| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Algorithm::FeatureSelection; |
|
2
|
6
|
|
|
6
|
|
4047
|
use strict; |
|
|
6
|
|
|
|
|
9
|
|
|
|
6
|
|
|
|
|
191
|
|
|
3
|
6
|
|
|
6
|
|
29
|
use warnings; |
|
|
6
|
|
|
|
|
10
|
|
|
|
6
|
|
|
|
|
152
|
|
|
4
|
6
|
|
|
6
|
|
33
|
use List::Util qw(sum); |
|
|
6
|
|
|
|
|
11
|
|
|
|
6
|
|
|
|
|
8586
|
|
|
5
|
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
our $VERSION = '0.02'; |
|
7
|
|
|
|
|
|
|
|
|
8
|
|
|
|
|
|
|
sub new { |
|
9
|
5
|
|
|
5
|
1
|
65
|
my $class = shift; |
|
10
|
5
|
|
|
|
|
25
|
my $self = bless {@_}, $class; |
|
11
|
5
|
|
|
|
|
131
|
return $self; |
|
12
|
|
|
|
|
|
|
} |
|
13
|
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
sub pmi { |
|
15
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
16
|
0
|
|
|
|
|
0
|
$self->pairewise_mutual_information(@_); |
|
17
|
|
|
|
|
|
|
} |
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
sub ig { |
|
20
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
21
|
0
|
|
|
|
|
0
|
$self->information_gain(@_); |
|
22
|
|
|
|
|
|
|
} |
|
23
|
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
sub igr { |
|
25
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
26
|
0
|
|
|
|
|
0
|
$self->information_gain_ratio(@_); |
|
27
|
|
|
|
|
|
|
} |
|
28
|
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
sub pairwise_mutual_information { |
|
30
|
1
|
|
|
1
|
1
|
94
|
my $self = shift; |
|
31
|
1
|
|
|
|
|
3
|
my $features = shift; |
|
32
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
## ----------------------------------------------------------------- |
|
34
|
|
|
|
|
|
|
## |
|
35
|
|
|
|
|
|
|
## The argument is expected as below. |
|
36
|
|
|
|
|
|
|
## |
|
37
|
|
|
|
|
|
|
## $features = { |
|
38
|
|
|
|
|
|
|
## feature_1 => { |
|
39
|
|
|
|
|
|
|
## class_a => 10, |
|
40
|
|
|
|
|
|
|
## class_b => 2, |
|
41
|
|
|
|
|
|
|
## }, |
|
42
|
|
|
|
|
|
|
## feature_2 => { |
|
43
|
|
|
|
|
|
|
## class_b => 11, |
|
44
|
|
|
|
|
|
|
## class_d => 32 |
|
45
|
|
|
|
|
|
|
## }, |
|
46
|
|
|
|
|
|
|
## . |
|
47
|
|
|
|
|
|
|
## . |
|
48
|
|
|
|
|
|
|
## . |
|
49
|
|
|
|
|
|
|
## }; |
|
50
|
|
|
|
|
|
|
## |
|
51
|
|
|
|
|
|
|
## ----------------------------------------------------------------- |
|
52
|
|
|
|
|
|
|
## |
|
53
|
|
|
|
|
|
|
## Pairewise Mutual Information |
|
54
|
|
|
|
|
|
|
## |
|
55
|
|
|
|
|
|
|
## PMI(w, c) = log ( P( Xw = 1, C = c ) / P( Xw=1 )P( C=c ) ) |
|
56
|
|
|
|
|
|
|
## |
|
57
|
|
|
|
|
|
|
## c.f. w = feature |
|
58
|
|
|
|
|
|
|
## c = Class |
|
59
|
|
|
|
|
|
|
## |
|
60
|
|
|
|
|
|
|
## ----------------------------------------------------------------- |
|
61
|
|
|
|
|
|
|
|
|
62
|
1
|
|
|
|
|
2
|
my $feature_count; |
|
63
|
|
|
|
|
|
|
my $class_count; |
|
64
|
0
|
|
|
|
|
0
|
my $co_occur_count; |
|
65
|
0
|
|
|
|
|
0
|
my $all_features_num; |
|
66
|
1
|
|
|
|
|
8
|
while ( my ( $feature, $ref ) = each %$features ) { |
|
67
|
21
|
|
|
|
|
79
|
while ( my ( $class, $count ) = each %$ref ) { |
|
68
|
28
|
|
|
|
|
51
|
$feature_count->{$feature} += $count; |
|
69
|
28
|
|
|
|
|
34
|
$class_count->{$class} += $count; |
|
70
|
28
|
|
|
|
|
62
|
$co_occur_count->{ $class . "\t" . $feature } += $count; |
|
71
|
28
|
|
|
|
|
235
|
$all_features_num += $count; |
|
72
|
|
|
|
|
|
|
} |
|
73
|
|
|
|
|
|
|
} |
|
74
|
|
|
|
|
|
|
|
|
75
|
1
|
|
|
|
|
1
|
my $PMI; |
|
76
|
|
|
|
|
|
|
|
|
77
|
1
|
|
|
|
|
8
|
for ( keys %$co_occur_count ) { |
|
78
|
28
|
|
|
|
|
38
|
my $f12 = $co_occur_count->{$_}; |
|
79
|
28
|
|
|
|
|
63
|
my ( $class, $feature ) = split "\t", $_; |
|
80
|
28
|
|
|
|
|
41
|
my $f1 = $feature_count->{$feature}; |
|
81
|
28
|
|
|
|
|
33
|
my $f2 = $class_count->{$class}; |
|
82
|
|
|
|
|
|
|
|
|
83
|
28
|
|
|
|
|
61
|
my $pmi_score = _log2( ( $f12 / $all_features_num ) |
|
84
|
|
|
|
|
|
|
/ ( ( $f1 / $all_features_num ) * ( $f2 / $all_features_num ) ) ); |
|
85
|
|
|
|
|
|
|
|
|
86
|
28
|
|
|
|
|
77
|
$PMI->{$feature}->{$class} = $pmi_score; |
|
87
|
|
|
|
|
|
|
} |
|
88
|
|
|
|
|
|
|
|
|
89
|
1
|
|
|
|
|
12
|
return $PMI; |
|
90
|
|
|
|
|
|
|
} |
|
91
|
|
|
|
|
|
|
|
|
92
|
|
|
|
|
|
|
sub information_gain { |
|
93
|
2
|
|
|
2
|
1
|
65
|
my $self = shift; |
|
94
|
2
|
|
|
|
|
5
|
my $features = shift; |
|
95
|
|
|
|
|
|
|
|
|
96
|
|
|
|
|
|
|
## ----------------------------------------------------------------- |
|
97
|
|
|
|
|
|
|
## |
|
98
|
|
|
|
|
|
|
## The argument is expected as below. |
|
99
|
|
|
|
|
|
|
## |
|
100
|
|
|
|
|
|
|
## $features = { |
|
101
|
|
|
|
|
|
|
## feature_1 => { |
|
102
|
|
|
|
|
|
|
## class_a => 10, |
|
103
|
|
|
|
|
|
|
## class_b => 2, |
|
104
|
|
|
|
|
|
|
## }, |
|
105
|
|
|
|
|
|
|
## feature_2 => { |
|
106
|
|
|
|
|
|
|
## class_b => 11, |
|
107
|
|
|
|
|
|
|
## class_d => 32 |
|
108
|
|
|
|
|
|
|
## }, |
|
109
|
|
|
|
|
|
|
## . |
|
110
|
|
|
|
|
|
|
## . |
|
111
|
|
|
|
|
|
|
## . |
|
112
|
|
|
|
|
|
|
## }; |
|
113
|
|
|
|
|
|
|
## |
|
114
|
|
|
|
|
|
|
## ----------------------------------------------------------------- |
|
115
|
|
|
|
|
|
|
## |
|
116
|
|
|
|
|
|
|
## Information Gain |
|
117
|
|
|
|
|
|
|
## |
|
118
|
|
|
|
|
|
|
## IG(w) = H(C) - ( P(Xw = 1) H(C|Xw = 1) + P(Xw = 0) H(C|Xw = 0) ) |
|
119
|
|
|
|
|
|
|
## |
|
120
|
|
|
|
|
|
|
## c.f. w = feature |
|
121
|
|
|
|
|
|
|
## C = class |
|
122
|
|
|
|
|
|
|
## |
|
123
|
|
|
|
|
|
|
## ----------------------------------------------------------------- |
|
124
|
|
|
|
|
|
|
|
|
125
|
2
|
|
|
|
|
3
|
my $IG; |
|
126
|
|
|
|
|
|
|
|
|
127
|
|
|
|
|
|
|
my $classes; |
|
128
|
0
|
|
|
|
|
0
|
my $classes_sum; |
|
129
|
0
|
|
|
|
|
0
|
my $all_features_num; |
|
130
|
2
|
|
|
|
|
19
|
while ( my ( $feature, $ref ) = each %$features ) { |
|
131
|
42
|
|
|
|
|
110
|
while ( my ( $class, $count ) = each %$ref ) { |
|
132
|
56
|
|
|
|
|
92
|
$classes->{$class}->{$feature} += $count; |
|
133
|
56
|
|
|
|
|
61
|
$classes_sum->{$class} += $count; |
|
134
|
56
|
|
|
|
|
237
|
$all_features_num += $count; |
|
135
|
|
|
|
|
|
|
} |
|
136
|
|
|
|
|
|
|
} |
|
137
|
|
|
|
|
|
|
|
|
138
|
2
|
|
|
|
|
4
|
my @array; |
|
139
|
2
|
|
|
|
|
10
|
while ( my ( $class, $ref ) = each %$classes ) { |
|
140
|
4
|
|
|
|
|
28
|
my $sum = sum( values %$ref ); |
|
141
|
4
|
|
|
|
|
9
|
my $p_class = $sum / $all_features_num; |
|
142
|
4
|
|
|
|
|
30
|
push @array, $p_class; |
|
143
|
|
|
|
|
|
|
} |
|
144
|
2
|
|
|
|
|
8
|
my $entropy = $self->entropy( \@array ); |
|
145
|
|
|
|
|
|
|
|
|
146
|
2
|
|
|
|
|
20
|
while ( my ( $feature, $ref ) = each %$features ) { |
|
147
|
|
|
|
|
|
|
|
|
148
|
42
|
|
|
|
|
98
|
my $sum = sum( values %$ref ); |
|
149
|
|
|
|
|
|
|
|
|
150
|
|
|
|
|
|
|
# H ( C | Xw = 1) |
|
151
|
42
|
|
|
|
|
48
|
my $on_entropy; |
|
152
|
|
|
|
|
|
|
{ |
|
153
|
42
|
|
|
|
|
50
|
my @array; |
|
|
42
|
|
|
|
|
42
|
|
|
154
|
42
|
|
|
|
|
119
|
while ( my ( $class, $count ) = each %$ref ) { |
|
155
|
56
|
|
|
|
|
74
|
my $p_class_feature = $count / $sum; |
|
156
|
56
|
|
|
|
|
209
|
push @array, $p_class_feature; |
|
157
|
|
|
|
|
|
|
} |
|
158
|
|
|
|
|
|
|
|
|
159
|
42
|
|
100
|
|
|
91
|
$on_entropy = $self->entropy( \@array ) || 0; |
|
160
|
|
|
|
|
|
|
} |
|
161
|
|
|
|
|
|
|
|
|
162
|
|
|
|
|
|
|
# H ( C | Xw = 0) |
|
163
|
42
|
|
|
|
|
60
|
my $off_entropy; |
|
164
|
|
|
|
|
|
|
{ |
|
165
|
42
|
|
|
|
|
57
|
my @array; |
|
|
42
|
|
|
|
|
48
|
|
|
166
|
42
|
|
|
|
|
166
|
while ( my ( $class, $count ) = each %$ref ) { |
|
167
|
|
|
|
|
|
|
|
|
168
|
56
|
|
|
|
|
108
|
my $p_class_feature = ( $classes_sum->{$class} - $count ) |
|
169
|
|
|
|
|
|
|
/ ( $all_features_num - $sum ); |
|
170
|
56
|
|
|
|
|
185
|
push @array, $p_class_feature; |
|
171
|
|
|
|
|
|
|
} |
|
172
|
|
|
|
|
|
|
|
|
173
|
42
|
|
100
|
|
|
93
|
$off_entropy = $self->entropy( \@array ) || 0; |
|
174
|
|
|
|
|
|
|
} |
|
175
|
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
# Information Gain |
|
177
|
42
|
|
|
|
|
121
|
my $ig |
|
178
|
|
|
|
|
|
|
= $entropy |
|
179
|
|
|
|
|
|
|
- ( ( $sum / $all_features_num ) |
|
180
|
|
|
|
|
|
|
* $on_entropy |
|
181
|
|
|
|
|
|
|
+ ( ( $all_features_num - $sum ) / $all_features_num ) |
|
182
|
|
|
|
|
|
|
* $off_entropy ); |
|
183
|
|
|
|
|
|
|
|
|
184
|
42
|
|
|
|
|
209
|
$IG->{$feature} = $ig; |
|
185
|
|
|
|
|
|
|
} |
|
186
|
|
|
|
|
|
|
|
|
187
|
2
|
|
|
|
|
19
|
return $IG; |
|
188
|
|
|
|
|
|
|
} |
|
189
|
|
|
|
|
|
|
|
|
190
|
|
|
|
|
|
|
sub information_gain_ratio { |
|
191
|
1
|
|
|
1
|
1
|
58
|
my $self = shift; |
|
192
|
1
|
|
|
|
|
2
|
my $data = shift; |
|
193
|
|
|
|
|
|
|
|
|
194
|
1
|
|
|
|
|
5
|
my $SI = $self->split_information($data); |
|
195
|
1
|
|
|
|
|
4
|
my $IG = $self->information_gain($data); |
|
196
|
1
|
|
|
|
|
3
|
my $IGR; |
|
197
|
1
|
|
|
|
|
12
|
for ( sort { $IG->{$b} <=> $IG->{$a} } keys %$IG ) { |
|
|
72
|
|
|
|
|
109
|
|
|
198
|
21
|
50
|
|
|
|
53
|
if ( my $ratio = $IG->{$_} / $SI ) { |
|
199
|
21
|
50
|
|
|
|
83
|
$IGR->{$_} = $ratio if $ratio > 0; |
|
200
|
|
|
|
|
|
|
} |
|
201
|
|
|
|
|
|
|
} |
|
202
|
1
|
|
|
|
|
10
|
return $IGR; |
|
203
|
|
|
|
|
|
|
} |
|
204
|
|
|
|
|
|
|
|
|
205
|
|
|
|
|
|
|
sub entropy { |
|
206
|
91
|
|
|
91
|
1
|
132
|
my $self = shift; |
|
207
|
91
|
|
|
|
|
109
|
my $data = shift; |
|
208
|
|
|
|
|
|
|
|
|
209
|
91
|
|
|
|
|
91
|
my @ratio; |
|
210
|
91
|
100
|
|
|
|
298
|
if ( ref $data eq 'HASH' ) { |
|
|
|
50
|
|
|
|
|
|
|
211
|
2
|
|
|
|
|
10
|
@ratio = _ratio( [ values %$data ] ); |
|
212
|
|
|
|
|
|
|
} |
|
213
|
|
|
|
|
|
|
elsif ( ref $data eq 'ARRAY' ) { |
|
214
|
89
|
|
50
|
|
|
290
|
my $s = sum(@$data) || 0; |
|
215
|
89
|
100
|
|
|
|
161
|
if ( $s == 1 ) { |
|
216
|
59
|
|
|
|
|
127
|
@ratio = @$data; |
|
217
|
|
|
|
|
|
|
} |
|
218
|
|
|
|
|
|
|
else { |
|
219
|
30
|
|
|
|
|
59
|
@ratio = _ratio($data); |
|
220
|
|
|
|
|
|
|
} |
|
221
|
|
|
|
|
|
|
} |
|
222
|
|
|
|
|
|
|
|
|
223
|
91
|
|
|
|
|
113
|
my $entropy; |
|
224
|
91
|
|
|
|
|
123
|
for my $p (@ratio) { |
|
225
|
135
|
50
|
|
|
|
287
|
if ( $p <= 0 ) { |
|
226
|
0
|
|
|
|
|
0
|
$p = 0.000000000000000000000001; |
|
227
|
|
|
|
|
|
|
} |
|
228
|
|
|
|
|
|
|
|
|
229
|
135
|
|
|
|
|
229
|
$entropy += -$p * _log2($p); |
|
230
|
|
|
|
|
|
|
} |
|
231
|
91
|
|
|
|
|
411
|
return $entropy; |
|
232
|
|
|
|
|
|
|
|
|
233
|
|
|
|
|
|
|
} |
|
234
|
|
|
|
|
|
|
|
|
235
|
|
|
|
|
|
|
sub split_information { |
|
236
|
1
|
|
|
1
|
0
|
2
|
my $self = shift; |
|
237
|
1
|
|
|
|
|
1
|
my $data = shift; |
|
238
|
|
|
|
|
|
|
|
|
239
|
1
|
|
|
|
|
4
|
my $all = int keys %$data; |
|
240
|
1
|
|
|
|
|
2
|
my $s; |
|
241
|
1
|
|
|
|
|
5
|
while ( my ( $w, $ref ) = each %$data ) { |
|
242
|
21
|
|
|
|
|
130
|
for my $category ( keys %$ref ) { |
|
243
|
28
|
|
|
|
|
95
|
$s->{$category}++; |
|
244
|
|
|
|
|
|
|
} |
|
245
|
|
|
|
|
|
|
} |
|
246
|
1
|
|
|
|
|
2
|
my @array; |
|
247
|
1
|
|
|
|
|
5
|
while ( my ( $category, $num ) = each %$s ) { |
|
248
|
2
|
|
|
|
|
8
|
push @array, $num / $all; |
|
249
|
|
|
|
|
|
|
} |
|
250
|
1
|
|
|
|
|
5
|
my $SI = $self->entropy( \@array ); |
|
251
|
1
|
|
|
|
|
4
|
return $SI; |
|
252
|
|
|
|
|
|
|
} |
|
253
|
|
|
|
|
|
|
|
|
254
|
|
|
|
|
|
|
sub _ratio { |
|
255
|
32
|
|
|
32
|
|
42
|
my $arrayref = shift; |
|
256
|
32
|
|
|
|
|
34
|
my @ratio; |
|
257
|
32
|
|
|
|
|
77
|
my $sum = sum(@$arrayref); |
|
258
|
32
|
|
|
|
|
55
|
for (@$arrayref) { |
|
259
|
42
|
50
|
|
|
|
94
|
next if $_ <= 0; |
|
260
|
42
|
|
|
|
|
55
|
eval { push @ratio, $_ / $sum; }; |
|
|
42
|
|
|
|
|
72
|
|
|
261
|
42
|
50
|
|
|
|
118
|
if ($@) { |
|
262
|
6
|
|
|
6
|
|
7406
|
use Data::Dumper; |
|
|
6
|
|
|
|
|
96240
|
|
|
|
6
|
|
|
|
|
1019
|
|
|
263
|
0
|
|
|
|
|
0
|
print Dumper $arrayref; |
|
264
|
0
|
|
|
|
|
0
|
die($@); |
|
265
|
|
|
|
|
|
|
} |
|
266
|
|
|
|
|
|
|
} |
|
267
|
32
|
|
|
|
|
102
|
return @ratio; |
|
268
|
|
|
|
|
|
|
} |
|
269
|
|
|
|
|
|
|
|
|
270
|
|
|
|
|
|
|
sub _log2 { |
|
271
|
163
|
|
|
163
|
|
237
|
my $n = shift; |
|
272
|
163
|
|
|
|
|
521
|
log($n) / log(2); |
|
273
|
|
|
|
|
|
|
} |
|
274
|
|
|
|
|
|
|
|
|
275
|
|
|
|
|
|
|
1; |
|
276
|
|
|
|
|
|
|
__END__ |