| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package AI::ConfusionMatrix; |
|
2
|
|
|
|
|
|
|
$AI::ConfusionMatrix::VERSION = '0.007'; |
|
3
|
1
|
|
|
1
|
|
53525
|
use strict; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
23
|
|
|
4
|
1
|
|
|
1
|
|
4
|
use warnings; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
19
|
|
|
5
|
1
|
|
|
1
|
|
4
|
use Carp; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
52
|
|
|
6
|
1
|
|
|
1
|
|
5
|
use Exporter 'import'; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
86
|
|
|
7
|
|
|
|
|
|
|
our @EXPORT= qw (makeConfusionMatrix); |
|
8
|
1
|
|
|
1
|
|
6
|
use strict; |
|
|
1
|
|
|
|
|
8
|
|
|
|
1
|
|
|
|
|
60
|
|
|
9
|
1
|
|
|
1
|
|
664
|
use Tie::File; |
|
|
1
|
|
|
|
|
15783
|
|
|
|
1
|
|
|
|
|
607
|
|
|
10
|
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
# ABSTRACT: Make a confusion matrix |
|
12
|
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
sub makeConfusionMatrix { |
|
14
|
2
|
|
|
2
|
1
|
3620
|
my ($matrix, $file, $delem) = @_; |
|
15
|
2
|
100
|
|
|
|
7
|
unless(defined $delem) { |
|
16
|
1
|
|
|
|
|
3
|
$delem = ','; |
|
17
|
|
|
|
|
|
|
} |
|
18
|
|
|
|
|
|
|
|
|
19
|
2
|
50
|
|
|
|
6
|
carp ('First argument must be a hash reference') if ref($matrix) ne 'HASH'; |
|
20
|
2
|
50
|
|
|
|
12
|
tie my @array, 'Tie::File', $file or carp "$!"; |
|
21
|
2
|
|
|
|
|
229
|
my $n = 1; |
|
22
|
2
|
|
|
|
|
2
|
my @columns; |
|
23
|
2
|
|
|
|
|
3
|
my @expected = sort keys %{$matrix}; |
|
|
2
|
|
|
|
|
9
|
|
|
24
|
2
|
|
|
|
|
5
|
my %stats; |
|
25
|
|
|
|
|
|
|
my %totals; |
|
26
|
2
|
|
|
|
|
4
|
for my $expected (@expected) { |
|
27
|
6
|
|
|
|
|
25
|
$array[$n] = $expected; |
|
28
|
6
|
|
|
|
|
1834
|
++$n; |
|
29
|
6
|
|
|
|
|
11
|
$stats{$expected}{'fn'} = 0; |
|
30
|
6
|
|
|
|
|
10
|
$stats{$expected}{'tp'} = 0; |
|
31
|
|
|
|
|
|
|
# Ensure that the False Positive counter is defined to be able to compute the total later |
|
32
|
6
|
100
|
|
|
|
13
|
unless(defined $stats{$expected}{'fp'}) { |
|
33
|
4
|
|
|
|
|
6
|
$stats{$expected}{'fp'} = 0; |
|
34
|
|
|
|
|
|
|
} |
|
35
|
6
|
|
|
|
|
6
|
for my $predicted (keys %{$matrix->{$expected}}) { |
|
|
6
|
|
|
|
|
40
|
|
|
36
|
14
|
|
|
|
|
22
|
$stats{$expected}{'total'} += $matrix->{$expected}->{$predicted}; |
|
37
|
14
|
100
|
|
|
|
32
|
$stats{$expected}{'tp'} += $matrix->{$expected}->{$predicted} if $expected == $predicted; |
|
38
|
14
|
100
|
|
|
|
21
|
if ($expected != $predicted) { |
|
39
|
8
|
|
|
|
|
9
|
$stats{$expected}{'fn'} += $matrix->{$expected}->{$predicted}; |
|
40
|
8
|
|
|
|
|
13
|
$stats{$predicted}{'fp'} += $matrix->{$expected}->{$predicted}; |
|
41
|
|
|
|
|
|
|
} |
|
42
|
14
|
|
|
|
|
27
|
$totals{$predicted} += $matrix->{$expected}->{$predicted}; |
|
43
|
|
|
|
|
|
|
# Add the label to the array of columns if it does not contain it already |
|
44
|
14
|
100
|
|
|
|
27
|
push @columns, $predicted unless _findIndex($predicted, \@columns); |
|
45
|
|
|
|
|
|
|
} |
|
46
|
|
|
|
|
|
|
|
|
47
|
6
|
|
|
|
|
44
|
$stats{$expected}{'acc'} = sprintf("%.2f%%", ($stats{$expected}{'tp'} * 100) / $stats{$expected}{'total'}); |
|
48
|
|
|
|
|
|
|
} |
|
49
|
|
|
|
|
|
|
|
|
50
|
2
|
|
|
|
|
4
|
for my $expected (@expected) { |
|
51
|
6
|
|
|
|
|
9
|
$totals{'total'} += $stats{$expected}{'total'}; |
|
52
|
6
|
|
|
|
|
6
|
$totals{'tp'} += $stats{$expected}{'tp'}; |
|
53
|
6
|
|
|
|
|
9
|
$totals{'fn'} += $stats{$expected}{'fn'}; |
|
54
|
6
|
|
|
|
|
7
|
$totals{'fp'} += $stats{$expected}{'fp'}; |
|
55
|
6
|
|
|
|
|
21
|
$stats{$expected}{'sensitivity'} = sprintf("%.2f%%", (($stats{$expected}{'tp'} * 100) / ($stats{$expected}{'tp'} + $stats{$expected}{'fp'}))); |
|
56
|
|
|
|
|
|
|
} |
|
57
|
|
|
|
|
|
|
|
|
58
|
2
|
|
|
|
|
8
|
$totals{'acc'} = sprintf("%.2f%%", ($totals{'tp'} * 100) / $totals{'total'}); |
|
59
|
2
|
|
|
|
|
16
|
$totals{'sensitivity'} = sprintf("%.2f%%", ($totals{'tp'} * 100) / ($totals{'tp'} + $totals{'fp'})); |
|
60
|
2
|
|
|
|
|
7
|
@columns = sort @columns; |
|
61
|
2
|
|
|
|
|
8
|
map {$array[0] .= $delem . $_} join $delem, (@columns, 'TOTAL', 'TP', 'FP', 'FN', 'SENS', 'ACC'); |
|
|
2
|
|
|
|
|
9
|
|
|
62
|
2
|
|
|
|
|
680
|
$n = 1; |
|
63
|
2
|
|
|
|
|
5
|
for my $expected (@expected) { |
|
64
|
6
|
|
|
|
|
8
|
my $lastIndex = 0; |
|
65
|
6
|
|
|
|
|
7
|
my $index; |
|
66
|
6
|
|
|
|
|
7
|
for my $predicted (sort keys %{$matrix->{$expected}}) { |
|
|
6
|
|
|
|
|
20
|
|
|
67
|
|
|
|
|
|
|
# Calculate the index of the label in the array of columns |
|
68
|
14
|
|
|
|
|
29
|
$index = _findIndex($predicted, \@columns); |
|
69
|
|
|
|
|
|
|
# Print some of the delimiter to get to the column of the next value predicted |
|
70
|
14
|
|
|
|
|
54
|
$array[$n] .= $delem x ($index - $lastIndex) . $matrix->{$expected}{$predicted}; |
|
71
|
14
|
|
|
|
|
3453
|
$lastIndex = $index; |
|
72
|
|
|
|
|
|
|
} |
|
73
|
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
# Get to the columns of the stats |
|
75
|
6
|
|
|
|
|
24
|
$array[$n] .= $delem x (scalar(@columns) - $lastIndex + 1); |
|
76
|
|
|
|
|
|
|
$array[$n] .= join $delem, ( |
|
77
|
|
|
|
|
|
|
$stats{$expected}{'total'}, |
|
78
|
|
|
|
|
|
|
$stats{$expected}{'tp'}, |
|
79
|
|
|
|
|
|
|
$stats{$expected}{'fp'}, |
|
80
|
|
|
|
|
|
|
$stats{$expected}{'fn'}, |
|
81
|
|
|
|
|
|
|
$stats{$expected}{'sensitivity'}, |
|
82
|
6
|
|
|
|
|
1395
|
$stats{$expected}{'acc'} |
|
83
|
|
|
|
|
|
|
); |
|
84
|
6
|
|
|
|
|
1401
|
++$n; |
|
85
|
|
|
|
|
|
|
} |
|
86
|
|
|
|
|
|
|
# Print the TOTAL row to the csv file |
|
87
|
2
|
|
|
|
|
8
|
$array[$n] = 'TOTAL' . $delem; |
|
88
|
2
|
|
|
|
|
536
|
map {$array[$n] .= $totals{$_} . $delem} (sort keys %totals)[0 .. $#columns]; |
|
|
10
|
|
|
|
|
2086
|
|
|
89
|
2
|
|
|
|
|
517
|
$array[$n] .= join $delem, ($totals{'total'}, $totals{'tp'}, $totals{'fp'}, $totals{'fn'}, $totals{'sensitivity'}, $totals{'acc'}); |
|
90
|
|
|
|
|
|
|
|
|
91
|
2
|
|
|
|
|
466
|
untie @array; |
|
92
|
|
|
|
|
|
|
} |
|
93
|
|
|
|
|
|
|
|
|
94
|
|
|
|
|
|
|
sub _findIndex { |
|
95
|
28
|
|
|
28
|
|
41
|
my ($string, $array) = @_; |
|
96
|
28
|
|
|
|
|
51
|
for (0 .. @$array - 1) { |
|
97
|
76
|
100
|
|
|
|
77
|
return $_ + 1 if ($string eq @{$array}[$_]); |
|
|
76
|
|
|
|
|
143
|
|
|
98
|
|
|
|
|
|
|
} |
|
99
|
|
|
|
|
|
|
} |
|
100
|
|
|
|
|
|
|
|
|
101
|
|
|
|
|
|
|
=head1 NAME |
|
102
|
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
AI::ConfusionMatrix - make a confusion matrix |
|
104
|
|
|
|
|
|
|
|
|
105
|
|
|
|
|
|
|
=head1 SYNOPSIS |
|
106
|
|
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
my %matrix; |
|
108
|
|
|
|
|
|
|
|
|
109
|
|
|
|
|
|
|
Loop over your tests |
|
110
|
|
|
|
|
|
|
|
|
111
|
|
|
|
|
|
|
--- |
|
112
|
|
|
|
|
|
|
|
|
113
|
|
|
|
|
|
|
$matrix{$expected}{$predicted} += 1; |
|
114
|
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
--- |
|
116
|
|
|
|
|
|
|
|
|
117
|
|
|
|
|
|
|
makeConfusionMatrix(\%matrix, 'output.csv'); |
|
118
|
|
|
|
|
|
|
|
|
119
|
|
|
|
|
|
|
|
|
120
|
|
|
|
|
|
|
=head1 DESCRIPTION |
|
121
|
|
|
|
|
|
|
|
|
122
|
|
|
|
|
|
|
This module prints a L from a hash reference. This module tries to be generic enough to be used within a lot of machine learning projects. |
|
123
|
|
|
|
|
|
|
|
|
124
|
|
|
|
|
|
|
=head3 Function |
|
125
|
|
|
|
|
|
|
|
|
126
|
|
|
|
|
|
|
=head4 C |
|
127
|
|
|
|
|
|
|
|
|
128
|
|
|
|
|
|
|
This function makes a confusion matrix from C<$hash_ref> and writes it to C<$file>. C<$file> can be a filename or a file handle opened with the C mode. If C<$delimiter> is present, it is used as a custom separator for the fields in the confusion matrix. |
|
129
|
|
|
|
|
|
|
|
|
130
|
|
|
|
|
|
|
Examples: |
|
131
|
|
|
|
|
|
|
|
|
132
|
|
|
|
|
|
|
makeConfusionMatrix(\%matrix, 'output.csv'); |
|
133
|
|
|
|
|
|
|
makeConfusionMatrix(\%matrix, 'output.csv', ';'); |
|
134
|
|
|
|
|
|
|
makeConfusionMatrix(\%matrix, *$fh); |
|
135
|
|
|
|
|
|
|
|
|
136
|
|
|
|
|
|
|
The hash reference must look like this : |
|
137
|
|
|
|
|
|
|
|
|
138
|
|
|
|
|
|
|
$VAR1 = { |
|
139
|
|
|
|
|
|
|
|
|
140
|
|
|
|
|
|
|
|
|
141
|
|
|
|
|
|
|
'value_expected1' => { |
|
142
|
|
|
|
|
|
|
'value_predicted1' => value |
|
143
|
|
|
|
|
|
|
}, |
|
144
|
|
|
|
|
|
|
'value_expected2' => { |
|
145
|
|
|
|
|
|
|
'value_predicted1' => value, |
|
146
|
|
|
|
|
|
|
'value_predicted2' => value |
|
147
|
|
|
|
|
|
|
}, |
|
148
|
|
|
|
|
|
|
'value_expected3' => { |
|
149
|
|
|
|
|
|
|
'value_predicted3' => value |
|
150
|
|
|
|
|
|
|
} |
|
151
|
|
|
|
|
|
|
|
|
152
|
|
|
|
|
|
|
}; |
|
153
|
|
|
|
|
|
|
|
|
154
|
|
|
|
|
|
|
The output will be in CSV. Here is an example: |
|
155
|
|
|
|
|
|
|
|
|
156
|
|
|
|
|
|
|
,1974,1978,2002,2003,2005,TOTAL,TP,FP,FN,SENS,ACC |
|
157
|
|
|
|
|
|
|
1974,3,1,,,2,6,3,4,3,42.86%,50.00% |
|
158
|
|
|
|
|
|
|
1978,1,5,,,,6,5,4,1,55.56%,83.33% |
|
159
|
|
|
|
|
|
|
2002,2,2,8,,,12,8,1,4,88.89%,66.67% |
|
160
|
|
|
|
|
|
|
2003,1,,,7,2,10,7,0,3,100.00%,70.00% |
|
161
|
|
|
|
|
|
|
2005,,1,1,,6,8,6,4,2,60.00%,75.00% |
|
162
|
|
|
|
|
|
|
TOTAL,7,9,9,7,10,42,29,13,13,69.05%,69.05% |
|
163
|
|
|
|
|
|
|
|
|
164
|
|
|
|
|
|
|
Prettified: |
|
165
|
|
|
|
|
|
|
|
|
166
|
|
|
|
|
|
|
| | 1974 | 1978 | 2002 | 2003 | 2005 | TOTAL | TP | FP | FN | SENS | ACC | |
|
167
|
|
|
|
|
|
|
|-------|------|------|------|------|------|-------|----|----|----|---------|--------| |
|
168
|
|
|
|
|
|
|
| 1974 | 3 | 1 | | | 2 | 6 | 3 | 4 | 3 | 42.86% | 50.00% | |
|
169
|
|
|
|
|
|
|
| 1978 | 1 | 5 | | | | 6 | 5 | 4 | 1 | 55.56% | 83.33% | |
|
170
|
|
|
|
|
|
|
| 2002 | 2 | 2 | 8 | | | 12 | 8 | 1 | 4 | 88.89% | 66.67% | |
|
171
|
|
|
|
|
|
|
| 2003 | 1 | | | 7 | 2 | 10 | 7 | 0 | 3 | 100.00% | 70.00% | |
|
172
|
|
|
|
|
|
|
| 2005 | | 1 | 1 | | 6 | 8 | 6 | 4 | 2 | 60.00% | 75.00% | |
|
173
|
|
|
|
|
|
|
| TOTAL | 7 | 9 | 9 | 7 | 10 | 42 | 29 | 13 | 13 | 69.05% | 69.05% | |
|
174
|
|
|
|
|
|
|
|
|
175
|
|
|
|
|
|
|
=over |
|
176
|
|
|
|
|
|
|
|
|
177
|
|
|
|
|
|
|
=item TP: |
|
178
|
|
|
|
|
|
|
|
|
179
|
|
|
|
|
|
|
True Positive |
|
180
|
|
|
|
|
|
|
|
|
181
|
|
|
|
|
|
|
=item FP: |
|
182
|
|
|
|
|
|
|
|
|
183
|
|
|
|
|
|
|
False Positive |
|
184
|
|
|
|
|
|
|
|
|
185
|
|
|
|
|
|
|
=item FN: |
|
186
|
|
|
|
|
|
|
|
|
187
|
|
|
|
|
|
|
False Negative |
|
188
|
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
=item SENS |
|
190
|
|
|
|
|
|
|
|
|
191
|
|
|
|
|
|
|
Sensitivity. Number of true positives divided by the number of positives. |
|
192
|
|
|
|
|
|
|
|
|
193
|
|
|
|
|
|
|
=item ACC: |
|
194
|
|
|
|
|
|
|
|
|
195
|
|
|
|
|
|
|
Accuracy |
|
196
|
|
|
|
|
|
|
|
|
197
|
|
|
|
|
|
|
=back |
|
198
|
|
|
|
|
|
|
|
|
199
|
|
|
|
|
|
|
=head1 AUTHOR |
|
200
|
|
|
|
|
|
|
|
|
201
|
|
|
|
|
|
|
Vincent Lequertier |
|
202
|
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
=head1 LICENSE |
|
204
|
|
|
|
|
|
|
|
|
205
|
|
|
|
|
|
|
This library is free software; you can redistribute it and/or modify |
|
206
|
|
|
|
|
|
|
it under the same terms as Perl itself. |
|
207
|
|
|
|
|
|
|
|
|
208
|
|
|
|
|
|
|
=cut |
|
209
|
|
|
|
|
|
|
|
|
210
|
|
|
|
|
|
|
1; |
|
211
|
|
|
|
|
|
|
|
|
212
|
|
|
|
|
|
|
# vim: set ts=4 sw=4 tw=0 fdm=marker : |
|
213
|
|
|
|
|
|
|
|