| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Chart. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Chart is free software; you can redistribute it and/or modify it under the |
|
6
|
|
|
|
|
|
|
# terms of the GNU General Public License as published by the Free Software |
|
7
|
|
|
|
|
|
|
# Foundation; either version 3, or (at your option) any later version. |
|
8
|
|
|
|
|
|
|
# |
|
9
|
|
|
|
|
|
|
# Chart is distributed in the hope that it will be useful, but WITHOUT ANY |
|
10
|
|
|
|
|
|
|
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
|
11
|
|
|
|
|
|
|
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more |
|
12
|
|
|
|
|
|
|
# details. |
|
13
|
|
|
|
|
|
|
# |
|
14
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
15
|
|
|
|
|
|
|
# with Chart. If not, see <http://www.gnu.org/licenses/>. |
|
16
|
|
|
|
|
|
|
|
|
17
|
|
|
|
|
|
|
package App::Chart::Series::Derived::EMA; |
|
18
|
2
|
|
|
2
|
|
718
|
use 5.010; |
|
|
2
|
|
|
|
|
6
|
|
|
19
|
2
|
|
|
2
|
|
8
|
use strict; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
33
|
|
|
20
|
2
|
|
|
2
|
|
8
|
use warnings; |
|
|
2
|
|
|
|
|
3
|
|
|
|
2
|
|
|
|
|
39
|
|
|
21
|
2
|
|
|
2
|
|
7
|
use Carp; |
|
|
2
|
|
|
|
|
3
|
|
|
|
2
|
|
|
|
|
85
|
|
|
22
|
2
|
|
|
2
|
|
519
|
use POSIX (); |
|
|
2
|
|
|
|
|
8591
|
|
|
|
2
|
|
|
|
|
68
|
|
|
23
|
2
|
|
|
2
|
|
682
|
use Locale::TextDomain ('App-Chart'); |
|
|
2
|
|
|
|
|
33543
|
|
|
|
2
|
|
|
|
|
11
|
|
|
24
|
|
|
|
|
|
|
|
|
25
|
2
|
|
|
2
|
|
9899
|
use base 'App::Chart::Series::Indicator'; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
660
|
|
|
26
|
|
|
|
|
|
|
use App::Chart::Series::Calculation; |
|
27
|
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
# In the manual it's noted that the first n days weight make up 86.5% of |
|
30
|
|
|
|
|
|
|
# the total weight in an EMA. That amount is x = 1 + f + f^2 + ... + |
|
31
|
|
|
|
|
|
|
# f^(n-1), and for total weight t |
|
32
|
|
|
|
|
|
|
# |
|
33
|
|
|
|
|
|
|
# t = x + f^n*(1 + f + f^2 + ...) |
|
34
|
|
|
|
|
|
|
# |
|
35
|
|
|
|
|
|
|
# t = x + f^n*t |
|
36
|
|
|
|
|
|
|
# |
|
37
|
|
|
|
|
|
|
# so the fraction of the total is |
|
38
|
|
|
|
|
|
|
# |
|
39
|
|
|
|
|
|
|
# x/t = 1 - f^n |
|
40
|
|
|
|
|
|
|
# |
|
41
|
|
|
|
|
|
|
# / 2 \ n |
|
42
|
|
|
|
|
|
|
# = 1 - | 1 - --- | |
|
43
|
|
|
|
|
|
|
# \ n+1 / |
|
44
|
|
|
|
|
|
|
# |
|
45
|
|
|
|
|
|
|
# / -2 \ n+1 |
|
46
|
|
|
|
|
|
|
# | 1 + --- | |
|
47
|
|
|
|
|
|
|
# \ n+1 / |
|
48
|
|
|
|
|
|
|
# = 1 - ----------- |
|
49
|
|
|
|
|
|
|
# / 2 \ |
|
50
|
|
|
|
|
|
|
# | 1 - --- | |
|
51
|
|
|
|
|
|
|
# \ n+1 / |
|
52
|
|
|
|
|
|
|
# |
|
53
|
|
|
|
|
|
|
# As n increases, the numerator approaches e^-2 from the limit (1+x/n)^n |
|
54
|
|
|
|
|
|
|
# --> e^x by Euler, and the numerator approaches 1. So the result is |
|
55
|
|
|
|
|
|
|
# |
|
56
|
|
|
|
|
|
|
# 1 |
|
57
|
|
|
|
|
|
|
# x/t --> 1 - --- = 0.8646647... |
|
58
|
|
|
|
|
|
|
# e^2 |
|
59
|
|
|
|
|
|
|
# |
|
60
|
|
|
|
|
|
|
|
|
61
|
|
|
|
|
|
|
sub longname { __('EMA - Exponential MA') } |
|
62
|
|
|
|
|
|
|
sub shortname { __('EMA') } |
|
63
|
|
|
|
|
|
|
sub manual { __p('manual-node','Exponential Moving Average') } |
|
64
|
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
use constant |
|
66
|
|
|
|
|
|
|
{ priority => 12, |
|
67
|
|
|
|
|
|
|
type => 'average', |
|
68
|
|
|
|
|
|
|
parameter_info => [ { name => __('Days'), |
|
69
|
|
|
|
|
|
|
key => 'ema_days', |
|
70
|
|
|
|
|
|
|
type => 'float', |
|
71
|
|
|
|
|
|
|
minimum => 1, |
|
72
|
|
|
|
|
|
|
default => 20, |
|
73
|
|
|
|
|
|
|
decimals => 0, |
|
74
|
|
|
|
|
|
|
step => 1 } ], |
|
75
|
|
|
|
|
|
|
}; |
|
76
|
|
|
|
|
|
|
|
|
77
|
|
|
|
|
|
|
sub new { |
|
78
|
|
|
|
|
|
|
my ($class, $parent, $N) = @_; |
|
79
|
|
|
|
|
|
|
|
|
80
|
|
|
|
|
|
|
$N //= parameter_info()->[0]->{'default'}; |
|
81
|
|
|
|
|
|
|
($N > 0) or croak "EMA bad N: $N"; |
|
82
|
|
|
|
|
|
|
|
|
83
|
|
|
|
|
|
|
return $class->SUPER::new |
|
84
|
|
|
|
|
|
|
(parent => $parent, |
|
85
|
|
|
|
|
|
|
parameters => [ $N ], |
|
86
|
|
|
|
|
|
|
N => $N, |
|
87
|
|
|
|
|
|
|
arrays => { values => [] }, |
|
88
|
|
|
|
|
|
|
array_aliases => { }); |
|
89
|
|
|
|
|
|
|
} |
|
90
|
|
|
|
|
|
|
|
|
91
|
|
|
|
|
|
|
# Return a procedure which calculates an exponential moving average over an |
|
92
|
|
|
|
|
|
|
# accumulated window. |
|
93
|
|
|
|
|
|
|
# |
|
94
|
|
|
|
|
|
|
# Each call $proc->($value) enters a new value into the window, and the |
|
95
|
|
|
|
|
|
|
# return is the EMA up to (and including) that $value. |
|
96
|
|
|
|
|
|
|
# |
|
97
|
|
|
|
|
|
|
# An EMA is in theory influenced by all preceding data, but warmup_count() |
|
98
|
|
|
|
|
|
|
# below is designed to determine a warmup count. By calling $proc with |
|
99
|
|
|
|
|
|
|
# warmup_count($N) many values, the next call will have an omitted weight of |
|
100
|
|
|
|
|
|
|
# no more than 0.1% of the total. Omitting 0.1% should be negligable, |
|
101
|
|
|
|
|
|
|
# unless past values are ridiculously bigger than recent ones. |
|
102
|
|
|
|
|
|
|
# |
|
103
|
|
|
|
|
|
|
sub proc { |
|
104
|
|
|
|
|
|
|
my ($self_or_class, $N) = @_; |
|
105
|
|
|
|
|
|
|
|
|
106
|
|
|
|
|
|
|
if ($N <= 1) { |
|
107
|
|
|
|
|
|
|
return \&App::Chart::Series::Calculation::identity; |
|
108
|
|
|
|
|
|
|
} |
|
109
|
|
|
|
|
|
|
|
|
110
|
|
|
|
|
|
|
# $sum is v0 + v1*f + v2*f^2 + v3*f^3 + ... + vk*f^k, for as many $value's |
|
111
|
|
|
|
|
|
|
# as so far entered |
|
112
|
|
|
|
|
|
|
# |
|
113
|
|
|
|
|
|
|
# $weight is the corresponding 1 + f + f^2 + ... + f^k. This approaches |
|
114
|
|
|
|
|
|
|
# 1/(1-f), but on the first few outputs it's much smaller, so must |
|
115
|
|
|
|
|
|
|
# calculate it explicitly. |
|
116
|
|
|
|
|
|
|
|
|
117
|
|
|
|
|
|
|
my $f = N_to_f ($N); |
|
118
|
|
|
|
|
|
|
my $alpha = N_to_alpha ($N); |
|
119
|
|
|
|
|
|
|
my $sum = 0; |
|
120
|
|
|
|
|
|
|
my $weight = 0; |
|
121
|
|
|
|
|
|
|
return sub { |
|
122
|
|
|
|
|
|
|
my ($value) = @_; |
|
123
|
|
|
|
|
|
|
$sum = $sum * $f + $value * $alpha; |
|
124
|
|
|
|
|
|
|
$weight = $weight * $f + $alpha; |
|
125
|
|
|
|
|
|
|
return $sum / $weight; |
|
126
|
|
|
|
|
|
|
}; |
|
127
|
|
|
|
|
|
|
} |
|
128
|
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
# By priming an EMA accumulator PROC above with warmup_count($N) many |
|
130
|
|
|
|
|
|
|
# values, the next call will have an omitted weight of no more than 0.1% of |
|
131
|
|
|
|
|
|
|
# the total. Omitting 0.1% should be negligable, unless past values are |
|
132
|
|
|
|
|
|
|
# ridiculously bigger than recent ones. The implementation is fast, per |
|
133
|
|
|
|
|
|
|
# ema_omitted_search() below. |
|
134
|
|
|
|
|
|
|
# |
|
135
|
|
|
|
|
|
|
# Knowing that log(f) approaches -2/count as count increases, the result |
|
136
|
|
|
|
|
|
|
# from ema_omitted_search() is roughly log(0.001)/(-2/$N) = 3.45*$N. |
|
137
|
|
|
|
|
|
|
# |
|
138
|
|
|
|
|
|
|
use constant WARMUP_OMITTED_FRACTION => 0.001; |
|
139
|
|
|
|
|
|
|
|
|
140
|
|
|
|
|
|
|
sub warmup_count { |
|
141
|
|
|
|
|
|
|
my ($self_or_class, $N) = @_; |
|
142
|
|
|
|
|
|
|
if ($N <= 1) { |
|
143
|
|
|
|
|
|
|
return 0; |
|
144
|
|
|
|
|
|
|
} else { |
|
145
|
|
|
|
|
|
|
return ema_omitted_search (N_to_f($N), WARMUP_OMITTED_FRACTION) - 1 ; |
|
146
|
|
|
|
|
|
|
} |
|
147
|
|
|
|
|
|
|
} |
|
148
|
|
|
|
|
|
|
|
|
149
|
|
|
|
|
|
|
# ema_omitted_search() returns the number of terms t needed in an EMA to |
|
150
|
|
|
|
|
|
|
# have an omitted part <= TARGET, where target is a proportion between 0 and |
|
151
|
|
|
|
|
|
|
# 1. This means |
|
152
|
|
|
|
|
|
|
# |
|
153
|
|
|
|
|
|
|
# Omitted(t-1) <= target |
|
154
|
|
|
|
|
|
|
# f^t <= target |
|
155
|
|
|
|
|
|
|
# t >= log(target) / log(f) |
|
156
|
|
|
|
|
|
|
# |
|
157
|
|
|
|
|
|
|
# Can have f==0 when count==1 (a degenerate EMA, which just follows the |
|
158
|
|
|
|
|
|
|
# given points exactly). log(0) isn't supported on guile 1.6, hence the |
|
159
|
|
|
|
|
|
|
# special case. |
|
160
|
|
|
|
|
|
|
# |
|
161
|
|
|
|
|
|
|
# Actually log(f) approaches -2/N as N increases, but it's easy enough to |
|
162
|
|
|
|
|
|
|
# do the calculation exactly. |
|
163
|
|
|
|
|
|
|
# |
|
164
|
|
|
|
|
|
|
sub ema_omitted_search { |
|
165
|
|
|
|
|
|
|
my ($f, $target) = @_; |
|
166
|
|
|
|
|
|
|
if ($f == 0) { |
|
167
|
|
|
|
|
|
|
return 0; |
|
168
|
|
|
|
|
|
|
} else { |
|
169
|
|
|
|
|
|
|
return POSIX::ceil (log($target) / log($f)); |
|
170
|
|
|
|
|
|
|
} |
|
171
|
|
|
|
|
|
|
} |
|
172
|
|
|
|
|
|
|
|
|
173
|
|
|
|
|
|
|
# ema_omitted() returns the fraction (between 0 and 1) of weight omitted by |
|
174
|
|
|
|
|
|
|
# stopping an EMA at the f^k term, which means the first k+1 terms. |
|
175
|
|
|
|
|
|
|
# |
|
176
|
|
|
|
|
|
|
# The weight, out of a total 1, in those first terms |
|
177
|
|
|
|
|
|
|
# |
|
178
|
|
|
|
|
|
|
# W(k) = (1-f) (1 + f + f^2 + ... + f^k) |
|
179
|
|
|
|
|
|
|
# |
|
180
|
|
|
|
|
|
|
# multiplying through makes the middle terms cancel, leaving |
|
181
|
|
|
|
|
|
|
# |
|
182
|
|
|
|
|
|
|
# W(k) = 1 - f^(k+1) |
|
183
|
|
|
|
|
|
|
# |
|
184
|
|
|
|
|
|
|
# The omitted part is then O = 1-W, |
|
185
|
|
|
|
|
|
|
# |
|
186
|
|
|
|
|
|
|
# Omitted(k) = f^(k+1) |
|
187
|
|
|
|
|
|
|
# |
|
188
|
|
|
|
|
|
|
sub ema_omitted { |
|
189
|
|
|
|
|
|
|
my ($f, $k) = @_; |
|
190
|
|
|
|
|
|
|
return $f ** ($k + 1); |
|
191
|
|
|
|
|
|
|
} |
|
192
|
|
|
|
|
|
|
|
|
193
|
|
|
|
|
|
|
# alpha=2/(N+1) |
|
194
|
|
|
|
|
|
|
sub N_to_alpha { |
|
195
|
|
|
|
|
|
|
my ($N) = @_; |
|
196
|
|
|
|
|
|
|
return 2 / ($N + 1); |
|
197
|
|
|
|
|
|
|
} |
|
198
|
|
|
|
|
|
|
# f=1-2/(N+1), rearranged to f=(N-1)/(N+1). |
|
199
|
|
|
|
|
|
|
sub N_to_f { |
|
200
|
|
|
|
|
|
|
my ($N) = @_; |
|
201
|
|
|
|
|
|
|
return ($N - 1) / ($N + 1); |
|
202
|
|
|
|
|
|
|
} |
|
203
|
|
|
|
|
|
|
# N = 2/alpha - 1 |
|
204
|
|
|
|
|
|
|
sub alpha_to_N { |
|
205
|
|
|
|
|
|
|
my ($alpha) = @_; |
|
206
|
|
|
|
|
|
|
return 2 / $alpha - 1; |
|
207
|
|
|
|
|
|
|
} |
|
208
|
|
|
|
|
|
|
# convert a $N in J. Welles Wilder's reckoning to one in the standard form |
|
209
|
|
|
|
|
|
|
# Wilder alpha=1/W, alpha=2/(N+1), so N=2*W-1 |
|
210
|
|
|
|
|
|
|
sub N_from_Wilder_N { |
|
211
|
|
|
|
|
|
|
my ($W) = @_; |
|
212
|
|
|
|
|
|
|
return 2*$W - 1; |
|
213
|
|
|
|
|
|
|
} |
|
214
|
|
|
|
|
|
|
sub N_to_Wilder_N { |
|
215
|
|
|
|
|
|
|
my ($N) = @_; |
|
216
|
|
|
|
|
|
|
return ($N+1)/2; |
|
217
|
|
|
|
|
|
|
} |
|
218
|
|
|
|
|
|
|
|
|
219
|
|
|
|
|
|
|
1; |
|
220
|
|
|
|
|
|
|
__END__ |
|
221
|
|
|
|
|
|
|
|
|
222
|
|
|
|
|
|
|
# =head1 NAME |
|
223
|
|
|
|
|
|
|
# |
|
224
|
|
|
|
|
|
|
# App::Chart::Series::Derived::EMA -- exponential moving average |
|
225
|
|
|
|
|
|
|
# |
|
226
|
|
|
|
|
|
|
# =head1 SYNOPSIS |
|
227
|
|
|
|
|
|
|
# |
|
228
|
|
|
|
|
|
|
# my $series = $parent->EMA($N); |
|
229
|
|
|
|
|
|
|
# |
|
230
|
|
|
|
|
|
|
# =head1 DESCRIPTION |
|
231
|
|
|
|
|
|
|
# |
|
232
|
|
|
|
|
|
|
# ... |
|
233
|
|
|
|
|
|
|
# |
|
234
|
|
|
|
|
|
|
# =head1 SEE ALSO |
|
235
|
|
|
|
|
|
|
# |
|
236
|
|
|
|
|
|
|
# L<App::Chart::Series>, L<App::Chart::Series::Derived::SMA> |
|
237
|
|
|
|
|
|
|
# |
|
238
|
|
|
|
|
|
|
# =cut |