| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Statistics::PCA::Varimax; |
|
2
|
|
|
|
|
|
|
|
|
3
|
1
|
|
|
1
|
|
24695
|
use warnings; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
37
|
|
|
4
|
1
|
|
|
1
|
|
5
|
use strict; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
34
|
|
|
5
|
1
|
|
|
1
|
|
6
|
use Carp; |
|
|
1
|
|
|
|
|
6
|
|
|
|
1
|
|
|
|
|
103
|
|
|
6
|
1
|
|
|
1
|
|
437
|
use Math::GSL::Linalg::SVD; |
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
use Math::MatrixReal; |
|
8
|
|
|
|
|
|
|
use List::Util qw(sum); |
|
9
|
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
=head1 NAME |
|
11
|
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
Statistics::PCA::Varimax - A Perl implementation of Varimax rotation. |
|
13
|
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
=cut |
|
15
|
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
=head1 VERSION |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
This document describes Statistics::PCA::Varimax version 0.0.2 |
|
19
|
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
=cut |
|
22
|
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
=head1 SYNOPSIS |
|
24
|
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
use Statistics::PCA::Varimax; |
|
26
|
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
# Each nested array ref corresponds to the loadings for a single factor. |
|
28
|
|
|
|
|
|
|
my $loadings = [ |
|
29
|
|
|
|
|
|
|
[qw/ 0.28681878905 0.69807334810 0.74438876316 0.47052419229 0.68079195447 0.49817011866 0.86049803480 0.64178962603 0.29784558460 /], |
|
30
|
|
|
|
|
|
|
[qw/ 0.07560334830 0.15335493657 -0.40959477002 0.52231277744 -0.15586396086 -0.49832262559 -0.11502014276 0.32160898539 0.59537280152 /], |
|
31
|
|
|
|
|
|
|
[qw/ -0.84084848877 -0.08371208961 0.02047721303 -0.13507580587 0.14832508991 0.25345619152 -0.01159349490 -0.04396749541 0.53340721684 /], |
|
32
|
|
|
|
|
|
|
]; |
|
33
|
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
# Calculate the rotated loadings and orthogonal matrix. |
|
35
|
|
|
|
|
|
|
my ($rotated_loadings_ref, $orthogonal_matrix_ref) = &rotate($loadings); |
|
36
|
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
print qq{\nRotated Loadings:\n}; |
|
38
|
|
|
|
|
|
|
for my $c (0..$#{$rotated_loadings_ref->[0]}) { for my $r (0..$#{$rotated_loadings_ref}) { |
|
39
|
|
|
|
|
|
|
#print qq{$rotated_loadings_ref->[$r][$c], and r: $r and c: $c\t} }; print qq{\n}; |
|
40
|
|
|
|
|
|
|
print qq{$rotated_loadings_ref->[$r][$c]\t} }; print qq{\n}; |
|
41
|
|
|
|
|
|
|
} |
|
42
|
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
print qq{\nOrthogonal Matrix:\n}; |
|
44
|
|
|
|
|
|
|
for my $r (0..$#{$orthogonal_matrix_ref}) { for my $c (0..$#{$orthogonal_matrix_ref->[$r]}) { |
|
45
|
|
|
|
|
|
|
print qq{$orthogonal_matrix_ref->[$r][$c]\t} }; print qq{\n}; |
|
46
|
|
|
|
|
|
|
} |
|
47
|
|
|
|
|
|
|
|
|
48
|
|
|
|
|
|
|
=cut |
|
49
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
=head1 DESCRIPTION |
|
51
|
|
|
|
|
|
|
|
|
52
|
|
|
|
|
|
|
Varimax rotation is a change of coordinates used in principal component analysis and factor analysis that maximizes the |
|
53
|
|
|
|
|
|
|
sum of the variances of the squared loadings matrix. This module exports a single routine 'rotate'. This routine is |
|
54
|
|
|
|
|
|
|
called in LIST context and accepts a LIST-of-LISTS (LoL) corresponding to the loadings matrix of a factor analysis and |
|
55
|
|
|
|
|
|
|
returns two references to LoLs (NOTE: each nested LIST corresponds to the loadings for a single factor). The first is a |
|
56
|
|
|
|
|
|
|
LoL of the rotated loadings and the seconds is a LoL of the orthogonal matrix. See http://en.wikipedia.org/wiki/Varimax_rotation. |
|
57
|
|
|
|
|
|
|
|
|
58
|
|
|
|
|
|
|
=cut |
|
59
|
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
=head1 DEPENDENCIES |
|
61
|
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
'Math::GSL::Linalg::SVD' => '0.0.2', |
|
63
|
|
|
|
|
|
|
'Math::MatrixReal' => '2.05', |
|
64
|
|
|
|
|
|
|
'List::Util' => '1.22', |
|
65
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
=cut |
|
67
|
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
=head1 AUTHOR |
|
69
|
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
Daniel S. T. Hughes C<< >> |
|
71
|
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
=cut |
|
73
|
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
use version; our $VERSION = qv('0.0.2'); |
|
75
|
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
require Exporter; |
|
77
|
|
|
|
|
|
|
our @ISA = qw(Exporter); |
|
78
|
|
|
|
|
|
|
our @EXPORT = qw(rotate); # symbols to export by default |
|
79
|
|
|
|
|
|
|
|
|
80
|
|
|
|
|
|
|
sub rotate { |
|
81
|
|
|
|
|
|
|
my $var = shift; |
|
82
|
|
|
|
|
|
|
|
|
83
|
|
|
|
|
|
|
croak qq{\nCall me in LIST context} if !wantarray; |
|
84
|
|
|
|
|
|
|
|
|
85
|
|
|
|
|
|
|
&_data_checks($var); |
|
86
|
|
|
|
|
|
|
|
|
87
|
|
|
|
|
|
|
# (1a) normalise |
|
88
|
|
|
|
|
|
|
|
|
89
|
|
|
|
|
|
|
#y calculate - the sqrt of the sum of the squares of each row |
|
90
|
|
|
|
|
|
|
my $sc_vec = &_calc_sc_vec($var); |
|
91
|
|
|
|
|
|
|
|
|
92
|
|
|
|
|
|
|
#y divide each entry in each row by the normalising values - not matrix multiplication - i.e. in this case it is 9x3 devided by 1x9 - i.e. could only give 1x3 or 3x1 |
|
93
|
|
|
|
|
|
|
|
|
94
|
|
|
|
|
|
|
my $mat_t = &_transpose($var); |
|
95
|
|
|
|
|
|
|
|
|
96
|
|
|
|
|
|
|
#/ call with 3rd arg for multiplification |
|
97
|
|
|
|
|
|
|
#$mat_t = _devide_normalise($mat_t,$sc_vec); |
|
98
|
|
|
|
|
|
|
$mat_t = &_normalise($mat_t,$sc_vec); |
|
99
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
my $normalised_data = &_transpose($mat_t); |
|
101
|
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
#y transpose before or after?!? |
|
103
|
|
|
|
|
|
|
my $norm_mat = Math::MatrixReal->new_from_cols ( $normalised_data ); |
|
104
|
|
|
|
|
|
|
|
|
105
|
|
|
|
|
|
|
# (1b) initialise others - p and nc - i.e. variable and factor number |
|
106
|
|
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
my $p_variables = scalar ( @{$mat_t} ); |
|
108
|
|
|
|
|
|
|
my $nc_factors = scalar ( @{$mat_t->[0]} ); |
|
109
|
|
|
|
|
|
|
|
|
110
|
|
|
|
|
|
|
# (1c) initialise TT diagonal array |
|
111
|
|
|
|
|
|
|
#my @ar = (1) x scalar ( @{$mat_t->[0]} ); |
|
112
|
|
|
|
|
|
|
my @ar = (1) x $nc_factors; |
|
113
|
|
|
|
|
|
|
my $TT = Math::MatrixReal->new_diag( [ @ar ] ); |
|
114
|
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
#/ iterations |
|
116
|
|
|
|
|
|
|
$TT = &_iterate($TT, $p_variables, $nc_factors, $norm_mat ); |
|
117
|
|
|
|
|
|
|
|
|
118
|
|
|
|
|
|
|
#y we repeat step 2a of loop for z generation one final time - i.e. z = x * TT |
|
119
|
|
|
|
|
|
|
my $z = $norm_mat->multiply($TT); |
|
120
|
|
|
|
|
|
|
|
|
121
|
|
|
|
|
|
|
#my ($rows,$columns) = $TT->dim(); |
|
122
|
|
|
|
|
|
|
#my ($rows1,$columns1) = $norm_mat->dim(); |
|
123
|
|
|
|
|
|
|
#my ($rows2,$columns2) = $z->dim(); |
|
124
|
|
|
|
|
|
|
|
|
125
|
|
|
|
|
|
|
#y we now reverse the normalisation step: |
|
126
|
|
|
|
|
|
|
my $z_last = _deep_copy($z->[0]); |
|
127
|
|
|
|
|
|
|
|
|
128
|
|
|
|
|
|
|
#/ call with 3rd argument to multiply |
|
129
|
|
|
|
|
|
|
#$z_last = &_multiply_normalise($z_last, $sc_vec); |
|
130
|
|
|
|
|
|
|
$z_last = &_normalise($z_last, $sc_vec, 1); |
|
131
|
|
|
|
|
|
|
|
|
132
|
|
|
|
|
|
|
#y use from_rows instead of cols... |
|
133
|
|
|
|
|
|
|
#my $z_last_mat = Math::MatrixReal->new_from_cols ( $z_last ); |
|
134
|
|
|
|
|
|
|
#$z_last_mat = ~$z_last_mat; |
|
135
|
|
|
|
|
|
|
my $z_last_mat = Math::MatrixReal->new_from_rows ( $z_last ); |
|
136
|
|
|
|
|
|
|
|
|
137
|
|
|
|
|
|
|
my $rotated_loadings = _transpose($z_last_mat->[0]); |
|
138
|
|
|
|
|
|
|
|
|
139
|
|
|
|
|
|
|
return $rotated_loadings, $TT->[0]; |
|
140
|
|
|
|
|
|
|
# return $z_last_mat, $TT; |
|
141
|
|
|
|
|
|
|
} |
|
142
|
|
|
|
|
|
|
|
|
143
|
|
|
|
|
|
|
sub _data_checks { |
|
144
|
|
|
|
|
|
|
my $data_a_ref = shift; |
|
145
|
|
|
|
|
|
|
|
|
146
|
|
|
|
|
|
|
my $rows = scalar ( @{$data_a_ref} ); |
|
147
|
|
|
|
|
|
|
croak qq{\nI need some data - there are too few rows in your data.\n} if ( !$rows || $rows == 1 ); |
|
148
|
|
|
|
|
|
|
my $cols = scalar ( @{$data_a_ref->[0]} ); |
|
149
|
|
|
|
|
|
|
croak qq{\nI need some data - there are too few columns in your data.\n} if ( !$cols || $cols == 1 ); |
|
150
|
|
|
|
|
|
|
for my $row (@{$data_a_ref}) { |
|
151
|
|
|
|
|
|
|
croak qq{\n\nData set must be passed as ARRAY references.\n} if ( ref $row ne q{ARRAY} ); |
|
152
|
|
|
|
|
|
|
croak qq{\n\nAll rows must have the same number of columns.\n} if ( scalar( @{$row} ) != $cols ); |
|
153
|
|
|
|
|
|
|
} |
|
154
|
|
|
|
|
|
|
#/ was lazy and cut-n-pasted inappropriate tests - i.e. don´t check for auto-assigning of undef... use matrixreal tests! |
|
155
|
|
|
|
|
|
|
my $test = Math::MatrixReal->new_from_rows($data_a_ref) ; |
|
156
|
|
|
|
|
|
|
return; |
|
157
|
|
|
|
|
|
|
} |
|
158
|
|
|
|
|
|
|
|
|
159
|
|
|
|
|
|
|
sub _iterate { |
|
160
|
|
|
|
|
|
|
my ( $TT, $p_variables, $nc_factors, $norm_mat ) = @_; |
|
161
|
|
|
|
|
|
|
|
|
162
|
|
|
|
|
|
|
# (1d) initialise d |
|
163
|
|
|
|
|
|
|
my $d = 0; |
|
164
|
|
|
|
|
|
|
|
|
165
|
|
|
|
|
|
|
# (1e) initialise looping params; |
|
166
|
|
|
|
|
|
|
my $z; |
|
167
|
|
|
|
|
|
|
my $param = 1e-05; |
|
168
|
|
|
|
|
|
|
my $count = 1; |
|
169
|
|
|
|
|
|
|
|
|
170
|
|
|
|
|
|
|
|
|
171
|
|
|
|
|
|
|
LOOP_LABEL: for (1..3000) { |
|
172
|
|
|
|
|
|
|
|
|
173
|
|
|
|
|
|
|
# (2a) create z matrix: z <- x * TT |
|
174
|
|
|
|
|
|
|
$z = $norm_mat->multiply($TT); |
|
175
|
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
# (2b) create matrix B |
|
177
|
|
|
|
|
|
|
|
|
178
|
|
|
|
|
|
|
#r (1) - create array of 1´s |
|
179
|
|
|
|
|
|
|
#my @ar_var = (1) x scalar ( @{$mat_t} ); |
|
180
|
|
|
|
|
|
|
my @ar_var = (1) x $p_variables; |
|
181
|
|
|
|
|
|
|
# make matrix out of single array/vector |
|
182
|
|
|
|
|
|
|
my $vector_of_ones_mat = Math::MatrixReal->new_from_rows( [ [@ar_var] ] ); |
|
183
|
|
|
|
|
|
|
|
|
184
|
|
|
|
|
|
|
#print qq{\n\nwe have diagonal matrix\n}, $vector_of_ones; |
|
185
|
|
|
|
|
|
|
|
|
186
|
|
|
|
|
|
|
#r (2) create matrices of z to powers |
|
187
|
|
|
|
|
|
|
my $z_3_mat = _raise_to_power($z,3); |
|
188
|
|
|
|
|
|
|
my $z_2_mat = _raise_to_power($z,2); |
|
189
|
|
|
|
|
|
|
|
|
190
|
|
|
|
|
|
|
#r (3) multiply vector_of_ones_mat by z_2_mat - vector of ones is 1x9 and z´s are same as loadings e.g. 9x3 - thus we generate 1xfactor-number |
|
191
|
|
|
|
|
|
|
my $vec1s_z2 = $vector_of_ones_mat->multiply($z_2_mat); |
|
192
|
|
|
|
|
|
|
|
|
193
|
|
|
|
|
|
|
#r (4) we want to generate a matrix from a vector of diagonals - the vector of diagonals is in the single row |
|
194
|
|
|
|
|
|
|
my $vec1s_z2_diag = Math::MatrixReal->new_diag( [ @{_deep_copy($vec1s_z2->[0])->[0]} ] ); |
|
195
|
|
|
|
|
|
|
|
|
196
|
|
|
|
|
|
|
#r (5) divide each by factor number - do inplace |
|
197
|
|
|
|
|
|
|
#$vec1s_z2_diag->multiply_scalar($vec1s_z2_diag,1/9); |
|
198
|
|
|
|
|
|
|
$vec1s_z2_diag->multiply_scalar($vec1s_z2_diag,1/$p_variables); |
|
199
|
|
|
|
|
|
|
|
|
200
|
|
|
|
|
|
|
#r (6) multiply z by vec1s_z2_diag |
|
201
|
|
|
|
|
|
|
my $vec1s_z2_diag_z_prod = $z->multiply($vec1s_z2_diag); |
|
202
|
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
#r (7) subtract vec1s_z2_diag_z_prod from z^3 |
|
204
|
|
|
|
|
|
|
# must initialise a matrix to use subtract |
|
205
|
|
|
|
|
|
|
#my $z3_subtracted = new Math::MatrixReal(9,3); |
|
206
|
|
|
|
|
|
|
my $z3_subtracted = new Math::MatrixReal($p_variables,$nc_factors); # matrix must already exist to use subtract |
|
207
|
|
|
|
|
|
|
$z3_subtracted->subtract($z_3_mat,$vec1s_z2_diag_z_prod); |
|
208
|
|
|
|
|
|
|
|
|
209
|
|
|
|
|
|
|
#r (7) t(x) %*% (z^3 - z %*% diag(drop(rep(1, p) %*% z^2))/p) |
|
210
|
|
|
|
|
|
|
#y instead of transposing x we transpode z3_subtracted to allow multiplification... then transpose... - probably best to tranpose other to directly get B |
|
211
|
|
|
|
|
|
|
|
|
212
|
|
|
|
|
|
|
#/ mult syntax is mat1(blah1,n) x mat2(n,blah2) mat1->multiply(mat2) - thus: $z3_subtracted = ~$z3_subtracted; my $B= $z3_subtracted->multiply($norm_mat); |
|
213
|
|
|
|
|
|
|
#/ resulting in a need to transpose B should be identical to reversing process |
|
214
|
|
|
|
|
|
|
# $z3_subtracted = ~$z3_subtracted; |
|
215
|
|
|
|
|
|
|
# #y z3_subtracted is now 3x9 - norm is still 9x3 |
|
216
|
|
|
|
|
|
|
# #$norm_mat = ~$norm_mat; |
|
217
|
|
|
|
|
|
|
# #y 3x9 * 9x3 |
|
218
|
|
|
|
|
|
|
# my $B = $z3_subtracted->multiply($norm_mat); |
|
219
|
|
|
|
|
|
|
# |
|
220
|
|
|
|
|
|
|
# $B = ~$B; |
|
221
|
|
|
|
|
|
|
#///////////////////////////////////////////////////////////////////////////////////// |
|
222
|
|
|
|
|
|
|
#y norm is 9x3 |
|
223
|
|
|
|
|
|
|
my $norm_mat_alt = ~$norm_mat; |
|
224
|
|
|
|
|
|
|
#y norm_alt is 3x9 |
|
225
|
|
|
|
|
|
|
my $B = $norm_mat_alt->multiply($z3_subtracted); |
|
226
|
|
|
|
|
|
|
#print qq{\n\nwe have B\n}, $B; |
|
227
|
|
|
|
|
|
|
#///////////////////////////////////////////////////////////////////////////////////// |
|
228
|
|
|
|
|
|
|
|
|
229
|
|
|
|
|
|
|
# (2c) SVD - uses PDL and SDV GSL module |
|
230
|
|
|
|
|
|
|
#r sB <- La.svd(B) |
|
231
|
|
|
|
|
|
|
my $b = $B->[0]; |
|
232
|
|
|
|
|
|
|
|
|
233
|
|
|
|
|
|
|
my $svd = Math::GSL::Linalg::SVD->new; |
|
234
|
|
|
|
|
|
|
$svd->load_data( {data => $b}); |
|
235
|
|
|
|
|
|
|
$svd->decompose({ algorithm => q{gd} }); |
|
236
|
|
|
|
|
|
|
my ($d_vec, $u, $v) = $svd->results; |
|
237
|
|
|
|
|
|
|
|
|
238
|
|
|
|
|
|
|
my $u_mat = Math::MatrixReal->new_from_cols($u); |
|
239
|
|
|
|
|
|
|
my $v_mat = Math::MatrixReal->new_from_cols($v); |
|
240
|
|
|
|
|
|
|
$u_mat = ~$u_mat; |
|
241
|
|
|
|
|
|
|
|
|
242
|
|
|
|
|
|
|
# (2d) TT <- sB$u %*% sB$vt |
|
243
|
|
|
|
|
|
|
$TT = $u_mat->multiply($v_mat); |
|
244
|
|
|
|
|
|
|
|
|
245
|
|
|
|
|
|
|
# (2e) we save old d |
|
246
|
|
|
|
|
|
|
my $d_old = $d; |
|
247
|
|
|
|
|
|
|
#my $d_old = deep_copy($d); |
|
248
|
|
|
|
|
|
|
|
|
249
|
|
|
|
|
|
|
# (2f) calculate new d - don´t re-declare - over-writing previous value |
|
250
|
|
|
|
|
|
|
$d = sum @{$d_vec}; |
|
251
|
|
|
|
|
|
|
|
|
252
|
|
|
|
|
|
|
# (2g) possible premature loop exit |
|
253
|
|
|
|
|
|
|
$count++; |
|
254
|
|
|
|
|
|
|
#if ( $d < ( $d_old * ( 1 + $param ) ) ) { print qq{\n\nEXITING EARLY AT ITERATION $count\n\n};last LOOP_LABEL; } |
|
255
|
|
|
|
|
|
|
last LOOP_LABEL if ( $d < ( $d_old * ( 1 + $param ) ) ); |
|
256
|
|
|
|
|
|
|
|
|
257
|
|
|
|
|
|
|
} |
|
258
|
|
|
|
|
|
|
return $TT; |
|
259
|
|
|
|
|
|
|
} |
|
260
|
|
|
|
|
|
|
|
|
261
|
|
|
|
|
|
|
sub _deep_copy { |
|
262
|
|
|
|
|
|
|
my $ref = shift; |
|
263
|
|
|
|
|
|
|
if (!ref $ref) { $ref; } |
|
264
|
|
|
|
|
|
|
elsif (ref $ref eq q{ARRAY} ) { [ map { _deep_copy($_) } @{$ref} ]; } |
|
265
|
|
|
|
|
|
|
elsif (ref $ref eq q{HASH} ) { |
|
266
|
|
|
|
|
|
|
+ { map { $_ => _deep_copy($ref->{$_}) } (keys %{$ref}) }; } |
|
267
|
|
|
|
|
|
|
else { die "what type is $_?" } |
|
268
|
|
|
|
|
|
|
} |
|
269
|
|
|
|
|
|
|
|
|
270
|
|
|
|
|
|
|
sub _transpose { |
|
271
|
|
|
|
|
|
|
my $a_ref = shift; |
|
272
|
|
|
|
|
|
|
my $done = []; |
|
273
|
|
|
|
|
|
|
for my $col ( 0..$#{$a_ref->[0]} ) { |
|
274
|
|
|
|
|
|
|
push @{$done}, [ map { $_->[$col] } @{$a_ref} ]; |
|
275
|
|
|
|
|
|
|
} |
|
276
|
|
|
|
|
|
|
return $done; |
|
277
|
|
|
|
|
|
|
} |
|
278
|
|
|
|
|
|
|
|
|
279
|
|
|
|
|
|
|
sub _calc_sc_vec { |
|
280
|
|
|
|
|
|
|
my $lol = shift; |
|
281
|
|
|
|
|
|
|
my $sc_vec = []; |
|
282
|
|
|
|
|
|
|
$lol = &_transpose ($lol); |
|
283
|
|
|
|
|
|
|
for my $i ( @{$lol} ) { |
|
284
|
|
|
|
|
|
|
my $val = sqrt (sum map { $_**2 } @{$i} ); |
|
285
|
|
|
|
|
|
|
push @{$sc_vec}, $val; |
|
286
|
|
|
|
|
|
|
} |
|
287
|
|
|
|
|
|
|
return $sc_vec; |
|
288
|
|
|
|
|
|
|
} |
|
289
|
|
|
|
|
|
|
|
|
290
|
|
|
|
|
|
|
sub _raise_to_power { |
|
291
|
|
|
|
|
|
|
my ($z, $power) = @_; |
|
292
|
|
|
|
|
|
|
# making a new matrix so best to deep_copy rather than fuck up the whole thing - just the data of the matrix |
|
293
|
|
|
|
|
|
|
my $z_3 = _deep_copy($z->[0]); |
|
294
|
|
|
|
|
|
|
for my $rows (0..$#{$z_3}) { |
|
295
|
|
|
|
|
|
|
for my $col (@{$z_3->[$rows]}) { |
|
296
|
|
|
|
|
|
|
$col = $col**$power }} |
|
297
|
|
|
|
|
|
|
my $z_3_mat = Math::MatrixReal->new_from_rows( $z_3 ); |
|
298
|
|
|
|
|
|
|
#print qq{\n\nwe have z^3 in R\n}, $z_3_mat; |
|
299
|
|
|
|
|
|
|
return $z_3_mat; |
|
300
|
|
|
|
|
|
|
} |
|
301
|
|
|
|
|
|
|
|
|
302
|
|
|
|
|
|
|
|
|
303
|
|
|
|
|
|
|
#print qq{\ncalling with 3rd arg:\n }, &_normalise(1,2,q{ee}); |
|
304
|
|
|
|
|
|
|
#print qq{\ncalling without 3rd arg:\n }, &_normalise(1,2,); |
|
305
|
|
|
|
|
|
|
|
|
306
|
|
|
|
|
|
|
#/ call with any 3rd arg to make multiplification |
|
307
|
|
|
|
|
|
|
sub _normalise { |
|
308
|
|
|
|
|
|
|
my ( $mat_t, $sc_vec, $mult ) = @_; |
|
309
|
|
|
|
|
|
|
for my $rows (0..$#{$mat_t}) { |
|
310
|
|
|
|
|
|
|
for my $col (@{$mat_t->[$rows]}) { |
|
311
|
|
|
|
|
|
|
#if (@_ > 2) { print qq{long } } else { print qq{not long } }; |
|
312
|
|
|
|
|
|
|
#if (defined $mult) { print qq{defined } } else { print qq{not defined } }; |
|
313
|
|
|
|
|
|
|
if (@_ == 2) { |
|
314
|
|
|
|
|
|
|
$col = $col / $sc_vec->[$rows]; |
|
315
|
|
|
|
|
|
|
} |
|
316
|
|
|
|
|
|
|
elsif (@_ ==3) { |
|
317
|
|
|
|
|
|
|
$col = $col * $sc_vec->[$rows]; |
|
318
|
|
|
|
|
|
|
} |
|
319
|
|
|
|
|
|
|
} |
|
320
|
|
|
|
|
|
|
} |
|
321
|
|
|
|
|
|
|
return $mat_t; |
|
322
|
|
|
|
|
|
|
} |
|
323
|
|
|
|
|
|
|
|
|
324
|
|
|
|
|
|
|
#my ($z_last_mat, $TT) = &rotate($var); |
|
325
|
|
|
|
|
|
|
#print qq{\n\n\nwe are done\n\nloadings:\n}, $z_last_mat, qq{\n\nand rotmat:\n}, $TT; |
|
326
|
|
|
|
|
|
|
|
|
327
|
|
|
|
|
|
|
|
|
328
|
|
|
|
|
|
|
1; # Magic true value required at end of module |
|
329
|
|
|
|
|
|
|
__END__ |