|
|
3
|
|
|
|
|
2205
|
|
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
our @EXPORT_OK = qw/rst_func/; |
|
19
|
|
|
|
|
|
|
our $VERSION = 0.01; |
|
20
|
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
Readonly our $SID => 0.9972696; # Conversion sidereal/solar time |
|
22
|
|
|
|
|
|
|
Readonly our $ZT_MIN => 0.008; |
|
23
|
|
|
|
|
|
|
Readonly our $MAX_COUNT => 10; |
|
24
|
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
sub _cs_phi { |
|
26
|
2
|
|
|
2
|
|
3
|
my $phi = shift; |
|
27
|
2
|
|
|
|
|
8
|
my $rphi = deg2rad($phi); |
|
28
|
2
|
|
|
|
|
67
|
cos($rphi), sin($rphi); |
|
29
|
|
|
|
|
|
|
} |
|
30
|
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
sub rst_func { |
|
34
|
2
|
|
|
2
|
0
|
43
|
my %arg = ( date => undef, phi => undef, lambda => undef, @_ ); |
|
35
|
2
|
|
|
|
|
4
|
my $jd0 = cal2jd( @{ $arg{date} } ); |
|
|
2
|
|
|
|
|
8
|
|
|
36
|
2
|
|
|
|
|
6
|
my $phi = $arg{phi}; |
|
37
|
2
|
|
|
|
|
6
|
my ( $cphi, $sphi ) = _cs_phi( $phi ); |
|
38
|
|
|
|
|
|
|
|
|
39
|
2
|
|
|
|
|
14
|
my $lst_0h = ramc( $jd0, $arg{lambda} ) / 15; |
|
40
|
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
sub { |
|
43
|
10
|
|
|
10
|
|
101
|
my %arg = ( |
|
44
|
|
|
|
|
|
|
sin_h0 => undef, # sine of altitude correction |
|
45
|
|
|
|
|
|
|
get_position => undef, # function for calculation equatorial coordinates of the body |
|
46
|
|
|
|
|
|
|
@_ |
|
47
|
|
|
|
|
|
|
); |
|
48
|
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
# Compute geocentric planetary position at 0h and 24h local time |
|
50
|
10
|
|
|
|
|
19
|
my @ra; |
|
51
|
|
|
|
|
|
|
my @de; |
|
52
|
10
|
|
|
|
|
36
|
($ra[$_], $de[$_]) = $arg{get_position}->($jd0 + $_) for (0..1); |
|
53
|
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
# Generate continuous right ascension values in case of jumps |
|
55
|
|
|
|
|
|
|
# between 0h and 24h |
|
56
|
10
|
50
|
|
|
|
196
|
$ra[1] += pi2 if $ra[0] - $ra[1] > pi; |
|
57
|
10
|
50
|
|
|
|
25
|
$ra[0] += pi2 if $ra[0] - $ra[1] < -pi; |
|
58
|
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
sub { |
|
60
|
30
|
|
|
|
|
1138
|
my $event = shift; |
|
61
|
|
|
|
|
|
|
|
|
62
|
30
|
|
|
|
|
146
|
my $zt; |
|
63
|
30
|
|
|
|
|
41
|
my $zt0 = 12.0; # Starting value 12h local time |
|
64
|
30
|
|
|
|
|
46
|
my $state = $event; |
|
65
|
30
|
|
|
|
|
74
|
for (my $i = 0; $i <= $MAX_COUNT; $i++) { |
|
66
|
|
|
|
|
|
|
# Linear interpolation of planetary position |
|
67
|
69
|
|
|
|
|
473
|
my $ra = $ra[0] + ($zt0 / 24) * ($ra[1] - $ra[0]); |
|
68
|
69
|
|
|
|
|
110
|
my $de = $de[0] + ($zt0 / 24) * ($de[1] - $de[0]); |
|
69
|
69
|
|
|
|
|
128
|
my $above = rad2deg($de) > 90 - $phi; |
|
70
|
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
# Compute semi-diurnal arc (in radans) |
|
72
|
69
|
|
|
|
|
501
|
my $sda = ($arg{sin_h0} - sin($de) * $sphi) / (cos($de) * $cphi); |
|
73
|
69
|
50
|
|
|
|
126
|
if (abs($sda) < 1) { |
|
|
|
0
|
|
|
|
|
|
|
74
|
69
|
|
|
|
|
145
|
$sda = acos($sda); |
|
75
|
|
|
|
|
|
|
} elsif ($phi > 0) { |
|
76
|
|
|
|
|
|
|
# Test for circumpolar motion or invisibility |
|
77
|
0
|
0
|
|
|
|
0
|
$state = $above ? $STATE_CIRCUMPOLAR : $STATE_NEVER_RISES; |
|
78
|
0
|
|
|
|
|
0
|
last; |
|
79
|
|
|
|
|
|
|
} |
|
80
|
69
|
|
|
|
|
436
|
my $lst = $lst_0h + $zt0 / $SID; # Sidereal time at univ. time ZT0 |
|
81
|
69
|
|
|
|
|
289
|
my $h = $lst - rad2deg($ra) / 15; |
|
82
|
69
|
|
|
|
|
400
|
my $dtau = do { |
|
83
|
69
|
|
|
|
|
87
|
given ($event) { |
|
84
|
69
|
|
|
|
|
132
|
$h + rad2deg($sda) / 15 when $EVT_RISE; |
|
85
|
46
|
|
|
|
|
214
|
$h when $EVT_TRANSIT; |
|
86
|
24
|
|
|
|
|
105
|
$h - rad2deg($sda) / 15 when $EVT_SET; |
|
87
|
|
|
|
|
|
|
} |
|
88
|
|
|
|
|
|
|
}; |
|
89
|
69
|
|
|
|
|
582
|
my $dzt = $SID * (to_range($dtau + 12, 24) - 12); |
|
90
|
69
|
|
|
|
|
262
|
$zt0 -= $dzt; |
|
91
|
69
|
|
|
|
|
83
|
$zt = $zt0; |
|
92
|
69
|
100
|
|
|
|
128
|
last if abs($dzt) <= $ZT_MIN; |
|
93
|
|
|
|
|
|
|
} |
|
94
|
|
|
|
|
|
|
|
|
95
|
30
|
50
|
|
|
|
200
|
return $state eq $event ? ($state, $jd0 + $zt / 24) |
|
96
|
|
|
|
|
|
|
: ($state, undef) |
|
97
|
|
|
|
|
|
|
|
|
98
|
|
|
|
|
|
|
} |
|
99
|
|
|
|
|
|
|
|
|
100
|
10
|
|
|
|
|
69
|
} |
|
101
|
2
|
|
|
|
|
16
|
} |
|
102
|
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
1; |
|
104
|
|
|
|
|
|
|
__END__ |
|
105
|
|
|
|
|
|
|
|
|
106
|
|
|
|
|
|
|
=pod |
|
107
|
|
|
|
|
|
|
|
|
108
|
|
|
|
|
|
|
=encoding UTF-8 |
|
109
|
|
|
|
|
|
|
|
|
110
|
|
|
|
|
|
|
=head1 NAME |
|
111
|
|
|
|
|
|
|
|
|
112
|
|
|
|
|
|
|
Astro::Montenbruck::RiseSet::Plarise — rise and set. |
|
113
|
|
|
|
|
|
|
|
|
114
|
|
|
|
|
|
|
=head1 SYNOPSIS |
|
115
|
|
|
|
|
|
|
|
|
116
|
|
|
|
|
|
|
use Astro::Montenbruck::RiseSet::Constants qw/:events :altitudes/; |
|
117
|
|
|
|
|
|
|
use Astro::Montenbruck::RiseSet::Plarise qw/:rst_func/; |
|
118
|
|
|
|
|
|
|
|
|
119
|
|
|
|
|
|
|
# build top-level function for any event and any celestial object |
|
120
|
|
|
|
|
|
|
# for given time and place |
|
121
|
|
|
|
|
|
|
my $rst_func = rst_func( |
|
122
|
|
|
|
|
|
|
date => [1989, 3, 23], |
|
123
|
|
|
|
|
|
|
phi => 48.1, # geographic latitude |
|
124
|
|
|
|
|
|
|
lambda => -11.6 # geographic longitude |
|
125
|
|
|
|
|
|
|
); |
|
126
|
|
|
|
|
|
|
|
|
127
|
|
|
|
|
|
|
# build second level functon for calculating any event for given object |
|
128
|
|
|
|
|
|
|
my $evt_func = $rst_func->( |
|
129
|
|
|
|
|
|
|
get_position => sub { |
|
130
|
|
|
|
|
|
|
my $jd = shift; |
|
131
|
|
|
|
|
|
|
# return equatorial coordinates of the celestial body for the Julian Day. |
|
132
|
|
|
|
|
|
|
}, |
|
133
|
|
|
|
|
|
|
sin_h0 => sin( deg2rad($H0_PLANET) ), |
|
134
|
|
|
|
|
|
|
); |
|
135
|
|
|
|
|
|
|
|
|
136
|
|
|
|
|
|
|
# finally, calculate time of rise event. Alternatively, use $EVT_SET or $EVT_TRANSIT |
|
137
|
|
|
|
|
|
|
my ($state, $jd) = $evt_func->($EVT_RISE); |
|
138
|
|
|
|
|
|
|
|
|
139
|
|
|
|
|
|
|
|
|
140
|
|
|
|
|
|
|
=head1 VERSION |
|
141
|
|
|
|
|
|
|
|
|
142
|
|
|
|
|
|
|
Version 0.01 |
|
143
|
|
|
|
|
|
|
|
|
144
|
|
|
|
|
|
|
=head1 DESCRIPTION |
|
145
|
|
|
|
|
|
|
|
|
146
|
|
|
|
|
|
|
Low level routines for calculating rise and set times of celestial bodies. |
|
147
|
|
|
|
|
|
|
They are especially usefull for calculating different types of twilight. |
|
148
|
|
|
|
|
|
|
|
|
149
|
|
|
|
|
|
|
=head1 FUNCTIONS |
|
150
|
|
|
|
|
|
|
|
|
151
|
|
|
|
|
|
|
=head2 riseset ( %args ) |
|
152
|
|
|
|
|
|
|
|
|
153
|
|
|
|
|
|
|
time of rise and set events. |
|
154
|
|
|
|
|
|
|
|
|
155
|
|
|
|
|
|
|
=head3 Named Arguments |
|
156
|
|
|
|
|
|
|
|
|
157
|
|
|
|
|
|
|
=over |
|
158
|
|
|
|
|
|
|
|
|
159
|
|
|
|
|
|
|
=item * B<get_position> — function, which given I<Standard Julian Day>, |
|
160
|
|
|
|
|
|
|
returns equatorial coordinates of the celestial body, in radians. |
|
161
|
|
|
|
|
|
|
|
|
162
|
|
|
|
|
|
|
=item * B<date> — array of B<year> (astronomical, zero-based), B<month> [1..12] |
|
163
|
|
|
|
|
|
|
and B<day>, [1..31]. |
|
164
|
|
|
|
|
|
|
|
|
165
|
|
|
|
|
|
|
|
|
166
|
|
|
|
|
|
|
=item * B<phi> — geographic latitude, degrees, positive northward |
|
167
|
|
|
|
|
|
|
|
|
168
|
|
|
|
|
|
|
=item * B<lambda> —geographic longitude, degrees, positive westward |
|
169
|
|
|
|
|
|
|
|
|
170
|
|
|
|
|
|
|
=item * B<get_position> — function, which given I<Standard Julian Day>, |
|
171
|
|
|
|
|
|
|
returns equatorial coordinates of the celestial body, in radians. |
|
172
|
|
|
|
|
|
|
|
|
173
|
|
|
|
|
|
|
=item * B<sin_h0> — sine of the I<standard altitude>, i.e. the geometric altitude |
|
174
|
|
|
|
|
|
|
of the center of the body at the time of apparent rising or setting. |
|
175
|
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
|
|
177
|
|
|
|
|
|
|
=item * C<on_event> callback is called when the event time is determined. |
|
178
|
|
|
|
|
|
|
The arguments are: |
|
179
|
|
|
|
|
|
|
|
|
180
|
|
|
|
|
|
|
=over |
|
181
|
|
|
|
|
|
|
|
|
182
|
|
|
|
|
|
|
=item * event type, one of C<$EVT_RISE> or C<$EVT_SET> |
|
183
|
|
|
|
|
|
|
|
|
184
|
|
|
|
|
|
|
=item * Univerrsal time of the event |
|
185
|
|
|
|
|
|
|
|
|
186
|
|
|
|
|
|
|
=back |
|
187
|
|
|
|
|
|
|
|
|
188
|
|
|
|
|
|
|
on_event => sub { my ($evt, $ut) = @_; ... } |
|
189
|
|
|
|
|
|
|
|
|
190
|
|
|
|
|
|
|
=item * C<on_noevent> is called when the event does not happen at the given date, |
|
191
|
|
|
|
|
|
|
either because the body never rises, or is circumpolar. The argument is respectively |
|
192
|
|
|
|
|
|
|
C<$STATE_NEVER_RISES> or C<$STATE_CIRCUMPOLAR>. |
|
193
|
|
|
|
|
|
|
|
|
194
|
|
|
|
|
|
|
on_noevent => sub { my $state = shift; ... } |
|
195
|
|
|
|
|
|
|
|
|
196
|
|
|
|
|
|
|
=back |
|
197
|
|
|
|
|
|
|
|
|
198
|
|
|
|
|
|
|
=head1 AUTHOR |
|
199
|
|
|
|
|
|
|
|
|
200
|
|
|
|
|
|
|
Sergey Krushinsky, C<< <krushi at cpan.org> >> |
|
201
|
|
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
=head1 COPYRIGHT AND LICENSE |
|
203
|
|
|
|
|
|
|
|
|
204
|
|
|
|
|
|
|
Copyright (C) 2010-2022 by Sergey Krushinsky |
|
205
|
|
|
|
|
|
|
|
|
206
|
|
|
|
|
|
|
This library is free software; you can redistribute it and/or modify |
|
207
|
|
|
|
|
|
|
it under the same terms as Perl itself. |
|
208
|
|
|
|
|
|
|
|
|
209
|
|
|
|
|
|
|
=cut |