| blib/lib/Statistics/ANOVA/Page.pm | |||
|---|---|---|---|
| Criterion | Covered | Total | % |
| statement | 69 | 81 | 85.1 |
| branch | 4 | 8 | 50.0 |
| condition | 1 | 2 | 50.0 |
| subroutine | 17 | 20 | 85.0 |
| pod | 7 | 7 | 100.0 |
| total | 98 | 118 | 83.0 |
| line | stmt | bran | cond | sub | pod | time | code |
|---|---|---|---|---|---|---|---|
| 1 | package Statistics::ANOVA::Page; | ||||||
| 2 | |||||||
| 3 | 2 | 2 | 33190 | use 5.006; | |||
| 2 | 5 | ||||||
| 2 | 80 | ||||||
| 4 | 2 | 2 | 9 | use strict; | |||
| 2 | 2 | ||||||
| 2 | 65 | ||||||
| 5 | 2 | 2 | 6 | use warnings FATAL => 'all'; | |||
| 2 | 8 | ||||||
| 2 | 77 | ||||||
| 6 | 2 | 2 | 12 | use base qw(Statistics::Data); | |||
| 2 | 1 | ||||||
| 2 | 1188 | ||||||
| 7 | 2 | 2 | 50727 | use List::AllUtils qw(sum0); | |||
| 2 | 4 | ||||||
| 2 | 111 | ||||||
| 8 | 2 | 2 | 1199 | use Math::Cephes qw(:dists); | |||
| 2 | 10950 | ||||||
| 2 | 711 | ||||||
| 9 | 2 | 2 | 1066 | use Statistics::Data::Rank; | |||
| 2 | 6080 | ||||||
| 2 | 55 | ||||||
| 10 | 2 | 2 | 1063 | use Statistics::Zed; | |||
| 2 | 4309 | ||||||
| 2 | 1418 | ||||||
| 11 | |||||||
| 12 | =head1 NAME | ||||||
| 13 | |||||||
| 14 | Statistics::ANOVA::Page - Nonparametric analysis of variance by ranks for trend across dependent variables (Page and sign tests). | ||||||
| 15 | |||||||
| 16 | =head1 VERSION | ||||||
| 17 | |||||||
| 18 | Version 0.01 | ||||||
| 19 | |||||||
| 20 | =cut | ||||||
| 21 | |||||||
| 22 | our $VERSION = '0.01'; | ||||||
| 23 | |||||||
| 24 | =head1 SYNOPSIS | ||||||
| 25 | |||||||
| 26 | use Statistics::ANOVA::Page; | ||||||
| 27 | my $page = Statistics::ANOVA::Page->new(); | ||||||
| 28 | $page->load({1 => [2, 4, 6], 2 => [3, 3, 12], 3 => [5, 7, 11, 16]}); # note ordinal datanames | ||||||
| 29 | my $l_value = $page->observed(); # or expected(), variance() | ||||||
| 30 | my ($z_value, $p_value) = $page->zprob_test(ccorr => 2, tails => 1); | ||||||
| 31 | # or without pre-loading: | ||||||
| 32 | $l_value = $page->observed(data => {1 => [2, 4, 6], 2 => [5, 3, 12]}); | ||||||
| 33 | # or for subset of loaded data: | ||||||
| 34 | $l_value = $page->observed(lab => [1, 3]); | ||||||
| 35 | |||||||
| 36 | =head1 DESCRIPTION | ||||||
| 37 | |||||||
| 38 | Calculates Page statistics for nonparametric analysis of variance across given orders of dependent variables. Ranks are computed exactly as for the L -value read off the normal distribution. Similarly to the relationship between the Kruskal-Wallis and L |
||||||
| 39 | |||||||
| 40 | With only two groups, the test statistic is equivalent to that provided by a B |
||||||
| 41 | |||||||
| 42 | Build tests include comparison of return values with published data, viz. from Hollander and Wolfe (1999, p. 286ff); passing these tests means the results agree. | ||||||
| 43 | |||||||
| 44 | =head1 SUBROUTINES/METHODS | ||||||
| 45 | |||||||
| 46 | =head2 new | ||||||
| 47 | |||||||
| 48 | $page = Statistics::ANOVA::Page->new(); | ||||||
| 49 | |||||||
| 50 | New object for accessing methods and storing results. This "isa" Statistics::Data object. | ||||||
| 51 | |||||||
| 52 | =head2 load, add, unload | ||||||
| 53 | |||||||
| 54 | $page->load(1 => [1, 4], 2 => [3, 7]); | ||||||
| 55 | |||||||
| 56 | The given data can now be used by any of the following methods. This is inherited from L |
||||||
| 57 | |||||||
| 58 | =head2 observed | ||||||
| 59 | |||||||
| 60 | $val = $page->observed(); # data pre-loaded | ||||||
| 61 | $val = $page->observed(data => $hashref_of_arefs); | ||||||
| 62 | |||||||
| 63 | Returns the observed statistic I |
||||||
| 64 | |||||||
| 65 | Optionally, if the data have not been pre-loaded, send as named argument B. | ||||||
| 66 | |||||||
| 67 | =cut | ||||||
| 68 | |||||||
| 69 | sub observed { | ||||||
| 70 | 1 | 1 | 1 | 802 | my ( $self, %args ) = @_; | ||
| 71 | 1 | 5 | return _calc_l_value( _get_data( $self, %args ) ); | ||||
| 72 | } | ||||||
| 73 | |||||||
| 74 | =head2 observed_r | ||||||
| 75 | |||||||
| 76 | $val = $page->observed_r(); # data pre-loaded | ||||||
| 77 | $val = $page->observed_r(data => $hashref_of_arefs); | ||||||
| 78 | |||||||
| 79 | This implements a "l2r" transformation: Hollander and Wolfe (1999) describe how Page's I |
||||||
| 80 | |||||||
| 81 | =cut | ||||||
| 82 | |||||||
| 83 | sub observed_r { | ||||||
| 84 | 0 | 0 | 1 | 0 | my ( $self, %args ) = @_; | ||
| 85 | 0 | 0 | return _calc_l2r_value( _get_data( $self, %args ) ); | ||||
| 86 | } | ||||||
| 87 | |||||||
| 88 | =head2 expected | ||||||
| 89 | |||||||
| 90 | $val = $page->expected(); # data pre-loaded | ||||||
| 91 | $val = $page->expected(data => $hashref_of_arefs); | ||||||
| 92 | |||||||
| 93 | Returns the expected value of the I |
||||||
| 94 | |||||||
| 95 | =cut | ||||||
| 96 | |||||||
| 97 | sub expected { | ||||||
| 98 | 1 | 1 | 1 | 7 | my ( $self, %args ) = @_; | ||
| 99 | 1 | 3 | return _calc_l_exp( _get_data( $self, %args ) ); | ||||
| 100 | } | ||||||
| 101 | |||||||
| 102 | =head2 variance | ||||||
| 103 | |||||||
| 104 | $val = $page->variance(); # data pre-loaded | ||||||
| 105 | $val = $page->variance(data => $hashref_of_arefs); | ||||||
| 106 | |||||||
| 107 | Return the variance expected to occur in the I |
||||||
| 108 | |||||||
| 109 | =cut | ||||||
| 110 | |||||||
| 111 | sub variance { | ||||||
| 112 | 1 | 1 | 1 | 5 | my ( $self, %args ) = @_; | ||
| 113 | 1 | 2 | return _calc_l_var( _get_data( $self, %args ) ); | ||||
| 114 | } | ||||||
| 115 | |||||||
| 116 | =head2 zprob_test | ||||||
| 117 | |||||||
| 118 | $p_val = $page->zprob_test(); # data pre-loaded | ||||||
| 119 | $p_val = $page->zprob_test(data => $hashref_of_arefs); | ||||||
| 120 | ($z_val, $p_val) = $page->zprob_test(); # get z-score too | ||||||
| 121 | |||||||
| 122 | Calculates an expected I -value is read off the normal distribution. This is appropriate for "large" samples. Optional arguments are B |
||||||
| 123 | |||||||
| 124 | =cut | ||||||
| 125 | |||||||
| 126 | sub zprob_test { | ||||||
| 127 | 1 | 1 | 1 | 5 | my ( $self, %args ) = @_; | ||
| 128 | 1 | 4 | my $href = _get_data( $self, %args ); | ||||
| 129 | 1 | 6 | my $zed = Statistics::Zed->new(); | ||||
| 130 | 1 | 24 | my ( $z_value, $p_value ) = $zed->z_value( | ||||
| 131 | observed => _calc_l_value($href), | ||||||
| 132 | expected => _calc_l_exp($href), | ||||||
| 133 | variance => _calc_l_var($href), | ||||||
| 134 | %args | ||||||
| 135 | ); | ||||||
| 136 | 1 | 50 | 173 | return wantarray ? ( $z_value, $p_value ) : $p_value; | |||
| 137 | } | ||||||
| 138 | |||||||
| 139 | =head2 chiprob_test | ||||||
| 140 | |||||||
| 141 | $p_val = $page->chiprob_test(); # data pre-loaded | ||||||
| 142 | $p_val = $page->chiprob_test(data => $hashref_of_arefs); | ||||||
| 143 | ($chi_val, $p_val) = $page->chiprob_test(); # get z-score too | ||||||
| 144 | |||||||
| 145 | Calculates a chi-square statistic based on the observed value of |
||||||
| 146 | |||||||
| 147 | =cut | ||||||
| 148 | |||||||
| 149 | sub chiprob_test { | ||||||
| 150 | 1 | 1 | 1 | 1703 | my ( $self, %args ) = @_; | ||
| 151 | 1 | 4 | my $data_href = _get_data( $self, %args ); | ||||
| 152 | 1 | 3 | my $l = _calc_l_value($data_href); | ||||
| 153 | 1 | 2 | my $n_bt = scalar keys %{$data_href}; | ||||
| 1 | 2 | ||||||
| 154 | 1 | 4 | my $n_wt = __PACKAGE__->equal_n( data => $data_href ); | ||||
| 155 | 1 | 22 | my $num = ( ( 12 * $l ) - ( 3 * $n_wt * $n_bt ) * ( $n_bt + 1 )**2 )**2; | ||||
| 156 | 1 | 3 | my $chi = | ||||
| 157 | $num / ( ( $n_wt * $n_bt**2 ) * ( $n_bt**2 - 1 ) * ( $n_bt + 1 ) ); | ||||||
| 158 | 1 | 18 | my $p_value = chdtrc( 1, $chi ); # Math::Cephes fn | ||||
| 159 | 1 | 50 | 6 | $args{'tails'} ||= 2; | |||
| 160 | 1 | 50 | 4 | $p_value /= 2 if $args{'tails'} == 1; | |||
| 161 | 1 | 50 | 5 | return wantarray ? ( $chi, 1, ( $n_bt * $n_wt ), $p_value ) : $p_value; | |||
| 162 | } | ||||||
| 163 | |||||||
| 164 | =head2 chiprob_str | ||||||
| 165 | |||||||
| 166 | $str = $page->chiprob_str(data => HOA, correct_ties => 1); | ||||||
| 167 | |||||||
| 168 | Performs the same test as for L |
||||||
| 169 | |||||||
| 170 | =cut | ||||||
| 171 | |||||||
| 172 | sub chiprob_str { | ||||||
| 173 | 0 | 0 | 1 | 0 | my ( $self, %args ) = ( shift, @_ ); | ||
| 174 | 0 | 0 | my ( $chi_value, $df, $count, $p_value ) = $self->chiprob_test(%args); | ||||
| 175 | 0 | 0 | return "chi^2($df, N = $count) = $chi_value, p = $p_value"; | ||||
| 176 | } | ||||||
| 177 | |||||||
| 178 | sub _calc_l_value { | ||||||
| 179 | 3 | 3 | 2 | my $data = shift; | |||
| 180 | 3 | 14 | my $ranks = Statistics::Data::Rank->sum_of_ranks_within( data => $data ); | ||||
| 181 | 3 | 696 | my $c = 0; | ||||
| 182 | 15 | 24 | return sum0( | ||||
| 183 | 22 | 21 | map { ++$c * $ranks->{$_} } | ||||
| 184 | 3 | 4 | sort { $a <=> $b } keys %{$ranks} | ||||
| 3 | 9 | ||||||
| 185 | ); | ||||||
| 186 | } | ||||||
| 187 | |||||||
| 188 | sub _calc_l2r_value { | ||||||
| 189 | 0 | 0 | 0 | my $data = shift; | |||
| 190 | 0 | 0 | my $l = _calc_l_value($data); | ||||
| 191 | 0 | 0 | my $n_bt = scalar keys %{$data}; | ||||
| 0 | 0 | ||||||
| 192 | 0 | 0 | my $n_wt = __PACKAGE__->equal_n( data => $data ); | ||||
| 193 | 0 | 0 | return ( ( ( 12 * $l ) / ( $n_wt * $n_bt * ( $n_bt**2 - 1 ) ) ) - | ||||
| 194 | ( ( 3 * ( $n_bt + 1 ) ) / ( $n_bt - 1 ) ) ); | ||||||
| 195 | } | ||||||
| 196 | |||||||
| 197 | sub _calc_l_exp { | ||||||
| 198 | 2 | 2 | 3 | my $data = shift; | |||
| 199 | 2 | 2 | my $n_bt = scalar keys %{$data}; | ||||
| 2 | 3 | ||||||
| 200 | 2 | 12 | my $n_wt = __PACKAGE__->equal_n( data => $data ); | ||||
| 201 | 2 | 73 | return ( $n_wt * $n_bt * ( $n_bt + 1 )**2 ) / 4; | ||||
| 202 | } | ||||||
| 203 | |||||||
| 204 | sub _calc_l_var { | ||||||
| 205 | 2 | 2 | 3 | my $data = shift; | |||
| 206 | 2 | 2 | my $n_bt = scalar keys %{$data}; | ||||
| 2 | 3 | ||||||
| 207 | 2 | 5 | my $n_wt = __PACKAGE__->equal_n( data => $data ); | ||||
| 208 | 2 | 44 | return ( $n_wt * $n_bt**2 * ( $n_bt + 1 ) * ( $n_bt**2 - 1 ) ) / 144; | ||||
| 209 | } | ||||||
| 210 | |||||||
| 211 | sub _get_data { | ||||||
| 212 | 5 | 5 | 5 | my ( $self, %args ) = @_; | |||
| 213 | 5 | 6 | my $hoa; | ||||
| 214 | 5 | 50 | 8 | if ( ref $args{'data'} ) { | |||
| 215 | 0 | 0 | $hoa = delete $args{'data'}; | ||||
| 216 | } | ||||||
| 217 | else { | ||||||
| 218 | 5 | 16 | $hoa = $self->get_hoa_by_lab(%args); | ||||
| 219 | } | ||||||
| 220 | 5 | 225 | return $hoa; | ||||
| 221 | } | ||||||
| 222 | |||||||
| 223 | =head1 REFERENCES | ||||||
| 224 | |||||||
| 225 | Hollander, M., & Wolfe, D. A. (1999). I |
||||||
| 226 | |||||||
| 227 | Page, E. B. (1963). Ordered hypotheses for multiple treatments: A significance test for linear ranks. I |
||||||
| 228 | |||||||
| 229 | =head1 DEPENDENCIES | ||||||
| 230 | |||||||
| 231 | L |
||||||
| 232 | |||||||
| 233 | L |
||||||
| 234 | |||||||
| 235 | L |
||||||
| 236 | |||||||
| 237 | L |
||||||
| 238 | |||||||
| 239 | L |
||||||
| 240 | |||||||
| 241 | =head1 AUTHOR | ||||||
| 242 | |||||||
| 243 | Roderick Garton, C<< |
||||||
| 244 | |||||||
| 245 | =head1 BUGS | ||||||
| 246 | |||||||
| 247 | Please report any bugs or feature requests to C |
||||||
| 248 | the web interface at L |
||||||
| 249 | automatically be notified of progress on your bug as I make changes. | ||||||
| 250 | |||||||
| 251 | =head1 SUPPORT | ||||||
| 252 | |||||||
| 253 | You can find documentation for this module with the perldoc command. | ||||||
| 254 | |||||||
| 255 | perldoc Statistics::ANOVA::Page | ||||||
| 256 | |||||||
| 257 | |||||||
| 258 | You can also look for information at: | ||||||
| 259 | |||||||
| 260 | =over 4 | ||||||
| 261 | |||||||
| 262 | =item * RT: CPAN's request tracker (report bugs here) | ||||||
| 263 | |||||||
| 264 | L |
||||||
| 265 | |||||||
| 266 | =item * AnnoCPAN: Annotated CPAN documentation | ||||||
| 267 | |||||||
| 268 | L |
||||||
| 269 | |||||||
| 270 | =item * CPAN Ratings | ||||||
| 271 | |||||||
| 272 | L |
||||||
| 273 | |||||||
| 274 | =item * Search CPAN | ||||||
| 275 | |||||||
| 276 | L |
||||||
| 277 | |||||||
| 278 | =back | ||||||
| 279 | |||||||
| 280 | |||||||
| 281 | =head1 ACKNOWLEDGEMENTS | ||||||
| 282 | |||||||
| 283 | |||||||
| 284 | =head1 LICENSE AND COPYRIGHT | ||||||
| 285 | |||||||
| 286 | Copyright 2015 Roderick Garton. | ||||||
| 287 | |||||||
| 288 | This program is free software; you can redistribute it and/or modify it | ||||||
| 289 | under the terms of either: the GNU General Public License as published | ||||||
| 290 | by the Free Software Foundation; or the Artistic License. | ||||||
| 291 | |||||||
| 292 | See L |
||||||
| 293 | |||||||
| 294 | |||||||
| 295 | =cut | ||||||
| 296 | |||||||
| 297 | 1; # End of Statistics::ANOVA::Page |