| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package AI::Categorizer::KnowledgeSet; |
|
2
|
|
|
|
|
|
|
|
|
3
|
11
|
|
|
11
|
|
77
|
use strict; |
|
|
11
|
|
|
|
|
21
|
|
|
|
11
|
|
|
|
|
388
|
|
|
4
|
11
|
|
|
11
|
|
52
|
use Class::Container; |
|
|
11
|
|
|
|
|
17
|
|
|
|
11
|
|
|
|
|
183
|
|
|
5
|
11
|
|
|
11
|
|
51
|
use AI::Categorizer::Storable; |
|
|
11
|
|
|
|
|
18
|
|
|
|
11
|
|
|
|
|
238
|
|
|
6
|
11
|
|
|
11
|
|
45
|
use base qw(Class::Container AI::Categorizer::Storable); |
|
|
11
|
|
|
|
|
19
|
|
|
|
11
|
|
|
|
|
972
|
|
|
7
|
|
|
|
|
|
|
|
|
8
|
11
|
|
|
11
|
|
50
|
use Params::Validate qw(:types); |
|
|
11
|
|
|
|
|
19
|
|
|
|
11
|
|
|
|
|
1547
|
|
|
9
|
11
|
|
|
11
|
|
52
|
use AI::Categorizer::ObjectSet; |
|
|
11
|
|
|
|
|
17
|
|
|
|
11
|
|
|
|
|
215
|
|
|
10
|
11
|
|
|
11
|
|
46
|
use AI::Categorizer::Document; |
|
|
11
|
|
|
|
|
21
|
|
|
|
11
|
|
|
|
|
249
|
|
|
11
|
11
|
|
|
11
|
|
48
|
use AI::Categorizer::Category; |
|
|
11
|
|
|
|
|
22
|
|
|
|
11
|
|
|
|
|
285
|
|
|
12
|
11
|
|
|
11
|
|
50
|
use AI::Categorizer::FeatureVector; |
|
|
11
|
|
|
|
|
23
|
|
|
|
11
|
|
|
|
|
199
|
|
|
13
|
11
|
|
|
11
|
|
5363
|
use AI::Categorizer::Util; |
|
|
11
|
|
|
|
|
26
|
|
|
|
11
|
|
|
|
|
530
|
|
|
14
|
11
|
|
|
11
|
|
59
|
use Carp qw(croak); |
|
|
11
|
|
|
|
|
23
|
|
|
|
11
|
|
|
|
|
32497
|
|
|
15
|
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
__PACKAGE__->valid_params |
|
17
|
|
|
|
|
|
|
( |
|
18
|
|
|
|
|
|
|
categories => { |
|
19
|
|
|
|
|
|
|
type => ARRAYREF, |
|
20
|
|
|
|
|
|
|
default => [], |
|
21
|
|
|
|
|
|
|
callbacks => { 'all are Category objects' => |
|
22
|
|
|
|
|
|
|
sub { ! grep !UNIVERSAL::isa($_, 'AI::Categorizer::Category'), |
|
23
|
|
|
|
|
|
|
@{$_[0]} }, |
|
24
|
|
|
|
|
|
|
}, |
|
25
|
|
|
|
|
|
|
}, |
|
26
|
|
|
|
|
|
|
documents => { |
|
27
|
|
|
|
|
|
|
type => ARRAYREF, |
|
28
|
|
|
|
|
|
|
default => [], |
|
29
|
|
|
|
|
|
|
callbacks => { 'all are Document objects' => |
|
30
|
|
|
|
|
|
|
sub { ! grep !UNIVERSAL::isa($_, 'AI::Categorizer::Document'), |
|
31
|
|
|
|
|
|
|
@{$_[0]} }, |
|
32
|
|
|
|
|
|
|
}, |
|
33
|
|
|
|
|
|
|
}, |
|
34
|
|
|
|
|
|
|
scan_first => { |
|
35
|
|
|
|
|
|
|
type => BOOLEAN, |
|
36
|
|
|
|
|
|
|
default => 1, |
|
37
|
|
|
|
|
|
|
}, |
|
38
|
|
|
|
|
|
|
feature_selector => { |
|
39
|
|
|
|
|
|
|
isa => 'AI::Categorizer::FeatureSelector', |
|
40
|
|
|
|
|
|
|
}, |
|
41
|
|
|
|
|
|
|
tfidf_weighting => { |
|
42
|
|
|
|
|
|
|
type => SCALAR, |
|
43
|
|
|
|
|
|
|
optional => 1, |
|
44
|
|
|
|
|
|
|
}, |
|
45
|
|
|
|
|
|
|
term_weighting => { |
|
46
|
|
|
|
|
|
|
type => SCALAR, |
|
47
|
|
|
|
|
|
|
default => 'x', |
|
48
|
|
|
|
|
|
|
}, |
|
49
|
|
|
|
|
|
|
collection_weighting => { |
|
50
|
|
|
|
|
|
|
type => SCALAR, |
|
51
|
|
|
|
|
|
|
default => 'x', |
|
52
|
|
|
|
|
|
|
}, |
|
53
|
|
|
|
|
|
|
normalize_weighting => { |
|
54
|
|
|
|
|
|
|
type => SCALAR, |
|
55
|
|
|
|
|
|
|
default => 'x', |
|
56
|
|
|
|
|
|
|
}, |
|
57
|
|
|
|
|
|
|
verbose => { |
|
58
|
|
|
|
|
|
|
type => SCALAR, |
|
59
|
|
|
|
|
|
|
default => 0, |
|
60
|
|
|
|
|
|
|
}, |
|
61
|
|
|
|
|
|
|
); |
|
62
|
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
__PACKAGE__->contained_objects |
|
64
|
|
|
|
|
|
|
( |
|
65
|
|
|
|
|
|
|
document => { delayed => 1, |
|
66
|
|
|
|
|
|
|
class => 'AI::Categorizer::Document' }, |
|
67
|
|
|
|
|
|
|
category => { delayed => 1, |
|
68
|
|
|
|
|
|
|
class => 'AI::Categorizer::Category' }, |
|
69
|
|
|
|
|
|
|
collection => { delayed => 1, |
|
70
|
|
|
|
|
|
|
class => 'AI::Categorizer::Collection::Files' }, |
|
71
|
|
|
|
|
|
|
features => { delayed => 1, |
|
72
|
|
|
|
|
|
|
class => 'AI::Categorizer::FeatureVector' }, |
|
73
|
|
|
|
|
|
|
feature_selector => 'AI::Categorizer::FeatureSelector::DocFrequency', |
|
74
|
|
|
|
|
|
|
); |
|
75
|
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
sub new { |
|
77
|
12
|
|
|
12
|
1
|
6934
|
my ($pkg, %args) = @_; |
|
78
|
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
# Shortcuts |
|
80
|
12
|
100
|
|
|
|
52
|
if ($args{tfidf_weighting}) { |
|
81
|
1
|
|
|
|
|
5
|
@args{'term_weighting', 'collection_weighting', 'normalize_weighting'} = split '', $args{tfidf_weighting}; |
|
82
|
1
|
|
|
|
|
4
|
delete $args{tfidf_weighting}; |
|
83
|
|
|
|
|
|
|
} |
|
84
|
|
|
|
|
|
|
|
|
85
|
12
|
|
|
|
|
133
|
my $self = $pkg->SUPER::new(%args); |
|
86
|
|
|
|
|
|
|
|
|
87
|
|
|
|
|
|
|
# Convert to AI::Categorizer::ObjectSet sets |
|
88
|
12
|
|
|
|
|
8460
|
$self->{categories} = new AI::Categorizer::ObjectSet( @{$self->{categories}} ); |
|
|
12
|
|
|
|
|
94
|
|
|
89
|
12
|
|
|
|
|
24
|
$self->{documents} = new AI::Categorizer::ObjectSet( @{$self->{documents}} ); |
|
|
12
|
|
|
|
|
47
|
|
|
90
|
|
|
|
|
|
|
|
|
91
|
12
|
50
|
|
|
|
58
|
if ($self->{load}) { |
|
92
|
0
|
0
|
|
|
|
0
|
my $args = ref($self->{load}) ? $self->{load} : { path => $self->{load} }; |
|
93
|
0
|
|
|
|
|
0
|
$self->load(%$args); |
|
94
|
0
|
|
|
|
|
0
|
delete $self->{load}; |
|
95
|
|
|
|
|
|
|
} |
|
96
|
12
|
|
|
|
|
56
|
return $self; |
|
97
|
|
|
|
|
|
|
} |
|
98
|
|
|
|
|
|
|
|
|
99
|
|
|
|
|
|
|
sub features { |
|
100
|
19
|
|
|
19
|
1
|
37
|
my $self = shift; |
|
101
|
|
|
|
|
|
|
|
|
102
|
19
|
100
|
|
|
|
41
|
if (@_) { |
|
103
|
1
|
|
|
|
|
2
|
$self->{features} = shift; |
|
104
|
1
|
50
|
|
|
|
5
|
$self->trim_doc_features if $self->{features}; |
|
105
|
|
|
|
|
|
|
} |
|
106
|
19
|
100
|
|
|
|
88
|
return $self->{features} if $self->{features}; |
|
107
|
|
|
|
|
|
|
|
|
108
|
|
|
|
|
|
|
# Create a feature vector encompassing the whole set of documents |
|
109
|
3
|
|
|
|
|
12
|
my $v = $self->create_delayed_object('features'); |
|
110
|
3
|
|
|
|
|
10
|
foreach my $document ($self->documents) { |
|
111
|
12
|
|
|
|
|
35
|
$v->add( $document->features ); |
|
112
|
|
|
|
|
|
|
} |
|
113
|
3
|
|
|
|
|
15
|
return $self->{features} = $v; |
|
114
|
|
|
|
|
|
|
} |
|
115
|
|
|
|
|
|
|
|
|
116
|
|
|
|
|
|
|
sub categories { |
|
117
|
24
|
|
|
24
|
1
|
43
|
my $c = $_[0]->{categories}; |
|
118
|
24
|
50
|
|
|
|
97
|
return wantarray ? $c->members : $c->size; |
|
119
|
|
|
|
|
|
|
} |
|
120
|
|
|
|
|
|
|
|
|
121
|
|
|
|
|
|
|
sub documents { |
|
122
|
35
|
|
|
35
|
1
|
67
|
my $d = $_[0]->{documents}; |
|
123
|
35
|
100
|
|
|
|
127
|
return wantarray ? $d->members : $d->size; |
|
124
|
|
|
|
|
|
|
} |
|
125
|
|
|
|
|
|
|
|
|
126
|
|
|
|
|
|
|
sub document { |
|
127
|
7
|
|
|
7
|
1
|
14
|
my ($self, $name) = @_; |
|
128
|
7
|
|
|
|
|
24
|
return $self->{documents}->retrieve($name); |
|
129
|
|
|
|
|
|
|
} |
|
130
|
|
|
|
|
|
|
|
|
131
|
0
|
|
|
0
|
0
|
0
|
sub feature_selector { $_[0]->{feature_selector} } |
|
132
|
0
|
|
|
0
|
0
|
0
|
sub scan_first { $_[0]->{scan_first} } |
|
133
|
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
sub verbose { |
|
135
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
136
|
0
|
0
|
|
|
|
0
|
$self->{verbose} = shift if @_; |
|
137
|
0
|
|
|
|
|
0
|
return $self->{verbose}; |
|
138
|
|
|
|
|
|
|
} |
|
139
|
|
|
|
|
|
|
|
|
140
|
|
|
|
|
|
|
sub trim_doc_features { |
|
141
|
0
|
|
|
0
|
0
|
0
|
my ($self) = @_; |
|
142
|
|
|
|
|
|
|
|
|
143
|
0
|
|
|
|
|
0
|
foreach my $doc ($self->documents) { |
|
144
|
0
|
|
|
|
|
0
|
$doc->features( $doc->features->intersection($self->features) ); |
|
145
|
|
|
|
|
|
|
} |
|
146
|
|
|
|
|
|
|
} |
|
147
|
|
|
|
|
|
|
|
|
148
|
|
|
|
|
|
|
|
|
149
|
|
|
|
|
|
|
sub prog_bar { |
|
150
|
0
|
|
|
0
|
0
|
0
|
my ($self, $collection) = @_; |
|
151
|
|
|
|
|
|
|
|
|
152
|
0
|
0
|
|
0
|
|
0
|
return sub {} unless $self->verbose; |
|
|
0
|
|
|
|
|
0
|
|
|
153
|
0
|
0
|
|
0
|
|
0
|
return sub { print STDERR '.' } unless eval "use Time::Progress; 1"; |
|
|
0
|
|
|
|
|
0
|
|
|
154
|
|
|
|
|
|
|
|
|
155
|
0
|
0
|
|
|
|
0
|
my $count = $collection->can('count_documents') ? $collection->count_documents : 0; |
|
156
|
|
|
|
|
|
|
|
|
157
|
0
|
|
|
|
|
0
|
my $pb = 'Time::Progress'->new; |
|
158
|
0
|
|
|
|
|
0
|
$pb->attr(max => $count); |
|
159
|
0
|
|
|
|
|
0
|
my $i = 0; |
|
160
|
|
|
|
|
|
|
return sub { |
|
161
|
0
|
|
|
0
|
|
0
|
$i++; |
|
162
|
0
|
0
|
|
|
|
0
|
return if $i % 25; |
|
163
|
0
|
|
|
|
|
0
|
print STDERR $pb->report("%50b %p ($i/$count)\r", $i); |
|
164
|
0
|
|
|
|
|
0
|
}; |
|
165
|
|
|
|
|
|
|
} |
|
166
|
|
|
|
|
|
|
|
|
167
|
|
|
|
|
|
|
# A little utility method for several other methods like scan_stats(), |
|
168
|
|
|
|
|
|
|
# load(), read(), etc. |
|
169
|
|
|
|
|
|
|
sub _make_collection { |
|
170
|
0
|
|
|
0
|
|
0
|
my ($self, $args) = @_; |
|
171
|
0
|
|
0
|
|
|
0
|
return $args->{collection} || $self->create_delayed_object('collection', %$args); |
|
172
|
|
|
|
|
|
|
} |
|
173
|
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
sub scan_stats { |
|
175
|
|
|
|
|
|
|
# Should determine: |
|
176
|
|
|
|
|
|
|
# - number of documents |
|
177
|
|
|
|
|
|
|
# - number of categories |
|
178
|
|
|
|
|
|
|
# - avg. number of categories per document (whole corpus) |
|
179
|
|
|
|
|
|
|
# - avg. number of tokens per document (whole corpus) |
|
180
|
|
|
|
|
|
|
# - avg. number of types per document (whole corpus) |
|
181
|
|
|
|
|
|
|
# - number of documents, tokens, & types for each category |
|
182
|
|
|
|
|
|
|
# - "category skew index" (% variance?) by num. documents, tokens, and types |
|
183
|
|
|
|
|
|
|
|
|
184
|
0
|
|
|
0
|
1
|
0
|
my ($self, %args) = @_; |
|
185
|
0
|
|
|
|
|
0
|
my $collection = $self->_make_collection(\%args); |
|
186
|
0
|
|
|
|
|
0
|
my $pb = $self->prog_bar($collection); |
|
187
|
|
|
|
|
|
|
|
|
188
|
0
|
|
|
|
|
0
|
my %stats; |
|
189
|
|
|
|
|
|
|
|
|
190
|
|
|
|
|
|
|
|
|
191
|
0
|
|
|
|
|
0
|
while (my $doc = $collection->next) { |
|
192
|
0
|
|
|
|
|
0
|
$pb->(); |
|
193
|
0
|
|
|
|
|
0
|
$stats{category_count_with_duplicates} += $doc->categories; |
|
194
|
|
|
|
|
|
|
|
|
195
|
0
|
|
|
|
|
0
|
my ($sum, $length) = ($doc->features->sum, $doc->features->length); |
|
196
|
0
|
|
|
|
|
0
|
$stats{document_count}++; |
|
197
|
0
|
|
|
|
|
0
|
$stats{token_count} += $sum; |
|
198
|
0
|
|
|
|
|
0
|
$stats{type_count} += $length; |
|
199
|
|
|
|
|
|
|
|
|
200
|
0
|
|
|
|
|
0
|
foreach my $cat ($doc->categories) { |
|
201
|
|
|
|
|
|
|
#warn $doc->name, ": ", $cat->name, "\n"; |
|
202
|
0
|
|
|
|
|
0
|
$stats{categories}{$cat->name}{document_count}++; |
|
203
|
0
|
|
|
|
|
0
|
$stats{categories}{$cat->name}{token_count} += $sum; |
|
204
|
0
|
|
|
|
|
0
|
$stats{categories}{$cat->name}{type_count} += $length; |
|
205
|
|
|
|
|
|
|
} |
|
206
|
|
|
|
|
|
|
} |
|
207
|
0
|
0
|
|
|
|
0
|
print "\n" if $self->verbose; |
|
208
|
|
|
|
|
|
|
|
|
209
|
0
|
|
|
|
|
0
|
my @cats = keys %{ $stats{categories} }; |
|
|
0
|
|
|
|
|
0
|
|
|
210
|
|
|
|
|
|
|
|
|
211
|
0
|
|
|
|
|
0
|
$stats{category_count} = @cats; |
|
212
|
0
|
|
|
|
|
0
|
$stats{categories_per_document} = $stats{category_count_with_duplicates} / $stats{document_count}; |
|
213
|
0
|
|
|
|
|
0
|
$stats{tokens_per_document} = $stats{token_count} / $stats{document_count}; |
|
214
|
0
|
|
|
|
|
0
|
$stats{types_per_document} = $stats{type_count} / $stats{document_count}; |
|
215
|
|
|
|
|
|
|
|
|
216
|
0
|
|
|
|
|
0
|
foreach my $thing ('type', 'token', 'document') { |
|
217
|
0
|
|
|
|
|
0
|
$stats{"${thing}s_per_category"} = AI::Categorizer::Util::average |
|
218
|
0
|
|
|
|
|
0
|
( map { $stats{categories}{$_}{"${thing}_count"} } @cats ); |
|
219
|
|
|
|
|
|
|
|
|
220
|
0
|
0
|
|
|
|
0
|
next unless @cats; |
|
221
|
|
|
|
|
|
|
|
|
222
|
|
|
|
|
|
|
# Compute the skews |
|
223
|
0
|
|
|
|
|
0
|
my $ssum; |
|
224
|
0
|
|
|
|
|
0
|
foreach my $cat (@cats) { |
|
225
|
0
|
|
|
|
|
0
|
$ssum += ($stats{categories}{$cat}{"${thing}_count"} - $stats{"${thing}s_per_category"}) ** 2; |
|
226
|
|
|
|
|
|
|
} |
|
227
|
0
|
|
|
|
|
0
|
$stats{"${thing}_skew_by_category"} = sqrt($ssum/@cats) / $stats{"${thing}s_per_category"}; |
|
228
|
|
|
|
|
|
|
} |
|
229
|
|
|
|
|
|
|
|
|
230
|
0
|
|
|
|
|
0
|
return \%stats; |
|
231
|
|
|
|
|
|
|
} |
|
232
|
|
|
|
|
|
|
|
|
233
|
|
|
|
|
|
|
sub load { |
|
234
|
0
|
|
|
0
|
1
|
0
|
my ($self, %args) = @_; |
|
235
|
0
|
|
|
|
|
0
|
my $c = $self->_make_collection(\%args); |
|
236
|
|
|
|
|
|
|
|
|
237
|
0
|
0
|
|
|
|
0
|
if ($self->{features_kept}) { |
|
|
|
0
|
|
|
|
|
|
|
238
|
|
|
|
|
|
|
# Read the whole thing in, then reduce |
|
239
|
0
|
|
|
|
|
0
|
$self->read( collection => $c ); |
|
240
|
0
|
|
|
|
|
0
|
$self->select_features; |
|
241
|
|
|
|
|
|
|
|
|
242
|
|
|
|
|
|
|
} elsif ($self->{scan_first}) { |
|
243
|
|
|
|
|
|
|
# Figure out the feature set first, then read data in |
|
244
|
0
|
|
|
|
|
0
|
$self->scan_features( collection => $c ); |
|
245
|
0
|
|
|
|
|
0
|
$c->rewind; |
|
246
|
0
|
|
|
|
|
0
|
$self->read( collection => $c ); |
|
247
|
|
|
|
|
|
|
|
|
248
|
|
|
|
|
|
|
} else { |
|
249
|
|
|
|
|
|
|
# Don't do any feature reduction, just read the data |
|
250
|
0
|
|
|
|
|
0
|
$self->read( collection => $c ); |
|
251
|
|
|
|
|
|
|
} |
|
252
|
|
|
|
|
|
|
} |
|
253
|
|
|
|
|
|
|
|
|
254
|
|
|
|
|
|
|
sub read { |
|
255
|
0
|
|
|
0
|
1
|
0
|
my ($self, %args) = @_; |
|
256
|
0
|
|
|
|
|
0
|
my $collection = $self->_make_collection(\%args); |
|
257
|
0
|
|
|
|
|
0
|
my $pb = $self->prog_bar($collection); |
|
258
|
|
|
|
|
|
|
|
|
259
|
0
|
|
|
|
|
0
|
while (my $doc = $collection->next) { |
|
260
|
0
|
|
|
|
|
0
|
$pb->(); |
|
261
|
0
|
|
|
|
|
0
|
$self->add_document($doc); |
|
262
|
|
|
|
|
|
|
} |
|
263
|
0
|
0
|
|
|
|
0
|
print "\n" if $self->verbose; |
|
264
|
|
|
|
|
|
|
} |
|
265
|
|
|
|
|
|
|
|
|
266
|
|
|
|
|
|
|
sub finish { |
|
267
|
11
|
|
|
11
|
1
|
29
|
my $self = shift; |
|
268
|
11
|
100
|
|
|
|
51
|
return if $self->{finished}++; |
|
269
|
10
|
|
|
|
|
43
|
$self->weigh_features; |
|
270
|
|
|
|
|
|
|
} |
|
271
|
|
|
|
|
|
|
|
|
272
|
|
|
|
|
|
|
sub weigh_features { |
|
273
|
|
|
|
|
|
|
# This could be made more efficient by figuring out an execution |
|
274
|
|
|
|
|
|
|
# plan in advance |
|
275
|
|
|
|
|
|
|
|
|
276
|
10
|
|
|
10
|
1
|
16
|
my $self = shift; |
|
277
|
|
|
|
|
|
|
|
|
278
|
10
|
100
|
|
|
|
92
|
if ( $self->{term_weighting} =~ /^(t|x)$/ ) { |
|
|
|
50
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
279
|
|
|
|
|
|
|
# Nothing to do |
|
280
|
|
|
|
|
|
|
} elsif ( $self->{term_weighting} eq 'l' ) { |
|
281
|
0
|
|
|
|
|
0
|
foreach my $doc ($self->documents) { |
|
282
|
0
|
|
|
|
|
0
|
my $f = $doc->features->as_hash; |
|
283
|
0
|
|
|
|
|
0
|
$_ = 1 + log($_) foreach values %$f; |
|
284
|
|
|
|
|
|
|
} |
|
285
|
|
|
|
|
|
|
} elsif ( $self->{term_weighting} eq 'n' ) { |
|
286
|
1
|
|
|
|
|
6
|
foreach my $doc ($self->documents) { |
|
287
|
4
|
|
|
|
|
13
|
my $f = $doc->features->as_hash; |
|
288
|
4
|
|
|
|
|
19
|
my $max_tf = AI::Categorizer::Util::max values %$f; |
|
289
|
4
|
|
|
|
|
35
|
$_ = 0.5 + 0.5 * $_ / $max_tf foreach values %$f; |
|
290
|
|
|
|
|
|
|
} |
|
291
|
|
|
|
|
|
|
} elsif ( $self->{term_weighting} eq 'b' ) { |
|
292
|
1
|
|
|
|
|
6
|
foreach my $doc ($self->documents) { |
|
293
|
4
|
|
|
|
|
10
|
my $f = $doc->features->as_hash; |
|
294
|
4
|
50
|
|
|
|
37
|
$_ = $_ ? 1 : 0 foreach values %$f; |
|
295
|
|
|
|
|
|
|
} |
|
296
|
|
|
|
|
|
|
} else { |
|
297
|
0
|
|
|
|
|
0
|
die "term_weighting must be one of 'x', 't', 'l', 'b', or 'n'"; |
|
298
|
|
|
|
|
|
|
} |
|
299
|
|
|
|
|
|
|
|
|
300
|
10
|
100
|
|
|
|
53
|
if ($self->{collection_weighting} eq 'x') { |
|
|
|
50
|
|
|
|
|
|
|
301
|
|
|
|
|
|
|
# Nothing to do |
|
302
|
|
|
|
|
|
|
} elsif ($self->{collection_weighting} =~ /^(f|p)$/) { |
|
303
|
1
|
50
|
|
|
|
6
|
my $subtrahend = ($1 eq 'f' ? 0 : 1); |
|
304
|
1
|
|
|
|
|
5
|
my $num_docs = $self->documents; |
|
305
|
1
|
|
|
|
|
5
|
$self->document_frequency('foo'); # Initialize |
|
306
|
1
|
|
|
|
|
3
|
foreach my $doc ($self->documents) { |
|
307
|
4
|
|
|
|
|
9
|
my $f = $doc->features->as_hash; |
|
308
|
4
|
|
|
|
|
52
|
$f->{$_} *= log($num_docs / $self->{doc_freq_vector}{$_} - $subtrahend) foreach keys %$f; |
|
309
|
|
|
|
|
|
|
} |
|
310
|
|
|
|
|
|
|
} else { |
|
311
|
0
|
|
|
|
|
0
|
die "collection_weighting must be one of 'x', 'f', or 'p'"; |
|
312
|
|
|
|
|
|
|
} |
|
313
|
|
|
|
|
|
|
|
|
314
|
10
|
50
|
|
|
|
49
|
if ( $self->{normalize_weighting} eq 'x' ) { |
|
|
|
0
|
|
|
|
|
|
|
315
|
|
|
|
|
|
|
# Nothing to do |
|
316
|
|
|
|
|
|
|
} elsif ( $self->{normalize_weighting} eq 'c' ) { |
|
317
|
0
|
|
|
|
|
0
|
$_->features->normalize foreach $self->documents; |
|
318
|
|
|
|
|
|
|
} else { |
|
319
|
0
|
|
|
|
|
0
|
die "normalize_weighting must be one of 'x' or 'c'"; |
|
320
|
|
|
|
|
|
|
} |
|
321
|
|
|
|
|
|
|
} |
|
322
|
|
|
|
|
|
|
|
|
323
|
|
|
|
|
|
|
sub document_frequency { |
|
324
|
4
|
|
|
4
|
1
|
7
|
my ($self, $term) = @_; |
|
325
|
|
|
|
|
|
|
|
|
326
|
4
|
100
|
|
|
|
12
|
unless (exists $self->{doc_freq_vector}) { |
|
327
|
1
|
50
|
|
|
|
5
|
die "No corpus has been scanned for features" unless $self->documents; |
|
328
|
|
|
|
|
|
|
|
|
329
|
1
|
|
|
|
|
4
|
my $doc_freq = $self->create_delayed_object('features', features => {}); |
|
330
|
1
|
|
|
|
|
4
|
foreach my $doc ($self->documents) { |
|
331
|
4
|
|
|
|
|
11
|
$doc_freq->add( $doc->features->as_boolean_hash ); |
|
332
|
|
|
|
|
|
|
} |
|
333
|
1
|
|
|
|
|
5
|
$self->{doc_freq_vector} = $doc_freq->as_hash; |
|
334
|
|
|
|
|
|
|
} |
|
335
|
|
|
|
|
|
|
|
|
336
|
4
|
100
|
|
|
|
22
|
return exists $self->{doc_freq_vector}{$term} ? $self->{doc_freq_vector}{$term} : 0; |
|
337
|
|
|
|
|
|
|
} |
|
338
|
|
|
|
|
|
|
|
|
339
|
|
|
|
|
|
|
sub scan_features { |
|
340
|
0
|
|
|
0
|
1
|
0
|
my ($self, %args) = @_; |
|
341
|
0
|
|
|
|
|
0
|
my $c = $self->_make_collection(\%args); |
|
342
|
|
|
|
|
|
|
|
|
343
|
0
|
|
|
|
|
0
|
my $pb = $self->prog_bar($c); |
|
344
|
0
|
|
|
|
|
0
|
my $ranked_features = $self->{feature_selector}->scan_features( collection => $c, prog_bar => $pb ); |
|
345
|
|
|
|
|
|
|
|
|
346
|
0
|
|
|
|
|
0
|
$self->delayed_object_params('document', use_features => $ranked_features); |
|
347
|
0
|
|
|
|
|
0
|
$self->delayed_object_params('collection', use_features => $ranked_features); |
|
348
|
0
|
|
|
|
|
0
|
return $ranked_features; |
|
349
|
|
|
|
|
|
|
} |
|
350
|
|
|
|
|
|
|
|
|
351
|
|
|
|
|
|
|
sub select_features { |
|
352
|
0
|
|
|
0
|
0
|
0
|
my $self = shift; |
|
353
|
|
|
|
|
|
|
|
|
354
|
0
|
|
|
|
|
0
|
my $f = $self->feature_selector->select_features(knowledge_set => $self); |
|
355
|
0
|
|
|
|
|
0
|
$self->features($f); |
|
356
|
|
|
|
|
|
|
} |
|
357
|
|
|
|
|
|
|
|
|
358
|
|
|
|
|
|
|
sub partition { |
|
359
|
0
|
|
|
0
|
1
|
0
|
my ($self, @sizes) = @_; |
|
360
|
0
|
|
|
|
|
0
|
my $num_docs = my @docs = $self->documents; |
|
361
|
0
|
|
|
|
|
0
|
my @groups; |
|
362
|
|
|
|
|
|
|
|
|
363
|
0
|
|
|
|
|
0
|
while (@sizes > 1) { |
|
364
|
0
|
|
|
|
|
0
|
my $size = int ($num_docs * shift @sizes); |
|
365
|
0
|
|
|
|
|
0
|
push @groups, []; |
|
366
|
0
|
|
|
|
|
0
|
for (0..$size) { |
|
367
|
0
|
|
|
|
|
0
|
push @{ $groups[-1] }, splice @docs, rand(@docs), 1; |
|
|
0
|
|
|
|
|
0
|
|
|
368
|
|
|
|
|
|
|
} |
|
369
|
|
|
|
|
|
|
} |
|
370
|
0
|
|
|
|
|
0
|
push @groups, \@docs; |
|
371
|
|
|
|
|
|
|
|
|
372
|
0
|
|
|
|
|
0
|
return map { ref($self)->new( documents => $_ ) } @groups; |
|
|
0
|
|
|
|
|
0
|
|
|
373
|
|
|
|
|
|
|
} |
|
374
|
|
|
|
|
|
|
|
|
375
|
|
|
|
|
|
|
sub make_document { |
|
376
|
40
|
|
|
40
|
1
|
134
|
my ($self, %args) = @_; |
|
377
|
40
|
|
|
|
|
73
|
my $cats = delete $args{categories}; |
|
378
|
40
|
|
|
|
|
74
|
my @cats = map { $self->call_method('category', 'by_name', name => $_) } @$cats; |
|
|
40
|
|
|
|
|
176
|
|
|
379
|
40
|
|
|
|
|
168
|
my $d = $self->create_delayed_object('document', %args, categories => \@cats); |
|
380
|
40
|
|
|
|
|
126
|
$self->add_document($d); |
|
381
|
|
|
|
|
|
|
} |
|
382
|
|
|
|
|
|
|
|
|
383
|
|
|
|
|
|
|
sub add_document { |
|
384
|
40
|
|
|
40
|
1
|
55
|
my ($self, $doc) = @_; |
|
385
|
|
|
|
|
|
|
|
|
386
|
40
|
|
|
|
|
104
|
foreach ($doc->categories) { |
|
387
|
40
|
|
|
|
|
115
|
$_->add_document($doc); |
|
388
|
|
|
|
|
|
|
} |
|
389
|
40
|
|
|
|
|
133
|
$self->{documents}->insert($doc); |
|
390
|
40
|
|
|
|
|
117
|
$self->{categories}->insert($doc->categories); |
|
391
|
|
|
|
|
|
|
} |
|
392
|
|
|
|
|
|
|
|
|
393
|
|
|
|
|
|
|
sub save_features { |
|
394
|
0
|
|
|
0
|
1
|
|
my ($self, $file) = @_; |
|
395
|
|
|
|
|
|
|
|
|
396
|
0
|
0
|
0
|
|
|
|
my $f = ($self->{features} || { $self->delayed_object_params('document') }->{use_features}) |
|
397
|
|
|
|
|
|
|
or croak "No features to save"; |
|
398
|
|
|
|
|
|
|
|
|
399
|
0
|
0
|
|
|
|
|
open my($fh), "> $file" or croak "Can't create $file: $!"; |
|
400
|
0
|
|
|
|
|
|
my $h = $f->as_hash; |
|
401
|
0
|
|
|
|
|
|
print $fh "# Total: ", $f->length, "\n"; |
|
402
|
|
|
|
|
|
|
|
|
403
|
0
|
|
|
|
|
|
foreach my $k (sort {$h->{$b} <=> $h->{$a}} keys %$h) { |
|
|
0
|
|
|
|
|
|
|
|
404
|
0
|
|
|
|
|
|
print $fh "$k\t$h->{$k}\n"; |
|
405
|
|
|
|
|
|
|
} |
|
406
|
0
|
|
|
|
|
|
close $fh; |
|
407
|
|
|
|
|
|
|
} |
|
408
|
|
|
|
|
|
|
|
|
409
|
|
|
|
|
|
|
sub restore_features { |
|
410
|
0
|
|
|
0
|
1
|
|
my ($self, $file, $n) = @_; |
|
411
|
|
|
|
|
|
|
|
|
412
|
0
|
0
|
|
|
|
|
open my($fh), "< $file" or croak "Can't open $file: $!"; |
|
413
|
|
|
|
|
|
|
|
|
414
|
0
|
|
|
|
|
|
my %hash; |
|
415
|
0
|
|
|
|
|
|
while (<$fh>) { |
|
416
|
0
|
0
|
|
|
|
|
next if /^#/; |
|
417
|
0
|
0
|
|
|
|
|
/^(.*)\t([\d.]+)$/ or croak "Malformed line: $_"; |
|
418
|
0
|
|
|
|
|
|
$hash{$1} = $2; |
|
419
|
0
|
0
|
0
|
|
|
|
last if defined $n and $. >= $n; |
|
420
|
|
|
|
|
|
|
} |
|
421
|
0
|
|
|
|
|
|
my $features = $self->create_delayed_object('features', features => \%hash); |
|
422
|
|
|
|
|
|
|
|
|
423
|
0
|
|
|
|
|
|
$self->delayed_object_params('document', use_features => $features); |
|
424
|
0
|
|
|
|
|
|
$self->delayed_object_params('collection', use_features => $features); |
|
425
|
|
|
|
|
|
|
} |
|
426
|
|
|
|
|
|
|
|
|
427
|
|
|
|
|
|
|
1; |
|
428
|
|
|
|
|
|
|
|
|
429
|
|
|
|
|
|
|
__END__ |