| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Statistics::LineFit; |
|
2
|
14
|
|
|
14
|
|
367833
|
use strict; |
|
|
14
|
|
|
|
|
36
|
|
|
|
14
|
|
|
|
|
936
|
|
|
3
|
14
|
|
|
14
|
|
73
|
use Carp qw(carp); |
|
|
14
|
|
|
|
|
22
|
|
|
|
14
|
|
|
|
|
1077
|
|
|
4
|
|
|
|
|
|
|
BEGIN { |
|
5
|
14
|
|
|
14
|
|
84
|
use Exporter (); |
|
|
14
|
|
|
|
|
40
|
|
|
|
14
|
|
|
|
|
353
|
|
|
6
|
14
|
|
|
14
|
|
81
|
use vars qw ($AUTHOR $VERSION @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS); |
|
|
14
|
|
|
|
|
21
|
|
|
|
14
|
|
|
|
|
2101
|
|
|
7
|
14
|
|
|
14
|
|
29
|
$AUTHOR = 'Richard Anderson '; |
|
8
|
14
|
|
|
|
|
44
|
@EXPORT = @EXPORT_OK = qw(); |
|
9
|
14
|
|
|
|
|
42
|
%EXPORT_TAGS = (); |
|
10
|
14
|
|
|
|
|
212
|
@ISA = qw(Exporter); |
|
11
|
14
|
|
|
|
|
38478
|
$VERSION = 0.06; |
|
12
|
|
|
|
|
|
|
} |
|
13
|
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
sub new { |
|
15
|
|
|
|
|
|
|
# |
|
16
|
|
|
|
|
|
|
# Purpose: Create a new Statistics::LineFit object |
|
17
|
|
|
|
|
|
|
# |
|
18
|
15
|
|
|
15
|
1
|
151419
|
my ($caller, $validate, $hush) = @_; |
|
19
|
15
|
100
|
|
|
|
168
|
my $self = { doneRegress => 0, |
|
|
|
100
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
gotData => 0, |
|
21
|
|
|
|
|
|
|
hush => defined $hush ? $hush : 0, |
|
22
|
|
|
|
|
|
|
validate => defined $validate ? $validate : 0, |
|
23
|
|
|
|
|
|
|
}; |
|
24
|
15
|
|
33
|
|
|
135
|
bless $self, ref($caller) || $caller; |
|
25
|
15
|
|
|
|
|
81
|
return $self; |
|
26
|
|
|
|
|
|
|
} |
|
27
|
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
sub coefficients { |
|
29
|
|
|
|
|
|
|
# |
|
30
|
|
|
|
|
|
|
# Purpose: Return the slope and intercept from least squares line fit |
|
31
|
|
|
|
|
|
|
# |
|
32
|
17
|
|
|
17
|
1
|
605
|
my $self = shift; |
|
33
|
17
|
100
|
66
|
|
|
125
|
unless (defined $self->{intercept} and defined $self->{slope}) { |
|
34
|
12
|
100
|
|
|
|
51
|
$self->regress() or return; |
|
35
|
|
|
|
|
|
|
} |
|
36
|
15
|
|
|
|
|
748
|
return ($self->{intercept}, $self->{slope}); |
|
37
|
|
|
|
|
|
|
} |
|
38
|
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
sub computeSums { |
|
40
|
|
|
|
|
|
|
# |
|
41
|
|
|
|
|
|
|
# Purpose: Compute sum of x, y, x**2, y**2 and x*y (private method) |
|
42
|
|
|
|
|
|
|
# |
|
43
|
14
|
|
|
14
|
0
|
524
|
my $self = shift; |
|
44
|
14
|
|
|
|
|
39
|
my ($sumX, $sumY, $sumXX, $sumYY, $sumXY) = (0, 0, 0, 0, 0); |
|
45
|
14
|
100
|
|
|
|
58
|
if (defined $self->{weight}) { |
|
46
|
5
|
|
|
|
|
20
|
for (my $i = 0; $i < $self->{numXY}; ++$i) { |
|
47
|
213
|
|
|
|
|
1076
|
$sumX += $self->{weight}[$i] * $self->{x}[$i]; |
|
48
|
213
|
|
|
|
|
362
|
$sumY += $self->{weight}[$i] * $self->{y}[$i]; |
|
49
|
213
|
|
|
|
|
366
|
$sumXX += $self->{weight}[$i] * $self->{x}[$i] ** 2; |
|
50
|
213
|
|
|
|
|
399
|
$sumYY += $self->{weight}[$i] * $self->{y}[$i] ** 2; |
|
51
|
213
|
|
|
|
|
704
|
$sumXY += $self->{weight}[$i] * $self->{x}[$i] |
|
52
|
|
|
|
|
|
|
* $self->{y}[$i]; |
|
53
|
|
|
|
|
|
|
} |
|
54
|
|
|
|
|
|
|
} else { |
|
55
|
9
|
|
|
|
|
47
|
for (my $i = 0; $i < $self->{numXY}; ++$i) { |
|
56
|
100030
|
|
|
|
|
125902
|
$sumX += $self->{x}[$i]; |
|
57
|
100030
|
|
|
|
|
140433
|
$sumY += $self->{y}[$i]; |
|
58
|
100030
|
|
|
|
|
118488
|
$sumXX += $self->{x}[$i] ** 2; |
|
59
|
100030
|
|
|
|
|
126448
|
$sumYY += $self->{y}[$i] ** 2; |
|
60
|
100030
|
|
|
|
|
270520
|
$sumXY += $self->{x}[$i] * $self->{y}[$i]; |
|
61
|
|
|
|
|
|
|
} |
|
62
|
|
|
|
|
|
|
} |
|
63
|
14
|
|
|
|
|
87
|
return ($sumX, $sumY, $sumXX, $sumYY, $sumXY); |
|
64
|
|
|
|
|
|
|
} |
|
65
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
sub durbinWatson { |
|
67
|
|
|
|
|
|
|
# |
|
68
|
|
|
|
|
|
|
# Purpose: Return the Durbin-Watson statistic |
|
69
|
|
|
|
|
|
|
# |
|
70
|
16
|
|
|
16
|
1
|
10623
|
my $self = shift; |
|
71
|
16
|
100
|
|
|
|
627
|
unless (defined $self->{durbinWatson}) { |
|
72
|
15
|
100
|
|
|
|
639
|
$self->regress() or return; |
|
73
|
14
|
|
|
|
|
27
|
my $sumErrDiff = 0; |
|
74
|
14
|
|
|
|
|
67
|
my $errorTMinus1 = $self->{y}[0] - ($self->{intercept} + $self->{slope} |
|
75
|
|
|
|
|
|
|
* $self->{x}[0]); |
|
76
|
14
|
|
|
|
|
60
|
for (my $i = 1; $i < $self->{numXY}; ++$i) { |
|
77
|
100229
|
|
|
|
|
192638
|
my $error = $self->{y}[$i] - ($self->{intercept} + $self->{slope} |
|
78
|
|
|
|
|
|
|
* $self->{x}[$i]); |
|
79
|
100229
|
|
|
|
|
107398
|
$sumErrDiff += ($error - $errorTMinus1) ** 2; |
|
80
|
100229
|
|
|
|
|
218496
|
$errorTMinus1 = $error; |
|
81
|
|
|
|
|
|
|
} |
|
82
|
14
|
100
|
|
|
|
58
|
$self->{durbinWatson} = $self->sumSqErrors() > 0 ? |
|
83
|
|
|
|
|
|
|
$sumErrDiff / $self->sumSqErrors() : 0; |
|
84
|
|
|
|
|
|
|
} |
|
85
|
15
|
|
|
|
|
77
|
return $self->{durbinWatson}; |
|
86
|
|
|
|
|
|
|
} |
|
87
|
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
sub meanSqError { |
|
89
|
|
|
|
|
|
|
# |
|
90
|
|
|
|
|
|
|
# Purpose: Return the mean squared error |
|
91
|
|
|
|
|
|
|
# |
|
92
|
16
|
|
|
16
|
1
|
4082
|
my $self = shift; |
|
93
|
16
|
100
|
|
|
|
86
|
unless (defined $self->{meanSqError}) { |
|
94
|
15
|
100
|
|
|
|
46
|
$self->regress() or return; |
|
95
|
14
|
|
|
|
|
42
|
$self->{meanSqError} = $self->sumSqErrors() / $self->{numXY}; |
|
96
|
|
|
|
|
|
|
} |
|
97
|
15
|
|
|
|
|
74
|
return $self->{meanSqError}; |
|
98
|
|
|
|
|
|
|
} |
|
99
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
sub predictedYs { |
|
101
|
|
|
|
|
|
|
# |
|
102
|
|
|
|
|
|
|
# Purpose: Return the predicted y values |
|
103
|
|
|
|
|
|
|
# |
|
104
|
28
|
|
|
28
|
1
|
951
|
my $self = shift; |
|
105
|
28
|
100
|
|
|
|
98
|
unless (defined $self->{predictedYs}) { |
|
106
|
15
|
100
|
|
|
|
52
|
$self->regress() or return; |
|
107
|
14
|
|
|
|
|
49
|
$self->{predictedYs} = []; |
|
108
|
14
|
|
|
|
|
64
|
for (my $i = 0; $i < $self->{numXY}; ++$i) { |
|
109
|
100243
|
|
|
|
|
272968
|
$self->{predictedYs}[$i] = $self->{intercept} |
|
110
|
|
|
|
|
|
|
+ $self->{slope} * $self->{x}[$i]; |
|
111
|
|
|
|
|
|
|
} |
|
112
|
|
|
|
|
|
|
} |
|
113
|
27
|
|
|
|
|
48
|
return @{$self->{predictedYs}}; |
|
|
27
|
|
|
|
|
19763
|
|
|
114
|
|
|
|
|
|
|
} |
|
115
|
|
|
|
|
|
|
|
|
116
|
|
|
|
|
|
|
sub regress { |
|
117
|
|
|
|
|
|
|
# |
|
118
|
|
|
|
|
|
|
# Purpose: Do weighted or unweighted least squares 2-D line fit (if needed) |
|
119
|
|
|
|
|
|
|
# |
|
120
|
|
|
|
|
|
|
# Description: |
|
121
|
|
|
|
|
|
|
# The equations below apply to both the weighted and unweighted fit: the |
|
122
|
|
|
|
|
|
|
# weights are normalized in setWeights(), so the sum of the weights is |
|
123
|
|
|
|
|
|
|
# equal to numXY. |
|
124
|
|
|
|
|
|
|
# |
|
125
|
131
|
|
|
131
|
1
|
188
|
my $self = shift; |
|
126
|
131
|
100
|
|
|
|
602
|
return $self->{regressOK} if $self->{doneRegress}; |
|
127
|
24
|
100
|
|
|
|
637
|
unless ($self->{gotData}) { |
|
128
|
10
|
50
|
|
|
|
17
|
carp "No valid data input - can't do regression" unless $self->{hush}; |
|
129
|
10
|
|
|
|
|
57
|
return 0; |
|
130
|
|
|
|
|
|
|
} |
|
131
|
14
|
|
|
|
|
52
|
my ($sumX, $sumY, $sumYY, $sumXY); |
|
132
|
14
|
|
|
|
|
55
|
($sumX, $sumY, $self->{sumXX}, $sumYY, $sumXY) = $self->computeSums(); |
|
133
|
14
|
|
|
|
|
70
|
$self->{sumSqDevX} = $self->{sumXX} - $sumX ** 2 / $self->{numXY}; |
|
134
|
14
|
50
|
|
|
|
59
|
if ($self->{sumSqDevX} != 0) { |
|
135
|
14
|
|
|
|
|
176
|
$self->{sumSqDevY} = $sumYY - $sumY ** 2 / $self->{numXY}; |
|
136
|
14
|
|
|
|
|
1227
|
$self->{sumSqDevXY} = $sumXY - $sumX * $sumY / $self->{numXY}; |
|
137
|
14
|
|
|
|
|
39
|
$self->{slope} = $self->{sumSqDevXY} / $self->{sumSqDevX}; |
|
138
|
14
|
|
|
|
|
46
|
$self->{intercept} = ($sumY - $self->{slope} * $sumX) / $self->{numXY}; |
|
139
|
14
|
|
|
|
|
29
|
$self->{regressOK} = 1; |
|
140
|
|
|
|
|
|
|
} else { |
|
141
|
0
|
0
|
|
|
|
0
|
carp "Can't fit line when x values are all equal" unless $self->{hush}; |
|
142
|
0
|
|
|
|
|
0
|
$self->{sumXX} = $self->{sumSqDevX} = undef; |
|
143
|
0
|
|
|
|
|
0
|
$self->{regressOK} = 0; |
|
144
|
|
|
|
|
|
|
} |
|
145
|
14
|
|
|
|
|
31
|
$self->{doneRegress} = 1; |
|
146
|
14
|
|
|
|
|
1164
|
return $self->{regressOK}; |
|
147
|
|
|
|
|
|
|
} |
|
148
|
|
|
|
|
|
|
|
|
149
|
|
|
|
|
|
|
sub residuals { |
|
150
|
|
|
|
|
|
|
# |
|
151
|
|
|
|
|
|
|
# Purpose: Return the predicted Y values minus the observed Y values |
|
152
|
|
|
|
|
|
|
# |
|
153
|
15
|
|
|
15
|
1
|
11521
|
my $self = shift; |
|
154
|
15
|
100
|
|
|
|
64
|
unless (defined $self->{residuals}) { |
|
155
|
14
|
100
|
|
|
|
48
|
$self->regress() or return; |
|
156
|
13
|
|
|
|
|
32
|
$self->{residuals} = []; |
|
157
|
13
|
|
|
|
|
132
|
for (my $i = 0; $i < $self->{numXY}; ++$i) { |
|
158
|
243
|
|
|
|
|
1019
|
$self->{residuals}[$i] = $self->{y}[$i] - ($self->{intercept} |
|
159
|
|
|
|
|
|
|
+ $self->{slope} * $self->{x}[$i]); |
|
160
|
|
|
|
|
|
|
} |
|
161
|
|
|
|
|
|
|
} |
|
162
|
14
|
|
|
|
|
25
|
return @{$self->{residuals}}; |
|
|
14
|
|
|
|
|
101
|
|
|
163
|
|
|
|
|
|
|
} |
|
164
|
|
|
|
|
|
|
|
|
165
|
|
|
|
|
|
|
sub rSquared { |
|
166
|
|
|
|
|
|
|
# |
|
167
|
|
|
|
|
|
|
# Purpose: Return the correlation coefficient |
|
168
|
|
|
|
|
|
|
# |
|
169
|
16
|
|
|
16
|
1
|
12202
|
my $self = shift; |
|
170
|
16
|
100
|
|
|
|
73
|
unless (defined $self->{rSquared}) { |
|
171
|
15
|
100
|
|
|
|
51
|
$self->regress() or return; |
|
172
|
14
|
|
|
|
|
46
|
my $denom = $self->{sumSqDevX} * $self->{sumSqDevY}; |
|
173
|
14
|
50
|
|
|
|
112
|
$self->{rSquared} = $denom != 0 ? $self->{sumSqDevXY} ** 2 / $denom : 1; |
|
174
|
|
|
|
|
|
|
} |
|
175
|
15
|
|
|
|
|
83
|
return $self->{rSquared}; |
|
176
|
|
|
|
|
|
|
} |
|
177
|
|
|
|
|
|
|
|
|
178
|
|
|
|
|
|
|
sub setData { |
|
179
|
|
|
|
|
|
|
# |
|
180
|
|
|
|
|
|
|
# Purpose: Initialize (x,y) values and optional weights |
|
181
|
|
|
|
|
|
|
# |
|
182
|
29
|
|
|
29
|
1
|
1075
|
my ($self, $x, $y, $weights) = @_; |
|
183
|
29
|
|
|
|
|
132
|
$self->{doneRegress} = 0; |
|
184
|
29
|
|
|
|
|
386
|
$self->{x} = $self->{y} = $self->{numXY} = $self->{weight} |
|
185
|
|
|
|
|
|
|
= $self->{intercept} = $self->{slope} = $self->{rSquared} |
|
186
|
|
|
|
|
|
|
= $self->{sigma} = $self->{durbinWatson} = $self->{meanSqError} |
|
187
|
|
|
|
|
|
|
= $self->{sumSqErrors} = $self->{tStatInt} = $self->{tStatSlope} |
|
188
|
|
|
|
|
|
|
= $self->{predictedYs} = $self->{residuals} = $self->{sumXX} |
|
189
|
|
|
|
|
|
|
= $self->{sumSqDevX} = $self->{sumSqDevY} = $self->{sumSqDevXY} |
|
190
|
|
|
|
|
|
|
= undef; |
|
191
|
29
|
100
|
|
|
|
117
|
if (@$x < 2) { |
|
192
|
2
|
50
|
|
|
|
8
|
carp "Must input more than one data point!" unless $self->{hush}; |
|
193
|
2
|
|
|
|
|
11
|
return 0; |
|
194
|
|
|
|
|
|
|
} |
|
195
|
27
|
|
|
|
|
63
|
$self->{numXY} = @$x; |
|
196
|
27
|
100
|
|
|
|
100
|
if (ref $x->[0]) { |
|
197
|
5
|
100
|
|
|
|
16
|
$self->setWeights($y) or return 0; |
|
198
|
2
|
|
|
|
|
6
|
$self->{x} = [ ]; |
|
199
|
2
|
|
|
|
|
7
|
$self->{y} = [ ]; |
|
200
|
2
|
|
|
|
|
8
|
foreach my $xy (@$x) { |
|
201
|
8
|
|
|
|
|
11
|
push @{$self->{x}}, $xy->[0]; |
|
|
8
|
|
|
|
|
16
|
|
|
202
|
8
|
|
|
|
|
10
|
push @{$self->{y}}, $xy->[1]; |
|
|
8
|
|
|
|
|
14
|
|
|
203
|
|
|
|
|
|
|
} |
|
204
|
|
|
|
|
|
|
} else { |
|
205
|
22
|
100
|
|
|
|
96
|
if (@$x != @$y) { |
|
206
|
1
|
50
|
|
|
|
4
|
carp "Length of x and y arrays must be equal!" unless $self->{hush}; |
|
207
|
1
|
|
|
|
|
5
|
return 0; |
|
208
|
|
|
|
|
|
|
} |
|
209
|
21
|
100
|
|
|
|
75
|
$self->setWeights($weights) or return 0; |
|
210
|
16
|
|
|
|
|
15519
|
$self->{x} = [ @$x ]; |
|
211
|
16
|
|
|
|
|
10077
|
$self->{y} = [ @$y ]; |
|
212
|
|
|
|
|
|
|
} |
|
213
|
18
|
100
|
|
|
|
95
|
if ($self->{validate}) { |
|
214
|
5
|
100
|
|
|
|
28
|
unless ($self->validData()) { |
|
215
|
4
|
|
|
|
|
11
|
$self->{x} = $self->{y} = $self->{weights} = $self->{numXY} = undef; |
|
216
|
4
|
|
|
|
|
18
|
return 0; |
|
217
|
|
|
|
|
|
|
} |
|
218
|
|
|
|
|
|
|
} |
|
219
|
14
|
|
|
|
|
31
|
$self->{gotData} = 1; |
|
220
|
14
|
|
|
|
|
102
|
return 1; |
|
221
|
|
|
|
|
|
|
} |
|
222
|
|
|
|
|
|
|
|
|
223
|
|
|
|
|
|
|
sub setWeights { |
|
224
|
|
|
|
|
|
|
# |
|
225
|
|
|
|
|
|
|
# Purpose: Normalize and initialize line fit weighting factors (private method) |
|
226
|
|
|
|
|
|
|
# |
|
227
|
26
|
|
|
26
|
0
|
47
|
my ($self, $weights) = @_; |
|
228
|
26
|
100
|
|
|
|
102
|
return 1 unless defined $weights; |
|
229
|
13
|
100
|
|
|
|
44
|
if (@$weights != $self->{numXY}) { |
|
230
|
2
|
50
|
|
|
|
6
|
carp "Length of weight array must equal length of data array!" |
|
231
|
|
|
|
|
|
|
unless $self->{hush}; |
|
232
|
2
|
|
|
|
|
17
|
return 0; |
|
233
|
|
|
|
|
|
|
} |
|
234
|
11
|
100
|
|
|
|
43
|
if ($self->{validate}) { $self->validWeights($weights) or return 0 } |
|
|
3
|
100
|
|
|
|
11
|
|
|
235
|
9
|
|
|
|
|
16
|
my $sumW = my $numNonZero = 0; |
|
236
|
9
|
|
|
|
|
20
|
foreach my $weight (@$weights) { |
|
237
|
221
|
100
|
|
|
|
377
|
if ($weight < 0) { |
|
238
|
2
|
50
|
|
|
|
8
|
carp "Weights must be non-negative numbers!" unless $self->{hush}; |
|
239
|
2
|
|
|
|
|
14
|
return 0; |
|
240
|
|
|
|
|
|
|
} |
|
241
|
219
|
|
|
|
|
217
|
$sumW += $weight; |
|
242
|
219
|
100
|
|
|
|
367
|
if ($weight != 0) { ++$numNonZero } |
|
|
212
|
|
|
|
|
275
|
|
|
243
|
|
|
|
|
|
|
} |
|
244
|
7
|
100
|
|
|
|
26
|
if ($numNonZero < 2) { |
|
245
|
2
|
50
|
|
|
|
6
|
carp "At least two weights must be nonzero!" unless $self->{hush}; |
|
246
|
2
|
|
|
|
|
11
|
return 0; |
|
247
|
|
|
|
|
|
|
} |
|
248
|
5
|
|
|
|
|
15
|
my $factor = @$weights / $sumW; |
|
249
|
5
|
|
|
|
|
12
|
foreach my $weight (@$weights) { $weight *= $factor } |
|
|
213
|
|
|
|
|
445
|
|
|
250
|
5
|
|
|
|
|
52
|
$self->{weight} = [ @$weights ]; |
|
251
|
5
|
|
|
|
|
19
|
return 1; |
|
252
|
|
|
|
|
|
|
} |
|
253
|
|
|
|
|
|
|
|
|
254
|
|
|
|
|
|
|
sub sigma { |
|
255
|
|
|
|
|
|
|
# |
|
256
|
|
|
|
|
|
|
# Purpose: Return the estimated homoscedastic standard deviation of the |
|
257
|
|
|
|
|
|
|
# error term |
|
258
|
|
|
|
|
|
|
# |
|
259
|
44
|
|
|
44
|
1
|
556
|
my $self = shift; |
|
260
|
44
|
100
|
|
|
|
137
|
unless (defined $self->{sigma}) { |
|
261
|
15
|
100
|
|
|
|
58
|
$self->regress() or return; |
|
262
|
14
|
100
|
|
|
|
66
|
$self->{sigma} = $self->{numXY} > 2 ? |
|
263
|
|
|
|
|
|
|
sqrt($self->sumSqErrors() / ($self->{numXY} - 2)) : 0; |
|
264
|
|
|
|
|
|
|
} |
|
265
|
43
|
|
|
|
|
184
|
return $self->{sigma}; |
|
266
|
|
|
|
|
|
|
} |
|
267
|
|
|
|
|
|
|
|
|
268
|
|
|
|
|
|
|
sub sumSqErrors { |
|
269
|
|
|
|
|
|
|
# |
|
270
|
|
|
|
|
|
|
# Purpose: Return the sum of the squared errors (private method) |
|
271
|
|
|
|
|
|
|
# |
|
272
|
62
|
|
|
62
|
0
|
7574
|
my $self = shift; |
|
273
|
62
|
100
|
|
|
|
191
|
unless (defined $self->{sumSqErrors}) { |
|
274
|
14
|
50
|
|
|
|
38
|
$self->regress() or return; |
|
275
|
14
|
|
|
|
|
68
|
$self->{sumSqErrors} = $self->{sumSqDevY} - $self->{sumSqDevX} |
|
276
|
|
|
|
|
|
|
* $self->{slope} ** 2; |
|
277
|
14
|
50
|
|
|
|
60
|
if ($self->{sumSqErrors} < 0) { $self->{sumSqErrors} = 0 } |
|
|
0
|
|
|
|
|
0
|
|
|
278
|
|
|
|
|
|
|
} |
|
279
|
62
|
|
|
|
|
319
|
return $self->{sumSqErrors}; |
|
280
|
|
|
|
|
|
|
} |
|
281
|
|
|
|
|
|
|
|
|
282
|
|
|
|
|
|
|
sub tStatistics { |
|
283
|
|
|
|
|
|
|
# |
|
284
|
|
|
|
|
|
|
# Purpose: Return the T statistics |
|
285
|
|
|
|
|
|
|
# |
|
286
|
16
|
|
|
16
|
1
|
1111
|
my $self = shift; |
|
287
|
16
|
100
|
66
|
|
|
93
|
unless (defined $self->{tStatInt} and defined $self->{tStatSlope}) { |
|
288
|
15
|
100
|
|
|
|
48
|
$self->regress() or return; |
|
289
|
14
|
|
|
|
|
44
|
my $biasEstimateInt = $self->sigma() * sqrt($self->{sumXX} |
|
290
|
|
|
|
|
|
|
/ ($self->{sumSqDevX} * $self->{numXY})); |
|
291
|
14
|
100
|
|
|
|
81
|
$self->{tStatInt} = $biasEstimateInt != 0 ? |
|
292
|
|
|
|
|
|
|
$self->{intercept} / $biasEstimateInt : 0; |
|
293
|
14
|
|
|
|
|
44
|
my $biasEstimateSlope = $self->sigma() / sqrt($self->{sumSqDevX}); |
|
294
|
14
|
100
|
|
|
|
67
|
$self->{tStatSlope} = $biasEstimateSlope != 0 ? |
|
295
|
|
|
|
|
|
|
$self->{slope} / $biasEstimateSlope : 0; |
|
296
|
|
|
|
|
|
|
} |
|
297
|
15
|
|
|
|
|
67
|
return ($self->{tStatInt}, $self->{tStatSlope}); |
|
298
|
|
|
|
|
|
|
} |
|
299
|
|
|
|
|
|
|
|
|
300
|
|
|
|
|
|
|
sub validData { |
|
301
|
|
|
|
|
|
|
# |
|
302
|
|
|
|
|
|
|
# Purpose: Verify that the input x-y data are numeric (private method) |
|
303
|
|
|
|
|
|
|
# |
|
304
|
5
|
|
|
5
|
0
|
9
|
my $self = shift; |
|
305
|
5
|
|
|
|
|
20
|
for (my $i = 0; $i < $self->{numXY}; ++$i) { |
|
306
|
12
|
100
|
|
|
|
55
|
if (not defined $self->{x}[$i]) { |
|
307
|
1
|
50
|
|
|
|
4
|
carp "Input x[$i] is not defined" unless $self->{hush}; |
|
308
|
1
|
|
|
|
|
3
|
return 0; |
|
309
|
|
|
|
|
|
|
} |
|
310
|
11
|
100
|
|
|
|
58
|
if ($self->{x}[$i] !~ |
|
311
|
|
|
|
|
|
|
/^([+-]?)(?=\d|\.\d)\d*(\.\d*)?([Ee]([+-]?\d+))?$/) |
|
312
|
|
|
|
|
|
|
{ |
|
313
|
1
|
50
|
|
|
|
4
|
carp "Input x[$i] is not a number: $self->{x}[$i]" |
|
314
|
|
|
|
|
|
|
unless $self->{hush}; |
|
315
|
1
|
|
|
|
|
3
|
return 0; |
|
316
|
|
|
|
|
|
|
} |
|
317
|
10
|
100
|
|
|
|
25
|
if (not defined $self->{y}[$i]) { |
|
318
|
1
|
50
|
|
|
|
4
|
carp "Input y[$i] is not defined" unless $self->{hush}; |
|
319
|
1
|
|
|
|
|
3
|
return 0; |
|
320
|
|
|
|
|
|
|
} |
|
321
|
9
|
100
|
|
|
|
67
|
if ($self->{y}[$i] !~ |
|
322
|
|
|
|
|
|
|
/^([+-]?)(?=\d|\.\d)\d*(\.\d*)?([Ee]([+-]?\d+))?$/) |
|
323
|
|
|
|
|
|
|
{ |
|
324
|
1
|
50
|
|
|
|
20
|
carp "Input y[$i] is not a number: $self->{y}[$i]" |
|
325
|
|
|
|
|
|
|
unless $self->{hush}; |
|
326
|
1
|
|
|
|
|
4
|
return 0; |
|
327
|
|
|
|
|
|
|
} |
|
328
|
|
|
|
|
|
|
} |
|
329
|
1
|
|
|
|
|
584
|
return 1; |
|
330
|
|
|
|
|
|
|
} |
|
331
|
|
|
|
|
|
|
|
|
332
|
|
|
|
|
|
|
sub validWeights { |
|
333
|
|
|
|
|
|
|
# |
|
334
|
|
|
|
|
|
|
# Purpose: Verify that the input weights are numeric (private method) |
|
335
|
|
|
|
|
|
|
# |
|
336
|
3
|
|
|
3
|
0
|
5
|
my ($self, $weights) = @_; |
|
337
|
3
|
|
|
|
|
25
|
for (my $i = 0; $i < @$weights; ++$i) { |
|
338
|
9
|
100
|
|
|
|
24
|
if (not defined $weights->[$i]) { |
|
339
|
1
|
50
|
|
|
|
4
|
carp "Input weights[$i] is not defined" unless $self->{hush}; |
|
340
|
1
|
|
|
|
|
7
|
return 0; |
|
341
|
|
|
|
|
|
|
} |
|
342
|
8
|
100
|
|
|
|
80
|
if ($weights->[$i] |
|
343
|
|
|
|
|
|
|
!~ /^([+-]?)(?=\d|\.\d)\d*(\.\d*)?([Ee]([+-]?\d+))?$/) |
|
344
|
|
|
|
|
|
|
{ |
|
345
|
1
|
50
|
|
|
|
6
|
carp "Input weights[$i] is not a number: $weights->[$i]" |
|
346
|
|
|
|
|
|
|
unless $self->{hush}; |
|
347
|
1
|
|
|
|
|
10
|
return 0; |
|
348
|
|
|
|
|
|
|
} |
|
349
|
|
|
|
|
|
|
} |
|
350
|
1
|
|
|
|
|
5
|
return 1; |
|
351
|
|
|
|
|
|
|
} |
|
352
|
|
|
|
|
|
|
|
|
353
|
|
|
|
|
|
|
sub varianceOfEstimates { |
|
354
|
|
|
|
|
|
|
# |
|
355
|
|
|
|
|
|
|
# Purpose: Return the variances in the estimates of the intercept and slope |
|
356
|
|
|
|
|
|
|
# |
|
357
|
16
|
|
|
16
|
1
|
13271
|
my $self = shift; |
|
358
|
16
|
100
|
66
|
|
|
170
|
unless (defined $self->{intercept} and defined $self->{slope}) { |
|
359
|
1
|
50
|
|
|
|
4
|
$self->regress() or return; |
|
360
|
|
|
|
|
|
|
} |
|
361
|
15
|
|
|
|
|
55
|
my @predictedYs = $self->predictedYs(); |
|
362
|
15
|
|
|
|
|
2413
|
my ($s, $sx, $sxx) = (0, 0, 0); |
|
363
|
15
|
100
|
|
|
|
85
|
if (defined $self->{weight}) { |
|
364
|
5
|
|
|
|
|
31
|
for (my $i = 0; $i < $self->{numXY}; ++$i) { |
|
365
|
213
|
|
|
|
|
395
|
my $variance = ($predictedYs[$i] - $self->{y}[$i]) ** 2; |
|
366
|
213
|
100
|
|
|
|
410
|
next if 0 == $variance; |
|
367
|
209
|
|
|
|
|
257
|
$s += 1.0 / $variance; |
|
368
|
209
|
|
|
|
|
379
|
$sx += $self->{weight}[$i] * $self->{x}[$i] / $variance; |
|
369
|
209
|
|
|
|
|
624
|
$sxx += $self->{weight}[$i] * $self->{x}[$i] ** 2 / $variance; |
|
370
|
|
|
|
|
|
|
} |
|
371
|
|
|
|
|
|
|
} else { |
|
372
|
10
|
|
|
|
|
59
|
for (my $i = 0; $i < $self->{numXY}; ++$i) { |
|
373
|
100034
|
|
|
|
|
160238
|
my $variance = ($predictedYs[$i] - $self->{y}[$i]) ** 2; |
|
374
|
100034
|
100
|
|
|
|
167010
|
next if 0 == $variance; |
|
375
|
100027
|
|
|
|
|
96532
|
$s += 1.0 / $variance; |
|
376
|
100027
|
|
|
|
|
143450
|
$sx += $self->{x}[$i] / $variance; |
|
377
|
100027
|
|
|
|
|
230197
|
$sxx += $self->{x}[$i] ** 2 / $variance; |
|
378
|
|
|
|
|
|
|
} |
|
379
|
|
|
|
|
|
|
} |
|
380
|
15
|
|
|
|
|
45
|
my $denominator = ($s * $sxx - $sx ** 2); |
|
381
|
15
|
100
|
|
|
|
57
|
if (0 == $denominator) { |
|
382
|
3
|
|
|
|
|
9
|
return; |
|
383
|
|
|
|
|
|
|
} else { |
|
384
|
12
|
|
|
|
|
2457
|
return ($sxx / $denominator, $s / $denominator); |
|
385
|
|
|
|
|
|
|
} |
|
386
|
|
|
|
|
|
|
} |
|
387
|
|
|
|
|
|
|
|
|
388
|
|
|
|
|
|
|
1; |
|
389
|
|
|
|
|
|
|
|
|
390
|
|
|
|
|
|
|
__END__ |