| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Statistics::RankCorrelation; |
|
2
|
|
|
|
|
|
|
BEGIN { |
|
3
|
2
|
|
|
2
|
|
28550
|
$Statistics::RankCorrelation::AUTHORITY = 'cpan:GENE'; |
|
4
|
|
|
|
|
|
|
} |
|
5
|
|
|
|
|
|
|
# ABSTRACT: Compute the rank correlation between two vectors |
|
6
|
|
|
|
|
|
|
|
|
7
|
2
|
|
|
2
|
|
13
|
use strict; |
|
|
2
|
|
|
|
|
3
|
|
|
|
2
|
|
|
|
|
57
|
|
|
8
|
2
|
|
|
2
|
|
9
|
use warnings; |
|
|
2
|
|
|
|
|
3
|
|
|
|
2
|
|
|
|
|
88
|
|
|
9
|
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
our $VERSION = '0.1204'; |
|
11
|
|
|
|
|
|
|
|
|
12
|
2
|
|
|
2
|
|
9
|
use Carp; |
|
|
2
|
|
|
|
|
1
|
|
|
|
2
|
|
|
|
|
2766
|
|
|
13
|
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
sub new { |
|
15
|
15
|
|
|
15
|
1
|
586
|
my $proto = shift; |
|
16
|
15
|
|
33
|
|
|
49
|
my $class = ref($proto) || $proto; |
|
17
|
15
|
|
|
|
|
17
|
my $self = {}; |
|
18
|
15
|
|
|
|
|
26
|
bless $self, $class; |
|
19
|
15
|
|
|
|
|
37
|
$self->_init(@_); |
|
20
|
15
|
|
|
|
|
26
|
return $self; |
|
21
|
|
|
|
|
|
|
} |
|
22
|
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
sub _init { |
|
24
|
15
|
|
|
15
|
|
11
|
my $self = shift; |
|
25
|
|
|
|
|
|
|
|
|
26
|
|
|
|
|
|
|
# Handle vector and named parameters. |
|
27
|
15
|
|
|
|
|
29
|
while( my $arg = shift ) { |
|
28
|
29
|
100
|
|
|
|
41
|
if( ref $arg eq 'ARRAY' ) { |
|
|
|
50
|
|
|
|
|
|
|
29
|
28
|
100
|
|
|
|
31
|
if( !defined $self->x_data ) { $self->x_data( $arg ) } |
|
|
14
|
50
|
|
|
|
18
|
|
|
30
|
14
|
|
|
|
|
18
|
elsif( !defined $self->y_data ) { $self->y_data( $arg ) } |
|
31
|
|
|
|
|
|
|
} |
|
32
|
|
|
|
|
|
|
elsif( !ref $arg ) { |
|
33
|
1
|
|
|
|
|
2
|
my $v = shift; |
|
34
|
1
|
50
|
|
|
|
3
|
$self->{$arg} = defined $v ? $v : $arg; |
|
35
|
|
|
|
|
|
|
} |
|
36
|
|
|
|
|
|
|
} |
|
37
|
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
# Automatically compute the ranks if given data. |
|
39
|
15
|
50
|
66
|
|
|
18
|
if( $self->x_data && $self->y_data && |
|
|
14
|
|
66
|
|
|
16
|
|
|
|
|
|
33
|
|
|
|
|
|
40
|
14
|
|
|
|
|
16
|
@{ $self->x_data } && @{ $self->y_data } |
|
41
|
|
|
|
|
|
|
) { |
|
42
|
|
|
|
|
|
|
# "Co-normalize" the vectors if they are of unequal size. |
|
43
|
14
|
|
|
|
|
18
|
my( $x, $y ) = pad_vectors( $self->x_data, $self->y_data ); |
|
44
|
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
# "Co-sort" the bivariate data set by the first one. |
|
46
|
14
|
100
|
|
|
|
22
|
( $x, $y ) = co_sort( $x, $y ) if $self->{sorted}; |
|
47
|
|
|
|
|
|
|
|
|
48
|
|
|
|
|
|
|
# Set the massaged data. |
|
49
|
14
|
|
|
|
|
19
|
$self->x_data( $x ); |
|
50
|
14
|
|
|
|
|
14
|
$self->y_data( $y ); |
|
51
|
|
|
|
|
|
|
|
|
52
|
|
|
|
|
|
|
# Set the size of the data vector. |
|
53
|
14
|
|
|
|
|
8
|
$self->size( scalar @{ $self->x_data } ); |
|
|
14
|
|
|
|
|
12
|
|
|
54
|
|
|
|
|
|
|
|
|
55
|
|
|
|
|
|
|
# Set the ranks and ties of the vectors. |
|
56
|
14
|
|
|
|
|
19
|
( $x, $y ) = rank( $self->x_data ); |
|
57
|
14
|
|
|
|
|
23
|
$self->x_rank( $x ); |
|
58
|
14
|
|
|
|
|
20
|
$self->x_ties( $y ); |
|
59
|
14
|
|
|
|
|
16
|
( $x, $y ) = rank( $self->y_data ); |
|
60
|
14
|
|
|
|
|
30
|
$self->y_rank( $x ); |
|
61
|
14
|
|
|
|
|
17
|
$self->y_ties( $y ); |
|
62
|
|
|
|
|
|
|
} |
|
63
|
|
|
|
|
|
|
} |
|
64
|
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
sub size { |
|
66
|
196
|
|
|
196
|
1
|
130
|
my $self = shift; |
|
67
|
196
|
100
|
|
|
|
236
|
$self->{size} = shift if @_; |
|
68
|
196
|
|
|
|
|
256
|
return $self->{size}; |
|
69
|
|
|
|
|
|
|
} |
|
70
|
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
sub x_data { |
|
72
|
130
|
|
|
130
|
1
|
694
|
my $self = shift; |
|
73
|
130
|
100
|
|
|
|
163
|
$self->{x_data} = shift if @_; |
|
74
|
130
|
|
|
|
|
230
|
return $self->{x_data}; |
|
75
|
|
|
|
|
|
|
} |
|
76
|
|
|
|
|
|
|
|
|
77
|
|
|
|
|
|
|
sub y_data { |
|
78
|
101
|
|
|
101
|
1
|
72
|
my $self = shift; |
|
79
|
101
|
100
|
|
|
|
108
|
$self->{y_data} = shift if @_; |
|
80
|
101
|
|
|
|
|
214
|
return $self->{y_data}; |
|
81
|
|
|
|
|
|
|
} |
|
82
|
|
|
|
|
|
|
|
|
83
|
|
|
|
|
|
|
sub x_rank { |
|
84
|
18
|
|
|
18
|
1
|
18
|
my $self = shift; |
|
85
|
18
|
100
|
|
|
|
37
|
$self->{x_rank} = shift if @_; |
|
86
|
18
|
|
|
|
|
23
|
return $self->{x_rank}; |
|
87
|
|
|
|
|
|
|
} |
|
88
|
|
|
|
|
|
|
|
|
89
|
|
|
|
|
|
|
sub y_rank { |
|
90
|
19
|
|
|
19
|
1
|
16
|
my $self = shift; |
|
91
|
19
|
100
|
|
|
|
38
|
$self->{y_rank} = shift if @_; |
|
92
|
19
|
|
|
|
|
28
|
return $self->{y_rank}; |
|
93
|
|
|
|
|
|
|
} |
|
94
|
|
|
|
|
|
|
|
|
95
|
|
|
|
|
|
|
sub x_ties { |
|
96
|
46
|
|
|
46
|
1
|
413
|
my $self = shift; |
|
97
|
46
|
100
|
|
|
|
70
|
$self->{x_ties} = shift if @_; |
|
98
|
46
|
|
|
|
|
103
|
return $self->{x_ties}; |
|
99
|
|
|
|
|
|
|
} |
|
100
|
|
|
|
|
|
|
|
|
101
|
|
|
|
|
|
|
sub y_ties { |
|
102
|
44
|
|
|
44
|
1
|
35
|
my $self = shift; |
|
103
|
44
|
100
|
|
|
|
71
|
$self->{y_ties} = shift if @_; |
|
104
|
44
|
|
|
|
|
105
|
return $self->{y_ties}; |
|
105
|
|
|
|
|
|
|
} |
|
106
|
|
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
sub spearman { |
|
108
|
14
|
|
|
14
|
1
|
21
|
my $self = shift; |
|
109
|
|
|
|
|
|
|
# Algorithm contributed by Jon Schutz : |
|
110
|
14
|
|
|
|
|
19
|
my($x_sum, $y_sum) = (0, 0); |
|
111
|
14
|
|
|
|
|
14
|
$x_sum += $_ for @{$self->{x_rank}}; |
|
|
14
|
|
|
|
|
58
|
|
|
112
|
14
|
|
|
|
|
15
|
$y_sum += $_ for @{$self->{y_rank}}; |
|
|
14
|
|
|
|
|
42
|
|
|
113
|
14
|
|
|
|
|
25
|
my $n = $self->size; |
|
114
|
14
|
|
|
|
|
20
|
my $x_mean = $x_sum / $n; |
|
115
|
14
|
|
|
|
|
13
|
my $y_mean = $y_sum / $n; |
|
116
|
|
|
|
|
|
|
# Compute the sum of the difference of the squared ranks. |
|
117
|
14
|
|
|
|
|
18
|
my($x_sum2, $y_sum2, $xy_sum) = (0, 0, 0); |
|
118
|
14
|
|
|
|
|
15
|
for( 0 .. $self->size - 1 ) { |
|
119
|
119
|
|
|
|
|
124
|
$x_sum2 += ($self->{x_rank}[$_] - $x_mean) ** 2; |
|
120
|
119
|
|
|
|
|
105
|
$y_sum2 += ($self->{y_rank}[$_] - $y_mean) ** 2; |
|
121
|
119
|
|
|
|
|
138
|
$xy_sum += ($self->{x_rank}[$_] - $x_mean) * ($self->{y_rank}[$_] - $y_mean); |
|
122
|
|
|
|
|
|
|
} |
|
123
|
14
|
100
|
66
|
|
|
68
|
return 1 if $x_sum2 == 0 || $y_sum2 == 0; |
|
124
|
13
|
|
|
|
|
155
|
return $xy_sum / sqrt($x_sum2 * $y_sum2); |
|
125
|
|
|
|
|
|
|
} |
|
126
|
|
|
|
|
|
|
|
|
127
|
|
|
|
|
|
|
|
|
128
|
|
|
|
|
|
|
sub rank { |
|
129
|
28
|
|
|
28
|
1
|
22
|
my $u = shift; |
|
130
|
|
|
|
|
|
|
|
|
131
|
|
|
|
|
|
|
# Make a list of tied ranks for each datum. |
|
132
|
28
|
|
|
|
|
21
|
my %ties; |
|
133
|
28
|
|
|
|
|
49
|
push @{ $ties{ $u->[$_] } }, $_ for 0 .. @$u - 1; |
|
|
238
|
|
|
|
|
357
|
|
|
134
|
|
|
|
|
|
|
|
|
135
|
28
|
|
|
|
|
26
|
my ($old, $cur) = (0, 0); |
|
136
|
|
|
|
|
|
|
|
|
137
|
|
|
|
|
|
|
# Set the averaged ranks. |
|
138
|
28
|
|
|
|
|
17
|
my @ranks; |
|
139
|
28
|
|
|
|
|
88
|
for my $x (sort { $a <=> $b } keys %ties) { |
|
|
394
|
|
|
|
|
274
|
|
|
140
|
|
|
|
|
|
|
# Get the number of ties. |
|
141
|
197
|
|
|
|
|
105
|
my $ties = @{ $ties{$x} }; |
|
|
197
|
|
|
|
|
161
|
|
|
142
|
197
|
|
|
|
|
566
|
$cur += $ties; |
|
143
|
|
|
|
|
|
|
|
|
144
|
197
|
100
|
|
|
|
160
|
if ($ties > 1) { |
|
145
|
|
|
|
|
|
|
# Average the tied data. |
|
146
|
15
|
|
|
|
|
19
|
my $average = $old + ($ties + 1) / 2; |
|
147
|
15
|
|
|
|
|
32
|
$ranks[$_] = $average for @{ $ties{$x} }; |
|
|
15
|
|
|
|
|
41
|
|
|
148
|
|
|
|
|
|
|
} |
|
149
|
|
|
|
|
|
|
else { |
|
150
|
|
|
|
|
|
|
# Add the single rank to the list of ranks. |
|
151
|
182
|
|
|
|
|
146
|
$ranks[ $ties{$x}[0] ] = $cur; |
|
152
|
|
|
|
|
|
|
} |
|
153
|
|
|
|
|
|
|
|
|
154
|
197
|
|
|
|
|
160
|
$old = $cur; |
|
155
|
|
|
|
|
|
|
} |
|
156
|
|
|
|
|
|
|
|
|
157
|
|
|
|
|
|
|
# Remove the non-tied ranks. |
|
158
|
28
|
|
|
|
|
69
|
while( my( $k, $v ) = each %ties ) { |
|
159
|
197
|
100
|
|
|
|
401
|
delete $ties{$k} unless @$v > 1; |
|
160
|
|
|
|
|
|
|
} |
|
161
|
|
|
|
|
|
|
|
|
162
|
|
|
|
|
|
|
# Return the ranks arrayref in a scalar context and include ties |
|
163
|
|
|
|
|
|
|
# if called in a list context. |
|
164
|
28
|
50
|
|
|
|
70
|
return wantarray ? (\@ranks, \%ties) : \@ranks; |
|
165
|
|
|
|
|
|
|
} |
|
166
|
|
|
|
|
|
|
|
|
167
|
|
|
|
|
|
|
sub co_sort { |
|
168
|
1
|
|
|
1
|
1
|
2
|
my( $u, $v ) = @_; |
|
169
|
1
|
50
|
|
|
|
3
|
return unless @$u == @$v; |
|
170
|
|
|
|
|
|
|
# Ye olde Schwartzian Transforme: |
|
171
|
10
|
|
|
|
|
13
|
$v = [ |
|
172
|
23
|
50
|
|
|
|
38
|
map { $_->[1] } |
|
173
|
10
|
|
|
|
|
21
|
sort { $a->[0] <=> $b->[0] || $a->[1] <=> $b->[1] } |
|
174
|
1
|
|
|
|
|
12
|
map { [ $u->[$_], $v->[$_] ] } |
|
175
|
|
|
|
|
|
|
0 .. @$u - 1 |
|
176
|
|
|
|
|
|
|
]; |
|
177
|
|
|
|
|
|
|
# Sort the independent vector last. |
|
178
|
1
|
|
|
|
|
4
|
$u = [ sort { $a <=> $b } @$u ]; |
|
|
23
|
|
|
|
|
14
|
|
|
179
|
1
|
|
|
|
|
2
|
return $u, $v; |
|
180
|
|
|
|
|
|
|
} |
|
181
|
|
|
|
|
|
|
|
|
182
|
|
|
|
|
|
|
sub csim { |
|
183
|
3
|
|
|
3
|
1
|
4
|
my $self = shift; |
|
184
|
|
|
|
|
|
|
|
|
185
|
|
|
|
|
|
|
# Get the pitch matrices for each vector. |
|
186
|
3
|
|
|
|
|
7
|
my $m1 = correlation_matrix($self->{x_data}); |
|
187
|
|
|
|
|
|
|
#warn map { "@$_\n" } @$m1; |
|
188
|
3
|
|
|
|
|
6
|
my $m2 = correlation_matrix($self->{y_data}); |
|
189
|
|
|
|
|
|
|
#warn map { "@$_\n" } @$m2; |
|
190
|
|
|
|
|
|
|
|
|
191
|
|
|
|
|
|
|
# Compute the rank correlation. |
|
192
|
3
|
|
|
|
|
3
|
my $k = 0; |
|
193
|
3
|
|
|
|
|
4
|
for my $i (0 .. @$m1 - 1) { |
|
194
|
16
|
|
|
|
|
11
|
for my $j (0 .. @$m1 - 1) { |
|
195
|
96
|
100
|
|
|
|
157
|
$k++ if $m1->[$i][$j] == $m2->[$i][$j]; |
|
196
|
|
|
|
|
|
|
} |
|
197
|
|
|
|
|
|
|
} |
|
198
|
|
|
|
|
|
|
|
|
199
|
|
|
|
|
|
|
# Return the rank correlation normalized by the number of rows in |
|
200
|
|
|
|
|
|
|
# the pitch matrices. |
|
201
|
3
|
|
|
|
|
15
|
return $k / (@$m1 * @$m1); |
|
202
|
|
|
|
|
|
|
} |
|
203
|
|
|
|
|
|
|
|
|
204
|
|
|
|
|
|
|
sub pad_vectors { |
|
205
|
14
|
|
|
14
|
1
|
14
|
my ($u, $v) = @_; |
|
206
|
|
|
|
|
|
|
|
|
207
|
14
|
50
|
|
|
|
34
|
if (@$u > @$v) { |
|
|
|
50
|
|
|
|
|
|
|
208
|
0
|
|
|
|
|
0
|
$v = [ @$v, (0) x (@$u - @$v) ]; |
|
209
|
|
|
|
|
|
|
} |
|
210
|
|
|
|
|
|
|
elsif (@$u < @$v) { |
|
211
|
0
|
|
|
|
|
0
|
$u = [ @$u, (0) x (@$v - @$u) ]; |
|
212
|
|
|
|
|
|
|
} |
|
213
|
|
|
|
|
|
|
|
|
214
|
14
|
|
|
|
|
21
|
return $u, $v; |
|
215
|
|
|
|
|
|
|
} |
|
216
|
|
|
|
|
|
|
|
|
217
|
|
|
|
|
|
|
sub correlation_matrix { |
|
218
|
6
|
|
|
6
|
1
|
3
|
my $u = shift; |
|
219
|
6
|
|
|
|
|
6
|
my $c; |
|
220
|
|
|
|
|
|
|
|
|
221
|
|
|
|
|
|
|
# Is a row value (i) lower than a column value (j)? |
|
222
|
6
|
|
|
|
|
8
|
for my $i (0 .. @$u - 1) { |
|
223
|
32
|
|
|
|
|
23
|
for my $j (0 .. @$u - 1) { |
|
224
|
192
|
100
|
|
|
|
244
|
$c->[$i][$j] = $u->[$i] < $u->[$j] ? 1 : 0; |
|
225
|
|
|
|
|
|
|
} |
|
226
|
|
|
|
|
|
|
} |
|
227
|
|
|
|
|
|
|
|
|
228
|
6
|
|
|
|
|
6
|
return $c; |
|
229
|
|
|
|
|
|
|
} |
|
230
|
|
|
|
|
|
|
|
|
231
|
|
|
|
|
|
|
sub kendall { |
|
232
|
13
|
|
|
13
|
1
|
16
|
my $self = shift; |
|
233
|
|
|
|
|
|
|
|
|
234
|
|
|
|
|
|
|
# Calculate number of concordant and discordant pairs. |
|
235
|
13
|
|
|
|
|
17
|
my( $concordant, $discordant ) = ( 0, 0 ); |
|
236
|
13
|
|
|
|
|
18
|
for my $i ( 0 .. $self->size - 1 ) { |
|
237
|
115
|
|
|
|
|
126
|
for my $j ( $i + 1 .. $self->size - 1 ) { |
|
238
|
574
|
|
|
|
|
728
|
my $x_sign = sign( $self->{x_data}[$j] - $self->{x_data}[$i] ); |
|
239
|
574
|
|
|
|
|
726
|
my $y_sign = sign( $self->{y_data}[$j] - $self->{y_data}[$i] ); |
|
240
|
574
|
100
|
100
|
|
|
1267
|
if (not($x_sign and $y_sign)) {} |
|
|
|
100
|
|
|
|
|
|
|
241
|
288
|
|
|
|
|
290
|
elsif ($x_sign == $y_sign) { $concordant++ } |
|
242
|
178
|
|
|
|
|
144
|
else { $discordant++ } |
|
243
|
|
|
|
|
|
|
} |
|
244
|
|
|
|
|
|
|
} |
|
245
|
|
|
|
|
|
|
|
|
246
|
|
|
|
|
|
|
# Set the indirect relationship. |
|
247
|
13
|
|
|
|
|
15
|
my $d = $self->size * ($self->size - 1) / 2; |
|
248
|
13
|
100
|
100
|
|
|
13
|
if( keys %{ $self->x_ties } || keys %{ $self->y_ties } ) { |
|
|
13
|
|
|
|
|
15
|
|
|
|
11
|
|
|
|
|
13
|
|
|
249
|
5
|
|
|
|
|
7
|
my $x = 0; |
|
250
|
5
|
|
|
|
|
4
|
$x += @$_ * (@$_ - 1) for values %{ $self->x_ties }; |
|
|
5
|
|
|
|
|
6
|
|
|
251
|
5
|
|
|
|
|
9
|
$x = $d - $x / 2; |
|
252
|
5
|
|
|
|
|
5
|
my $y = 0; |
|
253
|
5
|
|
|
|
|
3
|
$y += @$_ * (@$_ - 1) for values %{ $self->y_ties }; |
|
|
5
|
|
|
|
|
8
|
|
|
254
|
5
|
|
|
|
|
5
|
$y = $d - $y / 2; |
|
255
|
5
|
|
|
|
|
7
|
$d = sqrt($x * $y); |
|
256
|
|
|
|
|
|
|
} |
|
257
|
|
|
|
|
|
|
|
|
258
|
13
|
|
|
|
|
128
|
return ($concordant - $discordant) / $d; |
|
259
|
|
|
|
|
|
|
} |
|
260
|
|
|
|
|
|
|
|
|
261
|
|
|
|
|
|
|
sub sign { |
|
262
|
1148
|
|
|
1148
|
1
|
660
|
my $x = shift; |
|
263
|
1148
|
100
|
|
|
|
1221
|
return 0 if $x == 0; |
|
264
|
1024
|
100
|
|
|
|
967
|
return $x > 0 ? 1 : -1; |
|
265
|
|
|
|
|
|
|
} |
|
266
|
|
|
|
|
|
|
|
|
267
|
|
|
|
|
|
|
1; |
|
268
|
|
|
|
|
|
|
|
|
269
|
|
|
|
|
|
|
__END__ |