File Coverage

blib/lib/Perl/APIReference/V5_020_002.pm
Criterion Covered Total %
statement 15 15 100.0
branch n/a
condition n/a
subroutine 4 4 100.0
pod 1 1 100.0
total 20 20 100.0


line stmt bran cond sub pod time code
1             package Perl::APIReference::V5_020_002;
2 1     1   5 use strict;
  1         1  
  1         41  
3 1     1   4 use warnings;
  1         2  
  1         29  
4 1     1   4 use parent 'Perl::APIReference';
  1         2  
  1         6  
5              
6             sub new {
7 1     1 1 2 my $class = shift;
8 1         2 my $VAR1;
9              
10 1         3 do{$VAR1 = {'AvFILL' => {'name' => 'AvFILL','text' => 'Same as C. Deprecated, use C instead.
  1         1900  
11              
12             int AvFILL(AV* av)'},'BhkDISABLE' => {'name' => 'BhkDISABLE','text' => 'NOTE: this function is experimental and may change or be
13             removed without notice.
14              
15              
16             Temporarily disable an entry in this BHK structure, by clearing the
17             appropriate flag. I is a preprocessor token indicating which
18             entry to disable.
19              
20             void BhkDISABLE(BHK *hk, which)'},'BhkENABLE' => {'name' => 'BhkENABLE','text' => 'NOTE: this function is experimental and may change or be
21             removed without notice.
22              
23              
24             Re-enable an entry in this BHK structure, by setting the appropriate
25             flag. I is a preprocessor token indicating which entry to enable.
26             This will assert (under -DDEBUGGING) if the entry doesn\'t contain a valid
27             pointer.
28              
29             void BhkENABLE(BHK *hk, which)'},'BhkENTRY_set' => {'name' => 'BhkENTRY_set','text' => 'NOTE: this function is experimental and may change or be
30             removed without notice.
31              
32              
33             Set an entry in the BHK structure, and set the flags to indicate it is
34             valid. I is a preprocessing token indicating which entry to set.
35             The type of I depends on the entry.
36              
37             void BhkENTRY_set(BHK *hk, which, void *ptr)'},'CLASS' => {'name' => 'CLASS','text' => 'Variable which is setup by C to indicate the
38             class name for a C++ XS constructor. This is always a C. See C.
39              
40             char* CLASS'},'Copy' => {'name' => 'Copy','text' => 'The XSUB-writer\'s interface to the C C function. The C is the
41             source, C is the destination, C is the number of items, and
42             C is the type. May fail on overlapping copies. See also C.
43              
44             void Copy(void* src, void* dest, int nitems, type)'},'CopyD' => {'name' => 'CopyD','text' => 'Like C but returns dest. Useful
45             for encouraging compilers to tail-call
46             optimise.
47              
48             void * CopyD(void* src, void* dest, int nitems, type)'},'CvPADLIST' => {'name' => 'CvPADLIST','text' => 'NOTE: this function is experimental and may change or be
49             removed without notice.
50              
51              
52             CV\'s can have CvPADLIST(cv) set to point to a PADLIST. This is the CV\'s
53             scratchpad, which stores lexical variables and opcode temporary and
54             per-thread values.
55              
56             For these purposes "formats" are a kind-of CV; eval""s are too (except they\'re
57             not callable at will and are always thrown away after the eval"" is done
58             executing). Require\'d files are simply evals without any outer lexical
59             scope.
60              
61             XSUBs don\'t have CvPADLIST set - dXSTARG fetches values from PL_curpad,
62             but that is really the callers pad (a slot of which is allocated by
63             every entersub).
64              
65             The PADLIST has a C array where pads are stored.
66              
67             The 0th entry of the PADLIST is a PADNAMELIST (which is actually just an
68             AV, but that may change) which represents the "names" or rather
69             the "static type information" for lexicals. The individual elements of a
70             PADNAMELIST are PADNAMEs (just SVs; but, again, that may change). Future
71             refactorings might stop the PADNAMELIST from being stored in the PADLIST\'s
72             array, so don\'t rely on it. See L.
73              
74             The CvDEPTH\'th entry of a PADLIST is a PAD (an AV) which is the stack frame
75             at that depth of recursion into the CV. The 0th slot of a frame AV is an
76             AV which is @_. Other entries are storage for variables and op targets.
77              
78             Iterating over the PADNAMELIST iterates over all possible pad
79             items. Pad slots for targets (SVs_PADTMP)
80             and GVs end up having &PL_sv_undef
81             "names", while slots for constants have &PL_sv_no "names" (see
82             pad_alloc()). That &PL_sv_no is used is an implementation detail subject
83             to change. To test for it, use C.
84              
85             Only my/our variable (SvPADMY/PADNAME_isOUR) slots get valid names.
86             The rest are op targets/GVs/constants which are statically allocated
87             or resolved at compile time. These don\'t have names by which they
88             can be looked up from Perl code at run time through eval"" the way
89             my/our variables can be. Since they can\'t be looked up by "name"
90             but only by their index allocated at compile time (which is usually
91             in PL_op->op_targ), wasting a name SV for them doesn\'t make sense.
92              
93             The SVs in the names AV have their PV being the name of the variable.
94             xlow+1..xhigh inclusive in the NV union is a range of cop_seq numbers for
95             which the name is valid (accessed through the macros COP_SEQ_RANGE_LOW and
96             _HIGH). During compilation, these fields may hold the special value
97             PERL_PADSEQ_INTRO to indicate various stages:
98              
99             COP_SEQ_RANGE_LOW _HIGH
100             ----------------- -----
101             PERL_PADSEQ_INTRO 0 variable not yet introduced: { my ($x
102             valid-seq# PERL_PADSEQ_INTRO variable in scope: { my ($x)
103             valid-seq# valid-seq# compilation of scope complete: { my ($x) }
104              
105             For typed lexicals name SV is SVt_PVMG and SvSTASH
106             points at the type. For C lexicals, the type is also SVt_PVMG, with the
107             SvOURSTASH slot pointing at the stash of the associated global (so that
108             duplicate C declarations in the same package can be detected). SvUVX is
109             sometimes hijacked to store the generation number during compilation.
110              
111             If PADNAME_OUTER (SvFAKE) is set on the
112             name SV, then that slot in the frame AV is
113             a REFCNT\'ed reference to a lexical from "outside". In this case,
114             the name SV does not use xlow and xhigh to store a cop_seq range, since it is
115             in scope throughout. Instead xhigh stores some flags containing info about
116             the real lexical (is it declared in an anon, and is it capable of being
117             instantiated multiple times?), and for fake ANONs, xlow contains the index
118             within the parent\'s pad where the lexical\'s value is stored, to make
119             cloning quicker.
120              
121             If the \'name\' is \'&\' the corresponding entry in the PAD
122             is a CV representing a possible closure.
123             (PADNAME_OUTER and name of \'&\' is not a
124             meaningful combination currently but could
125             become so if C is implemented.)
126              
127             Note that formats are treated as anon subs, and are cloned each time
128             write is called (if necessary).
129              
130             The flag SVs_PADSTALE is cleared on lexicals each time the my() is executed,
131             and set on scope exit. This allows the
132             \'Variable $x is not available\' warning
133             to be generated in evals, such as
134              
135             { my $x = 1; sub f { eval \'$x\'} } f();
136              
137             For state vars, SVs_PADSTALE is overloaded to mean \'not yet initialised\'.
138              
139             PADLIST * CvPADLIST(CV *cv)'},'CvSTASH' => {'name' => 'CvSTASH','text' => 'Returns the stash of the CV. A stash is the symbol table hash, containing
140             the package-scoped variables in the package where the subroutine was defined.
141             For more information, see L.
142              
143             This also has a special use with XS AUTOLOAD subs.
144             See L.
145              
146             HV* CvSTASH(CV* cv)'},'ENTER' => {'name' => 'ENTER','text' => 'Opening bracket on a callback. See C and L.
147              
148             ENTER;'},'EXTEND' => {'name' => 'EXTEND','text' => 'Used to extend the argument stack for an XSUB\'s return values. Once
149             used, guarantees that there is room for at least C to be pushed
150             onto the stack.
151              
152             void EXTEND(SP, SSize_t nitems)'},'FREETMPS' => {'name' => 'FREETMPS','text' => 'Closing bracket for temporaries on a callback. See C and
153             L.
154              
155             FREETMPS;'},'GIMME' => {'name' => 'GIMME','text' => 'A backward-compatible version of C which can only return
156             C or C; in a void context, it returns C.
157             Deprecated. Use C instead.
158              
159             U32 GIMME'},'GIMME_V' => {'name' => 'GIMME_V','text' => 'The XSUB-writer\'s equivalent to Perl\'s C. Returns C,
160             C or C for void, scalar or list context,
161             respectively. See L for a usage example.
162              
163             U32 GIMME_V'},'G_ARRAY' => {'name' => 'G_ARRAY','text' => 'Used to indicate list context. See C, C and
164             L.'},'G_DISCARD' => {'name' => 'G_DISCARD','text' => 'Indicates that arguments returned from a callback should be discarded. See
165             L.'},'G_EVAL' => {'name' => 'G_EVAL','text' => 'Used to force a Perl C wrapper around a callback. See
166             L.'},'G_NOARGS' => {'name' => 'G_NOARGS','text' => 'Indicates that no arguments are being sent to a callback. See
167             L.'},'G_SCALAR' => {'name' => 'G_SCALAR','text' => 'Used to indicate scalar context. See C, C, and
168             L.'},'G_VOID' => {'name' => 'G_VOID','text' => 'Used to indicate void context. See C and L.'},'GetVars' => {'name' => 'GetVars','text' => ''},'GvAV' => {'name' => 'GvAV','text' => 'Return the AV from the GV.
169              
170             AV* GvAV(GV* gv)'},'GvCV' => {'name' => 'GvCV','text' => 'Return the CV from the GV.
171              
172             CV* GvCV(GV* gv)'},'GvHV' => {'name' => 'GvHV','text' => 'Return the HV from the GV.
173              
174             HV* GvHV(GV* gv)'},'GvSV' => {'name' => 'GvSV','text' => 'Return the SV from the GV.
175              
176             SV* GvSV(GV* gv)'},'Gv_AMupdate' => {'name' => 'Gv_AMupdate','text' => ''},'HEf_SVKEY' => {'name' => 'HEf_SVKEY','text' => 'This flag, used in the length slot of hash entries and magic structures,
177             specifies the structure contains an C pointer where a C pointer
178             is to be expected. (For information only--not to be used).'},'HeHASH' => {'name' => 'HeHASH','text' => 'Returns the computed hash stored in the hash entry.
179              
180             U32 HeHASH(HE* he)'},'HeKEY' => {'name' => 'HeKEY','text' => 'Returns the actual pointer stored in the key slot of the hash entry. The
181             pointer may be either C or C, depending on the value of
182             C. Can be assigned to. The C or C macros are
183             usually preferable for finding the value of a key.
184              
185             void* HeKEY(HE* he)'},'HeKLEN' => {'name' => 'HeKLEN','text' => 'If this is negative, and amounts to C, it indicates the entry
186             holds an C key. Otherwise, holds the actual length of the key. Can
187             be assigned to. The C macro is usually preferable for finding key
188             lengths.
189              
190             STRLEN HeKLEN(HE* he)'},'HePV' => {'name' => 'HePV','text' => 'Returns the key slot of the hash entry as a C value, doing any
191             necessary dereferencing of possibly C keys. The length of the string
192             is placed in C (this is a macro, so do I use C<&len>). If you do
193             not care about what the length of the key is, you may use the global
194             variable C, though this is rather less efficient than using a local
195             variable. Remember though, that hash keys in perl are free to contain
196             embedded nulls, so using C or similar is not a good way to find
197             the length of hash keys. This is very similar to the C macro
198             described elsewhere in this document. See also C.
199              
200             If you are using C to get values to pass to C to create a
201             new SV, you should consider using C as it is more
202             efficient.
203              
204             char* HePV(HE* he, STRLEN len)'},'HeSVKEY' => {'name' => 'HeSVKEY','text' => 'Returns the key as an C, or C if the hash entry does not
205             contain an C key.
206              
207             SV* HeSVKEY(HE* he)'},'HeSVKEY_force' => {'name' => 'HeSVKEY_force','text' => 'Returns the key as an C. Will create and return a temporary mortal
208             C if the hash entry contains only a C key.
209              
210             SV* HeSVKEY_force(HE* he)'},'HeSVKEY_set' => {'name' => 'HeSVKEY_set','text' => 'Sets the key to a given C, taking care to set the appropriate flags to
211             indicate the presence of an C key, and returns the same
212             C.
213              
214             SV* HeSVKEY_set(HE* he, SV* sv)'},'HeUTF8' => {'name' => 'HeUTF8','text' => 'Returns whether the C value returned by C is encoded in UTF-8,
215             doing any necessary dereferencing of possibly C keys. The value returned
216             will be 0 or non-0, not necessarily 1 (or even a value with any low bits set),
217             so B blindly assign this to a C variable, as C may be a
218             typedef for C.
219              
220             U32 HeUTF8(HE* he)'},'HeVAL' => {'name' => 'HeVAL','text' => 'Returns the value slot (type C)
221             stored in the hash entry. Can be assigned
222             to.
223              
224             SV *foo= HeVAL(hv);
225             HeVAL(hv)= sv;
226              
227              
228             SV* HeVAL(HE* he)'},'HvENAME' => {'name' => 'HvENAME','text' => 'Returns the effective name of a stash, or NULL if there is none. The
229             effective name represents a location in the symbol table where this stash
230             resides. It is updated automatically when packages are aliased or deleted.
231             A stash that is no longer in the symbol table has no effective name. This
232             name is preferable to C for use in MRO linearisations and isa
233             caches.
234              
235             char* HvENAME(HV* stash)'},'HvENAMELEN' => {'name' => 'HvENAMELEN','text' => 'Returns the length of the stash\'s effective name.
236              
237             STRLEN HvENAMELEN(HV *stash)'},'HvENAMEUTF8' => {'name' => 'HvENAMEUTF8','text' => 'Returns true if the effective name is in UTF8 encoding.
238              
239             unsigned char HvENAMEUTF8(HV *stash)'},'HvNAME' => {'name' => 'HvNAME','text' => 'Returns the package name of a stash, or NULL if C isn\'t a stash.
240             See C, C.
241              
242             char* HvNAME(HV* stash)'},'HvNAMELEN' => {'name' => 'HvNAMELEN','text' => 'Returns the length of the stash\'s name.
243              
244             STRLEN HvNAMELEN(HV *stash)'},'HvNAMEUTF8' => {'name' => 'HvNAMEUTF8','text' => 'Returns true if the name is in UTF8 encoding.
245              
246             unsigned char HvNAMEUTF8(HV *stash)'},'LEAVE' => {'name' => 'LEAVE','text' => 'Closing bracket on a callback. See C and L.
247              
248             LEAVE;'},'LINKLIST' => {'name' => 'LINKLIST','text' => 'Given the root of an optree, link the tree in execution order using the
249             C pointers and return the first op executed. If this has
250             already been done, it will not be redone, and C<< o->op_next >> will be
251             returned. If C<< o->op_next >> is not already set, I should be at
252             least an C.
253              
254             OP* LINKLIST(OP *o)'},'MARK' => {'name' => 'MARK','text' => 'Stack marker variable for the XSUB. See C.'},'MULTICALL' => {'name' => 'MULTICALL','text' => 'Make a lightweight callback. See L.
255              
256             MULTICALL;'},'Move' => {'name' => 'Move','text' => 'The XSUB-writer\'s interface to the C C function. The C is the
257             source, C is the destination, C is the number of items, and
258             C is the type. Can do overlapping moves. See also C.
259              
260             void Move(void* src, void* dest, int nitems, type)'},'MoveD' => {'name' => 'MoveD','text' => 'Like C but returns dest. Useful
261             for encouraging compilers to tail-call
262             optimise.
263              
264             void * MoveD(void* src, void* dest, int nitems, type)'},'Newx' => {'name' => 'Newx','text' => 'The XSUB-writer\'s interface to the C C function.
265              
266             Memory obtained by this should B be freed with L<"Safefree">.
267              
268             In 5.9.3, Newx() and friends replace the older New() API, and drops
269             the first parameter, I, a debug aid which allowed callers to identify
270             themselves. This aid has been superseded by a new build option,
271             PERL_MEM_LOG (see L). The older API is still
272             there for use in XS modules supporting older perls.
273              
274             void Newx(void* ptr, int nitems, type)'},'Newxc' => {'name' => 'Newxc','text' => 'The XSUB-writer\'s interface to the C C function, with
275             cast. See also C.
276              
277             Memory obtained by this should B be freed with L<"Safefree">.
278              
279             void Newxc(void* ptr, int nitems, type, cast)'},'Newxz' => {'name' => 'Newxz','text' => 'The XSUB-writer\'s interface to the C C function. The allocated
280             memory is zeroed with C. See also C.
281              
282             Memory obtained by this should B be freed with L<"Safefree">.
283              
284             void Newxz(void* ptr, int nitems, type)'},'Nullav' => {'name' => 'Nullav','text' => 'Null AV pointer.
285              
286             (deprecated - use C<(AV *)NULL> instead)'},'Nullch' => {'name' => 'Nullch','text' => 'Null character pointer. (No longer available when C is
287             defined.)'},'Nullcv' => {'name' => 'Nullcv','text' => 'Null CV pointer.
288              
289             (deprecated - use C<(CV *)NULL> instead)'},'Nullhv' => {'name' => 'Nullhv','text' => 'Null HV pointer.
290              
291             (deprecated - use C<(HV *)NULL> instead)'},'Nullsv' => {'name' => 'Nullsv','text' => 'Null SV pointer. (No longer available when C is defined.)'},'OP_CLASS' => {'name' => 'OP_CLASS','text' => 'Return the class of the provided OP: that is, which of the *OP
292             structures it uses. For core ops this currently gets the information out
293             of PL_opargs, which does not always accurately reflect the type used.
294             For custom ops the type is returned from the registration, and it is up
295             to the registree to ensure it is accurate. The value returned will be
296             one of the OA_* constants from op.h.
297              
298             U32 OP_CLASS(OP *o)'},'OP_DESC' => {'name' => 'OP_DESC','text' => 'Return a short description of the provided OP.
299              
300             const char * OP_DESC(OP *o)'},'OP_NAME' => {'name' => 'OP_NAME','text' => 'Return the name of the provided OP. For core ops this looks up the name
301             from the op_type; for custom ops from the op_ppaddr.
302              
303             const char * OP_NAME(OP *o)'},'OP_TYPE_IS' => {'name' => 'OP_TYPE_IS','text' => 'Returns true if the given OP is not a NULL pointer
304             and if it is of the given type.
305              
306             The negation of this macro, C is also available
307             as well as C and C which elide
308             the NULL pointer check.
309              
310             bool OP_TYPE_IS(OP *o, Optype type)'},'OP_TYPE_IS_OR_WAS' => {'name' => 'OP_TYPE_IS_OR_WAS','text' => 'Returns true if the given OP is not a NULL pointer and
311             if it is of the given type or used to be before being
312             replaced by an OP of type OP_NULL.
313              
314             The negation of this macro, C
315             is also available as well as C
316             and C which elide
317             the NULL pointer check.
318              
319             bool OP_TYPE_IS_OR_WAS(OP *o, Optype type)'},'ORIGMARK' => {'name' => 'ORIGMARK','text' => 'The original stack mark for the XSUB. See C.'},'PERL_SYS_INIT' => {'name' => 'PERL_SYS_INIT','text' => 'Provides system-specific tune up of the C runtime environment necessary to
320             run Perl interpreters. This should be called only once, before creating
321             any Perl interpreters.
322              
323             void PERL_SYS_INIT(int *argc, char*** argv)'},'PERL_SYS_INIT3' => {'name' => 'PERL_SYS_INIT3','text' => 'Provides system-specific tune up of the C runtime environment necessary to
324             run Perl interpreters. This should be called only once, before creating
325             any Perl interpreters.
326              
327             void PERL_SYS_INIT3(int *argc, char*** argv,
328             char*** env)'},'PERL_SYS_TERM' => {'name' => 'PERL_SYS_TERM','text' => 'Provides system-specific clean up of the C runtime environment after
329             running Perl interpreters. This should be called only once, after
330             freeing any remaining Perl interpreters.
331              
332             void PERL_SYS_TERM()'},'PL_check' => {'name' => 'PL_check','text' => 'Array, indexed by opcode, of functions that will be called for the "check"
333             phase of optree building during compilation of Perl code. For most (but
334             not all) types of op, once the op has been initially built and populated
335             with child ops it will be filtered through the check function referenced
336             by the appropriate element of this array. The new op is passed in as the
337             sole argument to the check function, and the check function returns the
338             completed op. The check function may (as the name suggests) check the op
339             for validity and signal errors. It may also initialise or modify parts of
340             the ops, or perform more radical surgery such as adding or removing child
341             ops, or even throw the op away and return a different op in its place.
342              
343             This array of function pointers is a convenient place to hook into the
344             compilation process. An XS module can put its own custom check function
345             in place of any of the standard ones, to influence the compilation of a
346             particular type of op. However, a custom check function must never fully
347             replace a standard check function (or even a custom check function from
348             another module). A module modifying checking must instead B the
349             preexisting check function. A custom check function must be selective
350             about when to apply its custom behaviour. In the usual case where
351             it decides not to do anything special with an op, it must chain the
352             preexisting op function. Check functions are thus linked in a chain,
353             with the core\'s base checker at the end.
354              
355             For thread safety, modules should not write directly to this array.
356             Instead, use the function L.'},'PL_comppad' => {'name' => 'PL_comppad','text' => 'NOTE: this function is experimental and may change or be
357             removed without notice.
358              
359              
360             During compilation, this points to the array containing the values
361             part of the pad for the currently-compiling code. (At runtime a CV may
362             have many such value arrays; at compile time just one is constructed.)
363             At runtime, this points to the array containing the currently-relevant
364             values for the pad for the currently-executing code.'},'PL_comppad_name' => {'name' => 'PL_comppad_name','text' => 'NOTE: this function is experimental and may change or be
365             removed without notice.
366              
367              
368             During compilation, this points to the array containing the names part
369             of the pad for the currently-compiling code.'},'PL_curpad' => {'name' => 'PL_curpad','text' => 'NOTE: this function is experimental and may change or be
370             removed without notice.
371              
372              
373             Points directly to the body of the L array.
374             (I.e., this is C.)'},'PL_keyword_plugin' => {'name' => 'PL_keyword_plugin','text' => 'NOTE: this function is experimental and may change or be
375             removed without notice.
376              
377              
378             Function pointer, pointing at a function used to handle extended keywords.
379             The function should be declared as
380              
381             int keyword_plugin_function(pTHX_
382             char *keyword_ptr, STRLEN keyword_len,
383             OP **op_ptr)
384              
385             The function is called from the tokeniser, whenever a possible keyword
386             is seen. C points at the word in the parser\'s input
387             buffer, and C gives its length; it is not null-terminated.
388             The function is expected to examine the word, and possibly other state
389             such as L<%^H|perlvar/%^H>, to decide whether it wants to handle it
390             as an extended keyword. If it does not, the function should return
391             C, and the normal parser process will continue.
392              
393             If the function wants to handle the keyword, it first must
394             parse anything following the keyword that is part of the syntax
395             introduced by the keyword. See L for details.
396              
397             When a keyword is being handled, the plugin function must build
398             a tree of C structures, representing the code that was parsed.
399             The root of the tree must be stored in C<*op_ptr>. The function then
400             returns a constant indicating the syntactic role of the construct that
401             it has parsed: C if it is a complete statement, or
402             C if it is an expression. Note that a statement
403             construct cannot be used inside an expression (except via C
404             and similar), and an expression is not a complete statement (it requires
405             at least a terminating semicolon).
406              
407             When a keyword is handled, the plugin function may also have
408             (compile-time) side effects. It may modify C<%^H>, define functions, and
409             so on. Typically, if side effects are the main purpose of a handler,
410             it does not wish to generate any ops to be included in the normal
411             compilation. In this case it is still required to supply an op tree,
412             but it suffices to generate a single null op.
413              
414             That\'s how the C<*PL_keyword_plugin> function needs to behave overall.
415             Conventionally, however, one does not completely replace the existing
416             handler function. Instead, take a copy of C before
417             assigning your own function pointer to it. Your handler function should
418             look for keywords that it is interested in and handle those. Where it
419             is not interested, it should call the saved plugin function, passing on
420             the arguments it received. Thus C actually points
421             at a chain of handler functions, all of which have an opportunity to
422             handle keywords, and only the last function in the chain (built into
423             the Perl core) will normally return C.'},'PL_modglobal' => {'name' => 'PL_modglobal','text' => 'C is a general purpose, interpreter global HV for use by
424             extensions that need to keep information on a per-interpreter basis.
425             In a pinch, it can also be used as a symbol table for extensions
426             to share data among each other. It is a good idea to use keys
427             prefixed by the package name of the extension that owns the data.
428              
429             HV* PL_modglobal'},'PL_na' => {'name' => 'PL_na','text' => 'A convenience variable which is typically used with C when one
430             doesn\'t care about the length of the string. It is usually more efficient
431             to either declare a local variable and use that instead or to use the
432             C macro.
433              
434             STRLEN PL_na'},'PL_opfreehook' => {'name' => 'PL_opfreehook','text' => 'When non-C, the function pointed by this variable will be called each time an OP is freed with the corresponding OP as the argument.
435             This allows extensions to free any extra attribute they have locally attached to an OP.
436             It is also assured to first fire for the parent OP and then for its kids.
437              
438             When you replace this variable, it is considered a good practice to store the possibly previously installed hook and that you recall it inside your own.
439              
440             Perl_ophook_t PL_opfreehook'},'PL_parser' => {'name' => 'PL_parser','text' => 'Pointer to a structure encapsulating the state of the parsing operation
441             currently in progress. The pointer can be locally changed to perform
442             a nested parse without interfering with the state of an outer parse.
443             Individual members of C have their own documentation.'},'PL_parser-Ebufend' => {'name' => 'PL_parser-Ebufend','text' => 'NOTE: this function is experimental and may change or be
444             removed without notice.
445              
446              
447             Direct pointer to the end of the chunk of text currently being lexed, the
448             end of the lexer buffer. This is equal to Clinestr)
449             + SvCUR(PL_parser-Elinestr)>. A C character (zero octet) is
450             always located at the end of the buffer, and does not count as part of
451             the buffer\'s contents.'},'PL_parser-Ebufptr' => {'name' => 'PL_parser-Ebufptr','text' => 'NOTE: this function is experimental and may change or be
452             removed without notice.
453              
454              
455             Points to the current position of lexing inside the lexer buffer.
456             Characters around this point may be freely examined, within
457             the range delimited by Clinestr>)> and
458             Lbufend>. The octets of the buffer may be intended to be
459             interpreted as either UTF-8 or Latin-1, as indicated by L.
460              
461             Lexing code (whether in the Perl core or not) moves this pointer past
462             the characters that it consumes. It is also expected to perform some
463             bookkeeping whenever a newline character is consumed. This movement
464             can be more conveniently performed by the function L,
465             which handles newlines appropriately.
466              
467             Interpretation of the buffer\'s octets can be abstracted out by
468             using the slightly higher-level functions L and
469             L.'},'PL_parser-Elinestart' => {'name' => 'PL_parser-Elinestart','text' => 'NOTE: this function is experimental and may change or be
470             removed without notice.
471              
472              
473             Points to the start of the current line inside the lexer buffer.
474             This is useful for indicating at which column an error occurred, and
475             not much else. This must be updated by any lexing code that consumes
476             a newline; the function L handles this detail.'},'PL_parser-Elinestr' => {'name' => 'PL_parser-Elinestr','text' => 'NOTE: this function is experimental and may change or be
477             removed without notice.
478              
479              
480             Buffer scalar containing the chunk currently under consideration of the
481             text currently being lexed. This is always a plain string scalar (for
482             which C is true). It is not intended to be used as a scalar by
483             normal scalar means; instead refer to the buffer directly by the pointer
484             variables described below.
485              
486             The lexer maintains various C pointers to things in the
487             Clinestr> buffer. If Clinestr> is ever
488             reallocated, all of these pointers must be updated. Don\'t attempt to
489             do this manually, but rather use L if you need to
490             reallocate the buffer.
491              
492             The content of the text chunk in the buffer is commonly exactly one
493             complete line of input, up to and including a newline terminator,
494             but there are situations where it is otherwise. The octets of the
495             buffer may be intended to be interpreted as either UTF-8 or Latin-1.
496             The function L tells you which. Do not use the C
497             flag on this scalar, which may disagree with it.
498              
499             For direct examination of the buffer, the variable
500             Lbufend> points to the end of the buffer. The current
501             lexing position is pointed to by Lbufptr>. Direct use
502             of these pointers is usually preferable to examination of the scalar
503             through normal scalar means.'},'PL_peepp' => {'name' => 'PL_peepp','text' => 'Pointer to the per-subroutine peephole optimiser. This is a function
504             that gets called at the end of compilation of a Perl subroutine (or
505             equivalently independent piece of Perl code) to perform fixups of
506             some ops and to perform small-scale optimisations. The function is
507             called once for each subroutine that is compiled, and is passed, as sole
508             parameter, a pointer to the op that is the entry point to the subroutine.
509             It modifies the op tree in place.
510              
511             The peephole optimiser should never be completely replaced. Rather,
512             add code to it by wrapping the existing optimiser. The basic way to do
513             this can be seen in L.
514             If the new code wishes to operate on ops throughout the subroutine\'s
515             structure, rather than just at the top level, it is likely to be more
516             convenient to wrap the L hook.
517              
518             peep_t PL_peepp'},'PL_rpeepp' => {'name' => 'PL_rpeepp','text' => 'Pointer to the recursive peephole optimiser. This is a function
519             that gets called at the end of compilation of a Perl subroutine (or
520             equivalently independent piece of Perl code) to perform fixups of some
521             ops and to perform small-scale optimisations. The function is called
522             once for each chain of ops linked through their C fields;
523             it is recursively called to handle each side chain. It is passed, as
524             sole parameter, a pointer to the op that is at the head of the chain.
525             It modifies the op tree in place.
526              
527             The peephole optimiser should never be completely replaced. Rather,
528             add code to it by wrapping the existing optimiser. The basic way to do
529             this can be seen in L.
530             If the new code wishes to operate only on ops at a subroutine\'s top level,
531             rather than throughout the structure, it is likely to be more convenient
532             to wrap the L hook.
533              
534             peep_t PL_rpeepp'},'PL_sv_no' => {'name' => 'PL_sv_no','text' => 'This is the C SV. See C. Always refer to this as
535             C<&PL_sv_no>.
536              
537             SV PL_sv_no'},'PL_sv_undef' => {'name' => 'PL_sv_undef','text' => 'This is the C SV. Always refer to this as C<&PL_sv_undef>.
538              
539             SV PL_sv_undef'},'PL_sv_yes' => {'name' => 'PL_sv_yes','text' => 'This is the C SV. See C. Always refer to this as
540             C<&PL_sv_yes>.
541              
542             SV PL_sv_yes'},'POP_MULTICALL' => {'name' => 'POP_MULTICALL','text' => 'Closing bracket for a lightweight callback.
543             See L.
544              
545             POP_MULTICALL;'},'POPi' => {'name' => 'POPi','text' => 'Pops an integer off the stack.
546              
547             IV POPi'},'POPl' => {'name' => 'POPl','text' => 'Pops a long off the stack.
548              
549             long POPl'},'POPn' => {'name' => 'POPn','text' => 'Pops a double off the stack.
550              
551             NV POPn'},'POPp' => {'name' => 'POPp','text' => 'Pops a string off the stack.
552              
553             char* POPp'},'POPpbytex' => {'name' => 'POPpbytex','text' => 'Pops a string off the stack which must consist of bytes i.e. characters < 256.
554              
555             char* POPpbytex'},'POPpx' => {'name' => 'POPpx','text' => 'Pops a string off the stack. Identical to POPp. There are two names for
556             historical reasons.
557              
558             char* POPpx'},'POPs' => {'name' => 'POPs','text' => 'Pops an SV off the stack.
559              
560             SV* POPs'},'PUSHMARK' => {'name' => 'PUSHMARK','text' => 'Opening bracket for arguments on a callback. See C and
561             L.
562              
563             void PUSHMARK(SP)'},'PUSH_MULTICALL' => {'name' => 'PUSH_MULTICALL','text' => 'Opening bracket for a lightweight callback.
564             See L.
565              
566             PUSH_MULTICALL;'},'PUSHi' => {'name' => 'PUSHi','text' => 'Push an integer onto the stack. The stack must have room for this element.
567             Handles \'set\' magic. Uses C, so C or C should be
568             called to declare it. Do not call multiple C-oriented macros to
569             return lists from XSUB\'s - see C instead. See also C and
570             C.
571              
572             void PUSHi(IV iv)'},'PUSHmortal' => {'name' => 'PUSHmortal','text' => 'Push a new mortal SV onto the stack. The stack must have room for this
573             element. Does not use C. See also C, C and C.
574              
575             void PUSHmortal()'},'PUSHn' => {'name' => 'PUSHn','text' => 'Push a double onto the stack. The stack must have room for this element.
576             Handles \'set\' magic. Uses C, so C or C should be
577             called to declare it. Do not call multiple C-oriented macros to
578             return lists from XSUB\'s - see C instead. See also C and
579             C.
580              
581             void PUSHn(NV nv)'},'PUSHp' => {'name' => 'PUSHp','text' => 'Push a string onto the stack. The stack must have room for this element.
582             The C indicates the length of the string. Handles \'set\' magic. Uses
583             C, so C or C should be called to declare it. Do not
584             call multiple C-oriented macros to return lists from XSUB\'s - see
585             C instead. See also C and C.
586              
587             void PUSHp(char* str, STRLEN len)'},'PUSHs' => {'name' => 'PUSHs','text' => 'Push an SV onto the stack. The stack must have room for this element.
588             Does not handle \'set\' magic. Does not use C. See also C,
589             C and C.
590              
591             void PUSHs(SV* sv)'},'PUSHu' => {'name' => 'PUSHu','text' => 'Push an unsigned integer onto the stack. The stack must have room for this
592             element. Handles \'set\' magic. Uses C, so C or C
593             should be called to declare it. Do not call multiple C-oriented
594             macros to return lists from XSUB\'s - see C instead. See also
595             C and C.
596              
597             void PUSHu(UV uv)'},'PUTBACK' => {'name' => 'PUTBACK','text' => 'Closing bracket for XSUB arguments. This is usually handled by C.
598             See C and L for other uses.
599              
600             PUTBACK;'},'PadARRAY' => {'name' => 'PadARRAY','text' => 'NOTE: this function is experimental and may change or be
601             removed without notice.
602              
603              
604             The C array of pad entries.
605              
606             SV ** PadARRAY(PAD pad)'},'PadMAX' => {'name' => 'PadMAX','text' => 'NOTE: this function is experimental and may change or be
607             removed without notice.
608              
609              
610             The index of the last pad entry.
611              
612             SSize_t PadMAX(PAD pad)'},'PadlistARRAY' => {'name' => 'PadlistARRAY','text' => 'NOTE: this function is experimental and may change or be
613             removed without notice.
614              
615              
616             The C array of a padlist, containing the pads. Only subscript it with
617             numbers >= 1, as the 0th entry is not guaranteed to remain usable.
618              
619             PAD ** PadlistARRAY(PADLIST padlist)'},'PadlistMAX' => {'name' => 'PadlistMAX','text' => 'NOTE: this function is experimental and may change or be
620             removed without notice.
621              
622              
623             The index of the last allocated space in the padlist. Note that the last
624             pad may be in an earlier slot. Any entries following it will be NULL in
625             that case.
626              
627             SSize_t PadlistMAX(PADLIST padlist)'},'PadlistNAMES' => {'name' => 'PadlistNAMES','text' => 'NOTE: this function is experimental and may change or be
628             removed without notice.
629              
630              
631             The names associated with pad entries.
632              
633             PADNAMELIST * PadlistNAMES(PADLIST padlist)'},'PadlistNAMESARRAY' => {'name' => 'PadlistNAMESARRAY','text' => 'NOTE: this function is experimental and may change or be
634             removed without notice.
635              
636              
637             The C array of pad names.
638              
639             PADNAME ** PadlistNAMESARRAY(PADLIST padlist)'},'PadlistNAMESMAX' => {'name' => 'PadlistNAMESMAX','text' => 'NOTE: this function is experimental and may change or be
640             removed without notice.
641              
642              
643             The index of the last pad name.
644              
645             SSize_t PadlistNAMESMAX(PADLIST padlist)'},'PadlistREFCNT' => {'name' => 'PadlistREFCNT','text' => 'NOTE: this function is experimental and may change or be
646             removed without notice.
647              
648              
649             The reference count of the padlist. Currently this is always 1.
650              
651             U32 PadlistREFCNT(PADLIST padlist)'},'PadnameLEN' => {'name' => 'PadnameLEN','text' => 'NOTE: this function is experimental and may change or be
652             removed without notice.
653              
654              
655             The length of the name.
656              
657             STRLEN PadnameLEN(PADNAME pn)'},'PadnamePV' => {'name' => 'PadnamePV','text' => 'NOTE: this function is experimental and may change or be
658             removed without notice.
659              
660              
661             The name stored in the pad name struct. This returns NULL for a target or
662             GV slot.
663              
664             char * PadnamePV(PADNAME pn)'},'PadnameSV' => {'name' => 'PadnameSV','text' => 'NOTE: this function is experimental and may change or be
665             removed without notice.
666              
667              
668             Returns the pad name as an SV. This is currently just C. It will
669             begin returning a new mortal SV if pad names ever stop being SVs.
670              
671             SV * PadnameSV(PADNAME pn)'},'PadnameUTF8' => {'name' => 'PadnameUTF8','text' => 'NOTE: this function is experimental and may change or be
672             removed without notice.
673              
674              
675             Whether PadnamePV is in UTF8.
676              
677             bool PadnameUTF8(PADNAME pn)'},'PadnamelistARRAY' => {'name' => 'PadnamelistARRAY','text' => 'NOTE: this function is experimental and may change or be
678             removed without notice.
679              
680              
681             The C array of pad names.
682              
683             PADNAME ** PadnamelistARRAY(PADNAMELIST pnl)'},'PadnamelistMAX' => {'name' => 'PadnamelistMAX','text' => 'NOTE: this function is experimental and may change or be
684             removed without notice.
685              
686              
687             The index of the last pad name.
688              
689             SSize_t PadnamelistMAX(PADNAMELIST pnl)'},'PerlIO_clearerr' => {'name' => 'PerlIO_clearerr','text' => ''},'PerlIO_close' => {'name' => 'PerlIO_close','text' => ''},'PerlIO_context_layers' => {'name' => 'PerlIO_context_layers','text' => ''},'PerlIO_eof' => {'name' => 'PerlIO_eof','text' => ''},'PerlIO_error' => {'name' => 'PerlIO_error','text' => ''},'PerlIO_fileno' => {'name' => 'PerlIO_fileno','text' => ''},'PerlIO_fill' => {'name' => 'PerlIO_fill','text' => ''},'PerlIO_flush' => {'name' => 'PerlIO_flush','text' => ''},'PerlIO_get_base' => {'name' => 'PerlIO_get_base','text' => ''},'PerlIO_get_bufsiz' => {'name' => 'PerlIO_get_bufsiz','text' => ''},'PerlIO_get_cnt' => {'name' => 'PerlIO_get_cnt','text' => ''},'PerlIO_get_ptr' => {'name' => 'PerlIO_get_ptr','text' => ''},'PerlIO_read' => {'name' => 'PerlIO_read','text' => ''},'PerlIO_seek' => {'name' => 'PerlIO_seek','text' => ''},'PerlIO_set_cnt' => {'name' => 'PerlIO_set_cnt','text' => ''},'PerlIO_set_ptrcnt' => {'name' => 'PerlIO_set_ptrcnt','text' => ''},'PerlIO_setlinebuf' => {'name' => 'PerlIO_setlinebuf','text' => ''},'PerlIO_stderr' => {'name' => 'PerlIO_stderr','text' => ''},'PerlIO_stdin' => {'name' => 'PerlIO_stdin','text' => ''},'PerlIO_stdout' => {'name' => 'PerlIO_stdout','text' => ''},'PerlIO_tell' => {'name' => 'PerlIO_tell','text' => ''},'PerlIO_unread' => {'name' => 'PerlIO_unread','text' => ''},'PerlIO_write' => {'name' => 'PerlIO_write','text' => ''},'Perl_signbit' => {'name' => 'Perl_signbit','text' => 'NOTE: this function is experimental and may change or be
690             removed without notice.
691              
692              
693             Return a non-zero integer if the sign bit on an NV is set, and 0 if
694             it is not.
695              
696             If Configure detects this system has a signbit() that will work with
697             our NVs, then we just use it via the #define in perl.h. Otherwise,
698             fall back on this implementation. As a first pass, this gets everything
699             right except -0.0. Alas, catching -0.0 is the main use for this function,
700             so this is not too helpful yet. Still, at least we have the scaffolding
701             in place to support other systems, should that prove useful.
702              
703              
704             Configure notes: This function is called \'Perl_signbit\' instead of a
705             plain \'signbit\' because it is easy to imagine a system having a signbit()
706             function or macro that doesn\'t happen to work with our particular choice
707             of NVs. We shouldn\'t just re-#define signbit as Perl_signbit and expect
708             the standard system headers to be happy. Also, this is a no-context
709             function (no pTHX_) because Perl_signbit() is usually re-#defined in
710             perl.h as a simple macro call to the system\'s signbit().
711             Users should just always call Perl_signbit().
712              
713             int Perl_signbit(NV f)'},'Poison' => {'name' => 'Poison','text' => 'PoisonWith(0xEF) for catching access to freed memory.
714              
715             void Poison(void* dest, int nitems, type)'},'PoisonFree' => {'name' => 'PoisonFree','text' => 'PoisonWith(0xEF) for catching access to freed memory.
716              
717             void PoisonFree(void* dest, int nitems, type)'},'PoisonNew' => {'name' => 'PoisonNew','text' => 'PoisonWith(0xAB) for catching access to allocated but uninitialized memory.
718              
719             void PoisonNew(void* dest, int nitems, type)'},'PoisonWith' => {'name' => 'PoisonWith','text' => 'Fill up memory with a byte pattern (a byte repeated over and over
720             again) that hopefully catches attempts to access uninitialized memory.
721              
722             void PoisonWith(void* dest, int nitems, type,
723             U8 byte)'},'READ_XDIGIT' => {'name' => 'READ_XDIGIT','text' => 'Returns the value of an ASCII-range hex digit and advances the string pointer.
724             Behaviour is only well defined when isXDIGIT(*str) is true.
725              
726             U8 READ_XDIGIT(char str*)'},'RETVAL' => {'name' => 'RETVAL','text' => 'Variable which is setup by C to hold the return value for an
727             XSUB. This is always the proper type for the XSUB. See
728             L.
729              
730             (whatever) RETVAL'},'Renew' => {'name' => 'Renew','text' => 'The XSUB-writer\'s interface to the C C function.
731              
732             Memory obtained by this should B be freed with L<"Safefree">.
733              
734             void Renew(void* ptr, int nitems, type)'},'Renewc' => {'name' => 'Renewc','text' => 'The XSUB-writer\'s interface to the C C function, with
735             cast.
736              
737             Memory obtained by this should B be freed with L<"Safefree">.
738              
739             void Renewc(void* ptr, int nitems, type, cast)'},'SAVETMPS' => {'name' => 'SAVETMPS','text' => 'Opening bracket for temporaries on a callback. See C and
740             L.
741              
742             SAVETMPS;'},'SP' => {'name' => 'SP','text' => 'Stack pointer. This is usually handled by C. See C and
743             C.'},'SPAGAIN' => {'name' => 'SPAGAIN','text' => 'Refetch the stack pointer. Used after a callback. See L.
744              
745             SPAGAIN;'},'ST' => {'name' => 'ST','text' => 'Used to access elements on the XSUB\'s stack.
746              
747             SV* ST(int ix)'},'SVt_INVLIST' => {'name' => 'SVt_INVLIST','text' => 'Type flag for scalars. See L.'},'SVt_IV' => {'name' => 'SVt_IV','text' => 'Type flag for scalars. See L.'},'SVt_NULL' => {'name' => 'SVt_NULL','text' => 'Type flag for scalars. See L.'},'SVt_NV' => {'name' => 'SVt_NV','text' => 'Type flag for scalars. See L.'},'SVt_PV' => {'name' => 'SVt_PV','text' => 'Type flag for scalars. See L.'},'SVt_PVAV' => {'name' => 'SVt_PVAV','text' => 'Type flag for arrays. See L.'},'SVt_PVCV' => {'name' => 'SVt_PVCV','text' => 'Type flag for subroutines. See L.'},'SVt_PVFM' => {'name' => 'SVt_PVFM','text' => 'Type flag for formats. See L.'},'SVt_PVGV' => {'name' => 'SVt_PVGV','text' => 'Type flag for typeglobs. See L.'},'SVt_PVHV' => {'name' => 'SVt_PVHV','text' => 'Type flag for hashes. See L.'},'SVt_PVIO' => {'name' => 'SVt_PVIO','text' => 'Type flag for I/O objects. See L.'},'SVt_PVIV' => {'name' => 'SVt_PVIV','text' => 'Type flag for scalars. See L.'},'SVt_PVLV' => {'name' => 'SVt_PVLV','text' => 'Type flag for scalars. See L.'},'SVt_PVMG' => {'name' => 'SVt_PVMG','text' => 'Type flag for scalars. See L.'},'SVt_PVNV' => {'name' => 'SVt_PVNV','text' => 'Type flag for scalars. See L.'},'SVt_REGEXP' => {'name' => 'SVt_REGEXP','text' => 'Type flag for regular expressions. See L.'},'Safefree' => {'name' => 'Safefree','text' => 'The XSUB-writer\'s interface to the C C function.
748              
749             This should B be used on memory obtained using L<"Newx"> and friends.
750              
751             void Safefree(void* ptr)'},'StructCopy' => {'name' => 'StructCopy','text' => 'This is an architecture-independent macro to copy one structure to another.
752              
753             void StructCopy(type *src, type *dest, type)'},'SvCUR' => {'name' => 'SvCUR','text' => 'Returns the length of the string which is in the SV. See C.
754              
755             STRLEN SvCUR(SV* sv)'},'SvCUR_set' => {'name' => 'SvCUR_set','text' => 'Set the current length of the string which is in the SV. See C
756             and C.
757              
758             void SvCUR_set(SV* sv, STRLEN len)'},'SvEND' => {'name' => 'SvEND','text' => 'Returns a pointer to the spot just after the last character in
759             the string which is in the SV, where there is usually a trailing
760             C character (even though Perl scalars do not strictly require it).
761             See C. Access the character as *(SvEND(sv)).
762              
763             Warning: If C is equal to C, then C points to
764             unallocated memory.
765              
766             char* SvEND(SV* sv)'},'SvGAMAGIC' => {'name' => 'SvGAMAGIC','text' => 'Returns true if the SV has get magic or
767             overloading. If either is true then
768             the scalar is active data, and has the potential to return a new value every
769             time it is accessed. Hence you must be careful to
770             only read it once per user logical operation and work
771             with that returned value. If neither is true then
772             the scalar\'s value cannot change unless written to.
773              
774             U32 SvGAMAGIC(SV* sv)'},'SvGETMAGIC' => {'name' => 'SvGETMAGIC','text' => 'Invokes C on an SV if it has \'get\' magic. For example, this
775             will call C on a tied variable. This macro evaluates its
776             argument more than once.
777              
778             void SvGETMAGIC(SV* sv)'},'SvGROW' => {'name' => 'SvGROW','text' => 'Expands the character buffer in the SV so that it has room for the
779             indicated number of bytes (remember to reserve space for an extra trailing
780             C character). Calls C to perform the expansion if necessary.
781             Returns a pointer to the character
782             buffer. SV must be of type >= SVt_PV. One
783             alternative is to call C if you are not sure of the type of SV.
784              
785             char * SvGROW(SV* sv, STRLEN len)'},'SvIOK' => {'name' => 'SvIOK','text' => 'Returns a U32 value indicating whether the SV contains an integer.
786              
787             U32 SvIOK(SV* sv)'},'SvIOK_UV' => {'name' => 'SvIOK_UV','text' => 'Returns a boolean indicating whether the SV contains an integer that must be
788             interpreted as unsigned. A non-negative integer whose value is within the
789             range of both an IV and a UV may be be flagged as either SvUOK or SVIOK.
790              
791             bool SvIOK_UV(SV* sv)'},'SvIOK_notUV' => {'name' => 'SvIOK_notUV','text' => 'Returns a boolean indicating whether the SV contains a signed integer.
792              
793             bool SvIOK_notUV(SV* sv)'},'SvIOK_off' => {'name' => 'SvIOK_off','text' => 'Unsets the IV status of an SV.
794              
795             void SvIOK_off(SV* sv)'},'SvIOK_on' => {'name' => 'SvIOK_on','text' => 'Tells an SV that it is an integer.
796              
797             void SvIOK_on(SV* sv)'},'SvIOK_only' => {'name' => 'SvIOK_only','text' => 'Tells an SV that it is an integer and disables all other OK bits.
798              
799             void SvIOK_only(SV* sv)'},'SvIOK_only_UV' => {'name' => 'SvIOK_only_UV','text' => 'Tells an SV that it is an unsigned integer and disables all other OK bits.
800              
801             void SvIOK_only_UV(SV* sv)'},'SvIOKp' => {'name' => 'SvIOKp','text' => 'Returns a U32 value indicating whether the SV contains an integer. Checks
802             the B setting. Use C instead.
803              
804             U32 SvIOKp(SV* sv)'},'SvIV' => {'name' => 'SvIV','text' => 'Coerces the given SV to an integer and returns it. See C for a
805             version which guarantees to evaluate sv only once.
806              
807             IV SvIV(SV* sv)'},'SvIVX' => {'name' => 'SvIVX','text' => 'Returns the raw value in the SV\'s IV slot, without checks or conversions.
808             Only use when you are sure SvIOK is true. See also C.
809              
810             IV SvIVX(SV* sv)'},'SvIV_nomg' => {'name' => 'SvIV_nomg','text' => 'Like C but doesn\'t process magic.
811              
812             IV SvIV_nomg(SV* sv)'},'SvIV_set' => {'name' => 'SvIV_set','text' => 'Set the value of the IV pointer in sv to val. It is possible to perform
813             the same function of this macro with an lvalue assignment to C.
814             With future Perls, however, it will be more efficient to use
815             C instead of the lvalue assignment to C.
816              
817             void SvIV_set(SV* sv, IV val)'},'SvIVx' => {'name' => 'SvIVx','text' => 'Coerces the given SV to an integer and returns it.
818             Guarantees to evaluate C only once. Only use
819             this if C is an expression with side effects,
820             otherwise use the more efficient C.
821              
822             IV SvIVx(SV* sv)'},'SvIsCOW' => {'name' => 'SvIsCOW','text' => 'Returns a U32 value indicating whether the SV is Copy-On-Write (either shared
823             hash key scalars, or full Copy On Write scalars if 5.9.0 is configured for
824             COW).
825              
826             U32 SvIsCOW(SV* sv)'},'SvIsCOW_shared_hash' => {'name' => 'SvIsCOW_shared_hash','text' => 'Returns a boolean indicating whether the SV is Copy-On-Write shared hash key
827             scalar.
828              
829             bool SvIsCOW_shared_hash(SV* sv)'},'SvLEN' => {'name' => 'SvLEN','text' => 'Returns the size of the string buffer in the SV, not including any part
830             attributable to C. See C.
831              
832             STRLEN SvLEN(SV* sv)'},'SvLEN_set' => {'name' => 'SvLEN_set','text' => 'Set the actual length of the string which is in the SV. See C.
833              
834             void SvLEN_set(SV* sv, STRLEN len)'},'SvLOCK' => {'name' => 'SvLOCK','text' => 'Arranges for a mutual exclusion lock to be obtained on sv if a suitable module
835             has been loaded.
836              
837             void SvLOCK(SV* sv)'},'SvMAGIC_set' => {'name' => 'SvMAGIC_set','text' => 'Set the value of the MAGIC pointer in sv to val. See C.
838              
839             void SvMAGIC_set(SV* sv, MAGIC* val)'},'SvNIOK' => {'name' => 'SvNIOK','text' => 'Returns a U32 value indicating whether the SV contains a number, integer or
840             double.
841              
842             U32 SvNIOK(SV* sv)'},'SvNIOK_off' => {'name' => 'SvNIOK_off','text' => 'Unsets the NV/IV status of an SV.
843              
844             void SvNIOK_off(SV* sv)'},'SvNIOKp' => {'name' => 'SvNIOKp','text' => 'Returns a U32 value indicating whether the SV contains a number, integer or
845             double. Checks the B setting. Use C instead.
846              
847             U32 SvNIOKp(SV* sv)'},'SvNOK' => {'name' => 'SvNOK','text' => 'Returns a U32 value indicating whether the SV contains a double.
848              
849             U32 SvNOK(SV* sv)'},'SvNOK_off' => {'name' => 'SvNOK_off','text' => 'Unsets the NV status of an SV.
850              
851             void SvNOK_off(SV* sv)'},'SvNOK_on' => {'name' => 'SvNOK_on','text' => 'Tells an SV that it is a double.
852              
853             void SvNOK_on(SV* sv)'},'SvNOK_only' => {'name' => 'SvNOK_only','text' => 'Tells an SV that it is a double and disables all other OK bits.
854              
855             void SvNOK_only(SV* sv)'},'SvNOKp' => {'name' => 'SvNOKp','text' => 'Returns a U32 value indicating whether the SV contains a double. Checks the
856             B setting. Use C instead.
857              
858             U32 SvNOKp(SV* sv)'},'SvNV' => {'name' => 'SvNV','text' => 'Coerce the given SV to a double and return it. See C for a version
859             which guarantees to evaluate sv only once.
860              
861             NV SvNV(SV* sv)'},'SvNVX' => {'name' => 'SvNVX','text' => 'Returns the raw value in the SV\'s NV slot, without checks or conversions.
862             Only use when you are sure SvNOK is true. See also C.
863              
864             NV SvNVX(SV* sv)'},'SvNV_nomg' => {'name' => 'SvNV_nomg','text' => 'Like C but doesn\'t process magic.
865              
866             NV SvNV_nomg(SV* sv)'},'SvNV_set' => {'name' => 'SvNV_set','text' => 'Set the value of the NV pointer in sv to val. See C.
867              
868             void SvNV_set(SV* sv, NV val)'},'SvNVx' => {'name' => 'SvNVx','text' => 'Coerces the given SV to a double and returns it.
869             Guarantees to evaluate C only once. Only use
870             this if C is an expression with side effects,
871             otherwise use the more efficient C.
872              
873             NV SvNVx(SV* sv)'},'SvOK' => {'name' => 'SvOK','text' => 'Returns a U32 value indicating whether the value is defined. This is
874             only meaningful for scalars.
875              
876             U32 SvOK(SV* sv)'},'SvOOK' => {'name' => 'SvOOK','text' => 'Returns a U32 indicating whether the pointer to the string buffer is offset.
877             This hack is used internally to speed up removal of characters from the
878             beginning of a SvPV. When SvOOK is true, then the start of the
879             allocated string buffer is actually C bytes before SvPVX.
880             This offset used to be stored in SvIVX, but is now stored within the spare
881             part of the buffer.
882              
883             U32 SvOOK(SV* sv)'},'SvOOK_offset' => {'name' => 'SvOOK_offset','text' => 'Reads into I the offset from SvPVX back to the true start of the
884             allocated buffer, which will be non-zero if C has been used to
885             efficiently remove characters from start of the buffer. Implemented as a
886             macro, which takes the address of I, which must be of type C.
887             Evaluates I more than once. Sets I to 0 if C is false.
888              
889             void SvOOK_offset(NN SV*sv, STRLEN len)'},'SvPOK' => {'name' => 'SvPOK','text' => 'Returns a U32 value indicating whether the SV contains a character
890             string.
891              
892             U32 SvPOK(SV* sv)'},'SvPOK_off' => {'name' => 'SvPOK_off','text' => 'Unsets the PV status of an SV.
893              
894             void SvPOK_off(SV* sv)'},'SvPOK_on' => {'name' => 'SvPOK_on','text' => 'Tells an SV that it is a string.
895              
896             void SvPOK_on(SV* sv)'},'SvPOK_only' => {'name' => 'SvPOK_only','text' => 'Tells an SV that it is a string and disables all other OK bits.
897             Will also turn off the UTF-8 status.
898              
899             void SvPOK_only(SV* sv)'},'SvPOK_only_UTF8' => {'name' => 'SvPOK_only_UTF8','text' => 'Tells an SV that it is a string and disables all other OK bits,
900             and leaves the UTF-8 status as it was.
901              
902             void SvPOK_only_UTF8(SV* sv)'},'SvPOKp' => {'name' => 'SvPOKp','text' => 'Returns a U32 value indicating whether the SV contains a character string.
903             Checks the B setting. Use C instead.
904              
905             U32 SvPOKp(SV* sv)'},'SvPV' => {'name' => 'SvPV','text' => 'Returns a pointer to the string in the SV, or a stringified form of
906             the SV if the SV does not contain a string. The SV may cache the
907             stringified version becoming C. Handles \'get\' magic. The
908             C variable will be set to the length of the string (this is a macro, so
909             don\'t use C<&len>). See also C for a version which guarantees to
910             evaluate sv only once.
911              
912             Note that there is no guarantee that the return value of C is
913             equal to C, or that C contains valid data, or that
914             successive calls to C will return the same pointer value each
915             time. This is due to the way that things like overloading and
916             Copy-On-Write are handled. In these cases, the return value may point to
917             a temporary buffer or similar. If you absolutely need the SvPVX field to
918             be valid (for example, if you intend to write to it), then see
919             L.
920              
921             char* SvPV(SV* sv, STRLEN len)'},'SvPVX' => {'name' => 'SvPVX','text' => 'Returns a pointer to the physical string in the SV. The SV must contain a
922             string. Prior to 5.9.3 it is not safe
923             to execute this macro unless the SV\'s
924             type >= SVt_PV.
925              
926             This is also used to store the name of an autoloaded subroutine in an XS
927             AUTOLOAD routine. See L.
928              
929             char* SvPVX(SV* sv)'},'SvPV_force' => {'name' => 'SvPV_force','text' => 'Like C but will force the SV into containing a string (C), and
930             only a string (C), by hook or by crook. You need force if you are
931             going to update the C directly. Processes get magic.
932              
933             Note that coercing an arbitrary scalar into a plain PV will potentially
934             strip useful data from it. For example if the SV was C, then the
935             referent will have its reference count decremented, and the SV itself may
936             be converted to an C scalar with a string buffer containing a value
937             such as C<"ARRAY(0x1234)">.
938              
939             char* SvPV_force(SV* sv, STRLEN len)'},'SvPV_force_nomg' => {'name' => 'SvPV_force_nomg','text' => 'Like C, but doesn\'t process get magic.
940              
941             char* SvPV_force_nomg(SV* sv, STRLEN len)'},'SvPV_nolen' => {'name' => 'SvPV_nolen','text' => 'Like C but doesn\'t set a length variable.
942              
943             char* SvPV_nolen(SV* sv)'},'SvPV_nomg' => {'name' => 'SvPV_nomg','text' => 'Like C but doesn\'t process magic.
944              
945             char* SvPV_nomg(SV* sv, STRLEN len)'},'SvPV_nomg_nolen' => {'name' => 'SvPV_nomg_nolen','text' => 'Like C but doesn\'t process magic.
946              
947             char* SvPV_nomg_nolen(SV* sv)'},'SvPV_set' => {'name' => 'SvPV_set','text' => 'Set the value of the PV pointer in C to the C-terminated string
948             C. See also C.
949              
950             Beware that the existing pointer may be involved in copy-on-write or other
951             mischief, so do C and use C or
952             C (or check the SvIsCOW flag) first to make sure this
953             modification is safe.
954              
955             void SvPV_set(SV* sv, char* val)'},'SvPVbyte' => {'name' => 'SvPVbyte','text' => 'Like C, but converts sv to byte representation first if necessary.
956              
957             char* SvPVbyte(SV* sv, STRLEN len)'},'SvPVbyte_force' => {'name' => 'SvPVbyte_force','text' => 'Like C, but converts sv to byte representation first if necessary.
958              
959             char* SvPVbyte_force(SV* sv, STRLEN len)'},'SvPVbyte_nolen' => {'name' => 'SvPVbyte_nolen','text' => 'Like C, but converts sv to byte representation first if necessary.
960              
961             char* SvPVbyte_nolen(SV* sv)'},'SvPVbytex' => {'name' => 'SvPVbytex','text' => 'Like C, but converts sv to byte representation first if necessary.
962             Guarantees to evaluate sv only once; use the more efficient C
963             otherwise.
964              
965             char* SvPVbytex(SV* sv, STRLEN len)'},'SvPVbytex_force' => {'name' => 'SvPVbytex_force','text' => 'Like C, but converts sv to byte representation first if necessary.
966             Guarantees to evaluate sv only once; use the more efficient C
967             otherwise.
968              
969             char* SvPVbytex_force(SV* sv, STRLEN len)'},'SvPVutf8' => {'name' => 'SvPVutf8','text' => 'Like C, but converts sv to utf8 first if necessary.
970              
971             char* SvPVutf8(SV* sv, STRLEN len)'},'SvPVutf8_force' => {'name' => 'SvPVutf8_force','text' => 'Like C, but converts sv to utf8 first if necessary.
972              
973             char* SvPVutf8_force(SV* sv, STRLEN len)'},'SvPVutf8_nolen' => {'name' => 'SvPVutf8_nolen','text' => 'Like C, but converts sv to utf8 first if necessary.
974              
975             char* SvPVutf8_nolen(SV* sv)'},'SvPVutf8x' => {'name' => 'SvPVutf8x','text' => 'Like C, but converts sv to utf8 first if necessary.
976             Guarantees to evaluate sv only once; use the more efficient C
977             otherwise.
978              
979             char* SvPVutf8x(SV* sv, STRLEN len)'},'SvPVutf8x_force' => {'name' => 'SvPVutf8x_force','text' => 'Like C, but converts sv to utf8 first if necessary.
980             Guarantees to evaluate sv only once; use the more efficient C
981             otherwise.
982              
983             char* SvPVutf8x_force(SV* sv, STRLEN len)'},'SvPVx' => {'name' => 'SvPVx','text' => 'A version of C which guarantees to evaluate C only once.
984             Only use this if C is an expression with side effects, otherwise use the
985             more efficient C.
986              
987             char* SvPVx(SV* sv, STRLEN len)'},'SvREFCNT' => {'name' => 'SvREFCNT','text' => 'Returns the value of the object\'s reference count.
988              
989             U32 SvREFCNT(SV* sv)'},'SvREFCNT_dec' => {'name' => 'SvREFCNT_dec','text' => 'Decrements the reference count of the given SV. I may be NULL.
990              
991             void SvREFCNT_dec(SV* sv)'},'SvREFCNT_dec_NN' => {'name' => 'SvREFCNT_dec_NN','text' => 'Same as SvREFCNT_dec, but can only be used if you know I
992             is not NULL. Since we don\'t have to check the NULLness, it\'s faster
993             and smaller.
994              
995             void SvREFCNT_dec_NN(SV* sv)'},'SvREFCNT_inc' => {'name' => 'SvREFCNT_inc','text' => 'Increments the reference count of the given SV, returning the SV.
996              
997             All of the following SvREFCNT_inc* macros are optimized versions of
998             SvREFCNT_inc, and can be replaced with SvREFCNT_inc.
999              
1000             SV* SvREFCNT_inc(SV* sv)'},'SvREFCNT_inc_NN' => {'name' => 'SvREFCNT_inc_NN','text' => 'Same as SvREFCNT_inc, but can only be used if you know I
1001             is not NULL. Since we don\'t have to check the NULLness, it\'s faster
1002             and smaller.
1003              
1004             SV* SvREFCNT_inc_NN(SV* sv)'},'SvREFCNT_inc_simple' => {'name' => 'SvREFCNT_inc_simple','text' => 'Same as SvREFCNT_inc, but can only be used with expressions without side
1005             effects. Since we don\'t have to store a temporary value, it\'s faster.
1006              
1007             SV* SvREFCNT_inc_simple(SV* sv)'},'SvREFCNT_inc_simple_NN' => {'name' => 'SvREFCNT_inc_simple_NN','text' => 'Same as SvREFCNT_inc_simple, but can only be used if you know I
1008             is not NULL. Since we don\'t have to check the NULLness, it\'s faster
1009             and smaller.
1010              
1011             SV* SvREFCNT_inc_simple_NN(SV* sv)'},'SvREFCNT_inc_simple_void' => {'name' => 'SvREFCNT_inc_simple_void','text' => 'Same as SvREFCNT_inc_simple, but can only be used if you don\'t need the
1012             return value. The macro doesn\'t need to return a meaningful value.
1013              
1014             void SvREFCNT_inc_simple_void(SV* sv)'},'SvREFCNT_inc_simple_void_NN' => {'name' => 'SvREFCNT_inc_simple_void_NN','text' => 'Same as SvREFCNT_inc, but can only be used if you don\'t need the return
1015             value, and you know that I is not NULL. The macro doesn\'t need
1016             to return a meaningful value, or check for NULLness, so it\'s smaller
1017             and faster.
1018              
1019             void SvREFCNT_inc_simple_void_NN(SV* sv)'},'SvREFCNT_inc_void' => {'name' => 'SvREFCNT_inc_void','text' => 'Same as SvREFCNT_inc, but can only be used if you don\'t need the
1020             return value. The macro doesn\'t need to return a meaningful value.
1021              
1022             void SvREFCNT_inc_void(SV* sv)'},'SvREFCNT_inc_void_NN' => {'name' => 'SvREFCNT_inc_void_NN','text' => 'Same as SvREFCNT_inc, but can only be used if you don\'t need the return
1023             value, and you know that I is not NULL. The macro doesn\'t need
1024             to return a meaningful value, or check for NULLness, so it\'s smaller
1025             and faster.
1026              
1027             void SvREFCNT_inc_void_NN(SV* sv)'},'SvROK' => {'name' => 'SvROK','text' => 'Tests if the SV is an RV.
1028              
1029             U32 SvROK(SV* sv)'},'SvROK_off' => {'name' => 'SvROK_off','text' => 'Unsets the RV status of an SV.
1030              
1031             void SvROK_off(SV* sv)'},'SvROK_on' => {'name' => 'SvROK_on','text' => 'Tells an SV that it is an RV.
1032              
1033             void SvROK_on(SV* sv)'},'SvRV' => {'name' => 'SvRV','text' => 'Dereferences an RV to return the SV.
1034              
1035             SV* SvRV(SV* sv)'},'SvRV_set' => {'name' => 'SvRV_set','text' => 'Set the value of the RV pointer in sv to val. See C.
1036              
1037             void SvRV_set(SV* sv, SV* val)'},'SvRX' => {'name' => 'SvRX','text' => 'Convenience macro to get the REGEXP from a SV. This is approximately
1038             equivalent to the following snippet:
1039              
1040             if (SvMAGICAL(sv))
1041             mg_get(sv);
1042             if (SvROK(sv))
1043             sv = MUTABLE_SV(SvRV(sv));
1044             if (SvTYPE(sv) == SVt_REGEXP)
1045             return (REGEXP*) sv;
1046              
1047             NULL will be returned if a REGEXP* is not found.
1048              
1049             REGEXP * SvRX(SV *sv)'},'SvRXOK' => {'name' => 'SvRXOK','text' => 'Returns a boolean indicating whether the SV (or the one it references)
1050             is a REGEXP.
1051              
1052             If you want to do something with the REGEXP* later use SvRX instead
1053             and check for NULL.
1054              
1055             bool SvRXOK(SV* sv)'},'SvSETMAGIC' => {'name' => 'SvSETMAGIC','text' => 'Invokes C on an SV if it has \'set\' magic. This is necessary
1056             after modifying a scalar, in case it is a magical variable like C<$|>
1057             or a tied variable (it calls C). This macro evaluates its
1058             argument more than once.
1059              
1060             void SvSETMAGIC(SV* sv)'},'SvSHARE' => {'name' => 'SvSHARE','text' => 'Arranges for sv to be shared between threads if a suitable module
1061             has been loaded.
1062              
1063             void SvSHARE(SV* sv)'},'SvSTASH' => {'name' => 'SvSTASH','text' => 'Returns the stash of the SV.
1064              
1065             HV* SvSTASH(SV* sv)'},'SvSTASH_set' => {'name' => 'SvSTASH_set','text' => 'Set the value of the STASH pointer in sv to val. See C.
1066              
1067             void SvSTASH_set(SV* sv, HV* val)'},'SvSetMagicSV' => {'name' => 'SvSetMagicSV','text' => 'Like C, but does any set magic required afterwards.
1068              
1069             void SvSetMagicSV(SV* dsv, SV* ssv)'},'SvSetMagicSV_nosteal' => {'name' => 'SvSetMagicSV_nosteal','text' => 'Like C, but does any set magic required afterwards.
1070              
1071             void SvSetMagicSV_nosteal(SV* dsv, SV* ssv)'},'SvSetSV' => {'name' => 'SvSetSV','text' => 'Calls C if dsv is not the same as ssv. May evaluate arguments
1072             more than once. Does not handle \'set\' magic on the destination SV.
1073              
1074             void SvSetSV(SV* dsv, SV* ssv)'},'SvSetSV_nosteal' => {'name' => 'SvSetSV_nosteal','text' => 'Calls a non-destructive version of C if dsv is not the same as
1075             ssv. May evaluate arguments more than once.
1076              
1077             void SvSetSV_nosteal(SV* dsv, SV* ssv)'},'SvTAINT' => {'name' => 'SvTAINT','text' => 'Taints an SV if tainting is enabled, and if some input to the current
1078             expression is tainted--usually a variable, but possibly also implicit
1079             inputs such as locale settings. C propagates that taintedness to
1080             the outputs of an expression in a pessimistic fashion; i.e., without paying
1081             attention to precisely which outputs are influenced by which inputs.
1082              
1083             void SvTAINT(SV* sv)'},'SvTAINTED' => {'name' => 'SvTAINTED','text' => 'Checks to see if an SV is tainted. Returns TRUE if it is, FALSE if
1084             not.
1085              
1086             bool SvTAINTED(SV* sv)'},'SvTAINTED_off' => {'name' => 'SvTAINTED_off','text' => 'Untaints an SV. Be I careful with this routine, as it short-circuits
1087             some of Perl\'s fundamental security features. XS module authors should not
1088             use this function unless they fully understand all the implications of
1089             unconditionally untainting the value. Untainting should be done in the
1090             standard perl fashion, via a carefully crafted regexp, rather than directly
1091             untainting variables.
1092              
1093             void SvTAINTED_off(SV* sv)'},'SvTAINTED_on' => {'name' => 'SvTAINTED_on','text' => 'Marks an SV as tainted if tainting is enabled.
1094              
1095             void SvTAINTED_on(SV* sv)'},'SvTRUE' => {'name' => 'SvTRUE','text' => 'Returns a boolean indicating whether Perl would evaluate the SV as true or
1096             false. See SvOK() for a defined/undefined test. Handles \'get\' magic
1097             unless the scalar is already SvPOK, SvIOK or SvNOK (the public, not the
1098             private flags).
1099              
1100             bool SvTRUE(SV* sv)'},'SvTRUE_nomg' => {'name' => 'SvTRUE_nomg','text' => 'Returns a boolean indicating whether Perl would evaluate the SV as true or
1101             false. See SvOK() for a defined/undefined test. Does not handle \'get\' magic.
1102              
1103             bool SvTRUE_nomg(SV* sv)'},'SvTYPE' => {'name' => 'SvTYPE','text' => 'Returns the type of the SV. See C.
1104              
1105             svtype SvTYPE(SV* sv)'},'SvUNLOCK' => {'name' => 'SvUNLOCK','text' => 'Releases a mutual exclusion lock on sv if a suitable module
1106             has been loaded.
1107              
1108             void SvUNLOCK(SV* sv)'},'SvUOK' => {'name' => 'SvUOK','text' => 'Returns a boolean indicating whether the SV contains an integer that must be
1109             interpreted as unsigned. A non-negative integer whose value is within the
1110             range of both an IV and a UV may be be flagged as either SvUOK or SVIOK.
1111              
1112             bool SvUOK(SV* sv)'},'SvUPGRADE' => {'name' => 'SvUPGRADE','text' => 'Used to upgrade an SV to a more complex form. Uses C to
1113             perform the upgrade if necessary. See C.
1114              
1115             void SvUPGRADE(SV* sv, svtype type)'},'SvUTF8' => {'name' => 'SvUTF8','text' => 'Returns a U32 value indicating the UTF-8 status of an SV. If things are set-up
1116             properly, this indicates whether or not the SV contains UTF-8 encoded data.
1117             You should use this I a call to SvPV() or one of its variants, in
1118             case any call to string overloading updates the internal flag.
1119              
1120             U32 SvUTF8(SV* sv)'},'SvUTF8_off' => {'name' => 'SvUTF8_off','text' => 'Unsets the UTF-8 status of an SV (the data is not changed, just the flag).
1121             Do not use frivolously.
1122              
1123             void SvUTF8_off(SV *sv)'},'SvUTF8_on' => {'name' => 'SvUTF8_on','text' => 'Turn on the UTF-8 status of an SV (the data is not changed, just the flag).
1124             Do not use frivolously.
1125              
1126             void SvUTF8_on(SV *sv)'},'SvUV' => {'name' => 'SvUV','text' => 'Coerces the given SV to an unsigned integer and returns it. See C
1127             for a version which guarantees to evaluate sv only once.
1128              
1129             UV SvUV(SV* sv)'},'SvUVX' => {'name' => 'SvUVX','text' => 'Returns the raw value in the SV\'s UV slot, without checks or conversions.
1130             Only use when you are sure SvIOK is true. See also C.
1131              
1132             UV SvUVX(SV* sv)'},'SvUV_nomg' => {'name' => 'SvUV_nomg','text' => 'Like C but doesn\'t process magic.
1133              
1134             UV SvUV_nomg(SV* sv)'},'SvUV_set' => {'name' => 'SvUV_set','text' => 'Set the value of the UV pointer in sv to val. See C.
1135              
1136             void SvUV_set(SV* sv, UV val)'},'SvUVx' => {'name' => 'SvUVx','text' => 'Coerces the given SV to an unsigned integer and
1137             returns it. Guarantees to evaluate C only once. Only
1138             use this if C is an expression with side effects,
1139             otherwise use the more efficient C.
1140              
1141             UV SvUVx(SV* sv)'},'SvVOK' => {'name' => 'SvVOK','text' => 'Returns a boolean indicating whether the SV contains a v-string.
1142              
1143             bool SvVOK(SV* sv)'},'THIS' => {'name' => 'THIS','text' => 'Variable which is setup by C to designate the object in a C++
1144             XSUB. This is always the proper type for the C++ object. See C and
1145             L.
1146              
1147             (whatever) THIS'},'UNDERBAR' => {'name' => 'UNDERBAR','text' => 'The SV* corresponding to the $_ variable. Works even if there
1148             is a lexical $_ in scope.'},'XCPT_CATCH' => {'name' => 'XCPT_CATCH','text' => 'Introduces a catch block. See L.'},'XCPT_RETHROW' => {'name' => 'XCPT_RETHROW','text' => 'Rethrows a previously caught exception. See L.
1149              
1150             XCPT_RETHROW;'},'XCPT_TRY_END' => {'name' => 'XCPT_TRY_END','text' => 'Ends a try block. See L.'},'XCPT_TRY_START' => {'name' => 'XCPT_TRY_START','text' => 'Starts a try block. See L.'},'XPUSHi' => {'name' => 'XPUSHi','text' => 'Push an integer onto the stack, extending the stack if necessary. Handles
1151             \'set\' magic. Uses C, so C or C should be called to
1152             declare it. Do not call multiple C-oriented macros to return lists
1153             from XSUB\'s - see C instead. See also C and C.
1154              
1155             void XPUSHi(IV iv)'},'XPUSHmortal' => {'name' => 'XPUSHmortal','text' => 'Push a new mortal SV onto the stack, extending the stack if necessary.
1156             Does not use C. See also C, C and C.
1157              
1158             void XPUSHmortal()'},'XPUSHn' => {'name' => 'XPUSHn','text' => 'Push a double onto the stack, extending the stack if necessary. Handles
1159             \'set\' magic. Uses C, so C or C should be called to
1160             declare it. Do not call multiple C-oriented macros to return lists
1161             from XSUB\'s - see C instead. See also C and C.
1162              
1163             void XPUSHn(NV nv)'},'XPUSHp' => {'name' => 'XPUSHp','text' => 'Push a string onto the stack, extending the stack if necessary. The C
1164             indicates the length of the string. Handles \'set\' magic. Uses C, so
1165             C or C should be called to declare it. Do not call
1166             multiple C-oriented macros to return lists from XSUB\'s - see
1167             C instead. See also C and C.
1168              
1169             void XPUSHp(char* str, STRLEN len)'},'XPUSHs' => {'name' => 'XPUSHs','text' => 'Push an SV onto the stack, extending the stack if necessary. Does not
1170             handle \'set\' magic. Does not use C. See also C,
1171             C and C.
1172              
1173             void XPUSHs(SV* sv)'},'XPUSHu' => {'name' => 'XPUSHu','text' => 'Push an unsigned integer onto the stack, extending the stack if necessary.
1174             Handles \'set\' magic. Uses C, so C or C should be
1175             called to declare it. Do not call multiple C-oriented macros to
1176             return lists from XSUB\'s - see C instead. See also C and
1177             C.
1178              
1179             void XPUSHu(UV uv)'},'XS' => {'name' => 'XS','text' => 'Macro to declare an XSUB and its C parameter list. This is handled by
1180             C. It is the same as using the more explicit XS_EXTERNAL macro.'},'XSRETURN' => {'name' => 'XSRETURN','text' => 'Return from XSUB, indicating number of items on the stack. This is usually
1181             handled by C.
1182              
1183             void XSRETURN(int nitems)'},'XSRETURN_EMPTY' => {'name' => 'XSRETURN_EMPTY','text' => 'Return an empty list from an XSUB immediately.
1184              
1185             XSRETURN_EMPTY;'},'XSRETURN_IV' => {'name' => 'XSRETURN_IV','text' => 'Return an integer from an XSUB immediately. Uses C.
1186              
1187             void XSRETURN_IV(IV iv)'},'XSRETURN_NO' => {'name' => 'XSRETURN_NO','text' => 'Return C<&PL_sv_no> from an XSUB immediately. Uses C.
1188              
1189             XSRETURN_NO;'},'XSRETURN_NV' => {'name' => 'XSRETURN_NV','text' => 'Return a double from an XSUB immediately. Uses C.
1190              
1191             void XSRETURN_NV(NV nv)'},'XSRETURN_PV' => {'name' => 'XSRETURN_PV','text' => 'Return a copy of a string from an XSUB immediately. Uses C.
1192              
1193             void XSRETURN_PV(char* str)'},'XSRETURN_UNDEF' => {'name' => 'XSRETURN_UNDEF','text' => 'Return C<&PL_sv_undef> from an XSUB immediately. Uses C.
1194              
1195             XSRETURN_UNDEF;'},'XSRETURN_UV' => {'name' => 'XSRETURN_UV','text' => 'Return an integer from an XSUB immediately. Uses C.
1196              
1197             void XSRETURN_UV(IV uv)'},'XSRETURN_YES' => {'name' => 'XSRETURN_YES','text' => 'Return C<&PL_sv_yes> from an XSUB immediately. Uses C.
1198              
1199             XSRETURN_YES;'},'XST_mIV' => {'name' => 'XST_mIV','text' => 'Place an integer into the specified position C on the stack. The
1200             value is stored in a new mortal SV.
1201              
1202             void XST_mIV(int pos, IV iv)'},'XST_mNO' => {'name' => 'XST_mNO','text' => 'Place C<&PL_sv_no> into the specified position C on the
1203             stack.
1204              
1205             void XST_mNO(int pos)'},'XST_mNV' => {'name' => 'XST_mNV','text' => 'Place a double into the specified position C on the stack. The value
1206             is stored in a new mortal SV.
1207              
1208             void XST_mNV(int pos, NV nv)'},'XST_mPV' => {'name' => 'XST_mPV','text' => 'Place a copy of a string into the specified position C on the stack.
1209             The value is stored in a new mortal SV.
1210              
1211             void XST_mPV(int pos, char* str)'},'XST_mUNDEF' => {'name' => 'XST_mUNDEF','text' => 'Place C<&PL_sv_undef> into the specified position C on the
1212             stack.
1213              
1214             void XST_mUNDEF(int pos)'},'XST_mYES' => {'name' => 'XST_mYES','text' => 'Place C<&PL_sv_yes> into the specified position C on the
1215             stack.
1216              
1217             void XST_mYES(int pos)'},'XS_APIVERSION_BOOTCHECK' => {'name' => 'XS_APIVERSION_BOOTCHECK','text' => 'Macro to verify that the perl api version an XS module has been compiled against
1218             matches the api version of the perl interpreter it\'s being loaded into.
1219              
1220             XS_APIVERSION_BOOTCHECK;'},'XS_EXTERNAL' => {'name' => 'XS_EXTERNAL','text' => 'Macro to declare an XSUB and its C parameter list explicitly exporting the symbols.'},'XS_INTERNAL' => {'name' => 'XS_INTERNAL','text' => 'Macro to declare an XSUB and its C parameter list without exporting the symbols.
1221             This is handled by C and generally preferable over exporting the XSUB
1222             symbols unnecessarily.'},'XS_VERSION' => {'name' => 'XS_VERSION','text' => 'The version identifier for an XS module. This is usually
1223             handled automatically by C. See C.'},'XS_VERSION_BOOTCHECK' => {'name' => 'XS_VERSION_BOOTCHECK','text' => 'Macro to verify that a PM module\'s $VERSION variable matches the XS
1224             module\'s C variable. This is usually handled automatically by
1225             C. See L.
1226              
1227             XS_VERSION_BOOTCHECK;'},'XopDISABLE' => {'name' => 'XopDISABLE','text' => 'Temporarily disable a member of the XOP, by clearing the appropriate flag.
1228              
1229             void XopDISABLE(XOP *xop, which)'},'XopENABLE' => {'name' => 'XopENABLE','text' => 'Reenable a member of the XOP which has been disabled.
1230              
1231             void XopENABLE(XOP *xop, which)'},'XopENTRY' => {'name' => 'XopENTRY','text' => 'Return a member of the XOP structure. I is a cpp token
1232             indicating which entry to return. If the member is not set
1233             this will return a default value. The return type depends
1234             on I. This macro evaluates its arguments more than
1235             once. If you are using C to retreive a
1236             C from a C, use the more efficient L instead.
1237              
1238             XopENTRY(XOP *xop, which)'},'XopENTRYCUSTOM' => {'name' => 'XopENTRYCUSTOM','text' => 'Exactly like C but more
1239             efficient. The I parameter is identical to L.
1240              
1241             XopENTRYCUSTOM(const OP *o, which)'},'XopENTRY_set' => {'name' => 'XopENTRY_set','text' => 'Set a member of the XOP structure. I is a cpp token
1242             indicating which entry to set. See L
1243             for details about the available members and how
1244             they are used. This macro evaluates its argument
1245             more than once.
1246              
1247             void XopENTRY_set(XOP *xop, which, value)'},'XopFLAGS' => {'name' => 'XopFLAGS','text' => 'Return the XOP\'s flags.
1248              
1249             U32 XopFLAGS(XOP *xop)'},'Zero' => {'name' => 'Zero','text' => 'The XSUB-writer\'s interface to the C C function. The C is the
1250             destination, C is the number of items, and C is the type.
1251              
1252             void Zero(void* dest, int nitems, type)'},'ZeroD' => {'name' => 'ZeroD','text' => 'Like C but returns dest. Useful
1253             for encouraging compilers to tail-call
1254             optimise.
1255              
1256             void * ZeroD(void* dest, int nitems, type)'},'alloccopstash' => {'name' => 'alloccopstash','text' => 'NOTE: this function is experimental and may change or be
1257             removed without notice.
1258              
1259              
1260             Available only under threaded builds, this function allocates an entry in
1261             C for the stash passed to it.
1262              
1263             PADOFFSET alloccopstash(HV *hv)'},'amagic_call' => {'name' => 'amagic_call','text' => ''},'amagic_deref_call' => {'name' => 'amagic_deref_call','text' => ''},'any_dup' => {'name' => 'any_dup','text' => ''},'atfork_lock' => {'name' => 'atfork_lock','text' => ''},'atfork_unlock' => {'name' => 'atfork_unlock','text' => ''},'av_arylen_p' => {'name' => 'av_arylen_p','text' => ''},'av_clear' => {'name' => 'av_clear','text' => 'Clears an array, making it empty. Does not free the memory the av uses to
1264             store its list of scalars. If any destructors are triggered as a result,
1265             the av itself may be freed when this function returns.
1266              
1267             Perl equivalent: C<@myarray = ();>.
1268              
1269             void av_clear(AV *av)'},'av_create_and_push' => {'name' => 'av_create_and_push','text' => 'NOTE: this function is experimental and may change or be
1270             removed without notice.
1271              
1272              
1273             Push an SV onto the end of the array, creating the array if necessary.
1274             A small internal helper function to remove a commonly duplicated idiom.
1275              
1276             void av_create_and_push(AV **const avp,
1277             SV *const val)'},'av_create_and_unshift_one' => {'name' => 'av_create_and_unshift_one','text' => 'NOTE: this function is experimental and may change or be
1278             removed without notice.
1279              
1280              
1281             Unshifts an SV onto the beginning of the array, creating the array if
1282             necessary.
1283             A small internal helper function to remove a commonly duplicated idiom.
1284              
1285             SV** av_create_and_unshift_one(AV **const avp,
1286             SV *const val)'},'av_delete' => {'name' => 'av_delete','text' => 'Deletes the element indexed by C from the array, makes the element mortal,
1287             and returns it. If C equals C, the element is freed and null
1288             is returned. Perl equivalent: C for the
1289             non-C version and a void-context C for the
1290             C version.
1291              
1292             SV* av_delete(AV *av, SSize_t key, I32 flags)'},'av_exists' => {'name' => 'av_exists','text' => 'Returns true if the element indexed by C has been initialized.
1293              
1294             This relies on the fact that uninitialized array elements are set to
1295             NULL.
1296              
1297             Perl equivalent: C.
1298              
1299             bool av_exists(AV *av, SSize_t key)'},'av_extend' => {'name' => 'av_extend','text' => 'Pre-extend an array. The C is the index to which the array should be
1300             extended.
1301              
1302             void av_extend(AV *av, SSize_t key)'},'av_fetch' => {'name' => 'av_fetch','text' => 'Returns the SV at the specified index in the array. The C is the
1303             index. If lval is true, you are guaranteed to get a real SV back (in case
1304             it wasn\'t real before), which you can then modify. Check that the return
1305             value is non-null before dereferencing it to a C.
1306              
1307             See L for
1308             more information on how to use this function on tied arrays.
1309              
1310             The rough perl equivalent is C<$myarray[$idx]>.
1311              
1312             SV** av_fetch(AV *av, SSize_t key, I32 lval)'},'av_fill' => {'name' => 'av_fill','text' => 'Set the highest index in the array to the given number, equivalent to
1313             Perl\'s C<$#array = $fill;>.
1314              
1315             The number of elements in the array will be C after
1316             av_fill() returns. If the array was previously shorter, then the
1317             additional elements appended are set to NULL. If the array
1318             was longer, then the excess elements are freed. C is
1319             the same as C.
1320              
1321             void av_fill(AV *av, SSize_t fill)'},'av_iter_p' => {'name' => 'av_iter_p','text' => ''},'av_len' => {'name' => 'av_len','text' => 'Same as L. Note that, unlike what the name implies, it returns
1322             the highest index in the array, so to get the size of the array you need to use
1323             S>. This is unlike L, which returns what you would
1324             expect.
1325              
1326             SSize_t av_len(AV *av)'},'av_make' => {'name' => 'av_make','text' => 'Creates a new AV and populates it with a list of SVs. The SVs are copied
1327             into the array, so they may be freed after the call to av_make. The new AV
1328             will have a reference count of 1.
1329              
1330             Perl equivalent: C
1331              
1332             AV* av_make(SSize_t size, SV **strp)'},'av_pop' => {'name' => 'av_pop','text' => 'Removes one SV from the end of the array, reducing its size by one and
1333             returning the SV (transferring control of one reference count) to the
1334             caller. Returns C<&PL_sv_undef> if the array is empty.
1335              
1336             Perl equivalent: C
1337              
1338             SV* av_pop(AV *av)'},'av_push' => {'name' => 'av_push','text' => 'Pushes an SV onto the end of the array. The array will grow automatically
1339             to accommodate the addition. This takes ownership of one reference count.
1340              
1341             Perl equivalent: C.
1342              
1343             void av_push(AV *av, SV *val)'},'av_shift' => {'name' => 'av_shift','text' => 'Removes one SV from the start of the array, reducing its size by one and
1344             returning the SV (transferring control of one reference count) to the
1345             caller. Returns C<&PL_sv_undef> if the array is empty.
1346              
1347             Perl equivalent: C
1348              
1349             SV* av_shift(AV *av)'},'av_store' => {'name' => 'av_store','text' => 'Stores an SV in an array. The array index is specified as C. The
1350             return value will be NULL if the operation failed or if the value did not
1351             need to be actually stored within the array (as in the case of tied
1352             arrays). Otherwise, it can be dereferenced
1353             to get the C that was stored
1354             there (= C)).
1355              
1356             Note that the caller is responsible for suitably incrementing the reference
1357             count of C before the call, and decrementing it if the function
1358             returned NULL.
1359              
1360             Approximate Perl equivalent: C<$myarray[$key] = $val;>.
1361              
1362             See L for
1363             more information on how to use this function on tied arrays.
1364              
1365             SV** av_store(AV *av, SSize_t key, SV *val)'},'av_tindex' => {'name' => 'av_tindex','text' => 'Same as C.
1366              
1367             int av_tindex(AV* av)'},'av_top_index' => {'name' => 'av_top_index','text' => 'Returns the highest index in the array. The number of elements in the
1368             array is C. Returns -1 if the array is empty.
1369              
1370             The Perl equivalent for this is C<$#myarray>.
1371              
1372             (A slightly shorter form is C.)
1373              
1374             SSize_t av_top_index(AV *av)'},'av_undef' => {'name' => 'av_undef','text' => 'Undefines the array. Frees the memory used by the av to store its list of
1375             scalars. If any destructors are triggered as a result, the av itself may
1376             be freed.
1377              
1378             void av_undef(AV *av)'},'av_unshift' => {'name' => 'av_unshift','text' => 'Unshift the given number of C values onto the beginning of the
1379             array. The array will grow automatically to accommodate the addition. You
1380             must then use C to assign values to these new elements.
1381              
1382             Perl equivalent: C
1383              
1384             void av_unshift(AV *av, SSize_t num)'},'ax' => {'name' => 'ax','text' => 'Variable which is setup by C to indicate the stack base offset,
1385             used by the C, C and C macros. The C macro
1386             must be called prior to setup the C variable.
1387              
1388             I32 ax'},'block_gimme' => {'name' => 'block_gimme','text' => ''},'blockhook_register' => {'name' => 'blockhook_register','text' => 'NOTE: this function is experimental and may change or be
1389             removed without notice.
1390              
1391              
1392             Register a set of hooks to be called when the Perl lexical scope changes
1393             at compile time. See L.
1394              
1395             NOTE: this function must be explicitly called as Perl_blockhook_register with an aTHX_ parameter.
1396              
1397             void Perl_blockhook_register(pTHX_ BHK *hk)'},'boolSV' => {'name' => 'boolSV','text' => 'Returns a true SV if C is a true value, or a false SV if C is 0.
1398              
1399             See also C and C.
1400              
1401             SV * boolSV(bool b)'},'bytes_cmp_utf8' => {'name' => 'bytes_cmp_utf8','text' => 'Compares the sequence of characters (stored as octets) in C, C with the
1402             sequence of characters (stored as UTF-8)
1403             in C, C. Returns 0 if they are
1404             equal, -1 or -2 if the first string is less than the second string, +1 or +2
1405             if the first string is greater than the second string.
1406              
1407             -1 or +1 is returned if the shorter string was identical to the start of the
1408             longer string. -2 or +2 is returned if
1409             there was a difference between characters
1410             within the strings.
1411              
1412             int bytes_cmp_utf8(const U8 *b, STRLEN blen,
1413             const U8 *u, STRLEN ulen)'},'bytes_from_utf8' => {'name' => 'bytes_from_utf8','text' => 'NOTE: this function is experimental and may change or be
1414             removed without notice.
1415              
1416              
1417             Converts a string C of length C from UTF-8 into native byte encoding.
1418             Unlike L but like L, returns a pointer to
1419             the newly-created string, and updates C to contain the new
1420             length. Returns the original string if no conversion occurs, C
1421             is unchanged. Do nothing if C points to 0. Sets C to
1422             0 if C is converted or consisted entirely of characters that are invariant
1423             in utf8 (i.e., US-ASCII on non-EBCDIC machines).
1424              
1425             U8* bytes_from_utf8(const U8 *s, STRLEN *len,
1426             bool *is_utf8)'},'bytes_to_utf8' => {'name' => 'bytes_to_utf8','text' => 'NOTE: this function is experimental and may change or be
1427             removed without notice.
1428              
1429              
1430             Converts a string C of length C bytes from the native encoding into
1431             UTF-8.
1432             Returns a pointer to the newly-created string, and sets C to
1433             reflect the new length in bytes.
1434              
1435             A C character will be written after the end of the string.
1436              
1437             If you want to convert to UTF-8 from encodings other than
1438             the native (Latin1 or EBCDIC),
1439             see L().
1440              
1441             U8* bytes_to_utf8(const U8 *s, STRLEN *len)'},'call_argv' => {'name' => 'call_argv','text' => 'Performs a callback to the specified named and package-scoped Perl subroutine
1442             with C (a NULL-terminated array of strings) as arguments. See
1443             L.
1444              
1445             Approximate Perl equivalent: C<&{"$sub_name"}(@$argv)>.
1446              
1447             NOTE: the perl_ form of this function is deprecated.
1448              
1449             I32 call_argv(const char* sub_name, I32 flags,
1450             char** argv)'},'call_atexit' => {'name' => 'call_atexit','text' => ''},'call_list' => {'name' => 'call_list','text' => ''},'call_method' => {'name' => 'call_method','text' => 'Performs a callback to the specified Perl method. The blessed object must
1451             be on the stack. See L.
1452              
1453             NOTE: the perl_ form of this function is deprecated.
1454              
1455             I32 call_method(const char* methname, I32 flags)'},'call_pv' => {'name' => 'call_pv','text' => 'Performs a callback to the specified Perl sub. See L.
1456              
1457             NOTE: the perl_ form of this function is deprecated.
1458              
1459             I32 call_pv(const char* sub_name, I32 flags)'},'call_sv' => {'name' => 'call_sv','text' => 'Performs a callback to the Perl sub whose name is in the SV. See
1460             L.
1461              
1462             NOTE: the perl_ form of this function is deprecated.
1463              
1464             I32 call_sv(SV* sv, VOL I32 flags)'},'caller_cx' => {'name' => 'caller_cx','text' => 'The XSUB-writer\'s equivalent of L. The
1465             returned C structure can be interrogated to find all the
1466             information returned to Perl by C. Note that XSUBs don\'t get a
1467             stack frame, so C will return information for the
1468             immediately-surrounding Perl code.
1469              
1470             This function skips over the automatic calls to C<&DB::sub> made on the
1471             behalf of the debugger. If the stack frame requested was a sub called by
1472             C, the return value will be the frame for the call to
1473             C, since that has the correct line number/etc. for the call
1474             site. If I is non-C, it will be set to a pointer to the
1475             frame for the sub call itself.
1476              
1477             const PERL_CONTEXT * caller_cx(
1478             I32 level,
1479             const PERL_CONTEXT **dbcxp
1480             )'},'calloc' => {'name' => 'calloc','text' => ''},'cast_i32' => {'name' => 'cast_i32','text' => ''},'cast_iv' => {'name' => 'cast_iv','text' => ''},'cast_ulong' => {'name' => 'cast_ulong','text' => ''},'cast_uv' => {'name' => 'cast_uv','text' => ''},'ck_entersub_args_list' => {'name' => 'ck_entersub_args_list','text' => 'Performs the default fixup of the arguments part of an C
1481             op tree. This consists of applying list context to each of the
1482             argument ops. This is the standard treatment used on a call marked
1483             with C<&>, or a method call, or a call through a subroutine reference,
1484             or any other call where the callee can\'t be identified at compile time,
1485             or a call where the callee has no prototype.
1486              
1487             OP * ck_entersub_args_list(OP *entersubop)'},'ck_entersub_args_proto' => {'name' => 'ck_entersub_args_proto','text' => 'Performs the fixup of the arguments part of an C op tree
1488             based on a subroutine prototype. This makes various modifications to
1489             the argument ops, from applying context up to inserting C ops,
1490             and checking the number and syntactic types of arguments, as directed by
1491             the prototype. This is the standard treatment used on a subroutine call,
1492             not marked with C<&>, where the callee can be identified at compile time
1493             and has a prototype.
1494              
1495             I supplies the subroutine prototype to be applied to the call.
1496             It may be a normal defined scalar, of which the string value will be used.
1497             Alternatively, for convenience, it may be a subroutine object (a C
1498             that has been cast to C) which has a prototype. The prototype
1499             supplied, in whichever form, does not need to match the actual callee
1500             referenced by the op tree.
1501              
1502             If the argument ops disagree with the prototype, for example by having
1503             an unacceptable number of arguments, a valid op tree is returned anyway.
1504             The error is reflected in the parser state, normally resulting in a single
1505             exception at the top level of parsing which covers all the compilation
1506             errors that occurred. In the error message, the callee is referred to
1507             by the name defined by the I parameter.
1508              
1509             OP * ck_entersub_args_proto(OP *entersubop,
1510             GV *namegv, SV *protosv)'},'ck_entersub_args_proto_or_list' => {'name' => 'ck_entersub_args_proto_or_list','text' => 'Performs the fixup of the arguments part of an C op tree either
1511             based on a subroutine prototype or using default list-context processing.
1512             This is the standard treatment used on a subroutine call, not marked
1513             with C<&>, where the callee can be identified at compile time.
1514              
1515             I supplies the subroutine prototype to be applied to the call,
1516             or indicates that there is no prototype. It may be a normal scalar,
1517             in which case if it is defined then the string value will be used
1518             as a prototype, and if it is undefined then there is no prototype.
1519             Alternatively, for convenience, it may be a subroutine object (a C
1520             that has been cast to C), of which the prototype will be used if it
1521             has one. The prototype (or lack thereof) supplied, in whichever form,
1522             does not need to match the actual callee referenced by the op tree.
1523              
1524             If the argument ops disagree with the prototype, for example by having
1525             an unacceptable number of arguments, a valid op tree is returned anyway.
1526             The error is reflected in the parser state, normally resulting in a single
1527             exception at the top level of parsing which covers all the compilation
1528             errors that occurred. In the error message, the callee is referred to
1529             by the name defined by the I parameter.
1530              
1531             OP * ck_entersub_args_proto_or_list(OP *entersubop,
1532             GV *namegv,
1533             SV *protosv)'},'ck_warner' => {'name' => 'ck_warner','text' => ''},'ck_warner_d' => {'name' => 'ck_warner_d','text' => ''},'ckwarn' => {'name' => 'ckwarn','text' => ''},'ckwarn_d' => {'name' => 'ckwarn_d','text' => ''},'clone_params_del' => {'name' => 'clone_params_del','text' => ''},'clone_params_new' => {'name' => 'clone_params_new','text' => ''},'cop_fetch_label' => {'name' => 'cop_fetch_label','text' => 'NOTE: this function is experimental and may change or be
1534             removed without notice.
1535              
1536              
1537             Returns the label attached to a cop.
1538             The flags pointer may be set to C or 0.
1539              
1540             const char * cop_fetch_label(COP *const cop,
1541             STRLEN *len, U32 *flags)'},'cop_hints_2hv' => {'name' => 'cop_hints_2hv','text' => 'Generates and returns a standard Perl hash representing the full set of
1542             hint entries in the cop I. I is currently unused and must
1543             be zero.
1544              
1545             HV * cop_hints_2hv(const COP *cop, U32 flags)'},'cop_hints_fetch_pv' => {'name' => 'cop_hints_fetch_pv','text' => 'Like L, but takes a nul-terminated string instead
1546             of a string/length pair.
1547              
1548             SV * cop_hints_fetch_pv(const COP *cop,
1549             const char *key, U32 hash,
1550             U32 flags)'},'cop_hints_fetch_pvn' => {'name' => 'cop_hints_fetch_pvn','text' => 'Look up the hint entry in the cop I with the key specified by
1551             I and I. If I has the C bit set,
1552             the key octets are interpreted as UTF-8, otherwise they are interpreted
1553             as Latin-1. I is a precomputed hash of the key string, or zero if
1554             it has not been precomputed. Returns a mortal scalar copy of the value
1555             associated with the key, or C<&PL_sv_placeholder> if there is no value
1556             associated with the key.
1557              
1558             SV * cop_hints_fetch_pvn(const COP *cop,
1559             const char *keypv,
1560             STRLEN keylen, U32 hash,
1561             U32 flags)'},'cop_hints_fetch_pvs' => {'name' => 'cop_hints_fetch_pvs','text' => 'Like L, but takes a literal string instead of a
1562             string/length pair, and no precomputed hash.
1563              
1564             SV * cop_hints_fetch_pvs(const COP *cop,
1565             const char *key, U32 flags)'},'cop_hints_fetch_sv' => {'name' => 'cop_hints_fetch_sv','text' => 'Like L, but takes a Perl scalar instead of a
1566             string/length pair.
1567              
1568             SV * cop_hints_fetch_sv(const COP *cop, SV *key,
1569             U32 hash, U32 flags)'},'cop_store_label' => {'name' => 'cop_store_label','text' => 'NOTE: this function is experimental and may change or be
1570             removed without notice.
1571              
1572              
1573             Save a label into a C.
1574             You need to set flags to C
1575             for a utf-8 label.
1576              
1577             void cop_store_label(COP *const cop,
1578             const char *label, STRLEN len,
1579             U32 flags)'},'cophh_2hv' => {'name' => 'cophh_2hv','text' => 'NOTE: this function is experimental and may change or be
1580             removed without notice.
1581              
1582              
1583             Generates and returns a standard Perl hash representing the full set of
1584             key/value pairs in the cop hints hash I. I is currently
1585             unused and must be zero.
1586              
1587             HV * cophh_2hv(const COPHH *cophh, U32 flags)'},'cophh_copy' => {'name' => 'cophh_copy','text' => 'NOTE: this function is experimental and may change or be
1588             removed without notice.
1589              
1590              
1591             Make and return a complete copy of the cop hints hash I.
1592              
1593             COPHH * cophh_copy(COPHH *cophh)'},'cophh_delete_pv' => {'name' => 'cophh_delete_pv','text' => 'NOTE: this function is experimental and may change or be
1594             removed without notice.
1595              
1596              
1597             Like L, but takes a nul-terminated string instead of
1598             a string/length pair.
1599              
1600             COPHH * cophh_delete_pv(const COPHH *cophh,
1601             const char *key, U32 hash,
1602             U32 flags)'},'cophh_delete_pvn' => {'name' => 'cophh_delete_pvn','text' => 'NOTE: this function is experimental and may change or be
1603             removed without notice.
1604              
1605              
1606             Delete a key and its associated value from the cop hints hash I,
1607             and returns the modified hash. The returned hash pointer is in general
1608             not the same as the hash pointer that was passed in. The input hash is
1609             consumed by the function, and the pointer to it must not be subsequently
1610             used. Use L if you need both hashes.
1611              
1612             The key is specified by I and I. If I has the
1613             C bit set, the key octets are interpreted as UTF-8,
1614             otherwise they are interpreted as Latin-1. I is a precomputed
1615             hash of the key string, or zero if it has not been precomputed.
1616              
1617             COPHH * cophh_delete_pvn(COPHH *cophh,
1618             const char *keypv,
1619             STRLEN keylen, U32 hash,
1620             U32 flags)'},'cophh_delete_pvs' => {'name' => 'cophh_delete_pvs','text' => 'NOTE: this function is experimental and may change or be
1621             removed without notice.
1622              
1623              
1624             Like L, but takes a literal string instead of a
1625             string/length pair, and no precomputed hash.
1626              
1627             COPHH * cophh_delete_pvs(const COPHH *cophh,
1628             const char *key, U32 flags)'},'cophh_delete_sv' => {'name' => 'cophh_delete_sv','text' => 'NOTE: this function is experimental and may change or be
1629             removed without notice.
1630              
1631              
1632             Like L, but takes a Perl scalar instead of a
1633             string/length pair.
1634              
1635             COPHH * cophh_delete_sv(const COPHH *cophh, SV *key,
1636             U32 hash, U32 flags)'},'cophh_fetch_pv' => {'name' => 'cophh_fetch_pv','text' => 'NOTE: this function is experimental and may change or be
1637             removed without notice.
1638              
1639              
1640             Like L, but takes a nul-terminated string instead of
1641             a string/length pair.
1642              
1643             SV * cophh_fetch_pv(const COPHH *cophh,
1644             const char *key, U32 hash,
1645             U32 flags)'},'cophh_fetch_pvn' => {'name' => 'cophh_fetch_pvn','text' => 'NOTE: this function is experimental and may change or be
1646             removed without notice.
1647              
1648              
1649             Look up the entry in the cop hints hash I with the key specified by
1650             I and I. If I has the C bit set,
1651             the key octets are interpreted as UTF-8, otherwise they are interpreted
1652             as Latin-1. I is a precomputed hash of the key string, or zero if
1653             it has not been precomputed. Returns a mortal scalar copy of the value
1654             associated with the key, or C<&PL_sv_placeholder> if there is no value
1655             associated with the key.
1656              
1657             SV * cophh_fetch_pvn(const COPHH *cophh,
1658             const char *keypv,
1659             STRLEN keylen, U32 hash,
1660             U32 flags)'},'cophh_fetch_pvs' => {'name' => 'cophh_fetch_pvs','text' => 'NOTE: this function is experimental and may change or be
1661             removed without notice.
1662              
1663              
1664             Like L, but takes a literal string instead of a
1665             string/length pair, and no precomputed hash.
1666              
1667             SV * cophh_fetch_pvs(const COPHH *cophh,
1668             const char *key, U32 flags)'},'cophh_fetch_sv' => {'name' => 'cophh_fetch_sv','text' => 'NOTE: this function is experimental and may change or be
1669             removed without notice.
1670              
1671              
1672             Like L, but takes a Perl scalar instead of a
1673             string/length pair.
1674              
1675             SV * cophh_fetch_sv(const COPHH *cophh, SV *key,
1676             U32 hash, U32 flags)'},'cophh_free' => {'name' => 'cophh_free','text' => 'NOTE: this function is experimental and may change or be
1677             removed without notice.
1678              
1679              
1680             Discard the cop hints hash I, freeing all resources associated
1681             with it.
1682              
1683             void cophh_free(COPHH *cophh)'},'cophh_new_empty' => {'name' => 'cophh_new_empty','text' => 'NOTE: this function is experimental and may change or be
1684             removed without notice.
1685              
1686              
1687             Generate and return a fresh cop hints hash containing no entries.
1688              
1689             COPHH * cophh_new_empty()'},'cophh_store_pv' => {'name' => 'cophh_store_pv','text' => 'NOTE: this function is experimental and may change or be
1690             removed without notice.
1691              
1692              
1693             Like L, but takes a nul-terminated string instead of
1694             a string/length pair.
1695              
1696             COPHH * cophh_store_pv(const COPHH *cophh,
1697             const char *key, U32 hash,
1698             SV *value, U32 flags)'},'cophh_store_pvn' => {'name' => 'cophh_store_pvn','text' => 'NOTE: this function is experimental and may change or be
1699             removed without notice.
1700              
1701              
1702             Stores a value, associated with a key, in the cop hints hash I,
1703             and returns the modified hash. The returned hash pointer is in general
1704             not the same as the hash pointer that was passed in. The input hash is
1705             consumed by the function, and the pointer to it must not be subsequently
1706             used. Use L if you need both hashes.
1707              
1708             The key is specified by I and I. If I has the
1709             C bit set, the key octets are interpreted as UTF-8,
1710             otherwise they are interpreted as Latin-1. I is a precomputed
1711             hash of the key string, or zero if it has not been precomputed.
1712              
1713             I is the scalar value to store for this key. I is copied
1714             by this function, which thus does not take ownership of any reference
1715             to it, and later changes to the scalar will not be reflected in the
1716             value visible in the cop hints hash. Complex types of scalar will not
1717             be stored with referential integrity, but will be coerced to strings.
1718              
1719             COPHH * cophh_store_pvn(COPHH *cophh, const char *keypv,
1720             STRLEN keylen, U32 hash,
1721             SV *value, U32 flags)'},'cophh_store_pvs' => {'name' => 'cophh_store_pvs','text' => 'NOTE: this function is experimental and may change or be
1722             removed without notice.
1723              
1724              
1725             Like L, but takes a literal string instead of a
1726             string/length pair, and no precomputed hash.
1727              
1728             COPHH * cophh_store_pvs(const COPHH *cophh,
1729             const char *key, SV *value,
1730             U32 flags)'},'cophh_store_sv' => {'name' => 'cophh_store_sv','text' => 'NOTE: this function is experimental and may change or be
1731             removed without notice.
1732              
1733              
1734             Like L, but takes a Perl scalar instead of a
1735             string/length pair.
1736              
1737             COPHH * cophh_store_sv(const COPHH *cophh, SV *key,
1738             U32 hash, SV *value, U32 flags)'},'croak' => {'name' => 'croak','text' => 'This is an XS interface to Perl\'s C function.
1739              
1740             Take a sprintf-style format pattern and argument list. These are used to
1741             generate a string message. If the message does not end with a newline,
1742             then it will be extended with some indication of the current location
1743             in the code, as described for L.
1744              
1745             The error message will be used as an exception, by default
1746             returning control to the nearest enclosing C, but subject to
1747             modification by a C<$SIG{__DIE__}> handler. In any case, the C
1748             function never returns normally.
1749              
1750             For historical reasons, if C is null then the contents of C
1751             (C<$@>) will be used as an error message or object instead of building an
1752             error message from arguments. If you want to throw a non-string object,
1753             or build an error message in an SV yourself, it is preferable to use
1754             the L function, which does not involve clobbering C.
1755              
1756             void croak(const char *pat, ...)'},'croak_memory_wrap' => {'name' => 'croak_memory_wrap','text' => ''},'croak_no_modify' => {'name' => 'croak_no_modify','text' => 'Exactly equivalent to C, but generates
1757             terser object code than using C. Less code used on exception code
1758             paths reduces CPU cache pressure.
1759              
1760             void croak_no_modify()'},'croak_nocontext' => {'name' => 'croak_nocontext','text' => ''},'croak_sv' => {'name' => 'croak_sv','text' => 'This is an XS interface to Perl\'s C function.
1761              
1762             C is the error message or object. If it is a reference, it
1763             will be used as-is. Otherwise it is used as a string, and if it does
1764             not end with a newline then it will be extended with some indication of
1765             the current location in the code, as described for L.
1766              
1767             The error message or object will be used as an exception, by default
1768             returning control to the nearest enclosing C, but subject to
1769             modification by a C<$SIG{__DIE__}> handler. In any case, the C
1770             function never returns normally.
1771              
1772             To die with a simple string message, the L function may be
1773             more convenient.
1774              
1775             void croak_sv(SV *baseex)'},'croak_xs_usage' => {'name' => 'croak_xs_usage','text' => 'A specialised variant of C for emitting the usage message for xsubs
1776              
1777             croak_xs_usage(cv, "eee_yow");
1778              
1779             works out the package name and subroutine name from C, and then calls
1780             C. Hence if C is C<&ouch::awk>, it would call C as:
1781              
1782             Perl_croak(aTHX_ "Usage: %"SVf"::%"SVf"(%s)", "ouch" "awk", "eee_yow");
1783              
1784             void croak_xs_usage(const CV *const cv,
1785             const char *const params)'},'csighandler' => {'name' => 'csighandler','text' => ''},'custom_op_desc' => {'name' => 'custom_op_desc','text' => 'Return the description of a given custom op. This was once used by the
1786             OP_DESC macro, but is no longer: it has only been kept for
1787             compatibility, and should not be used.
1788              
1789             const char * custom_op_desc(const OP *o)'},'custom_op_name' => {'name' => 'custom_op_name','text' => 'Return the name for a given custom op. This was once used by the OP_NAME
1790             macro, but is no longer: it has only been kept for compatibility, and
1791             should not be used.
1792              
1793             const char * custom_op_name(const OP *o)'},'custom_op_register' => {'name' => 'custom_op_register','text' => 'Register a custom op. See L.
1794              
1795             NOTE: this function must be explicitly called as Perl_custom_op_register with an aTHX_ parameter.
1796              
1797             void Perl_custom_op_register(pTHX_
1798             Perl_ppaddr_t ppaddr,
1799             const XOP *xop)'},'custom_op_xop' => {'name' => 'custom_op_xop','text' => 'Return the XOP structure for a given custom op. This macro should be
1800             considered internal to OP_NAME and the other access macros: use them instead.
1801             This macro does call a function. Prior
1802             to 5.19.6, this was implemented as a
1803             function.
1804              
1805             NOTE: this function must be explicitly called as Perl_custom_op_xop with an aTHX_ parameter.
1806              
1807             const XOP * Perl_custom_op_xop(pTHX_ const OP *o)'},'cv_clone' => {'name' => 'cv_clone','text' => 'Clone a CV, making a lexical closure. I supplies the prototype
1808             of the function: its code, pad structure, and other attributes.
1809             The prototype is combined with a capture of outer lexicals to which the
1810             code refers, which are taken from the currently-executing instance of
1811             the immediately surrounding code.
1812              
1813             CV * cv_clone(CV *proto)'},'cv_const_sv' => {'name' => 'cv_const_sv','text' => 'If C is a constant sub eligible for inlining, returns the constant
1814             value returned by the sub. Otherwise, returns NULL.
1815              
1816             Constant subs can be created with C or as described in
1817             L.
1818              
1819             SV* cv_const_sv(const CV *const cv)'},'cv_get_call_checker' => {'name' => 'cv_get_call_checker','text' => 'Retrieves the function that will be used to fix up a call to I.
1820             Specifically, the function is applied to an C op tree for a
1821             subroutine call, not marked with C<&>, where the callee can be identified
1822             at compile time as I.
1823              
1824             The C-level function pointer is returned in I<*ckfun_p>, and an SV
1825             argument for it is returned in I<*ckobj_p>. The function is intended
1826             to be called in this manner:
1827              
1828             entersubop = (*ckfun_p)(aTHX_ entersubop, namegv, (*ckobj_p));
1829              
1830             In this call, I is a pointer to the C op,
1831             which may be replaced by the check function, and I is a GV
1832             supplying the name that should be used by the check function to refer
1833             to the callee of the C op if it needs to emit any diagnostics.
1834             It is permitted to apply the check function in non-standard situations,
1835             such as to a call to a different subroutine or to a method call.
1836              
1837             By default, the function is
1838             L,
1839             and the SV parameter is I itself. This implements standard
1840             prototype processing. It can be changed, for a particular subroutine,
1841             by L.
1842              
1843             void cv_get_call_checker(CV *cv,
1844             Perl_call_checker *ckfun_p,
1845             SV **ckobj_p)'},'cv_set_call_checker' => {'name' => 'cv_set_call_checker','text' => 'Sets the function that will be used to fix up a call to I.
1846             Specifically, the function is applied to an C op tree for a
1847             subroutine call, not marked with C<&>, where the callee can be identified
1848             at compile time as I.
1849              
1850             The C-level function pointer is supplied in I, and an SV argument
1851             for it is supplied in I. The function should be defined like this:
1852              
1853             STATIC OP * ckfun(pTHX_ OP *op, GV *namegv, SV *ckobj)
1854              
1855             It is intended to be called in this manner:
1856              
1857             entersubop = ckfun(aTHX_ entersubop, namegv, ckobj);
1858              
1859             In this call, I is a pointer to the C op,
1860             which may be replaced by the check function, and I is a GV
1861             supplying the name that should be used by the check function to refer
1862             to the callee of the C op if it needs to emit any diagnostics.
1863             It is permitted to apply the check function in non-standard situations,
1864             such as to a call to a different subroutine or to a method call.
1865              
1866             The current setting for a particular CV can be retrieved by
1867             L.
1868              
1869             void cv_set_call_checker(CV *cv,
1870             Perl_call_checker ckfun,
1871             SV *ckobj)'},'cv_undef' => {'name' => 'cv_undef','text' => 'Clear out all the active components of a CV. This can happen either
1872             by an explicit C, or by the reference count going to zero.
1873             In the former case, we keep the CvOUTSIDE pointer, so that any anonymous
1874             children can still follow the full lexical scope chain.
1875              
1876             void cv_undef(CV* cv)'},'cx_dump' => {'name' => 'cx_dump','text' => ''},'cx_dup' => {'name' => 'cx_dup','text' => ''},'cxinc' => {'name' => 'cxinc','text' => ''},'dAX' => {'name' => 'dAX','text' => 'Sets up the C variable.
1877             This is usually handled automatically by C by calling C.
1878              
1879             dAX;'},'dAXMARK' => {'name' => 'dAXMARK','text' => 'Sets up the C variable and stack marker variable C.
1880             This is usually handled automatically by C by calling C.
1881              
1882             dAXMARK;'},'dITEMS' => {'name' => 'dITEMS','text' => 'Sets up the C variable.
1883             This is usually handled automatically by C by calling C.
1884              
1885             dITEMS;'},'dMARK' => {'name' => 'dMARK','text' => 'Declare a stack marker variable, C, for the XSUB. See C and
1886             C.
1887              
1888             dMARK;'},'dMULTICALL' => {'name' => 'dMULTICALL','text' => 'Declare local variables for a multicall. See L.
1889              
1890             dMULTICALL;'},'dORIGMARK' => {'name' => 'dORIGMARK','text' => 'Saves the original stack mark for the XSUB. See C.
1891              
1892             dORIGMARK;'},'dSP' => {'name' => 'dSP','text' => 'Declares a local copy of perl\'s stack pointer for the XSUB, available via
1893             the C macro. See C.
1894              
1895             dSP;'},'dUNDERBAR' => {'name' => 'dUNDERBAR','text' => 'Sets up any variable needed by the C macro. It used to define
1896             C, but it is currently a noop. However, it is strongly advised
1897             to still use it for ensuring past and future compatibility.
1898              
1899             dUNDERBAR;'},'dXCPT' => {'name' => 'dXCPT','text' => 'Set up necessary local variables for exception handling.
1900             See L.
1901              
1902             dXCPT;'},'dXSARGS' => {'name' => 'dXSARGS','text' => 'Sets up stack and mark pointers for an XSUB, calling dSP and dMARK.
1903             Sets up the C and C variables by calling C and C.
1904             This is usually handled automatically by C.
1905              
1906             dXSARGS;'},'dXSI32' => {'name' => 'dXSI32','text' => 'Sets up the C variable for an XSUB which has aliases. This is usually
1907             handled automatically by C.
1908              
1909             dXSI32;'},'deb' => {'name' => 'deb','text' => ''},'deb_nocontext' => {'name' => 'deb_nocontext','text' => ''},'debop' => {'name' => 'debop','text' => ''},'debprofdump' => {'name' => 'debprofdump','text' => ''},'debstack' => {'name' => 'debstack','text' => ''},'debstackptrs' => {'name' => 'debstackptrs','text' => ''},'delimcpy' => {'name' => 'delimcpy','text' => ''},'despatch_signals' => {'name' => 'despatch_signals','text' => ''},'die' => {'name' => 'die','text' => 'Behaves the same as L, except for the return type.
1910             It should be used only where the C return type is required.
1911             The function never actually returns.
1912              
1913             OP * die(const char *pat, ...)'},'die_nocontext' => {'name' => 'die_nocontext','text' => ''},'die_sv' => {'name' => 'die_sv','text' => 'Behaves the same as L, except for the return type.
1914             It should be used only where the C return type is required.
1915             The function never actually returns.
1916              
1917             OP * die_sv(SV *baseex)'},'dirp_dup' => {'name' => 'dirp_dup','text' => ''},'do_aspawn' => {'name' => 'do_aspawn','text' => ''},'do_binmode' => {'name' => 'do_binmode','text' => ''},'do_close' => {'name' => 'do_close','text' => ''},'do_gv_dump' => {'name' => 'do_gv_dump','text' => ''},'do_gvgv_dump' => {'name' => 'do_gvgv_dump','text' => ''},'do_hv_dump' => {'name' => 'do_hv_dump','text' => ''},'do_join' => {'name' => 'do_join','text' => ''},'do_magic_dump' => {'name' => 'do_magic_dump','text' => ''},'do_op_dump' => {'name' => 'do_op_dump','text' => ''},'do_open' => {'name' => 'do_open','text' => ''},'do_open9' => {'name' => 'do_open9','text' => ''},'do_openn' => {'name' => 'do_openn','text' => ''},'do_pmop_dump' => {'name' => 'do_pmop_dump','text' => ''},'do_spawn' => {'name' => 'do_spawn','text' => ''},'do_spawn_nowait' => {'name' => 'do_spawn_nowait','text' => ''},'do_sprintf' => {'name' => 'do_sprintf','text' => ''},'do_sv_dump' => {'name' => 'do_sv_dump','text' => ''},'doing_taint' => {'name' => 'doing_taint','text' => ''},'doref' => {'name' => 'doref','text' => ''},'dounwind' => {'name' => 'dounwind','text' => ''},'dowantarray' => {'name' => 'dowantarray','text' => ''},'dump_all' => {'name' => 'dump_all','text' => 'Dumps the entire optree of the current program starting at C to
1918             C. Also dumps the optrees for all visible subroutines in
1919             C.
1920              
1921             void dump_all()'},'dump_eval' => {'name' => 'dump_eval','text' => ''},'dump_form' => {'name' => 'dump_form','text' => ''},'dump_indent' => {'name' => 'dump_indent','text' => ''},'dump_mstats' => {'name' => 'dump_mstats','text' => ''},'dump_packsubs' => {'name' => 'dump_packsubs','text' => 'Dumps the optrees for all visible subroutines in C.
1922              
1923             void dump_packsubs(const HV* stash)'},'dump_sub' => {'name' => 'dump_sub','text' => ''},'dump_vindent' => {'name' => 'dump_vindent','text' => ''},'eval_pv' => {'name' => 'eval_pv','text' => 'Tells Perl to C the given string in scalar context and return an SV* result.
1924              
1925             NOTE: the perl_ form of this function is deprecated.
1926              
1927             SV* eval_pv(const char* p, I32 croak_on_error)'},'eval_sv' => {'name' => 'eval_sv','text' => 'Tells Perl to C the string in the SV. It supports the same flags
1928             as C, with the obvious exception of G_EVAL. See L.
1929              
1930             NOTE: the perl_ form of this function is deprecated.
1931              
1932             I32 eval_sv(SV* sv, I32 flags)'},'fbm_compile' => {'name' => 'fbm_compile','text' => 'Analyses the string in order to make fast searches on it using fbm_instr()
1933             -- the Boyer-Moore algorithm.
1934              
1935             void fbm_compile(SV* sv, U32 flags)'},'fbm_instr' => {'name' => 'fbm_instr','text' => 'Returns the location of the SV in the string delimited by C and
1936             C. It returns C if the string can\'t be found. The C
1937             does not have to be fbm_compiled, but the search will not be as fast
1938             then.
1939              
1940             char* fbm_instr(unsigned char* big,
1941             unsigned char* bigend, SV* littlestr,
1942             U32 flags)'},'filter_add' => {'name' => 'filter_add','text' => ''},'filter_del' => {'name' => 'filter_del','text' => ''},'filter_read' => {'name' => 'filter_read','text' => ''},'find_runcv' => {'name' => 'find_runcv','text' => 'Locate the CV corresponding to the currently executing sub or eval.
1943             If db_seqp is non_null, skip CVs that are in the DB package and populate
1944             *db_seqp with the cop sequence number at the point that the DB:: code was
1945             entered. (This allows debuggers to eval in the scope of the breakpoint
1946             rather than in the scope of the debugger itself.)
1947              
1948             CV* find_runcv(U32 *db_seqp)'},'find_rundefsv' => {'name' => 'find_rundefsv','text' => 'Find and return the variable that is named C<$_> in the lexical scope
1949             of the currently-executing function. This may be a lexical C<$_>,
1950             or will otherwise be the global one.
1951              
1952             SV * find_rundefsv()'},'find_rundefsvoffset' => {'name' => 'find_rundefsvoffset','text' => 'DEPRECATED! It is planned to remove this function from a
1953             future release of Perl. Do not use it for new code; remove it from
1954             existing code.
1955              
1956              
1957             Find the position of the lexical C<$_> in the pad of the
1958             currently-executing function. Returns the offset in the current pad,
1959             or C if there is no lexical C<$_> in scope (in which case
1960             the global one should be used instead).
1961             L is likely to be more convenient.
1962              
1963             NOTE: the perl_ form of this function is deprecated.
1964              
1965             PADOFFSET find_rundefsvoffset()'},'foldEQ' => {'name' => 'foldEQ','text' => 'Returns true if the leading len bytes of the strings s1 and s2 are the same
1966             case-insensitively; false otherwise. Uppercase and lowercase ASCII range bytes
1967             match themselves and their opposite case counterparts. Non-cased and non-ASCII
1968             range bytes match only themselves.
1969              
1970             I32 foldEQ(const char* a, const char* b, I32 len)'},'foldEQ_latin1' => {'name' => 'foldEQ_latin1','text' => ''},'foldEQ_locale' => {'name' => 'foldEQ_locale','text' => 'Returns true if the leading len bytes of the strings s1 and s2 are the same
1971             case-insensitively in the current locale; false otherwise.
1972              
1973             I32 foldEQ_locale(const char* a, const char* b,
1974             I32 len)'},'foldEQ_utf8' => {'name' => 'foldEQ_utf8','text' => 'Returns true if the leading portions of the strings C and C (either or both
1975             of which may be in UTF-8) are the same case-insensitively; false otherwise.
1976             How far into the strings to compare is determined by other input parameters.
1977              
1978             If C is true, the string C is assumed to be in UTF-8-encoded Unicode;
1979             otherwise it is assumed to be in native 8-bit encoding. Correspondingly for C
1980             with respect to C.
1981              
1982             If the byte length C is non-zero, it says how far into C to check for fold
1983             equality. In other words, C+C will be used as a goal to reach. The
1984             scan will not be considered to be a match unless the goal is reached, and
1985             scanning won\'t continue past that goal. Correspondingly for C with respect to
1986             C.
1987              
1988             If C is non-NULL and the pointer it points to is not NULL, that pointer is
1989             considered an end pointer to the position 1 byte past the maximum point
1990             in C beyond which scanning will not continue under any circumstances.
1991             (This routine assumes that UTF-8 encoded input strings are not malformed;
1992             malformed input can cause it to read past C).
1993             This means that if both C and C are specified, and C
1994             is less than C+C, the match will never be successful because it can
1995             never
1996             get as far as its goal (and in fact is asserted against). Correspondingly for
1997             C with respect to C.
1998              
1999             At least one of C and C must have a goal (at least one of C and
2000             C must be non-zero), and if both do, both have to be
2001             reached for a successful match. Also, if the fold of a character is multiple
2002             characters, all of them must be matched (see tr21 reference below for
2003             \'folding\').
2004              
2005             Upon a successful match, if C is non-NULL,
2006             it will be set to point to the beginning of the I character of C
2007             beyond what was matched. Correspondingly for C and C.
2008              
2009             For case-insensitiveness, the "casefolding" of Unicode is used
2010             instead of upper/lowercasing both the characters, see
2011             L (Case Mappings).
2012              
2013             I32 foldEQ_utf8(const char *s1, char **pe1, UV l1,
2014             bool u1, const char *s2, char **pe2,
2015             UV l2, bool u2)'},'form' => {'name' => 'form','text' => 'Takes a sprintf-style format pattern and conventional
2016             (non-SV) arguments and returns the formatted string.
2017              
2018             (char *) Perl_form(pTHX_ const char* pat, ...)
2019              
2020             can be used any place a string (char *) is required:
2021              
2022             char * s = Perl_form("%d.%d",major,minor);
2023              
2024             Uses a single private buffer so if you want to format several strings you
2025             must explicitly copy the earlier strings away (and free the copies when you
2026             are done).
2027              
2028             char* form(const char* pat, ...)'},'form_nocontext' => {'name' => 'form_nocontext','text' => ''},'fp_dup' => {'name' => 'fp_dup','text' => ''},'fprintf_nocontext' => {'name' => 'fprintf_nocontext','text' => ''},'free_global_struct' => {'name' => 'free_global_struct','text' => ''},'free_tmps' => {'name' => 'free_tmps','text' => ''},'get_av' => {'name' => 'get_av','text' => 'Returns the AV of the specified Perl global or package array with the given
2029             name (so it won\'t work on lexical variables). C are passed
2030             to C. If C is set and the
2031             Perl variable does not exist then it will be created. If C is zero
2032             and the variable does not exist then NULL is returned.
2033              
2034             Perl equivalent: C<@{"$name"}>.
2035              
2036             NOTE: the perl_ form of this function is deprecated.
2037              
2038             AV* get_av(const char *name, I32 flags)'},'get_context' => {'name' => 'get_context','text' => ''},'get_cv' => {'name' => 'get_cv','text' => 'Uses C to get the length of C, then calls C.
2039              
2040             NOTE: the perl_ form of this function is deprecated.
2041              
2042             CV* get_cv(const char* name, I32 flags)'},'get_cvn_flags' => {'name' => 'get_cvn_flags','text' => 'Returns the CV of the specified Perl subroutine. C are passed to
2043             C. If C is set and the Perl subroutine does not
2044             exist then it will be declared (which has the same effect as saying
2045             C). If C is not set and the subroutine does not exist
2046             then NULL is returned.
2047              
2048             NOTE: the perl_ form of this function is deprecated.
2049              
2050             CV* get_cvn_flags(const char* name, STRLEN len,
2051             I32 flags)'},'get_hv' => {'name' => 'get_hv','text' => 'Returns the HV of the specified Perl hash. C are passed to
2052             C. If C is set and the
2053             Perl variable does not exist then it will be created. If C is zero
2054             and the variable does not exist then NULL is returned.
2055              
2056             NOTE: the perl_ form of this function is deprecated.
2057              
2058             HV* get_hv(const char *name, I32 flags)'},'get_mstats' => {'name' => 'get_mstats','text' => ''},'get_op_descs' => {'name' => 'get_op_descs','text' => ''},'get_op_names' => {'name' => 'get_op_names','text' => ''},'get_ppaddr' => {'name' => 'get_ppaddr','text' => ''},'get_sv' => {'name' => 'get_sv','text' => 'Returns the SV of the specified Perl scalar. C are passed to
2059             C. If C is set and the
2060             Perl variable does not exist then it will be created. If C is zero
2061             and the variable does not exist then NULL is returned.
2062              
2063             NOTE: the perl_ form of this function is deprecated.
2064              
2065             SV* get_sv(const char *name, I32 flags)'},'get_vtbl' => {'name' => 'get_vtbl','text' => ''},'getcwd_sv' => {'name' => 'getcwd_sv','text' => 'Fill the sv with current working directory
2066              
2067             int getcwd_sv(SV* sv)'},'gp_dup' => {'name' => 'gp_dup','text' => ''},'gp_free' => {'name' => 'gp_free','text' => ''},'gp_ref' => {'name' => 'gp_ref','text' => ''},'grok_bin' => {'name' => 'grok_bin','text' => 'converts a string representing a binary number to numeric form.
2068              
2069             On entry I and I<*len> give the string to scan, I<*flags> gives
2070             conversion flags, and I should be NULL or a pointer to an NV.
2071             The scan stops at the end of the string, or the first invalid character.
2072             Unless C is set in I<*flags>, encountering an
2073             invalid character will also trigger a warning.
2074             On return I<*len> is set to the length of the scanned string,
2075             and I<*flags> gives output flags.
2076              
2077             If the value is <= C it is returned as a UV, the output flags are clear,
2078             and nothing is written to I<*result>. If the value is > UV_MAX C
2079             returns UV_MAX, sets C in the output flags,
2080             and writes the value to I<*result> (or the value is discarded if I
2081             is NULL).
2082              
2083             The binary number may optionally be prefixed with "0b" or "b" unless
2084             C is set in I<*flags> on entry. If
2085             C is set in I<*flags> then the binary
2086             number may use \'_\' characters to separate digits.
2087              
2088             UV grok_bin(const char* start, STRLEN* len_p,
2089             I32* flags, NV *result)'},'grok_hex' => {'name' => 'grok_hex','text' => 'converts a string representing a hex number to numeric form.
2090              
2091             On entry I and I<*len_p> give the string to scan, I<*flags> gives
2092             conversion flags, and I should be NULL or a pointer to an NV.
2093             The scan stops at the end of the string, or the first invalid character.
2094             Unless C is set in I<*flags>, encountering an
2095             invalid character will also trigger a warning.
2096             On return I<*len> is set to the length of the scanned string,
2097             and I<*flags> gives output flags.
2098              
2099             If the value is <= UV_MAX it is returned as a UV, the output flags are clear,
2100             and nothing is written to I<*result>. If the value is > UV_MAX C
2101             returns UV_MAX, sets C in the output flags,
2102             and writes the value to I<*result> (or the value is discarded if I
2103             is NULL).
2104              
2105             The hex number may optionally be prefixed with "0x" or "x" unless
2106             C is set in I<*flags> on entry. If
2107             C is set in I<*flags> then the hex
2108             number may use \'_\' characters to separate digits.
2109              
2110             UV grok_hex(const char* start, STRLEN* len_p,
2111             I32* flags, NV *result)'},'grok_number' => {'name' => 'grok_number','text' => 'Recognise (or not) a number. The type of the number is returned
2112             (0 if unrecognised), otherwise it is a bit-ORed combination of
2113             IS_NUMBER_IN_UV, IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT,
2114             IS_NUMBER_NEG, IS_NUMBER_INFINITY, IS_NUMBER_NAN (defined in perl.h).
2115              
2116             If the value of the number can fit in a UV, it is returned in the *valuep
2117             IS_NUMBER_IN_UV will be set to indicate that *valuep is valid, IS_NUMBER_IN_UV
2118             will never be set unless *valuep is valid, but *valuep may have been assigned
2119             to during processing even though IS_NUMBER_IN_UV is not set on return.
2120             If valuep is NULL, IS_NUMBER_IN_UV will be set for the same cases as when
2121             valuep is non-NULL, but no actual assignment (or SEGV) will occur.
2122              
2123             IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing decimals were
2124             seen (in which case *valuep gives the true value truncated to an integer), and
2125             IS_NUMBER_NEG if the number is negative (in which case *valuep holds the
2126             absolute value). IS_NUMBER_IN_UV is not set if e notation was used or the
2127             number is larger than a UV.
2128              
2129             int grok_number(const char *pv, STRLEN len,
2130             UV *valuep)'},'grok_numeric_radix' => {'name' => 'grok_numeric_radix','text' => 'Scan and skip for a numeric decimal separator (radix).
2131              
2132             bool grok_numeric_radix(const char **sp,
2133             const char *send)'},'grok_oct' => {'name' => 'grok_oct','text' => 'converts a string representing an octal number to numeric form.
2134              
2135             On entry I and I<*len> give the string to scan, I<*flags> gives
2136             conversion flags, and I should be NULL or a pointer to an NV.
2137             The scan stops at the end of the string, or the first invalid character.
2138             Unless C is set in I<*flags>, encountering an
2139             8 or 9 will also trigger a warning.
2140             On return I<*len> is set to the length of the scanned string,
2141             and I<*flags> gives output flags.
2142              
2143             If the value is <= UV_MAX it is returned as a UV, the output flags are clear,
2144             and nothing is written to I<*result>. If the value is > UV_MAX C
2145             returns UV_MAX, sets C in the output flags,
2146             and writes the value to I<*result> (or the value is discarded if I
2147             is NULL).
2148              
2149             If C is set in I<*flags> then the octal
2150             number may use \'_\' characters to separate digits.
2151              
2152             UV grok_oct(const char* start, STRLEN* len_p,
2153             I32* flags, NV *result)'},'gv_AVadd' => {'name' => 'gv_AVadd','text' => ''},'gv_HVadd' => {'name' => 'gv_HVadd','text' => ''},'gv_IOadd' => {'name' => 'gv_IOadd','text' => ''},'gv_SVadd' => {'name' => 'gv_SVadd','text' => ''},'gv_add_by_type' => {'name' => 'gv_add_by_type','text' => ''},'gv_autoload4' => {'name' => 'gv_autoload4','text' => ''},'gv_autoload_pv' => {'name' => 'gv_autoload_pv','text' => ''},'gv_autoload_pvn' => {'name' => 'gv_autoload_pvn','text' => ''},'gv_autoload_sv' => {'name' => 'gv_autoload_sv','text' => ''},'gv_check' => {'name' => 'gv_check','text' => ''},'gv_const_sv' => {'name' => 'gv_const_sv','text' => 'If C is a typeglob whose subroutine entry is a constant sub eligible for
2154             inlining, or C is a placeholder reference that would be promoted to such
2155             a typeglob, then returns the value returned by the sub. Otherwise, returns
2156             NULL.
2157              
2158             SV* gv_const_sv(GV* gv)'},'gv_dump' => {'name' => 'gv_dump','text' => ''},'gv_efullname' => {'name' => 'gv_efullname','text' => ''},'gv_efullname3' => {'name' => 'gv_efullname3','text' => ''},'gv_efullname4' => {'name' => 'gv_efullname4','text' => ''},'gv_fetchfile' => {'name' => 'gv_fetchfile','text' => ''},'gv_fetchfile_flags' => {'name' => 'gv_fetchfile_flags','text' => ''},'gv_fetchmeth' => {'name' => 'gv_fetchmeth','text' => 'Like L, but lacks a flags parameter.
2159              
2160             GV* gv_fetchmeth(HV* stash, const char* name,
2161             STRLEN len, I32 level)'},'gv_fetchmeth_autoload' => {'name' => 'gv_fetchmeth_autoload','text' => 'This is the old form of L, which has no flags
2162             parameter.
2163              
2164             GV* gv_fetchmeth_autoload(HV* stash,
2165             const char* name,
2166             STRLEN len, I32 level)'},'gv_fetchmeth_pv' => {'name' => 'gv_fetchmeth_pv','text' => 'Exactly like L, but takes a nul-terminated string
2167             instead of a string/length pair.
2168              
2169             GV* gv_fetchmeth_pv(HV* stash, const char* name,
2170             I32 level, U32 flags)'},'gv_fetchmeth_pv_autoload' => {'name' => 'gv_fetchmeth_pv_autoload','text' => 'Exactly like L, but takes a nul-terminated string
2171             instead of a string/length pair.
2172              
2173             GV* gv_fetchmeth_pv_autoload(HV* stash,
2174             const char* name,
2175             I32 level, U32 flags)'},'gv_fetchmeth_pvn' => {'name' => 'gv_fetchmeth_pvn','text' => 'Returns the glob with the given C and a defined subroutine or
2176             C. The glob lives in the given C, or in the stashes
2177             accessible via @ISA and UNIVERSAL::.
2178              
2179             The argument C should be either 0 or -1. If C, as a
2180             side-effect creates a glob with the given C in the given C
2181             which in the case of success contains an alias for the subroutine, and sets
2182             up caching info for this glob.
2183              
2184             The only significant values for C are GV_SUPER and SVf_UTF8.
2185              
2186             GV_SUPER indicates that we want to look up the method in the superclasses
2187             of the C.
2188              
2189             The
2190             GV returned from C may be a method cache entry, which is not
2191             visible to Perl code. So when calling C, you should not use
2192             the GV directly; instead, you should use the method\'s CV, which can be
2193             obtained from the GV with the C macro.
2194              
2195             GV* gv_fetchmeth_pvn(HV* stash, const char* name,
2196             STRLEN len, I32 level,
2197             U32 flags)'},'gv_fetchmeth_pvn_autoload' => {'name' => 'gv_fetchmeth_pvn_autoload','text' => 'Same as gv_fetchmeth_pvn(), but looks for autoloaded subroutines too.
2198             Returns a glob for the subroutine.
2199              
2200             For an autoloaded subroutine without a GV, will create a GV even
2201             if C. For an autoloaded subroutine without a stub, GvCV()
2202             of the result may be zero.
2203              
2204             Currently, the only significant value for C is SVf_UTF8.
2205              
2206             GV* gv_fetchmeth_pvn_autoload(HV* stash,
2207             const char* name,
2208             STRLEN len, I32 level,
2209             U32 flags)'},'gv_fetchmeth_sv' => {'name' => 'gv_fetchmeth_sv','text' => 'Exactly like L, but takes the name string in the form
2210             of an SV instead of a string/length pair.
2211              
2212             GV* gv_fetchmeth_sv(HV* stash, SV* namesv,
2213             I32 level, U32 flags)'},'gv_fetchmeth_sv_autoload' => {'name' => 'gv_fetchmeth_sv_autoload','text' => 'Exactly like L, but takes the name string in the form
2214             of an SV instead of a string/length pair.
2215              
2216             GV* gv_fetchmeth_sv_autoload(HV* stash, SV* namesv,
2217             I32 level, U32 flags)'},'gv_fetchmethod' => {'name' => 'gv_fetchmethod','text' => 'See L.
2218              
2219             GV* gv_fetchmethod(HV* stash, const char* name)'},'gv_fetchmethod_autoload' => {'name' => 'gv_fetchmethod_autoload','text' => 'Returns the glob which contains the subroutine to call to invoke the method
2220             on the C. In fact in the presence of autoloading this may be the
2221             glob for "AUTOLOAD". In this case the corresponding variable $AUTOLOAD is
2222             already setup.
2223              
2224             The third parameter of C determines whether
2225             AUTOLOAD lookup is performed if the given method is not present: non-zero
2226             means yes, look for AUTOLOAD; zero means no, don\'t look for AUTOLOAD.
2227             Calling C is equivalent to calling C
2228             with a non-zero C parameter.
2229              
2230             These functions grant C<"SUPER"> token
2231             as a prefix of the method name. Note
2232             that if you want to keep the returned glob for a long time, you need to
2233             check for it being "AUTOLOAD", since at the later time the call may load a
2234             different subroutine due to $AUTOLOAD changing its value. Use the glob
2235             created as a side effect to do this.
2236              
2237             These functions have the same side-effects as C with
2238             C. The warning against passing the GV returned by
2239             C to C applies equally to these functions.
2240              
2241             GV* gv_fetchmethod_autoload(HV* stash,
2242             const char* name,
2243             I32 autoload)'},'gv_fetchpv' => {'name' => 'gv_fetchpv','text' => ''},'gv_fetchpvn_flags' => {'name' => 'gv_fetchpvn_flags','text' => ''},'gv_fetchsv' => {'name' => 'gv_fetchsv','text' => ''},'gv_fullname' => {'name' => 'gv_fullname','text' => ''},'gv_fullname3' => {'name' => 'gv_fullname3','text' => ''},'gv_fullname4' => {'name' => 'gv_fullname4','text' => ''},'gv_handler' => {'name' => 'gv_handler','text' => ''},'gv_init' => {'name' => 'gv_init','text' => 'The old form of gv_init_pvn(). It does not work with UTF8 strings, as it
2244             has no flags parameter. If the C parameter is set, the
2245             GV_ADDMULTI flag will be passed to gv_init_pvn().
2246              
2247             void gv_init(GV* gv, HV* stash, const char* name,
2248             STRLEN len, int multi)'},'gv_init_pv' => {'name' => 'gv_init_pv','text' => 'Same as gv_init_pvn(), but takes a nul-terminated string for the name
2249             instead of separate char * and length parameters.
2250              
2251             void gv_init_pv(GV* gv, HV* stash, const char* name,
2252             U32 flags)'},'gv_init_pvn' => {'name' => 'gv_init_pvn','text' => 'Converts a scalar into a typeglob. This is an incoercible typeglob;
2253             assigning a reference to it will assign to one of its slots, instead of
2254             overwriting it as happens with typeglobs created by SvSetSV. Converting
2255             any scalar that is SvOK() may produce unpredictable results and is reserved
2256             for perl\'s internal use.
2257              
2258             C is the scalar to be converted.
2259              
2260             C is the parent stash/package, if any.
2261              
2262             C and C give the name. The name must be unqualified;
2263             that is, it must not include the package name. If C is a
2264             stash element, it is the caller\'s responsibility to ensure that the name
2265             passed to this function matches the name of the element. If it does not
2266             match, perl\'s internal bookkeeping will get out of sync.
2267              
2268             C can be set to SVf_UTF8 if C is a UTF8 string, or
2269             the return value of SvUTF8(sv). It can also take the
2270             GV_ADDMULTI flag, which means to pretend that the GV has been
2271             seen before (i.e., suppress "Used once" warnings).
2272              
2273             void gv_init_pvn(GV* gv, HV* stash, const char* name,
2274             STRLEN len, U32 flags)'},'gv_init_sv' => {'name' => 'gv_init_sv','text' => 'Same as gv_init_pvn(), but takes an SV * for the name instead of separate
2275             char * and length parameters. C is currently unused.
2276              
2277             void gv_init_sv(GV* gv, HV* stash, SV* namesv,
2278             U32 flags)'},'gv_name_set' => {'name' => 'gv_name_set','text' => ''},'gv_stashpv' => {'name' => 'gv_stashpv','text' => 'Returns a pointer to the stash for a specified package. Uses C to
2279             determine the length of C, then calls C.
2280              
2281             HV* gv_stashpv(const char* name, I32 flags)'},'gv_stashpvn' => {'name' => 'gv_stashpvn','text' => 'Returns a pointer to the stash for a specified package. The C
2282             parameter indicates the length of the C, in bytes. C is passed
2283             to C, so if set to C then the package will be
2284             created if it does not already exist. If the package does not exist and
2285             C is 0 (or any other setting that does not create packages) then NULL
2286             is returned.
2287              
2288             Flags may be one of:
2289              
2290             GV_ADD
2291             SVf_UTF8
2292             GV_NOADD_NOINIT
2293             GV_NOINIT
2294             GV_NOEXPAND
2295             GV_ADDMG
2296              
2297             The most important of which are probably GV_ADD and SVf_UTF8.
2298              
2299             HV* gv_stashpvn(const char* name, U32 namelen,
2300             I32 flags)'},'gv_stashpvs' => {'name' => 'gv_stashpvs','text' => 'Like C, but takes a literal string instead of a string/length pair.
2301              
2302             HV* gv_stashpvs(const char* name, I32 create)'},'gv_stashsv' => {'name' => 'gv_stashsv','text' => 'Returns a pointer to the stash for a specified package. See C.
2303              
2304             HV* gv_stashsv(SV* sv, I32 flags)'},'he_dup' => {'name' => 'he_dup','text' => ''},'hek_dup' => {'name' => 'hek_dup','text' => ''},'hv_assert' => {'name' => 'hv_assert','text' => 'Check that a hash is in an internally consistent state.
2305              
2306             void hv_assert(HV *hv)'},'hv_clear' => {'name' => 'hv_clear','text' => 'Frees the all the elements of a hash, leaving it empty.
2307             The XS equivalent of C<%hash = ()>. See also L.
2308              
2309             If any destructors are triggered as a result, the hv itself may
2310             be freed.
2311              
2312             void hv_clear(HV *hv)'},'hv_clear_placeholders' => {'name' => 'hv_clear_placeholders','text' => 'Clears any placeholders from a hash. If a restricted hash has any of its keys
2313             marked as readonly and the key is subsequently deleted, the key is not actually
2314             deleted but is marked by assigning it a value of &PL_sv_placeholder. This tags
2315             it so it will be ignored by future operations such as iterating over the hash,
2316             but will still allow the hash to have a value reassigned to the key at some
2317             future point. This function clears any such placeholder keys from the hash.
2318             See Hash::Util::lock_keys() for an example of its use.
2319              
2320             void hv_clear_placeholders(HV *hv)'},'hv_common' => {'name' => 'hv_common','text' => ''},'hv_common_key_len' => {'name' => 'hv_common_key_len','text' => ''},'hv_copy_hints_hv' => {'name' => 'hv_copy_hints_hv','text' => 'A specialised version of L for copying C<%^H>. I must be
2321             a pointer to a hash (which may have C<%^H> magic, but should be generally
2322             non-magical), or C (interpreted as an empty hash). The content
2323             of I is copied to a new hash, which has the C<%^H>-specific magic
2324             added to it. A pointer to the new hash is returned.
2325              
2326             HV * hv_copy_hints_hv(HV *ohv)'},'hv_delayfree_ent' => {'name' => 'hv_delayfree_ent','text' => ''},'hv_delete' => {'name' => 'hv_delete','text' => 'Deletes a key/value pair in the hash. The value\'s SV is removed from
2327             the hash, made mortal, and returned to the caller. The absolute
2328             value of C is the length of the key. If C is negative the
2329             key is assumed to be in UTF-8-encoded Unicode. The C value
2330             will normally be zero; if set to G_DISCARD then NULL will be returned.
2331             NULL will also be returned if the key is not found.
2332              
2333             SV* hv_delete(HV *hv, const char *key, I32 klen,
2334             I32 flags)'},'hv_delete_ent' => {'name' => 'hv_delete_ent','text' => 'Deletes a key/value pair in the hash. The value SV is removed from the hash,
2335             made mortal, and returned to the caller. The C value will normally be
2336             zero; if set to G_DISCARD then NULL will be returned. NULL will also be
2337             returned if the key is not found. C can be a valid precomputed hash
2338             value, or 0 to ask for it to be computed.
2339              
2340             SV* hv_delete_ent(HV *hv, SV *keysv, I32 flags,
2341             U32 hash)'},'hv_eiter_p' => {'name' => 'hv_eiter_p','text' => ''},'hv_eiter_set' => {'name' => 'hv_eiter_set','text' => ''},'hv_exists' => {'name' => 'hv_exists','text' => 'Returns a boolean indicating whether the specified hash key exists. The
2342             absolute value of C is the length of the key. If C is
2343             negative the key is assumed to be in UTF-8-encoded Unicode.
2344              
2345             bool hv_exists(HV *hv, const char *key, I32 klen)'},'hv_exists_ent' => {'name' => 'hv_exists_ent','text' => 'Returns a boolean indicating whether
2346             the specified hash key exists. C
2347             can be a valid precomputed hash value, or 0 to ask for it to be
2348             computed.
2349              
2350             bool hv_exists_ent(HV *hv, SV *keysv, U32 hash)'},'hv_fetch' => {'name' => 'hv_fetch','text' => 'Returns the SV which corresponds to the specified key in the hash.
2351             The absolute value of C is the length of the key. If C is
2352             negative the key is assumed to be in UTF-8-encoded Unicode. If
2353             C is set then the fetch will be part of a store. This means that if
2354             there is no value in the hash associated with the given key, then one is
2355             created and a pointer to it is returned. The C it points to can be
2356             assigned to. But always check that the
2357             return value is non-null before dereferencing it to an C.
2358              
2359             See L for more
2360             information on how to use this function on tied hashes.
2361              
2362             SV** hv_fetch(HV *hv, const char *key, I32 klen,
2363             I32 lval)'},'hv_fetch_ent' => {'name' => 'hv_fetch_ent','text' => 'Returns the hash entry which corresponds to the specified key in the hash.
2364             C must be a valid precomputed hash number for the given C, or 0
2365             if you want the function to compute it. IF C is set then the fetch
2366             will be part of a store. Make sure the return value is non-null before
2367             accessing it. The return value when C is a tied hash is a pointer to a
2368             static location, so be sure to make a copy of the structure if you need to
2369             store it somewhere.
2370              
2371             See L for more
2372             information on how to use this function on tied hashes.
2373              
2374             HE* hv_fetch_ent(HV *hv, SV *keysv, I32 lval,
2375             U32 hash)'},'hv_fetchs' => {'name' => 'hv_fetchs','text' => 'Like C, but takes a literal string instead of a string/length pair.
2376              
2377             SV** hv_fetchs(HV* tb, const char* key, I32 lval)'},'hv_fill' => {'name' => 'hv_fill','text' => 'Returns the number of hash buckets that
2378             happen to be in use. This function is
2379             wrapped by the macro C.
2380              
2381             Previously this value was always stored in the HV structure, which created an
2382             overhead on every hash (and pretty much every object) for something that was
2383             rarely used. Now we calculate it on demand the first
2384             time that it is needed, and cache it if that calculation
2385             is going to be costly to repeat. The cached
2386             value is updated by insertions and deletions, but (currently) discarded if
2387             the hash is split.
2388              
2389             STRLEN hv_fill(HV *const hv)'},'hv_free_ent' => {'name' => 'hv_free_ent','text' => ''},'hv_iterinit' => {'name' => 'hv_iterinit','text' => 'Prepares a starting point to traverse a hash table. Returns the number of
2390             keys in the hash (i.e. the same as C). The return value is
2391             currently only meaningful for hashes without tie magic.
2392              
2393             NOTE: Before version 5.004_65, C used to return the number of
2394             hash buckets that happen to be in use. If you still need that esoteric
2395             value, you can get it through the macro C.
2396              
2397              
2398             I32 hv_iterinit(HV *hv)'},'hv_iterkey' => {'name' => 'hv_iterkey','text' => 'Returns the key from the current position of the hash iterator. See
2399             C.
2400              
2401             char* hv_iterkey(HE* entry, I32* retlen)'},'hv_iterkeysv' => {'name' => 'hv_iterkeysv','text' => 'Returns the key as an C from the current position of the hash
2402             iterator. The return value will always be a mortal copy of the key. Also
2403             see C.
2404              
2405             SV* hv_iterkeysv(HE* entry)'},'hv_iternext' => {'name' => 'hv_iternext','text' => 'Returns entries from a hash iterator. See C.
2406              
2407             You may call C or C on the hash entry that the
2408             iterator currently points to, without losing your place or invalidating your
2409             iterator. Note that in this case the current entry is deleted from the hash
2410             with your iterator holding the last reference to it. Your iterator is flagged
2411             to free the entry on the next call to C, so you must not discard
2412             your iterator immediately else the entry will leak - call C to
2413             trigger the resource deallocation.
2414              
2415             HE* hv_iternext(HV *hv)'},'hv_iternext_flags' => {'name' => 'hv_iternext_flags','text' => 'NOTE: this function is experimental and may change or be
2416             removed without notice.
2417              
2418              
2419             Returns entries from a hash iterator. See C and C.
2420             The C value will normally be zero; if HV_ITERNEXT_WANTPLACEHOLDERS is
2421             set the placeholders keys (for restricted hashes) will be returned in addition
2422             to normal keys. By default placeholders are automatically skipped over.
2423             Currently a placeholder is implemented with a value that is
2424             C<&PL_sv_placeholder>. Note that the implementation of placeholders and
2425             restricted hashes may change, and the implementation currently is
2426             insufficiently abstracted for any change to be tidy.
2427              
2428             HE* hv_iternext_flags(HV *hv, I32 flags)'},'hv_iternextsv' => {'name' => 'hv_iternextsv','text' => 'Performs an C, C, and C in one
2429             operation.
2430              
2431             SV* hv_iternextsv(HV *hv, char **key, I32 *retlen)'},'hv_iterval' => {'name' => 'hv_iterval','text' => 'Returns the value from the current position of the hash iterator. See
2432             C.
2433              
2434             SV* hv_iterval(HV *hv, HE *entry)'},'hv_ksplit' => {'name' => 'hv_ksplit','text' => ''},'hv_magic' => {'name' => 'hv_magic','text' => 'Adds magic to a hash. See C.
2435              
2436             void hv_magic(HV *hv, GV *gv, int how)'},'hv_name_set' => {'name' => 'hv_name_set','text' => ''},'hv_placeholders_get' => {'name' => 'hv_placeholders_get','text' => ''},'hv_placeholders_set' => {'name' => 'hv_placeholders_set','text' => ''},'hv_rand_set' => {'name' => 'hv_rand_set','text' => ''},'hv_riter_p' => {'name' => 'hv_riter_p','text' => ''},'hv_riter_set' => {'name' => 'hv_riter_set','text' => ''},'hv_scalar' => {'name' => 'hv_scalar','text' => 'Evaluates the hash in scalar context and returns the result. Handles magic
2437             when the hash is tied.
2438              
2439             SV* hv_scalar(HV *hv)'},'hv_store' => {'name' => 'hv_store','text' => 'Stores an SV in a hash. The hash key is specified as C and the
2440             absolute value of C is the length of the key. If C is
2441             negative the key is assumed to be in UTF-8-encoded Unicode. The
2442             C parameter is the precomputed hash value; if it is zero then
2443             Perl will compute it.
2444              
2445             The return value will be
2446             NULL if the operation failed or if the value did not need to be actually
2447             stored within the hash (as in the case of tied hashes). Otherwise it can
2448             be dereferenced to get the original C. Note that the caller is
2449             responsible for suitably incrementing the reference count of C before
2450             the call, and decrementing it if the function returned NULL. Effectively
2451             a successful hv_store takes ownership of one reference to C. This is
2452             usually what you want; a newly created SV has a reference count of one, so
2453             if all your code does is create SVs then store them in a hash, hv_store
2454             will own the only reference to the new SV, and your code doesn\'t need to do
2455             anything further to tidy up. hv_store is not implemented as a call to
2456             hv_store_ent, and does not create a temporary SV for the key, so if your
2457             key data is not already in SV form then use hv_store in preference to
2458             hv_store_ent.
2459              
2460             See L for more
2461             information on how to use this function on tied hashes.
2462              
2463             SV** hv_store(HV *hv, const char *key, I32 klen,
2464             SV *val, U32 hash)'},'hv_store_ent' => {'name' => 'hv_store_ent','text' => 'Stores C in a hash. The hash key is specified as C. The C
2465             parameter is the precomputed hash value; if it is zero then Perl will
2466             compute it. The return value is the new hash entry so created. It will be
2467             NULL if the operation failed or if the value did not need to be actually
2468             stored within the hash (as in the case of tied hashes). Otherwise the
2469             contents of the return value can be accessed using the C macros
2470             described here. Note that the caller is responsible for suitably
2471             incrementing the reference count of C before the call, and
2472             decrementing it if the function returned NULL. Effectively a successful
2473             hv_store_ent takes ownership of one reference to C. This is
2474             usually what you want; a newly created SV has a reference count of one, so
2475             if all your code does is create SVs then store them in a hash, hv_store
2476             will own the only reference to the new SV, and your code doesn\'t need to do
2477             anything further to tidy up. Note that hv_store_ent only reads the C;
2478             unlike C it does not take ownership of it, so maintaining the correct
2479             reference count on C is entirely the caller\'s responsibility. hv_store
2480             is not implemented as a call to hv_store_ent, and does not create a temporary
2481             SV for the key, so if your key data is not already in SV form then use
2482             hv_store in preference to hv_store_ent.
2483              
2484             See L for more
2485             information on how to use this function on tied hashes.
2486              
2487             HE* hv_store_ent(HV *hv, SV *key, SV *val, U32 hash)'},'hv_stores' => {'name' => 'hv_stores','text' => 'Like C, but takes a literal string instead of a string/length pair
2488             and omits the hash parameter.
2489              
2490             SV** hv_stores(HV* tb, const char* key,
2491             NULLOK SV* val)'},'hv_undef' => {'name' => 'hv_undef','text' => 'Undefines the hash. The XS equivalent of C.
2492              
2493             As well as freeing all the elements of the hash (like hv_clear()), this
2494             also frees any auxiliary data and storage associated with the hash.
2495              
2496             If any destructors are triggered as a result, the hv itself may
2497             be freed.
2498              
2499             See also L.
2500              
2501             void hv_undef(HV *hv)'},'ibcmp' => {'name' => 'ibcmp','text' => 'This is a synonym for (! foldEQ())
2502              
2503             I32 ibcmp(const char* a, const char* b, I32 len)'},'ibcmp_locale' => {'name' => 'ibcmp_locale','text' => 'This is a synonym for (! foldEQ_locale())
2504              
2505             I32 ibcmp_locale(const char* a, const char* b,
2506             I32 len)'},'ibcmp_utf8' => {'name' => 'ibcmp_utf8','text' => 'This is a synonym for (! foldEQ_utf8())
2507              
2508             I32 ibcmp_utf8(const char *s1, char **pe1, UV l1,
2509             bool u1, const char *s2, char **pe2,
2510             UV l2, bool u2)'},'init_global_struct' => {'name' => 'init_global_struct','text' => ''},'init_stacks' => {'name' => 'init_stacks','text' => ''},'init_tm' => {'name' => 'init_tm','text' => ''},'instr' => {'name' => 'instr','text' => ''},'isALPHA' => {'name' => 'isALPHA','text' => 'Returns a boolean indicating whether the specified character is an
2511             alphabetic character, analogous to C.
2512             See the L for an explanation of variants
2513             C, C, C, C, C,
2514             C, and C.
2515              
2516             bool isALPHA(char ch)'},'isALPHANUMERIC' => {'name' => 'isALPHANUMERIC','text' => 'Returns a boolean indicating whether the specified character is a either an
2517             alphabetic character or decimal digit, analogous to C.
2518             See the L for an explanation of variants
2519             C, C, C,
2520             C, C, C, and
2521             C.
2522              
2523             bool isALPHANUMERIC(char ch)'},'isASCII' => {'name' => 'isASCII','text' => 'Returns a boolean indicating whether the specified character is one of the 128
2524             characters in the ASCII character set, analogous to C.
2525             On non-ASCII platforms, it returns TRUE iff this
2526             character corresponds to an ASCII character. Variants C and
2527             C are identical to C.
2528             See the L for an explanation of variants
2529             C, C, C, C, and
2530             C. Note, however, that some platforms do not have the C
2531             library routine C. In these cases, the variants whose names contain
2532             C are the same as the corresponding ones without.
2533              
2534             Also note, that because all ASCII characters are UTF-8 invariant (meaning they
2535             have the exact same representation (always a single byte) whether encoded in
2536             UTF-8 or not), C will give the correct results when called with any
2537             byte in any string encoded or not in UTF-8. And similarly C will
2538             work properly on any string encoded or not in UTF-8.
2539              
2540             bool isASCII(char ch)'},'isBLANK' => {'name' => 'isBLANK','text' => 'Returns a boolean indicating whether the specified character is a
2541             character considered to be a blank, analogous to C.
2542             See the L for an explanation of variants
2543             C, C, C, C, C,
2544             C, and C. Note, however, that some
2545             platforms do not have the C library routine C. In these cases, the
2546             variants whose names contain C are the same as the corresponding ones
2547             without.
2548              
2549             bool isBLANK(char ch)'},'isCNTRL' => {'name' => 'isCNTRL','text' => 'Returns a boolean indicating whether the specified character is a
2550             control character, analogous to C.
2551             See the L for an explanation of variants
2552             C, C, C, C, C,
2553             C, and C
2554             On EBCDIC platforms, you almost always want to use the C variant.
2555              
2556             bool isCNTRL(char ch)'},'isDIGIT' => {'name' => 'isDIGIT','text' => 'Returns a boolean indicating whether the specified character is a
2557             digit, analogous to C.
2558             Variants C and C are identical to C.
2559             See the L for an explanation of variants
2560             C, C, C, C, and
2561             C.
2562              
2563             bool isDIGIT(char ch)'},'isGRAPH' => {'name' => 'isGRAPH','text' => 'Returns a boolean indicating whether the specified character is a
2564             graphic character, analogous to C.
2565             See the L for an explanation of variants
2566             C, C, C, C, C,
2567             C, and C.
2568              
2569             bool isGRAPH(char ch)'},'isIDCONT' => {'name' => 'isIDCONT','text' => 'Returns a boolean indicating whether the specified character can be the
2570             second or succeeding character of an identifier. This is very close to, but
2571             not quite the same as the official Unicode property C. The
2572             difference is that this returns true only if the input character also matches
2573             L. See the L for an
2574             explanation of variants C, C, C,
2575             C, C, C, and
2576             C.
2577              
2578             bool isIDCONT(char ch)'},'isIDFIRST' => {'name' => 'isIDFIRST','text' => 'Returns a boolean indicating whether the specified character can be the first
2579             character of an identifier. This is very close to, but not quite the same as
2580             the official Unicode property C. The difference is that this
2581             returns true only if the input character also matches L.
2582             See the L for an explanation of variants
2583             C, C, C, C,
2584             C, C, and C.
2585              
2586             bool isIDFIRST(char ch)'},'isLOWER' => {'name' => 'isLOWER','text' => 'Returns a boolean indicating whether the specified character is a
2587             lowercase character, analogous to C.
2588             See the L for an explanation of variants
2589             C, C, C, C, C,
2590             C, and C.
2591              
2592             bool isLOWER(char ch)'},'isOCTAL' => {'name' => 'isOCTAL','text' => 'Returns a boolean indicating whether the specified character is an
2593             octal digit, [0-7].
2594             The only two variants are C and C; each is identical to
2595             C.
2596              
2597             bool isOCTAL(char ch)'},'isPRINT' => {'name' => 'isPRINT','text' => 'Returns a boolean indicating whether the specified character is a
2598             printable character, analogous to C.
2599             See the L for an explanation of variants
2600             C, C, C, C, C,
2601             C, and C.
2602              
2603             bool isPRINT(char ch)'},'isPSXSPC' => {'name' => 'isPSXSPC','text' => '(short for Posix Space)
2604             Starting in 5.18, this is identical (experimentally) in all its forms to the
2605             corresponding C macros. ("Experimentally" means that this change
2606             may be backed out in 5.22 if field experience indicates that it
2607             was unwise.)
2608             The locale forms of this macro are identical to their corresponding
2609             C forms in all Perl releases. In releases prior to 5.18, the
2610             non-locale forms differ from their C forms only in that the
2611             C forms don\'t match a Vertical Tab, and the C forms do.
2612             Otherwise they are identical. Thus this macro is analogous to what
2613             C matches in a regular expression.
2614             See the L for an explanation of variants
2615             C, C, C, C, C,
2616             C, and C.
2617              
2618             bool isPSXSPC(char ch)'},'isPUNCT' => {'name' => 'isPUNCT','text' => 'Returns a boolean indicating whether the specified character is a
2619             punctuation character, analogous to C.
2620             Note that the definition of what is punctuation isn\'t as
2621             straightforward as one might desire. See L
2622             Classes> for details.
2623             See the L for an explanation of variants
2624             C, C, C, C, C,
2625             C, and C.
2626              
2627             bool isPUNCT(char ch)'},'isSPACE' => {'name' => 'isSPACE','text' => 'Returns a boolean indicating whether the specified character is a
2628             whitespace character. This is analogous
2629             to what C matches in a regular expression. Starting in Perl 5.18
2630             (experimentally), this also matches what C does.
2631             ("Experimentally" means that this change may be backed out in 5.22 if
2632             field experience indicates that it was unwise.) Prior to 5.18, only the
2633             locale forms of this macro (the ones with C in their names) matched
2634             precisely what C does. In those releases, the only difference,
2635             in the non-locale variants, was that C did not match a vertical tab.
2636             (See L for a macro that matches a vertical tab in all releases.)
2637             See the L for an explanation of variants
2638             C, C, C, C, C,
2639             C, and C.
2640              
2641             bool isSPACE(char ch)'},'isUPPER' => {'name' => 'isUPPER','text' => 'Returns a boolean indicating whether the specified character is an
2642             uppercase character, analogous to C.
2643             See the L for an explanation of variants
2644             C, C, C, C, C,
2645             C, and C.
2646              
2647             bool isUPPER(char ch)'},'isWORDCHAR' => {'name' => 'isWORDCHAR','text' => 'Returns a boolean indicating whether the specified character is a character
2648             that is a word character, analogous to what C and C match
2649             in a regular expression. A word character is an alphabetic character, a
2650             decimal digit, a connecting punctuation character (such as an underscore), or
2651             a "mark" character that attaches to one of those (like some sort of accent).
2652             C is a synonym provided for backward compatibility, even though a
2653             word character includes more than the standard C language meaning of
2654             alphanumeric.
2655             See the L for an explanation of variants
2656             C, C, C, C,
2657             C, C, and C.
2658              
2659             bool isWORDCHAR(char ch)'},'isXDIGIT' => {'name' => 'isXDIGIT','text' => 'Returns a boolean indicating whether the specified character is a hexadecimal
2660             digit. In the ASCII range these are C<[0-9A-Fa-f]>. Variants C
2661             and C are identical to C.
2662             See the L for an explanation of variants
2663             C, C, C, C, and
2664             C.
2665              
2666             bool isXDIGIT(char ch)'},'is_ascii_string' => {'name' => 'is_ascii_string','text' => 'Returns true if the first C bytes of the string C are the same whether
2667             or not the string is encoded in UTF-8 (or UTF-EBCDIC on EBCDIC machines). That
2668             is, if they are invariant. On ASCII-ish machines, only ASCII characters
2669             fit this definition, hence the function\'s name.
2670              
2671             If C is 0, it will be calculated using C, (which means if you
2672             use this option, that C can\'t have embedded C characters and has to
2673             have a terminating C byte).
2674              
2675             See also L(), L(), and L().
2676              
2677             bool is_ascii_string(const U8 *s, STRLEN len)'},'is_lvalue_sub' => {'name' => 'is_lvalue_sub','text' => ''},'is_safe_syscall' => {'name' => 'is_safe_syscall','text' => 'Test that the given C doesn\'t contain any internal C characters.
2678             If it does, set C to ENOENT, optionally warn, and return FALSE.
2679              
2680             Return TRUE if the name is safe.
2681              
2682             Used by the IS_SAFE_SYSCALL() macro.
2683              
2684             bool is_safe_syscall(const char *pv, STRLEN len,
2685             const char *what,
2686             const char *op_name)'},'is_utf8_char' => {'name' => 'is_utf8_char','text' => 'DEPRECATED! It is planned to remove this function from a
2687             future release of Perl. Do not use it for new code; remove it from
2688             existing code.
2689              
2690              
2691             Tests if some arbitrary number of bytes begins in a valid UTF-8
2692             character. Note that an INVARIANT (i.e. ASCII on non-EBCDIC machines)
2693             character is a valid UTF-8 character. The actual number of bytes in the UTF-8
2694             character will be returned if it is valid, otherwise 0.
2695              
2696             This function is deprecated due to the possibility that malformed input could
2697             cause reading beyond the end of the input buffer. Use L
2698             instead.
2699              
2700             STRLEN is_utf8_char(const U8 *s)'},'is_utf8_char_buf' => {'name' => 'is_utf8_char_buf','text' => 'Returns the number of bytes that comprise the first UTF-8 encoded character in
2701             buffer C. C should point to one position beyond the end of the
2702             buffer. 0 is returned if C does not point to a complete, valid UTF-8
2703             encoded character.
2704              
2705             Note that an INVARIANT character (i.e. ASCII on non-EBCDIC
2706             machines) is a valid UTF-8 character.
2707              
2708             STRLEN is_utf8_char_buf(const U8 *buf,
2709             const U8 *buf_end)'},'is_utf8_string' => {'name' => 'is_utf8_string','text' => 'Returns true if the first C bytes of string C form a valid
2710             UTF-8 string, false otherwise. If C is 0, it will be calculated
2711             using C (which means if you use this option, that C can\'t have
2712             embedded C characters and has to have a terminating C byte). Note
2713             that all characters being ASCII constitute \'a valid UTF-8 string\'.
2714              
2715             See also L(), L(), and L().
2716              
2717             bool is_utf8_string(const U8 *s, STRLEN len)'},'is_utf8_string_loc' => {'name' => 'is_utf8_string_loc','text' => 'Like L but stores the location of the failure (in the
2718             case of "utf8ness failure") or the location C+C (in the case of
2719             "utf8ness success") in the C.
2720              
2721             See also L() and L().
2722              
2723             bool is_utf8_string_loc(const U8 *s, STRLEN len,
2724             const U8 **ep)'},'is_utf8_string_loclen' => {'name' => 'is_utf8_string_loclen','text' => 'Like L() but stores the location of the failure (in the
2725             case of "utf8ness failure") or the location C+C (in the case of
2726             "utf8ness success") in the C, and the number of UTF-8
2727             encoded characters in the C.
2728              
2729             See also L() and L().
2730              
2731             bool is_utf8_string_loclen(const U8 *s, STRLEN len,
2732             const U8 **ep, STRLEN *el)'},'items' => {'name' => 'items','text' => 'Variable which is setup by C to indicate the number of
2733             items on the stack. See L.
2734              
2735             I32 items'},'ix' => {'name' => 'ix','text' => 'Variable which is setup by C to indicate which of an
2736             XSUB\'s aliases was used to invoke it. See L.
2737              
2738             I32 ix'},'leave_scope' => {'name' => 'leave_scope','text' => ''},'lex_bufutf8' => {'name' => 'lex_bufutf8','text' => 'NOTE: this function is experimental and may change or be
2739             removed without notice.
2740              
2741              
2742             Indicates whether the octets in the lexer buffer
2743             (Llinestr>) should be interpreted as the UTF-8 encoding
2744             of Unicode characters. If not, they should be interpreted as Latin-1
2745             characters. This is analogous to the C flag for scalars.
2746              
2747             In UTF-8 mode, it is not guaranteed that the lexer buffer actually
2748             contains valid UTF-8. Lexing code must be robust in the face of invalid
2749             encoding.
2750              
2751             The actual C flag of the Llinestr> scalar
2752             is significant, but not the whole story regarding the input character
2753             encoding. Normally, when a file is being read, the scalar contains octets
2754             and its C flag is off, but the octets should be interpreted as
2755             UTF-8 if the C pragma is in effect. During a string eval,
2756             however, the scalar may have the C flag on, and in this case its
2757             octets should be interpreted as UTF-8 unless the C pragma
2758             is in effect. This logic may change in the future; use this function
2759             instead of implementing the logic yourself.
2760              
2761             bool lex_bufutf8()'},'lex_discard_to' => {'name' => 'lex_discard_to','text' => 'NOTE: this function is experimental and may change or be
2762             removed without notice.
2763              
2764              
2765             Discards the first part of the Llinestr> buffer,
2766             up to I. The remaining content of the buffer will be moved, and
2767             all pointers into the buffer updated appropriately. I must not
2768             be later in the buffer than the position of Lbufptr>:
2769             it is not permitted to discard text that has yet to be lexed.
2770              
2771             Normally it is not necessarily to do this directly, because it suffices to
2772             use the implicit discarding behaviour of L and things
2773             based on it. However, if a token stretches across multiple lines,
2774             and the lexing code has kept multiple lines of text in the buffer for
2775             that purpose, then after completion of the token it would be wise to
2776             explicitly discard the now-unneeded earlier lines, to avoid future
2777             multi-line tokens growing the buffer without bound.
2778              
2779             void lex_discard_to(char *ptr)'},'lex_grow_linestr' => {'name' => 'lex_grow_linestr','text' => 'NOTE: this function is experimental and may change or be
2780             removed without notice.
2781              
2782              
2783             Reallocates the lexer buffer (Llinestr>) to accommodate
2784             at least I octets (including terminating C). Returns a
2785             pointer to the reallocated buffer. This is necessary before making
2786             any direct modification of the buffer that would increase its length.
2787             L provides a more convenient way to insert text into
2788             the buffer.
2789              
2790             Do not use C or C directly on Clinestr>;
2791             this function updates all of the lexer\'s variables that point directly
2792             into the buffer.
2793              
2794             char * lex_grow_linestr(STRLEN len)'},'lex_next_chunk' => {'name' => 'lex_next_chunk','text' => 'NOTE: this function is experimental and may change or be
2795             removed without notice.
2796              
2797              
2798             Reads in the next chunk of text to be lexed, appending it to
2799             Llinestr>. This should be called when lexing code has
2800             looked to the end of the current chunk and wants to know more. It is
2801             usual, but not necessary, for lexing to have consumed the entirety of
2802             the current chunk at this time.
2803              
2804             If Lbufptr> is pointing to the very end of the current
2805             chunk (i.e., the current chunk has been entirely consumed), normally the
2806             current chunk will be discarded at the same time that the new chunk is
2807             read in. If I includes C, the current chunk
2808             will not be discarded. If the current chunk has not been entirely
2809             consumed, then it will not be discarded regardless of the flag.
2810              
2811             Returns true if some new text was added to the buffer, or false if the
2812             buffer has reached the end of the input text.
2813              
2814             bool lex_next_chunk(U32 flags)'},'lex_peek_unichar' => {'name' => 'lex_peek_unichar','text' => 'NOTE: this function is experimental and may change or be
2815             removed without notice.
2816              
2817              
2818             Looks ahead one (Unicode) character in the text currently being lexed.
2819             Returns the codepoint (unsigned integer value) of the next character,
2820             or -1 if lexing has reached the end of the input text. To consume the
2821             peeked character, use L.
2822              
2823             If the next character is in (or extends into) the next chunk of input
2824             text, the next chunk will be read in. Normally the current chunk will be
2825             discarded at the same time, but if I includes C
2826             then the current chunk will not be discarded.
2827              
2828             If the input is being interpreted as UTF-8 and a UTF-8 encoding error
2829             is encountered, an exception is generated.
2830              
2831             I32 lex_peek_unichar(U32 flags)'},'lex_read_space' => {'name' => 'lex_read_space','text' => 'NOTE: this function is experimental and may change or be
2832             removed without notice.
2833              
2834              
2835             Reads optional spaces, in Perl style, in the text currently being
2836             lexed. The spaces may include ordinary whitespace characters and
2837             Perl-style comments. C<#line> directives are processed if encountered.
2838             Lbufptr> is moved past the spaces, so that it points
2839             at a non-space character (or the end of the input text).
2840              
2841             If spaces extend into the next chunk of input text, the next chunk will
2842             be read in. Normally the current chunk will be discarded at the same
2843             time, but if I includes C then the current
2844             chunk will not be discarded.
2845              
2846             void lex_read_space(U32 flags)'},'lex_read_to' => {'name' => 'lex_read_to','text' => 'NOTE: this function is experimental and may change or be
2847             removed without notice.
2848              
2849              
2850             Consume text in the lexer buffer, from Lbufptr> up
2851             to I. This advances Lbufptr> to match I,
2852             performing the correct bookkeeping whenever a newline character is passed.
2853             This is the normal way to consume lexed text.
2854              
2855             Interpretation of the buffer\'s octets can be abstracted out by
2856             using the slightly higher-level functions L and
2857             L.
2858              
2859             void lex_read_to(char *ptr)'},'lex_read_unichar' => {'name' => 'lex_read_unichar','text' => 'NOTE: this function is experimental and may change or be
2860             removed without notice.
2861              
2862              
2863             Reads the next (Unicode) character in the text currently being lexed.
2864             Returns the codepoint (unsigned integer value) of the character read,
2865             and moves Lbufptr> past the character, or returns -1
2866             if lexing has reached the end of the input text. To non-destructively
2867             examine the next character, use L instead.
2868              
2869             If the next character is in (or extends into) the next chunk of input
2870             text, the next chunk will be read in. Normally the current chunk will be
2871             discarded at the same time, but if I includes C
2872             then the current chunk will not be discarded.
2873              
2874             If the input is being interpreted as UTF-8 and a UTF-8 encoding error
2875             is encountered, an exception is generated.
2876              
2877             I32 lex_read_unichar(U32 flags)'},'lex_start' => {'name' => 'lex_start','text' => 'NOTE: this function is experimental and may change or be
2878             removed without notice.
2879              
2880              
2881             Creates and initialises a new lexer/parser state object, supplying
2882             a context in which to lex and parse from a new source of Perl code.
2883             A pointer to the new state object is placed in L. An entry
2884             is made on the save stack so that upon unwinding the new state object
2885             will be destroyed and the former value of L will be restored.
2886             Nothing else need be done to clean up the parsing context.
2887              
2888             The code to be parsed comes from I and I. I, if
2889             non-null, provides a string (in SV form) containing code to be parsed.
2890             A copy of the string is made, so subsequent modification of I
2891             does not affect parsing. I, if non-null, provides an input stream
2892             from which code will be read to be parsed. If both are non-null, the
2893             code in I comes first and must consist of complete lines of input,
2894             and I supplies the remainder of the source.
2895              
2896             The I parameter is reserved for future use. Currently it is only
2897             used by perl internally, so extensions should always pass zero.
2898              
2899             void lex_start(SV *line, PerlIO *rsfp, U32 flags)'},'lex_stuff_pv' => {'name' => 'lex_stuff_pv','text' => 'NOTE: this function is experimental and may change or be
2900             removed without notice.
2901              
2902              
2903             Insert characters into the lexer buffer (Llinestr>),
2904             immediately after the current lexing point (Lbufptr>),
2905             reallocating the buffer if necessary. This means that lexing code that
2906             runs later will see the characters as if they had appeared in the input.
2907             It is not recommended to do this as part of normal parsing, and most
2908             uses of this facility run the risk of the inserted characters being
2909             interpreted in an unintended manner.
2910              
2911             The string to be inserted is represented by octets starting at I
2912             and continuing to the first nul. These octets are interpreted as either
2913             UTF-8 or Latin-1, according to whether the C flag is set
2914             in I. The characters are recoded for the lexer buffer, according
2915             to how the buffer is currently being interpreted (L).
2916             If it is not convenient to nul-terminate a string to be inserted, the
2917             L function is more appropriate.
2918              
2919             void lex_stuff_pv(const char *pv, U32 flags)'},'lex_stuff_pvn' => {'name' => 'lex_stuff_pvn','text' => 'NOTE: this function is experimental and may change or be
2920             removed without notice.
2921              
2922              
2923             Insert characters into the lexer buffer (Llinestr>),
2924             immediately after the current lexing point (Lbufptr>),
2925             reallocating the buffer if necessary. This means that lexing code that
2926             runs later will see the characters as if they had appeared in the input.
2927             It is not recommended to do this as part of normal parsing, and most
2928             uses of this facility run the risk of the inserted characters being
2929             interpreted in an unintended manner.
2930              
2931             The string to be inserted is represented by I octets starting
2932             at I. These octets are interpreted as either UTF-8 or Latin-1,
2933             according to whether the C flag is set in I.
2934             The characters are recoded for the lexer buffer, according to how the
2935             buffer is currently being interpreted (L). If a string
2936             to be inserted is available as a Perl scalar, the L
2937             function is more convenient.
2938              
2939             void lex_stuff_pvn(const char *pv, STRLEN len,
2940             U32 flags)'},'lex_stuff_pvs' => {'name' => 'lex_stuff_pvs','text' => 'NOTE: this function is experimental and may change or be
2941             removed without notice.
2942              
2943              
2944             Like L, but takes a literal string instead of a
2945             string/length pair.
2946              
2947             void lex_stuff_pvs(const char *pv, U32 flags)'},'lex_stuff_sv' => {'name' => 'lex_stuff_sv','text' => 'NOTE: this function is experimental and may change or be
2948             removed without notice.
2949              
2950              
2951             Insert characters into the lexer buffer (Llinestr>),
2952             immediately after the current lexing point (Lbufptr>),
2953             reallocating the buffer if necessary. This means that lexing code that
2954             runs later will see the characters as if they had appeared in the input.
2955             It is not recommended to do this as part of normal parsing, and most
2956             uses of this facility run the risk of the inserted characters being
2957             interpreted in an unintended manner.
2958              
2959             The string to be inserted is the string value of I. The characters
2960             are recoded for the lexer buffer, according to how the buffer is currently
2961             being interpreted (L). If a string to be inserted is
2962             not already a Perl scalar, the L function avoids the
2963             need to construct a scalar.
2964              
2965             void lex_stuff_sv(SV *sv, U32 flags)'},'lex_unstuff' => {'name' => 'lex_unstuff','text' => 'NOTE: this function is experimental and may change or be
2966             removed without notice.
2967              
2968              
2969             Discards text about to be lexed, from Lbufptr> up to
2970             I. Text following I will be moved, and the buffer shortened.
2971             This hides the discarded text from any lexing code that runs later,
2972             as if the text had never appeared.
2973              
2974             This is not the normal way to consume lexed text. For that, use
2975             L.
2976              
2977             void lex_unstuff(char *ptr)'},'load_module' => {'name' => 'load_module','text' => 'Loads the module whose name is pointed to by the string part of name.
2978             Note that the actual module name, not its filename, should be given.
2979             Eg, "Foo::Bar" instead of "Foo/Bar.pm". flags can be any of
2980             PERL_LOADMOD_DENY, PERL_LOADMOD_NOIMPORT, or PERL_LOADMOD_IMPORT_OPS
2981             (or 0 for no flags). ver, if specified
2982             and not NULL, provides version semantics
2983             similar to C. The optional trailing SV*
2984             arguments can be used to specify arguments to the module\'s import()
2985             method, similar to C. They must be
2986             terminated with a final NULL pointer. Note that this list can only
2987             be omitted when the PERL_LOADMOD_NOIMPORT flag has been used.
2988             Otherwise at least a single NULL pointer to designate the default
2989             import list is required.
2990              
2991             The reference count for each specified C parameter is decremented.
2992              
2993             void load_module(U32 flags, SV* name, SV* ver, ...)'},'load_module_nocontext' => {'name' => 'load_module_nocontext','text' => ''},'looks_like_number' => {'name' => 'looks_like_number','text' => 'Test if the content of an SV looks like a number (or is a number).
2994             C and C are treated as numbers (so will not issue a
2995             non-numeric warning), even if your atof() doesn\'t grok them. Get-magic is
2996             ignored.
2997              
2998             I32 looks_like_number(SV *const sv)'},'mPUSHi' => {'name' => 'mPUSHi','text' => 'Push an integer onto the stack. The stack must have room for this element.
2999             Does not use C. See also C, C and C.
3000              
3001             void mPUSHi(IV iv)'},'mPUSHn' => {'name' => 'mPUSHn','text' => 'Push a double onto the stack. The stack must have room for this element.
3002             Does not use C. See also C, C and C.
3003              
3004             void mPUSHn(NV nv)'},'mPUSHp' => {'name' => 'mPUSHp','text' => 'Push a string onto the stack. The stack must have room for this element.
3005             The C indicates the length of the string. Does not use C.
3006             See also C, C and C.
3007              
3008             void mPUSHp(char* str, STRLEN len)'},'mPUSHs' => {'name' => 'mPUSHs','text' => 'Push an SV onto the stack and mortalizes the SV. The stack must have room
3009             for this element. Does not use C. See also C and C.
3010              
3011             void mPUSHs(SV* sv)'},'mPUSHu' => {'name' => 'mPUSHu','text' => 'Push an unsigned integer onto the stack. The stack must have room for this
3012             element. Does not use C. See also C, C and C.
3013              
3014             void mPUSHu(UV uv)'},'mXPUSHi' => {'name' => 'mXPUSHi','text' => 'Push an integer onto the stack, extending the stack if necessary.
3015             Does not use C. See also C, C and C.
3016              
3017             void mXPUSHi(IV iv)'},'mXPUSHn' => {'name' => 'mXPUSHn','text' => 'Push a double onto the stack, extending the stack if necessary.
3018             Does not use C. See also C, C and C.
3019              
3020             void mXPUSHn(NV nv)'},'mXPUSHp' => {'name' => 'mXPUSHp','text' => 'Push a string onto the stack, extending the stack if necessary. The C
3021             indicates the length of the string. Does not use C. See also C,
3022             C and C.
3023              
3024             void mXPUSHp(char* str, STRLEN len)'},'mXPUSHs' => {'name' => 'mXPUSHs','text' => 'Push an SV onto the stack, extending the stack if necessary and mortalizes
3025             the SV. Does not use C. See also C and C.
3026              
3027             void mXPUSHs(SV* sv)'},'mXPUSHu' => {'name' => 'mXPUSHu','text' => 'Push an unsigned integer onto the stack, extending the stack if necessary.
3028             Does not use C. See also C, C and C.
3029              
3030             void mXPUSHu(UV uv)'},'magic_dump' => {'name' => 'magic_dump','text' => ''},'malloc' => {'name' => 'malloc','text' => ''},'markstack_grow' => {'name' => 'markstack_grow','text' => ''},'mess' => {'name' => 'mess','text' => 'Take a sprintf-style format pattern and argument list. These are used to
3031             generate a string message. If the message does not end with a newline,
3032             then it will be extended with some indication of the current location
3033             in the code, as described for L.
3034              
3035             Normally, the resulting message is returned in a new mortal SV.
3036             During global destruction a single SV may be shared between uses of
3037             this function.
3038              
3039             SV * mess(const char *pat, ...)'},'mess_nocontext' => {'name' => 'mess_nocontext','text' => ''},'mess_sv' => {'name' => 'mess_sv','text' => 'Expands a message, intended for the user, to include an indication of
3040             the current location in the code, if the message does not already appear
3041             to be complete.
3042              
3043             C is the initial message or object. If it is a reference, it
3044             will be used as-is and will be the result of this function. Otherwise it
3045             is used as a string, and if it already ends with a newline, it is taken
3046             to be complete, and the result of this function will be the same string.
3047             If the message does not end with a newline, then a segment such as C
3048             foo.pl line 37> will be appended, and possibly other clauses indicating
3049             the current state of execution. The resulting message will end with a
3050             dot and a newline.
3051              
3052             Normally, the resulting message is returned in a new mortal SV.
3053             During global destruction a single SV may be shared between uses of this
3054             function. If C is true, then the function is permitted (but not
3055             required) to modify and return C instead of allocating a new SV.
3056              
3057             SV * mess_sv(SV *basemsg, bool consume)'},'mfree' => {'name' => 'mfree','text' => ''},'mg_clear' => {'name' => 'mg_clear','text' => 'Clear something magical that the SV represents. See C.
3058              
3059             int mg_clear(SV* sv)'},'mg_copy' => {'name' => 'mg_copy','text' => 'Copies the magic from one SV to another. See C.
3060              
3061             int mg_copy(SV *sv, SV *nsv, const char *key,
3062             I32 klen)'},'mg_dup' => {'name' => 'mg_dup','text' => ''},'mg_find' => {'name' => 'mg_find','text' => 'Finds the magic pointer for type matching the SV. See C.
3063              
3064             MAGIC* mg_find(const SV* sv, int type)'},'mg_findext' => {'name' => 'mg_findext','text' => 'Finds the magic pointer of C with the given C for the C. See
3065             C.
3066              
3067             MAGIC* mg_findext(const SV* sv, int type,
3068             const MGVTBL *vtbl)'},'mg_free' => {'name' => 'mg_free','text' => 'Free any magic storage used by the SV. See C.
3069              
3070             int mg_free(SV* sv)'},'mg_free_type' => {'name' => 'mg_free_type','text' => 'Remove any magic of type I from the SV I. See L.
3071              
3072             void mg_free_type(SV *sv, int how)'},'mg_get' => {'name' => 'mg_get','text' => 'Do magic before a value is retrieved from the SV. The type of SV must
3073             be >= SVt_PVMG. See C.
3074              
3075             int mg_get(SV* sv)'},'mg_length' => {'name' => 'mg_length','text' => 'DEPRECATED! It is planned to remove this function from a
3076             future release of Perl. Do not use it for new code; remove it from
3077             existing code.
3078              
3079              
3080             Reports on the SV\'s length in bytes, calling length magic if available,
3081             but does not set the UTF8 flag on the sv. It will fall back to \'get\'
3082             magic if there is no \'length\' magic, but with no indication as to
3083             whether it called \'get\' magic. It assumes the sv is a PVMG or
3084             higher. Use sv_len() instead.
3085              
3086             U32 mg_length(SV* sv)'},'mg_magical' => {'name' => 'mg_magical','text' => 'Turns on the magical status of an SV. See C.
3087              
3088             void mg_magical(SV* sv)'},'mg_set' => {'name' => 'mg_set','text' => 'Do magic after a value is assigned to the SV. See C.
3089              
3090             int mg_set(SV* sv)'},'mg_size' => {'name' => 'mg_size','text' => ''},'mini_mktime' => {'name' => 'mini_mktime','text' => ''},'moreswitches' => {'name' => 'moreswitches','text' => ''},'mro_get_from_name' => {'name' => 'mro_get_from_name','text' => ''},'mro_get_linear_isa' => {'name' => 'mro_get_linear_isa','text' => 'Returns the mro linearisation for the given stash. By default, this
3091             will be whatever C returns unless some
3092             other MRO is in effect for the stash. The return value is a
3093             read-only AV*.
3094              
3095             You are responsible for C on the
3096             return value if you plan to store it anywhere
3097             semi-permanently (otherwise it might be deleted
3098             out from under you the next time the cache is
3099             invalidated).
3100              
3101             AV* mro_get_linear_isa(HV* stash)'},'mro_get_private_data' => {'name' => 'mro_get_private_data','text' => ''},'mro_method_changed_in' => {'name' => 'mro_method_changed_in','text' => 'Invalidates method caching on any child classes
3102             of the given stash, so that they might notice
3103             the changes in this one.
3104              
3105             Ideally, all instances of C in
3106             perl source outside of F should be
3107             replaced by calls to this.
3108              
3109             Perl automatically handles most of the common
3110             ways a method might be redefined. However, there
3111             are a few ways you could change a method in a stash
3112             without the cache code noticing, in which case you
3113             need to call this method afterwards:
3114              
3115             1) Directly manipulating the stash HV entries from
3116             XS code.
3117              
3118             2) Assigning a reference to a readonly scalar
3119             constant into a stash entry in order to create
3120             a constant subroutine (like constant.pm
3121             does).
3122              
3123             This same method is available from pure perl
3124             via, C.
3125              
3126             void mro_method_changed_in(HV* stash)'},'mro_register' => {'name' => 'mro_register','text' => 'Registers a custom mro plugin. See L for details.
3127              
3128             void mro_register(const struct mro_alg *mro)'},'mro_set_mro' => {'name' => 'mro_set_mro','text' => ''},'mro_set_private_data' => {'name' => 'mro_set_private_data','text' => ''},'my_atof' => {'name' => 'my_atof','text' => ''},'my_atof2' => {'name' => 'my_atof2','text' => ''},'my_bcopy' => {'name' => 'my_bcopy','text' => ''},'my_bzero' => {'name' => 'my_bzero','text' => ''},'my_chsize' => {'name' => 'my_chsize','text' => ''},'my_cxt_index' => {'name' => 'my_cxt_index','text' => ''},'my_cxt_init' => {'name' => 'my_cxt_init','text' => ''},'my_dirfd' => {'name' => 'my_dirfd','text' => ''},'my_exit' => {'name' => 'my_exit','text' => ''},'my_failure_exit' => {'name' => 'my_failure_exit','text' => ''},'my_fflush_all' => {'name' => 'my_fflush_all','text' => ''},'my_fork' => {'name' => 'my_fork','text' => ''},'my_lstat' => {'name' => 'my_lstat','text' => ''},'my_memcmp' => {'name' => 'my_memcmp','text' => ''},'my_memset' => {'name' => 'my_memset','text' => ''},'my_pclose' => {'name' => 'my_pclose','text' => ''},'my_popen' => {'name' => 'my_popen','text' => ''},'my_popen_list' => {'name' => 'my_popen_list','text' => ''},'my_setenv' => {'name' => 'my_setenv','text' => ''},'my_snprintf' => {'name' => 'my_snprintf','text' => 'The C library C functionality, if available and
3129             standards-compliant (uses C, actually). However, if the
3130             C is not available, will unfortunately use the unsafe
3131             C which can overrun the buffer (there is an overrun check,
3132             but that may be too late). Consider using C instead, or
3133             getting C.
3134              
3135             int my_snprintf(char *buffer, const Size_t len,
3136             const char *format, ...)'},'my_socketpair' => {'name' => 'my_socketpair','text' => ''},'my_sprintf' => {'name' => 'my_sprintf','text' => 'The C library C, wrapped if necessary, to ensure that it will return
3137             the length of the string written to the buffer. Only rare pre-ANSI systems
3138             need the wrapper function - usually this is a direct call to C.
3139              
3140             int my_sprintf(char *buffer, const char *pat, ...)'},'my_stat' => {'name' => 'my_stat','text' => ''},'my_strftime' => {'name' => 'my_strftime','text' => ''},'my_strlcat' => {'name' => 'my_strlcat','text' => 'The C library C if available, or a Perl implementation of it.
3141             This operates on C C-terminated strings.
3142              
3143             C appends string C to the end of C. It will append at
3144             most S> characters. It will then C-terminate,
3145             unless C is 0 or the original C string was longer than C (in
3146             practice this should not happen as it means that either C is incorrect or
3147             that C is not a proper C-terminated string).
3148              
3149             Note that C is the full size of the destination buffer and
3150             the result is guaranteed to be C-terminated if there is room. Note that
3151             room for the C should be included in C.
3152              
3153             Size_t my_strlcat(char *dst, const char *src,
3154             Size_t size)'},'my_strlcpy' => {'name' => 'my_strlcpy','text' => 'The C library C if available, or a Perl implementation of it.
3155             This operates on C C-terminated strings.
3156              
3157             C copies up to S> characters from the string C
3158             to C, C-terminating the result if C is not 0.
3159              
3160             Size_t my_strlcpy(char *dst, const char *src,
3161             Size_t size)'},'my_vsnprintf' => {'name' => 'my_vsnprintf','text' => 'The C library C if available and standards-compliant.
3162             However, if if the C is not available, will unfortunately
3163             use the unsafe C which can overrun the buffer (there is an
3164             overrun check, but that may be too late). Consider using
3165             C instead, or getting C.
3166              
3167             int my_vsnprintf(char *buffer, const Size_t len,
3168             const char *format, va_list ap)'},'newANONATTRSUB' => {'name' => 'newANONATTRSUB','text' => ''},'newANONHASH' => {'name' => 'newANONHASH','text' => ''},'newANONLIST' => {'name' => 'newANONLIST','text' => ''},'newANONSUB' => {'name' => 'newANONSUB','text' => ''},'newASSIGNOP' => {'name' => 'newASSIGNOP','text' => 'Constructs, checks, and returns an assignment op. I and I
3169             supply the parameters of the assignment; they are consumed by this
3170             function and become part of the constructed op tree.
3171              
3172             If I is C, C, or C, then
3173             a suitable conditional optree is constructed. If I is the opcode
3174             of a binary operator, such as C, then an op is constructed that
3175             performs the binary operation and assigns the result to the left argument.
3176             Either way, if I is non-zero then I has no effect.
3177              
3178             If I is zero, then a plain scalar or list assignment is
3179             constructed. Which type of assignment it is is automatically determined.
3180             I gives the eight bits of C, except that C
3181             will be set automatically, and, shifted up eight bits, the eight bits
3182             of C, except that the bit with value 1 or 2 is automatically
3183             set as required.
3184              
3185             OP * newASSIGNOP(I32 flags, OP *left, I32 optype,
3186             OP *right)'},'newATTRSUB' => {'name' => 'newATTRSUB','text' => ''},'newAV' => {'name' => 'newAV','text' => 'Creates a new AV. The reference count is set to 1.
3187              
3188             Perl equivalent: C.
3189              
3190             AV* newAV()'},'newAVREF' => {'name' => 'newAVREF','text' => ''},'newBINOP' => {'name' => 'newBINOP','text' => 'Constructs, checks, and returns an op of any binary type. I
3191             is the opcode. I gives the eight bits of C, except
3192             that C will be set automatically, and, shifted up eight bits,
3193             the eight bits of C, except that the bit with value 1 or
3194             2 is automatically set as required. I and I supply up to
3195             two ops to be the direct children of the binary op; they are consumed
3196             by this function and become part of the constructed op tree.
3197              
3198             OP * newBINOP(I32 type, I32 flags, OP *first,
3199             OP *last)'},'newCONDOP' => {'name' => 'newCONDOP','text' => 'Constructs, checks, and returns a conditional-expression (C)
3200             op. I gives the eight bits of C, except that C
3201             will be set automatically, and, shifted up eight bits, the eight bits of
3202             C, except that the bit with value 1 is automatically set.
3203             I supplies the expression selecting between the two branches,
3204             and I and I supply the branches; they are consumed by
3205             this function and become part of the constructed op tree.
3206              
3207             OP * newCONDOP(I32 flags, OP *first, OP *trueop,
3208             OP *falseop)'},'newCONSTSUB' => {'name' => 'newCONSTSUB','text' => 'See L.
3209              
3210             CV* newCONSTSUB(HV* stash, const char* name, SV* sv)'},'newCONSTSUB_flags' => {'name' => 'newCONSTSUB_flags','text' => 'Creates a constant sub equivalent to Perl C which is
3211             eligible for inlining at compile-time.
3212              
3213             Currently, the only useful value for C is SVf_UTF8.
3214              
3215             The newly created subroutine takes ownership of a reference to the passed in
3216             SV.
3217              
3218             Passing NULL for SV creates a constant sub equivalent to C,
3219             which won\'t be called if used as a destructor, but will suppress the overhead
3220             of a call to C. (This form, however, isn\'t eligible for inlining at
3221             compile time.)
3222              
3223             CV* newCONSTSUB_flags(HV* stash, const char* name,
3224             STRLEN len, U32 flags, SV* sv)'},'newCVREF' => {'name' => 'newCVREF','text' => ''},'newFORM' => {'name' => 'newFORM','text' => ''},'newFOROP' => {'name' => 'newFOROP','text' => 'Constructs, checks, and returns an op tree expressing a C
3225             loop (iteration through a list of values). This is a heavyweight loop,
3226             with structure that allows exiting the loop by C and suchlike.
3227              
3228             I optionally supplies the variable that will be aliased to each
3229             item in turn; if null, it defaults to C<$_> (either lexical or global).
3230             I supplies the list of values to iterate over. I supplies
3231             the main body of the loop, and I optionally supplies a C
3232             block that operates as a second half of the body. All of these optree
3233             inputs are consumed by this function and become part of the constructed
3234             op tree.
3235              
3236             I gives the eight bits of C for the C
3237             op and, shifted up eight bits, the eight bits of C for
3238             the C op, except that (in both cases) some bits will be set
3239             automatically.
3240              
3241             OP * newFOROP(I32 flags, OP *sv, OP *expr, OP *block,
3242             OP *cont)'},'newGIVENOP' => {'name' => 'newGIVENOP','text' => 'Constructs, checks, and returns an op tree expressing a C block.
3243             I supplies the expression that will be locally assigned to a lexical
3244             variable, and I supplies the body of the C construct; they
3245             are consumed by this function and become part of the constructed op tree.
3246             I is the pad offset of the scalar lexical variable that will
3247             be affected. If it is 0, the global $_ will be used.
3248              
3249             OP * newGIVENOP(OP *cond, OP *block,
3250             PADOFFSET defsv_off)'},'newGVOP' => {'name' => 'newGVOP','text' => 'Constructs, checks, and returns an op of any type that involves an
3251             embedded reference to a GV. I is the opcode. I gives the
3252             eight bits of C. I identifies the GV that the op should
3253             reference; calling this function does not transfer ownership of any
3254             reference to it.
3255              
3256             OP * newGVOP(I32 type, I32 flags, GV *gv)'},'newGVREF' => {'name' => 'newGVREF','text' => ''},'newGVgen' => {'name' => 'newGVgen','text' => ''},'newGVgen_flags' => {'name' => 'newGVgen_flags','text' => ''},'newHV' => {'name' => 'newHV','text' => 'Creates a new HV. The reference count is set to 1.
3257              
3258             HV* newHV()'},'newHVREF' => {'name' => 'newHVREF','text' => ''},'newHVhv' => {'name' => 'newHVhv','text' => ''},'newIO' => {'name' => 'newIO','text' => ''},'newLISTOP' => {'name' => 'newLISTOP','text' => 'Constructs, checks, and returns an op of any list type. I is
3259             the opcode. I gives the eight bits of C, except that
3260             C will be set automatically if required. I and I
3261             supply up to two ops to be direct children of the list op; they are
3262             consumed by this function and become part of the constructed op tree.
3263              
3264             OP * newLISTOP(I32 type, I32 flags, OP *first,
3265             OP *last)'},'newLOGOP' => {'name' => 'newLOGOP','text' => 'Constructs, checks, and returns a logical (flow control) op. I
3266             is the opcode. I gives the eight bits of C, except
3267             that C will be set automatically, and, shifted up eight bits,
3268             the eight bits of C, except that the bit with value 1 is
3269             automatically set. I supplies the expression controlling the
3270             flow, and I supplies the side (alternate) chain of ops; they are
3271             consumed by this function and become part of the constructed op tree.
3272              
3273             OP * newLOGOP(I32 type, I32 flags, OP *first,
3274             OP *other)'},'newLOOPEX' => {'name' => 'newLOOPEX','text' => 'Constructs, checks, and returns a loop-exiting op (such as C
3275             or C). I is the opcode. I
3276             determining the target of the op; it is consumed by this function and
3277             becomes part of the constructed op tree.
3278              
3279             OP * newLOOPEX(I32 type, OP *label)'},'newLOOPOP' => {'name' => 'newLOOPOP','text' => 'Constructs, checks, and returns an op tree expressing a loop. This is
3280             only a loop in the control flow through the op tree; it does not have
3281             the heavyweight loop structure that allows exiting the loop by C
3282             and suchlike. I gives the eight bits of C for the
3283             top-level op, except that some bits will be set automatically as required.
3284             I supplies the expression controlling loop iteration, and I
3285             supplies the body of the loop; they are consumed by this function and
3286             become part of the constructed op tree. I is currently
3287             unused and should always be 1.
3288              
3289             OP * newLOOPOP(I32 flags, I32 debuggable, OP *expr,
3290             OP *block)'},'newMYSUB' => {'name' => 'newMYSUB','text' => ''},'newNULLLIST' => {'name' => 'newNULLLIST','text' => 'Constructs, checks, and returns a new C op, which represents an
3291             empty list expression.
3292              
3293             OP * newNULLLIST()'},'newOP' => {'name' => 'newOP','text' => 'Constructs, checks, and returns an op of any base type (any type that
3294             has no extra fields). I is the opcode. I gives the
3295             eight bits of C, and, shifted up eight bits, the eight bits
3296             of C.
3297              
3298             OP * newOP(I32 type, I32 flags)'},'newPADOP' => {'name' => 'newPADOP','text' => 'Constructs, checks, and returns an op of any type that involves a
3299             reference to a pad element. I is the opcode. I gives the
3300             eight bits of C. A pad slot is automatically allocated, and
3301             is populated with I; this function takes ownership of one reference
3302             to it.
3303              
3304             This function only exists if Perl has been compiled to use ithreads.
3305              
3306             OP * newPADOP(I32 type, I32 flags, SV *sv)'},'newPMOP' => {'name' => 'newPMOP','text' => 'Constructs, checks, and returns an op of any pattern matching type.
3307             I is the opcode. I gives the eight bits of C
3308             and, shifted up eight bits, the eight bits of C.
3309              
3310             OP * newPMOP(I32 type, I32 flags)'},'newPROG' => {'name' => 'newPROG','text' => ''},'newPVOP' => {'name' => 'newPVOP','text' => 'Constructs, checks, and returns an op of any type that involves an
3311             embedded C-level pointer (PV). I is the opcode. I gives
3312             the eight bits of C. I supplies the C-level pointer, which
3313             must have been allocated using C; the memory will
3314             be freed when the op is destroyed.
3315              
3316             OP * newPVOP(I32 type, I32 flags, char *pv)'},'newRANGE' => {'name' => 'newRANGE','text' => 'Constructs and returns a C op, with subordinate C and
3317             C ops. I gives the eight bits of C for the
3318             C op and, shifted up eight bits, the eight bits of C
3319             for both the C and C ops, except that the bit with value
3320             1 is automatically set. I and I supply the expressions
3321             controlling the endpoints of the range; they are consumed by this function
3322             and become part of the constructed op tree.
3323              
3324             OP * newRANGE(I32 flags, OP *left, OP *right)'},'newRV' => {'name' => 'newRV','text' => ''},'newRV_inc' => {'name' => 'newRV_inc','text' => 'Creates an RV wrapper for an SV. The reference count for the original SV is
3325             incremented.
3326              
3327             SV* newRV_inc(SV* sv)'},'newRV_noinc' => {'name' => 'newRV_noinc','text' => 'Creates an RV wrapper for an SV. The reference count for the original
3328             SV is B incremented.
3329              
3330             SV* newRV_noinc(SV *const sv)'},'newSLICEOP' => {'name' => 'newSLICEOP','text' => 'Constructs, checks, and returns an C (list slice) op. I
3331             gives the eight bits of C, except that C will
3332             be set automatically, and, shifted up eight bits, the eight bits of
3333             C, except that the bit with value 1 or 2 is automatically
3334             set as required. I and I supply the parameters of
3335             the slice; they are consumed by this function and become part of the
3336             constructed op tree.
3337              
3338             OP * newSLICEOP(I32 flags, OP *subscript,
3339             OP *listval)'},'newSTATEOP' => {'name' => 'newSTATEOP','text' => 'Constructs a state op (COP). The state op is normally a C op,
3340             but will be a C op if debugging is enabled for currently-compiled
3341             code. The state op is populated from C (or C).
3342             If I
3343             the state op; this function takes ownership of the memory pointed at by
3344             I
3345             for the state op.
3346              
3347             If I is null, the state op is returned. Otherwise the state op is
3348             combined with I into a C list op, which is returned. I
3349             is consumed by this function and becomes part of the returned op tree.
3350              
3351             OP * newSTATEOP(I32 flags, char *label, OP *o)'},'newSUB' => {'name' => 'newSUB','text' => ''},'newSV' => {'name' => 'newSV','text' => 'Creates a new SV. A non-zero C parameter indicates the number of
3352             bytes of preallocated string space the SV should have. An extra byte for a
3353             trailing C is also reserved. (SvPOK is not set for the SV even if string
3354             space is allocated.) The reference count for the new SV is set to 1.
3355              
3356             In 5.9.3, newSV() replaces the older NEWSV() API, and drops the first
3357             parameter, I, a debug aid which allowed callers to identify themselves.
3358             This aid has been superseded by a new build option, PERL_MEM_LOG (see
3359             L). The older API is still there for use in XS
3360             modules supporting older perls.
3361              
3362             SV* newSV(const STRLEN len)'},'newSVOP' => {'name' => 'newSVOP','text' => 'Constructs, checks, and returns an op of any type that involves an
3363             embedded SV. I is the opcode. I gives the eight bits
3364             of C. I gives the SV to embed in the op; this function
3365             takes ownership of one reference to it.
3366              
3367             OP * newSVOP(I32 type, I32 flags, SV *sv)'},'newSVREF' => {'name' => 'newSVREF','text' => ''},'newSV_type' => {'name' => 'newSV_type','text' => 'Creates a new SV, of the type specified. The reference count for the new SV
3368             is set to 1.
3369              
3370             SV* newSV_type(const svtype type)'},'newSVhek' => {'name' => 'newSVhek','text' => 'Creates a new SV from the hash key structure. It will generate scalars that
3371             point to the shared string table where possible. Returns a new (undefined)
3372             SV if the hek is NULL.
3373              
3374             SV* newSVhek(const HEK *const hek)'},'newSViv' => {'name' => 'newSViv','text' => 'Creates a new SV and copies an integer into it. The reference count for the
3375             SV is set to 1.
3376              
3377             SV* newSViv(const IV i)'},'newSVnv' => {'name' => 'newSVnv','text' => 'Creates a new SV and copies a floating point value into it.
3378             The reference count for the SV is set to 1.
3379              
3380             SV* newSVnv(const NV n)'},'newSVpadname' => {'name' => 'newSVpadname','text' => 'NOTE: this function is experimental and may change or be
3381             removed without notice.
3382              
3383              
3384             Creates a new SV containing the pad name. This is currently identical
3385             to C, but pad names may cease being SVs at some point, so
3386             C is preferable.
3387              
3388             SV* newSVpadname(PADNAME *pn)'},'newSVpv' => {'name' => 'newSVpv','text' => 'Creates a new SV and copies a string (which may contain C (C<\\0>)
3389             characters) into it. The reference count for the
3390             SV is set to 1. If C is zero, Perl will compute the length using
3391             strlen(), (which means if you use this option, that C can\'t have embedded
3392             C characters and has to have a terminating C byte).
3393              
3394             For efficiency, consider using C instead.
3395              
3396             SV* newSVpv(const char *const s, const STRLEN len)'},'newSVpv_share' => {'name' => 'newSVpv_share','text' => 'Like C, but takes a C-terminated string instead of a
3397             string/length pair.
3398              
3399             SV* newSVpv_share(const char* s, U32 hash)'},'newSVpvf' => {'name' => 'newSVpvf','text' => 'Creates a new SV and initializes it with the string formatted like
3400             C.
3401              
3402             SV* newSVpvf(const char *const pat, ...)'},'newSVpvf_nocontext' => {'name' => 'newSVpvf_nocontext','text' => ''},'newSVpvn' => {'name' => 'newSVpvn','text' => 'Creates a new SV and copies a string into it, which may contain C characters
3403             (C<\\0>) and other binary data. The reference count for the SV is set to 1.
3404             Note that if C is zero, Perl will create a zero length (Perl) string. You
3405             are responsible for ensuring that the source buffer is at least
3406             C bytes long. If the C argument is NULL the new SV will be
3407             undefined.
3408              
3409             SV* newSVpvn(const char *const s, const STRLEN len)'},'newSVpvn_flags' => {'name' => 'newSVpvn_flags','text' => 'Creates a new SV and copies a string (which may contain C (C<\\0>)
3410             characters) into it. The reference count for the
3411             SV is set to 1. Note that if C is zero, Perl will create a zero length
3412             string. You are responsible for ensuring that the source string is at least
3413             C bytes long. If the C argument is NULL the new SV will be undefined.
3414             Currently the only flag bits accepted are C and C.
3415             If C is set, then C is called on the result before
3416             returning. If C is set, C
3417             is considered to be in UTF-8 and the
3418             C flag will be set on the new SV.
3419             C is a convenience wrapper for this function, defined as
3420              
3421             #define newSVpvn_utf8(s, len, u) \\
3422             newSVpvn_flags((s), (len), (u) ? SVf_UTF8 : 0)
3423              
3424             SV* newSVpvn_flags(const char *const s,
3425             const STRLEN len,
3426             const U32 flags)'},'newSVpvn_share' => {'name' => 'newSVpvn_share','text' => 'Creates a new SV with its SvPVX_const pointing to a shared string in the string
3427             table. If the string does not already exist in the table, it is
3428             created first. Turns on the SvIsCOW flag (or READONLY
3429             and FAKE in 5.16 and earlier). If the C parameter
3430             is non-zero, that value is used; otherwise the hash is computed.
3431             The string\'s hash can later be retrieved from the SV
3432             with the C macro. The idea here is
3433             that as the string table is used for shared hash keys these strings will have
3434             SvPVX_const == HeKEY and hash lookup will avoid string compare.
3435              
3436             SV* newSVpvn_share(const char* s, I32 len, U32 hash)'},'newSVpvn_utf8' => {'name' => 'newSVpvn_utf8','text' => 'Creates a new SV and copies a string (which may contain C (C<\\0>)
3437             characters) into it. If utf8 is true, calls
3438             C on the new SV. Implemented as a wrapper around C.
3439              
3440             SV* newSVpvn_utf8(NULLOK const char* s, STRLEN len,
3441             U32 utf8)'},'newSVpvs' => {'name' => 'newSVpvs','text' => 'Like C, but takes a literal C-terminated string instead of a
3442             string/length pair.
3443              
3444             SV* newSVpvs(const char* s)'},'newSVpvs_flags' => {'name' => 'newSVpvs_flags','text' => 'Like C, but takes a literal C-terminated string instead of
3445             a string/length pair.
3446              
3447             SV* newSVpvs_flags(const char* s, U32 flags)'},'newSVpvs_share' => {'name' => 'newSVpvs_share','text' => 'Like C, but takes a literal C-terminated string instead of
3448             a string/length pair and omits the hash parameter.
3449              
3450             SV* newSVpvs_share(const char* s)'},'newSVrv' => {'name' => 'newSVrv','text' => 'Creates a new SV for the existing RV, C, to point to. If C is not an
3451             RV then it will be upgraded to one. If C is non-null then the new
3452             SV will be blessed in the specified package. The new SV is returned and its
3453             reference count is 1. The reference count 1 is owned by C.
3454              
3455             SV* newSVrv(SV *const rv,
3456             const char *const classname)'},'newSVsv' => {'name' => 'newSVsv','text' => 'Creates a new SV which is an exact duplicate of the original SV.
3457             (Uses C.)
3458              
3459             SV* newSVsv(SV *const old)'},'newSVuv' => {'name' => 'newSVuv','text' => 'Creates a new SV and copies an unsigned integer into it.
3460             The reference count for the SV is set to 1.
3461              
3462             SV* newSVuv(const UV u)'},'newUNOP' => {'name' => 'newUNOP','text' => 'Constructs, checks, and returns an op of any unary type. I is
3463             the opcode. I gives the eight bits of C, except that
3464             C will be set automatically if required, and, shifted up eight
3465             bits, the eight bits of C, except that the bit with value 1
3466             is automatically set. I supplies an optional op to be the direct
3467             child of the unary op; it is consumed by this function and become part
3468             of the constructed op tree.
3469              
3470             OP * newUNOP(I32 type, I32 flags, OP *first)'},'newWHENOP' => {'name' => 'newWHENOP','text' => 'Constructs, checks, and returns an op tree expressing a C block.
3471             I supplies the test expression, and I supplies the block
3472             that will be executed if the test evaluates to true; they are consumed
3473             by this function and become part of the constructed op tree. I
3474             will be interpreted DWIMically, often as a comparison against C<$_>,
3475             and may be null to generate a C block.
3476              
3477             OP * newWHENOP(OP *cond, OP *block)'},'newWHILEOP' => {'name' => 'newWHILEOP','text' => 'Constructs, checks, and returns an op tree expressing a C loop.
3478             This is a heavyweight loop, with structure that allows exiting the loop
3479             by C and suchlike.
3480              
3481             I is an optional preconstructed C op to use in the
3482             loop; if it is null then a suitable op will be constructed automatically.
3483             I supplies the loop\'s controlling expression. I supplies the
3484             main body of the loop, and I optionally supplies a C block
3485             that operates as a second half of the body. All of these optree inputs
3486             are consumed by this function and become part of the constructed op tree.
3487              
3488             I gives the eight bits of C for the C
3489             op and, shifted up eight bits, the eight bits of C for
3490             the C op, except that (in both cases) some bits will be set
3491             automatically. I is currently unused and should always be 1.
3492             I can be supplied as true to force the
3493             loop body to be enclosed in its own scope.
3494              
3495             OP * newWHILEOP(I32 flags, I32 debuggable,
3496             LOOP *loop, OP *expr, OP *block,
3497             OP *cont, I32 has_my)'},'newXS' => {'name' => 'newXS','text' => 'Used by C to hook up XSUBs as Perl subs. I needs to be
3498             static storage, as it is used directly as CvFILE(), without a copy being made.'},'newXSproto' => {'name' => 'newXSproto','text' => 'Used by C to hook up XSUBs as Perl subs. Adds Perl prototypes to
3499             the subs.'},'new_stackinfo' => {'name' => 'new_stackinfo','text' => ''},'new_version' => {'name' => 'new_version','text' => 'Returns a new version object based on the passed in SV:
3500              
3501             SV *sv = new_version(SV *ver);
3502              
3503             Does not alter the passed in ver SV. See "upg_version" if you
3504             want to upgrade the SV.
3505              
3506             SV* new_version(SV *ver)'},'ninstr' => {'name' => 'ninstr','text' => ''},'nothreadhook' => {'name' => 'nothreadhook','text' => 'Stub that provides thread hook for perl_destruct when there are
3507             no threads.
3508              
3509             int nothreadhook()'},'op_append_elem' => {'name' => 'op_append_elem','text' => 'Append an item to the list of ops contained directly within a list-type
3510             op, returning the lengthened list. I is the list-type op,
3511             and I is the op to append to the list. I specifies the
3512             intended opcode for the list. If I is not already a list of the
3513             right type, it will be upgraded into one. If either I or I
3514             is null, the other is returned unchanged.
3515              
3516             OP * op_append_elem(I32 optype, OP *first, OP *last)'},'op_append_list' => {'name' => 'op_append_list','text' => 'Concatenate the lists of ops contained directly within two list-type ops,
3517             returning the combined list. I and I are the list-type ops
3518             to concatenate. I specifies the intended opcode for the list.
3519             If either I or I is not already a list of the right type,
3520             it will be upgraded into one. If either I or I is null,
3521             the other is returned unchanged.
3522              
3523             OP * op_append_list(I32 optype, OP *first, OP *last)'},'op_contextualize' => {'name' => 'op_contextualize','text' => 'Applies a syntactic context to an op tree representing an expression.
3524             I is the op tree, and I must be C, C,
3525             or C to specify the context to apply. The modified op tree
3526             is returned.
3527              
3528             OP * op_contextualize(OP *o, I32 context)'},'op_dump' => {'name' => 'op_dump','text' => 'Dumps the optree starting at OP C to C.
3529              
3530             void op_dump(const OP *o)'},'op_free' => {'name' => 'op_free','text' => 'Free an op. Only use this when an op is no longer linked to from any
3531             optree.
3532              
3533             void op_free(OP *o)'},'op_linklist' => {'name' => 'op_linklist','text' => 'This function is the implementation of the L macro. It should
3534             not be called directly.
3535              
3536             OP* op_linklist(OP *o)'},'op_lvalue' => {'name' => 'op_lvalue','text' => 'NOTE: this function is experimental and may change or be
3537             removed without notice.
3538              
3539              
3540             Propagate lvalue ("modifiable") context to an op and its children.
3541             I represents the context type, roughly based on the type of op that
3542             would do the modifying, although C is represented by OP_NULL,
3543             because it has no op type of its own (it is signalled by a flag on
3544             the lvalue op).
3545              
3546             This function detects things that can\'t be modified, such as C<$x+1>, and
3547             generates errors for them. For example, C<$x+1 = 2> would cause it to be
3548             called with an op of type OP_ADD and a C argument of OP_SASSIGN.
3549              
3550             It also flags things that need to behave specially in an lvalue context,
3551             such as C<$$x = 5> which might have to vivify a reference in C<$x>.
3552              
3553             OP * op_lvalue(OP *o, I32 type)'},'op_null' => {'name' => 'op_null','text' => 'Neutralizes an op when it is no longer needed, but is still linked to from
3554             other ops.
3555              
3556             void op_null(OP *o)'},'op_prepend_elem' => {'name' => 'op_prepend_elem','text' => 'Prepend an item to the list of ops contained directly within a list-type
3557             op, returning the lengthened list. I is the op to prepend to the
3558             list, and I is the list-type op. I specifies the intended
3559             opcode for the list. If I is not already a list of the right type,
3560             it will be upgraded into one. If either I or I is null,
3561             the other is returned unchanged.
3562              
3563             OP * op_prepend_elem(I32 optype, OP *first, OP *last)'},'op_refcnt_lock' => {'name' => 'op_refcnt_lock','text' => ''},'op_refcnt_unlock' => {'name' => 'op_refcnt_unlock','text' => ''},'op_scope' => {'name' => 'op_scope','text' => 'NOTE: this function is experimental and may change or be
3564             removed without notice.
3565              
3566              
3567             Wraps up an op tree with some additional ops so that at runtime a dynamic
3568             scope will be created. The original ops run in the new dynamic scope,
3569             and then, provided that they exit normally, the scope will be unwound.
3570             The additional ops used to create and unwind the dynamic scope will
3571             normally be an C/C pair, but a C op may be used
3572             instead if the ops are simple enough to not need the full dynamic scope
3573             structure.
3574              
3575             OP * op_scope(OP *o)'},'pack_cat' => {'name' => 'pack_cat','text' => 'The engine implementing pack() Perl function. Note: parameters
3576             next_in_list and flags are not used. This call should not be used; use
3577             packlist instead.
3578              
3579             void pack_cat(SV *cat, const char *pat,
3580             const char *patend, SV **beglist,
3581             SV **endlist, SV ***next_in_list,
3582             U32 flags)'},'packlist' => {'name' => 'packlist','text' => 'The engine implementing pack() Perl function.
3583              
3584             void packlist(SV *cat, const char *pat,
3585             const char *patend, SV **beglist,
3586             SV **endlist)'},'pad_add_anon' => {'name' => 'pad_add_anon','text' => 'Allocates a place in the currently-compiling pad (via L)
3587             for an anonymous function that is lexically scoped inside the
3588             currently-compiling function.
3589             The function I is linked into the pad, and its C link
3590             to the outer scope is weakened to avoid a reference loop.
3591              
3592             One reference count is stolen, so you may need to do C.
3593              
3594             I should be an opcode indicating the type of operation that the
3595             pad entry is to support. This doesn\'t affect operational semantics,
3596             but is used for debugging.
3597              
3598             PADOFFSET pad_add_anon(CV *func, I32 optype)'},'pad_add_name_pv' => {'name' => 'pad_add_name_pv','text' => 'Exactly like L, but takes a nul-terminated string
3599             instead of a string/length pair.
3600              
3601             PADOFFSET pad_add_name_pv(const char *name, U32 flags,
3602             HV *typestash, HV *ourstash)'},'pad_add_name_pvn' => {'name' => 'pad_add_name_pvn','text' => 'Allocates a place in the currently-compiling pad for a named lexical
3603             variable. Stores the name and other metadata in the name part of the
3604             pad, and makes preparations to manage the variable\'s lexical scoping.
3605             Returns the offset of the allocated pad slot.
3606              
3607             I/I specify the variable\'s name, including leading sigil.
3608             If I is non-null, the name is for a typed lexical, and this
3609             identifies the type. If I is non-null, it\'s a lexical reference
3610             to a package variable, and this identifies the package. The following
3611             flags can be OR\'ed together:
3612              
3613             padadd_OUR redundantly specifies if it\'s a package var
3614             padadd_STATE variable will retain value persistently
3615             padadd_NO_DUP_CHECK skip check for lexical shadowing
3616              
3617             PADOFFSET pad_add_name_pvn(const char *namepv,
3618             STRLEN namelen, U32 flags,
3619             HV *typestash, HV *ourstash)'},'pad_add_name_pvs' => {'name' => 'pad_add_name_pvs','text' => 'Exactly like L, but takes a literal string instead
3620             of a string/length pair.
3621              
3622             PADOFFSET pad_add_name_pvs(const char *name, U32 flags,
3623             HV *typestash, HV *ourstash)'},'pad_add_name_sv' => {'name' => 'pad_add_name_sv','text' => 'Exactly like L, but takes the name string in the form
3624             of an SV instead of a string/length pair.
3625              
3626             PADOFFSET pad_add_name_sv(SV *name, U32 flags,
3627             HV *typestash, HV *ourstash)'},'pad_alloc' => {'name' => 'pad_alloc','text' => 'NOTE: this function is experimental and may change or be
3628             removed without notice.
3629              
3630              
3631             Allocates a place in the currently-compiling pad,
3632             returning the offset of the allocated pad slot.
3633             No name is initially attached to the pad slot.
3634             I is a set of flags indicating the kind of pad entry required,
3635             which will be set in the value SV for the allocated pad entry:
3636              
3637             SVs_PADMY named lexical variable ("my", "our", "state")
3638             SVs_PADTMP unnamed temporary store
3639             SVf_READONLY constant shared between recursion levels
3640              
3641             C has been supported here only since perl 5.20. To work with
3642             earlier versions as well, use C. C
3643             does not cause the SV in the pad slot to be marked read-only, but simply
3644             tells C that it I be made read-only (by the caller), or at
3645             least should be treated as such.
3646              
3647             I should be an opcode indicating the type of operation that the
3648             pad entry is to support. This doesn\'t affect operational semantics,
3649             but is used for debugging.
3650              
3651             PADOFFSET pad_alloc(I32 optype, U32 tmptype)'},'pad_compname_type' => {'name' => 'pad_compname_type','text' => 'Looks up the type of the lexical variable at position I in the
3652             currently-compiling pad. If the variable is typed, the stash of the
3653             class to which it is typed is returned. If not, C is returned.
3654              
3655             HV * pad_compname_type(PADOFFSET po)'},'pad_findmy_pv' => {'name' => 'pad_findmy_pv','text' => 'Exactly like L, but takes a nul-terminated string
3656             instead of a string/length pair.
3657              
3658             PADOFFSET pad_findmy_pv(const char *name, U32 flags)'},'pad_findmy_pvn' => {'name' => 'pad_findmy_pvn','text' => 'Given the name of a lexical variable, find its position in the
3659             currently-compiling pad.
3660             I/I specify the variable\'s name, including leading sigil.
3661             I is reserved and must be zero.
3662             If it is not in the current pad but appears in the pad of any lexically
3663             enclosing scope, then a pseudo-entry for it is added in the current pad.
3664             Returns the offset in the current pad,
3665             or C if no such lexical is in scope.
3666              
3667             PADOFFSET pad_findmy_pvn(const char *namepv,
3668             STRLEN namelen, U32 flags)'},'pad_findmy_pvs' => {'name' => 'pad_findmy_pvs','text' => 'Exactly like L, but takes a literal string instead
3669             of a string/length pair.
3670              
3671             PADOFFSET pad_findmy_pvs(const char *name, U32 flags)'},'pad_findmy_sv' => {'name' => 'pad_findmy_sv','text' => 'Exactly like L, but takes the name string in the form
3672             of an SV instead of a string/length pair.
3673              
3674             PADOFFSET pad_findmy_sv(SV *name, U32 flags)'},'pad_new' => {'name' => 'pad_new','text' => 'Create a new padlist, updating the global variables for the
3675             currently-compiling padlist to point to the new padlist. The following
3676             flags can be OR\'ed together:
3677              
3678             padnew_CLONE this pad is for a cloned CV
3679             padnew_SAVE save old globals on the save stack
3680             padnew_SAVESUB also save extra stuff for start of sub
3681              
3682             PADLIST * pad_new(int flags)'},'pad_setsv' => {'name' => 'pad_setsv','text' => 'Set the value at offset I in the current (compiling or executing) pad.
3683             Use the macro PAD_SETSV() rather than calling this function directly.
3684              
3685             void pad_setsv(PADOFFSET po, SV *sv)'},'pad_sv' => {'name' => 'pad_sv','text' => 'Get the value at offset I in the current (compiling or executing) pad.
3686             Use macro PAD_SV instead of calling this function directly.
3687              
3688             SV * pad_sv(PADOFFSET po)'},'pad_tidy' => {'name' => 'pad_tidy','text' => 'NOTE: this function is experimental and may change or be
3689             removed without notice.
3690              
3691              
3692             Tidy up a pad at the end of compilation of the code to which it belongs.
3693             Jobs performed here are: remove most stuff from the pads of anonsub
3694             prototypes; give it a @_; mark temporaries as such. I indicates
3695             the kind of subroutine:
3696              
3697             padtidy_SUB ordinary subroutine
3698             padtidy_SUBCLONE prototype for lexical closure
3699             padtidy_FORMAT format
3700              
3701             void pad_tidy(padtidy_type type)'},'parse_arithexpr' => {'name' => 'parse_arithexpr','text' => 'NOTE: this function is experimental and may change or be
3702             removed without notice.
3703              
3704              
3705             Parse a Perl arithmetic expression. This may contain operators of precedence
3706             down to the bit shift operators. The expression must be followed (and thus
3707             terminated) either by a comparison or lower-precedence operator or by
3708             something that would normally terminate an expression such as semicolon.
3709             If I includes C then the expression is optional,
3710             otherwise it is mandatory. It is up to the caller to ensure that the
3711             dynamic parser state (L et al) is correctly set to reflect
3712             the source of the code to be parsed and the lexical context for the
3713             expression.
3714              
3715             The op tree representing the expression is returned. If an optional
3716             expression is absent, a null pointer is returned, otherwise the pointer
3717             will be non-null.
3718              
3719             If an error occurs in parsing or compilation, in most cases a valid op
3720             tree is returned anyway. The error is reflected in the parser state,
3721             normally resulting in a single exception at the top level of parsing
3722             which covers all the compilation errors that occurred. Some compilation
3723             errors, however, will throw an exception immediately.
3724              
3725             OP * parse_arithexpr(U32 flags)'},'parse_barestmt' => {'name' => 'parse_barestmt','text' => 'NOTE: this function is experimental and may change or be
3726             removed without notice.
3727              
3728              
3729             Parse a single unadorned Perl statement. This may be a normal imperative
3730             statement or a declaration that has compile-time effect. It does not
3731             include any label or other affixture. It is up to the caller to ensure
3732             that the dynamic parser state (L et al) is correctly set to
3733             reflect the source of the code to be parsed and the lexical context for
3734             the statement.
3735              
3736             The op tree representing the statement is returned. This may be a
3737             null pointer if the statement is null, for example if it was actually
3738             a subroutine definition (which has compile-time side effects). If not
3739             null, it will be ops directly implementing the statement, suitable to
3740             pass to L. It will not normally include a C or
3741             equivalent op (except for those embedded in a scope contained entirely
3742             within the statement).
3743              
3744             If an error occurs in parsing or compilation, in most cases a valid op
3745             tree (most likely null) is returned anyway. The error is reflected in
3746             the parser state, normally resulting in a single exception at the top
3747             level of parsing which covers all the compilation errors that occurred.
3748             Some compilation errors, however, will throw an exception immediately.
3749              
3750             The I parameter is reserved for future use, and must always
3751             be zero.
3752              
3753             OP * parse_barestmt(U32 flags)'},'parse_block' => {'name' => 'parse_block','text' => 'NOTE: this function is experimental and may change or be
3754             removed without notice.
3755              
3756              
3757             Parse a single complete Perl code block. This consists of an opening
3758             brace, a sequence of statements, and a closing brace. The block
3759             constitutes a lexical scope, so C variables and various compile-time
3760             effects can be contained within it. It is up to the caller to ensure
3761             that the dynamic parser state (L et al) is correctly set to
3762             reflect the source of the code to be parsed and the lexical context for
3763             the statement.
3764              
3765             The op tree representing the code block is returned. This is always a
3766             real op, never a null pointer. It will normally be a C list,
3767             including C or equivalent ops. No ops to construct any kind
3768             of runtime scope are included by virtue of it being a block.
3769              
3770             If an error occurs in parsing or compilation, in most cases a valid op
3771             tree (most likely null) is returned anyway. The error is reflected in
3772             the parser state, normally resulting in a single exception at the top
3773             level of parsing which covers all the compilation errors that occurred.
3774             Some compilation errors, however, will throw an exception immediately.
3775              
3776             The I parameter is reserved for future use, and must always
3777             be zero.
3778              
3779             OP * parse_block(U32 flags)'},'parse_fullexpr' => {'name' => 'parse_fullexpr','text' => 'NOTE: this function is experimental and may change or be
3780             removed without notice.
3781              
3782              
3783             Parse a single complete Perl expression. This allows the full
3784             expression grammar, including the lowest-precedence operators such
3785             as C. The expression must be followed (and thus terminated) by a
3786             token that an expression would normally be terminated by: end-of-file,
3787             closing bracketing punctuation, semicolon, or one of the keywords that
3788             signals a postfix expression-statement modifier. If I includes
3789             C then the expression is optional, otherwise it is
3790             mandatory. It is up to the caller to ensure that the dynamic parser
3791             state (L et al) is correctly set to reflect the source of
3792             the code to be parsed and the lexical context for the expression.
3793              
3794             The op tree representing the expression is returned. If an optional
3795             expression is absent, a null pointer is returned, otherwise the pointer
3796             will be non-null.
3797              
3798             If an error occurs in parsing or compilation, in most cases a valid op
3799             tree is returned anyway. The error is reflected in the parser state,
3800             normally resulting in a single exception at the top level of parsing
3801             which covers all the compilation errors that occurred. Some compilation
3802             errors, however, will throw an exception immediately.
3803              
3804             OP * parse_fullexpr(U32 flags)'},'parse_fullstmt' => {'name' => 'parse_fullstmt','text' => 'NOTE: this function is experimental and may change or be
3805             removed without notice.
3806              
3807              
3808             Parse a single complete Perl statement. This may be a normal imperative
3809             statement or a declaration that has compile-time effect, and may include
3810             optional labels. It is up to the caller to ensure that the dynamic
3811             parser state (L et al) is correctly set to reflect the source
3812             of the code to be parsed and the lexical context for the statement.
3813              
3814             The op tree representing the statement is returned. This may be a
3815             null pointer if the statement is null, for example if it was actually
3816             a subroutine definition (which has compile-time side effects). If not
3817             null, it will be the result of a L call, normally including
3818             a C or equivalent op.
3819              
3820             If an error occurs in parsing or compilation, in most cases a valid op
3821             tree (most likely null) is returned anyway. The error is reflected in
3822             the parser state, normally resulting in a single exception at the top
3823             level of parsing which covers all the compilation errors that occurred.
3824             Some compilation errors, however, will throw an exception immediately.
3825              
3826             The I parameter is reserved for future use, and must always
3827             be zero.
3828              
3829             OP * parse_fullstmt(U32 flags)'},'parse_label' => {'name' => 'parse_label','text' => 'NOTE: this function is experimental and may change or be
3830             removed without notice.
3831              
3832              
3833             Parse a single label, possibly optional, of the type that may prefix a
3834             Perl statement. It is up to the caller to ensure that the dynamic parser
3835             state (L et al) is correctly set to reflect the source of
3836             the code to be parsed. If I includes C then the
3837             label is optional, otherwise it is mandatory.
3838              
3839             The name of the label is returned in the form of a fresh scalar. If an
3840             optional label is absent, a null pointer is returned.
3841              
3842             If an error occurs in parsing, which can only occur if the label is
3843             mandatory, a valid label is returned anyway. The error is reflected in
3844             the parser state, normally resulting in a single exception at the top
3845             level of parsing which covers all the compilation errors that occurred.
3846              
3847             SV * parse_label(U32 flags)'},'parse_listexpr' => {'name' => 'parse_listexpr','text' => 'NOTE: this function is experimental and may change or be
3848             removed without notice.
3849              
3850              
3851             Parse a Perl list expression. This may contain operators of precedence
3852             down to the comma operator. The expression must be followed (and thus
3853             terminated) either by a low-precedence logic operator such as C or by
3854             something that would normally terminate an expression such as semicolon.
3855             If I includes C then the expression is optional,
3856             otherwise it is mandatory. It is up to the caller to ensure that the
3857             dynamic parser state (L et al) is correctly set to reflect
3858             the source of the code to be parsed and the lexical context for the
3859             expression.
3860              
3861             The op tree representing the expression is returned. If an optional
3862             expression is absent, a null pointer is returned, otherwise the pointer
3863             will be non-null.
3864              
3865             If an error occurs in parsing or compilation, in most cases a valid op
3866             tree is returned anyway. The error is reflected in the parser state,
3867             normally resulting in a single exception at the top level of parsing
3868             which covers all the compilation errors that occurred. Some compilation
3869             errors, however, will throw an exception immediately.
3870              
3871             OP * parse_listexpr(U32 flags)'},'parse_stmtseq' => {'name' => 'parse_stmtseq','text' => 'NOTE: this function is experimental and may change or be
3872             removed without notice.
3873              
3874              
3875             Parse a sequence of zero or more Perl statements. These may be normal
3876             imperative statements, including optional labels, or declarations
3877             that have compile-time effect, or any mixture thereof. The statement
3878             sequence ends when a closing brace or end-of-file is encountered in a
3879             place where a new statement could have validly started. It is up to
3880             the caller to ensure that the dynamic parser state (L et al)
3881             is correctly set to reflect the source of the code to be parsed and the
3882             lexical context for the statements.
3883              
3884             The op tree representing the statement sequence is returned. This may
3885             be a null pointer if the statements were all null, for example if there
3886             were no statements or if there were only subroutine definitions (which
3887             have compile-time side effects). If not null, it will be a C
3888             list, normally including C or equivalent ops.
3889              
3890             If an error occurs in parsing or compilation, in most cases a valid op
3891             tree is returned anyway. The error is reflected in the parser state,
3892             normally resulting in a single exception at the top level of parsing
3893             which covers all the compilation errors that occurred. Some compilation
3894             errors, however, will throw an exception immediately.
3895              
3896             The I parameter is reserved for future use, and must always
3897             be zero.
3898              
3899             OP * parse_stmtseq(U32 flags)'},'parse_termexpr' => {'name' => 'parse_termexpr','text' => 'NOTE: this function is experimental and may change or be
3900             removed without notice.
3901              
3902              
3903             Parse a Perl term expression. This may contain operators of precedence
3904             down to the assignment operators. The expression must be followed (and thus
3905             terminated) either by a comma or lower-precedence operator or by
3906             something that would normally terminate an expression such as semicolon.
3907             If I includes C then the expression is optional,
3908             otherwise it is mandatory. It is up to the caller to ensure that the
3909             dynamic parser state (L et al) is correctly set to reflect
3910             the source of the code to be parsed and the lexical context for the
3911             expression.
3912              
3913             The op tree representing the expression is returned. If an optional
3914             expression is absent, a null pointer is returned, otherwise the pointer
3915             will be non-null.
3916              
3917             If an error occurs in parsing or compilation, in most cases a valid op
3918             tree is returned anyway. The error is reflected in the parser state,
3919             normally resulting in a single exception at the top level of parsing
3920             which covers all the compilation errors that occurred. Some compilation
3921             errors, however, will throw an exception immediately.
3922              
3923             OP * parse_termexpr(U32 flags)'},'parser_dup' => {'name' => 'parser_dup','text' => ''},'perl_alloc' => {'name' => 'perl_alloc','text' => 'Allocates a new Perl interpreter. See L.
3924              
3925             PerlInterpreter* perl_alloc()'},'perl_alloc_using' => {'name' => 'perl_alloc_using','text' => ''},'perl_clone' => {'name' => 'perl_clone','text' => 'Create and return a new interpreter by cloning the current one.
3926              
3927             perl_clone takes these flags as parameters:
3928              
3929             CLONEf_COPY_STACKS - is used to, well, copy the stacks also,
3930             without it we only clone the data and zero the stacks,
3931             with it we copy the stacks and the new perl interpreter is
3932             ready to run at the exact same point as the previous one.
3933             The pseudo-fork code uses COPY_STACKS while the
3934             threads->create doesn\'t.
3935              
3936             CLONEf_KEEP_PTR_TABLE -
3937             perl_clone keeps a ptr_table with the pointer of the old
3938             variable as a key and the new variable as a value,
3939             this allows it to check if something has been cloned and not
3940             clone it again but rather just use the value and increase the
3941             refcount. If KEEP_PTR_TABLE is not set then perl_clone will kill
3942             the ptr_table using the function
3943             C,
3944             reason to keep it around is if you want to dup some of your own
3945             variable who are outside the graph perl scans, example of this
3946             code is in threads.xs create.
3947              
3948             CLONEf_CLONE_HOST -
3949             This is a win32 thing, it is ignored on unix, it tells perls
3950             win32host code (which is c++) to clone itself, this is needed on
3951             win32 if you want to run two threads at the same time,
3952             if you just want to do some stuff in a separate perl interpreter
3953             and then throw it away and return to the original one,
3954             you don\'t need to do anything.
3955              
3956             PerlInterpreter* perl_clone(
3957             PerlInterpreter *proto_perl,
3958             UV flags
3959             )'},'perl_clone_using' => {'name' => 'perl_clone_using','text' => ''},'perl_construct' => {'name' => 'perl_construct','text' => 'Initializes a new Perl interpreter. See L.
3960              
3961             void perl_construct(PerlInterpreter *my_perl)'},'perl_destruct' => {'name' => 'perl_destruct','text' => 'Shuts down a Perl interpreter. See L.
3962              
3963             int perl_destruct(PerlInterpreter *my_perl)'},'perl_free' => {'name' => 'perl_free','text' => 'Releases a Perl interpreter. See L.
3964              
3965             void perl_free(PerlInterpreter *my_perl)'},'perl_parse' => {'name' => 'perl_parse','text' => 'Tells a Perl interpreter to parse a Perl script. See L.
3966              
3967             int perl_parse(PerlInterpreter *my_perl,
3968             XSINIT_t xsinit, int argc,
3969             char** argv, char** env)'},'perl_run' => {'name' => 'perl_run','text' => 'Tells a Perl interpreter to run. See L.
3970              
3971             int perl_run(PerlInterpreter *my_perl)'},'pmop_dump' => {'name' => 'pmop_dump','text' => ''},'pop_scope' => {'name' => 'pop_scope','text' => ''},'pregcomp' => {'name' => 'pregcomp','text' => ''},'pregexec' => {'name' => 'pregexec','text' => ''},'pregfree' => {'name' => 'pregfree','text' => ''},'pregfree2' => {'name' => 'pregfree2','text' => ''},'prescan_version' => {'name' => 'prescan_version','text' => 'Validate that a given string can be parsed as a version object, but doesn\'t
3972             actually perform the parsing. Can use either strict or lax validation rules.
3973             Can optionally set a number of hint variables to save the parsing code
3974             some time when tokenizing.
3975              
3976             const char* prescan_version(const char *s, bool strict,
3977             const char** errstr,
3978             bool *sqv,
3979             int *ssaw_decimal,
3980             int *swidth, bool *salpha)'},'printf_nocontext' => {'name' => 'printf_nocontext','text' => ''},'ptr_table_fetch' => {'name' => 'ptr_table_fetch','text' => ''},'ptr_table_free' => {'name' => 'ptr_table_free','text' => ''},'ptr_table_new' => {'name' => 'ptr_table_new','text' => ''},'ptr_table_split' => {'name' => 'ptr_table_split','text' => ''},'ptr_table_store' => {'name' => 'ptr_table_store','text' => ''},'push_scope' => {'name' => 'push_scope','text' => ''},'pv_display' => {'name' => 'pv_display','text' => 'Similar to
3981              
3982             pv_escape(dsv,pv,cur,pvlim,PERL_PV_ESCAPE_QUOTE);
3983              
3984             except that an additional "\\0" will be appended to the string when
3985             len > cur and pv[cur] is "\\0".
3986              
3987             Note that the final string may be up to 7 chars longer than pvlim.
3988              
3989             char* pv_display(SV *dsv, const char *pv, STRLEN cur,
3990             STRLEN len, STRLEN pvlim)'},'pv_escape' => {'name' => 'pv_escape','text' => 'Escapes at most the first "count" chars of pv and puts the results into
3991             dsv such that the size of the escaped string will not exceed "max" chars
3992             and will not contain any incomplete escape sequences.
3993              
3994             If flags contains PERL_PV_ESCAPE_QUOTE then any double quotes in the string
3995             will also be escaped.
3996              
3997             Normally the SV will be cleared before the escaped string is prepared,
3998             but when PERL_PV_ESCAPE_NOCLEAR is set this will not occur.
3999              
4000             If PERL_PV_ESCAPE_UNI is set then the input string is treated as Unicode,
4001             if PERL_PV_ESCAPE_UNI_DETECT is set then the input string is scanned
4002             using C to determine if it is Unicode.
4003              
4004             If PERL_PV_ESCAPE_ALL is set then all input chars will be output
4005             using C<\\x01F1> style escapes, otherwise if PERL_PV_ESCAPE_NONASCII is set, only
4006             non-ASCII chars will be escaped using this style; otherwise, only chars above
4007             255 will be so escaped; other non printable chars will use octal or
4008             common escaped patterns like C<\\n>.
4009             Otherwise, if PERL_PV_ESCAPE_NOBACKSLASH
4010             then all chars below 255 will be treated as printable and
4011             will be output as literals.
4012              
4013             If PERL_PV_ESCAPE_FIRSTCHAR is set then only the first char of the
4014             string will be escaped, regardless of max. If the output is to be in hex,
4015             then it will be returned as a plain hex
4016             sequence. Thus the output will either be a single char,
4017             an octal escape sequence, a special escape like C<\\n> or a hex value.
4018              
4019             If PERL_PV_ESCAPE_RE is set then the escape char used will be a \'%\' and
4020             not a \'\\\\\'. This is because regexes very often contain backslashed
4021             sequences, whereas \'%\' is not a particularly common character in patterns.
4022              
4023             Returns a pointer to the escaped text as held by dsv.
4024              
4025             char* pv_escape(SV *dsv, char const * const str,
4026             const STRLEN count, const STRLEN max,
4027             STRLEN * const escaped,
4028             const U32 flags)'},'pv_pretty' => {'name' => 'pv_pretty','text' => 'Converts a string into something presentable, handling escaping via
4029             pv_escape() and supporting quoting and ellipses.
4030              
4031             If the PERL_PV_PRETTY_QUOTE flag is set then the result will be
4032             double quoted with any double quotes in the string escaped. Otherwise
4033             if the PERL_PV_PRETTY_LTGT flag is set then the result be wrapped in
4034             angle brackets.
4035              
4036             If the PERL_PV_PRETTY_ELLIPSES flag is set and not all characters in
4037             string were output then an ellipsis C<...> will be appended to the
4038             string. Note that this happens AFTER it has been quoted.
4039              
4040             If start_color is non-null then it will be inserted after the opening
4041             quote (if there is one) but before the escaped text. If end_color
4042             is non-null then it will be inserted after the escaped text but before
4043             any quotes or ellipses.
4044              
4045             Returns a pointer to the prettified text as held by dsv.
4046              
4047             char* pv_pretty(SV *dsv, char const * const str,
4048             const STRLEN count, const STRLEN max,
4049             char const * const start_color,
4050             char const * const end_color,
4051             const U32 flags)'},'pv_uni_display' => {'name' => 'pv_uni_display','text' => 'Build to the scalar C a displayable version of the string C,
4052             length C, the displayable version being at most C bytes long
4053             (if longer, the rest is truncated and "..." will be appended).
4054              
4055             The C argument can have UNI_DISPLAY_ISPRINT set to display
4056             isPRINT()able characters as themselves, UNI_DISPLAY_BACKSLASH
4057             to display the \\\\[nrfta\\\\] as the backslashed versions (like \'\\n\')
4058             (UNI_DISPLAY_BACKSLASH is preferred over UNI_DISPLAY_ISPRINT for \\\\).
4059             UNI_DISPLAY_QQ (and its alias UNI_DISPLAY_REGEX) have both
4060             UNI_DISPLAY_BACKSLASH and UNI_DISPLAY_ISPRINT turned on.
4061              
4062             The pointer to the PV of the C is returned.
4063              
4064             char* pv_uni_display(SV *dsv, const U8 *spv,
4065             STRLEN len, STRLEN pvlim,
4066             UV flags)'},'re_compile' => {'name' => 're_compile','text' => ''},'re_dup_guts' => {'name' => 're_dup_guts','text' => ''},'re_intuit_start' => {'name' => 're_intuit_start','text' => ''},'re_intuit_string' => {'name' => 're_intuit_string','text' => ''},'realloc' => {'name' => 'realloc','text' => ''},'reentrant_free' => {'name' => 'reentrant_free','text' => ''},'reentrant_init' => {'name' => 'reentrant_init','text' => ''},'reentrant_retry' => {'name' => 'reentrant_retry','text' => ''},'reentrant_size' => {'name' => 'reentrant_size','text' => ''},'ref' => {'name' => 'ref','text' => ''},'reg_named_buff_all' => {'name' => 'reg_named_buff_all','text' => ''},'reg_named_buff_exists' => {'name' => 'reg_named_buff_exists','text' => ''},'reg_named_buff_fetch' => {'name' => 'reg_named_buff_fetch','text' => ''},'reg_named_buff_firstkey' => {'name' => 'reg_named_buff_firstkey','text' => ''},'reg_named_buff_nextkey' => {'name' => 'reg_named_buff_nextkey','text' => ''},'reg_named_buff_scalar' => {'name' => 'reg_named_buff_scalar','text' => ''},'regclass_swash' => {'name' => 'regclass_swash','text' => ''},'regdump' => {'name' => 'regdump','text' => ''},'regdupe_internal' => {'name' => 'regdupe_internal','text' => ''},'regexec_flags' => {'name' => 'regexec_flags','text' => ''},'regfree_internal' => {'name' => 'regfree_internal','text' => ''},'reginitcolors' => {'name' => 'reginitcolors','text' => ''},'regnext' => {'name' => 'regnext','text' => ''},'repeatcpy' => {'name' => 'repeatcpy','text' => ''},'require_pv' => {'name' => 'require_pv','text' => 'Tells Perl to C the file named by the string argument. It is
4067             analogous to the Perl code C. It\'s even
4068             implemented that way; consider using load_module instead.
4069              
4070             NOTE: the perl_ form of this function is deprecated.
4071              
4072             void require_pv(const char* pv)'},'rninstr' => {'name' => 'rninstr','text' => ''},'rsignal' => {'name' => 'rsignal','text' => ''},'rsignal_state' => {'name' => 'rsignal_state','text' => ''},'runops_debug' => {'name' => 'runops_debug','text' => ''},'runops_standard' => {'name' => 'runops_standard','text' => ''},'rv2cv_op_cv' => {'name' => 'rv2cv_op_cv','text' => 'Examines an op, which is expected to identify a subroutine at runtime,
4073             and attempts to determine at compile time which subroutine it identifies.
4074             This is normally used during Perl compilation to determine whether
4075             a prototype can be applied to a function call. I is the op
4076             being considered, normally an C op. A pointer to the identified
4077             subroutine is returned, if it could be determined statically, and a null
4078             pointer is returned if it was not possible to determine statically.
4079              
4080             Currently, the subroutine can be identified statically if the RV that the
4081             C is to operate on is provided by a suitable C or C op.
4082             A C op is suitable if the GV\'s CV slot is populated. A C op is
4083             suitable if the constant value must be an RV pointing to a CV. Details of
4084             this process may change in future versions of Perl. If the C op
4085             has the C flag set then no attempt is made to identify
4086             the subroutine statically: this flag is used to suppress compile-time
4087             magic on a subroutine call, forcing it to use default runtime behaviour.
4088              
4089             If I has the bit C set, then the handling
4090             of a GV reference is modified. If a GV was examined and its CV slot was
4091             found to be empty, then the C op has the C flag set.
4092             If the op is not optimised away, and the CV slot is later populated with
4093             a subroutine having a prototype, that flag eventually triggers the warning
4094             "called too early to check prototype".
4095              
4096             If I has the bit C set, then instead
4097             of returning a pointer to the subroutine it returns a pointer to the
4098             GV giving the most appropriate name for the subroutine in this context.
4099             Normally this is just the C of the subroutine, but for an anonymous
4100             (C) subroutine that is referenced through a GV it will be the
4101             referencing GV. The resulting C is cast to C to be returned.
4102             A null pointer is returned as usual if there is no statically-determinable
4103             subroutine.
4104              
4105             CV * rv2cv_op_cv(OP *cvop, U32 flags)'},'rvpv_dup' => {'name' => 'rvpv_dup','text' => ''},'safesyscalloc' => {'name' => 'safesyscalloc','text' => ''},'safesysfree' => {'name' => 'safesysfree','text' => ''},'safesysmalloc' => {'name' => 'safesysmalloc','text' => ''},'safesysrealloc' => {'name' => 'safesysrealloc','text' => ''},'save_I16' => {'name' => 'save_I16','text' => ''},'save_I32' => {'name' => 'save_I32','text' => ''},'save_I8' => {'name' => 'save_I8','text' => ''},'save_adelete' => {'name' => 'save_adelete','text' => ''},'save_aelem' => {'name' => 'save_aelem','text' => ''},'save_aelem_flags' => {'name' => 'save_aelem_flags','text' => ''},'save_alloc' => {'name' => 'save_alloc','text' => ''},'save_aptr' => {'name' => 'save_aptr','text' => ''},'save_ary' => {'name' => 'save_ary','text' => ''},'save_bool' => {'name' => 'save_bool','text' => ''},'save_clearsv' => {'name' => 'save_clearsv','text' => ''},'save_delete' => {'name' => 'save_delete','text' => ''},'save_destructor' => {'name' => 'save_destructor','text' => ''},'save_destructor_x' => {'name' => 'save_destructor_x','text' => ''},'save_freeop' => {'name' => 'save_freeop','text' => ''},'save_freepv' => {'name' => 'save_freepv','text' => ''},'save_freesv' => {'name' => 'save_freesv','text' => ''},'save_generic_pvref' => {'name' => 'save_generic_pvref','text' => ''},'save_generic_svref' => {'name' => 'save_generic_svref','text' => ''},'save_gp' => {'name' => 'save_gp','text' => ''},'save_hash' => {'name' => 'save_hash','text' => ''},'save_hdelete' => {'name' => 'save_hdelete','text' => ''},'save_helem' => {'name' => 'save_helem','text' => ''},'save_helem_flags' => {'name' => 'save_helem_flags','text' => ''},'save_hints' => {'name' => 'save_hints','text' => ''},'save_hptr' => {'name' => 'save_hptr','text' => ''},'save_int' => {'name' => 'save_int','text' => ''},'save_item' => {'name' => 'save_item','text' => ''},'save_iv' => {'name' => 'save_iv','text' => ''},'save_list' => {'name' => 'save_list','text' => ''},'save_long' => {'name' => 'save_long','text' => ''},'save_mortalizesv' => {'name' => 'save_mortalizesv','text' => ''},'save_nogv' => {'name' => 'save_nogv','text' => ''},'save_op' => {'name' => 'save_op','text' => ''},'save_padsv_and_mortalize' => {'name' => 'save_padsv_and_mortalize','text' => ''},'save_pptr' => {'name' => 'save_pptr','text' => ''},'save_pushi32ptr' => {'name' => 'save_pushi32ptr','text' => ''},'save_pushptr' => {'name' => 'save_pushptr','text' => ''},'save_pushptrptr' => {'name' => 'save_pushptrptr','text' => ''},'save_re_context' => {'name' => 'save_re_context','text' => ''},'save_scalar' => {'name' => 'save_scalar','text' => ''},'save_set_svflags' => {'name' => 'save_set_svflags','text' => ''},'save_shared_pvref' => {'name' => 'save_shared_pvref','text' => ''},'save_sptr' => {'name' => 'save_sptr','text' => ''},'save_svref' => {'name' => 'save_svref','text' => ''},'save_vptr' => {'name' => 'save_vptr','text' => ''},'savepv' => {'name' => 'savepv','text' => 'Perl\'s version of C. Returns a pointer to a newly allocated
4106             string which is a duplicate of C. The size of the string is
4107             determined by C, which means it may not contain embedded C
4108             characters and must have a trailing C. The memory allocated for the new
4109             string can be freed with the C function.
4110              
4111             On some platforms, Windows for example, all allocated memory owned by a thread
4112             is deallocated when that thread ends. So if you need that not to happen, you
4113             need to use the shared memory functions, such as C>.
4114              
4115             char* savepv(const char* pv)'},'savepvn' => {'name' => 'savepvn','text' => 'Perl\'s version of what C would be if it existed. Returns a
4116             pointer to a newly allocated string which is a duplicate of the first
4117             C bytes from C, plus a trailing
4118             C byte. The memory allocated for
4119             the new string can be freed with the C function.
4120              
4121             On some platforms, Windows for example, all allocated memory owned by a thread
4122             is deallocated when that thread ends. So if you need that not to happen, you
4123             need to use the shared memory functions, such as C>.
4124              
4125             char* savepvn(const char* pv, I32 len)'},'savepvs' => {'name' => 'savepvs','text' => 'Like C, but takes a literal C-terminated string instead of a
4126             string/length pair.
4127              
4128             char* savepvs(const char* s)'},'savesharedpv' => {'name' => 'savesharedpv','text' => 'A version of C which allocates the duplicate string in memory
4129             which is shared between threads.
4130              
4131             char* savesharedpv(const char* pv)'},'savesharedpvn' => {'name' => 'savesharedpvn','text' => 'A version of C which allocates the duplicate string in memory
4132             which is shared between threads. (With the specific difference that a NULL
4133             pointer is not acceptable)
4134              
4135             char* savesharedpvn(const char *const pv,
4136             const STRLEN len)'},'savesharedpvs' => {'name' => 'savesharedpvs','text' => 'A version of C which allocates the duplicate string in memory
4137             which is shared between threads.
4138              
4139             char* savesharedpvs(const char* s)'},'savesharedsvpv' => {'name' => 'savesharedsvpv','text' => 'A version of C which allocates the duplicate string in
4140             memory which is shared between threads.
4141              
4142             char* savesharedsvpv(SV *sv)'},'savestack_grow' => {'name' => 'savestack_grow','text' => ''},'savestack_grow_cnt' => {'name' => 'savestack_grow_cnt','text' => ''},'savesvpv' => {'name' => 'savesvpv','text' => 'A version of C/C which gets the string to duplicate from
4143             the passed in SV using C
4144              
4145             On some platforms, Windows for example, all allocated memory owned by a thread
4146             is deallocated when that thread ends. So if you need that not to happen, you
4147             need to use the shared memory functions, such as C>.
4148              
4149             char* savesvpv(SV* sv)'},'scan_bin' => {'name' => 'scan_bin','text' => 'For backwards compatibility. Use C instead.
4150              
4151             NV scan_bin(const char* start, STRLEN len,
4152             STRLEN* retlen)'},'scan_hex' => {'name' => 'scan_hex','text' => 'For backwards compatibility. Use C instead.
4153              
4154             NV scan_hex(const char* start, STRLEN len,
4155             STRLEN* retlen)'},'scan_num' => {'name' => 'scan_num','text' => ''},'scan_oct' => {'name' => 'scan_oct','text' => 'For backwards compatibility. Use C instead.
4156              
4157             NV scan_oct(const char* start, STRLEN len,
4158             STRLEN* retlen)'},'scan_version' => {'name' => 'scan_version','text' => 'Returns a pointer to the next character after the parsed
4159             version string, as well as upgrading the passed in SV to
4160             an RV.
4161              
4162             Function must be called with an already existing SV like
4163              
4164             sv = newSV(0);
4165             s = scan_version(s, SV *sv, bool qv);
4166              
4167             Performs some preprocessing to the string to ensure that
4168             it has the correct characteristics of a version. Flags the
4169             object if it contains an underscore (which denotes this
4170             is an alpha version). The boolean qv denotes that the version
4171             should be interpreted as if it had multiple decimals, even if
4172             it doesn\'t.
4173              
4174             const char* scan_version(const char *s, SV *rv, bool qv)'},'scan_vstring' => {'name' => 'scan_vstring','text' => ''},'screaminstr' => {'name' => 'screaminstr','text' => ''},'seed' => {'name' => 'seed','text' => ''},'set_context' => {'name' => 'set_context','text' => ''},'set_numeric_local' => {'name' => 'set_numeric_local','text' => ''},'set_numeric_radix' => {'name' => 'set_numeric_radix','text' => ''},'set_numeric_standard' => {'name' => 'set_numeric_standard','text' => ''},'setdefout' => {'name' => 'setdefout','text' => 'Sets PL_defoutgv, the default file handle for output, to the passed in
4175             typeglob. As PL_defoutgv "owns" a reference on its typeglob, the reference
4176             count of the passed in typeglob is increased by one, and the reference count
4177             of the typeglob that PL_defoutgv points to is decreased by one.
4178              
4179             void setdefout(GV* gv)'},'share_hek' => {'name' => 'share_hek','text' => ''},'si_dup' => {'name' => 'si_dup','text' => ''},'sortsv' => {'name' => 'sortsv','text' => 'Sort an array. Here is an example:
4180              
4181             sortsv(AvARRAY(av), av_top_index(av)+1, Perl_sv_cmp_locale);
4182              
4183             Currently this always uses mergesort. See sortsv_flags for a more
4184             flexible routine.
4185              
4186             void sortsv(SV** array, size_t num_elts,
4187             SVCOMPARE_t cmp)'},'sortsv_flags' => {'name' => 'sortsv_flags','text' => 'Sort an array, with various options.
4188              
4189             void sortsv_flags(SV** array, size_t num_elts,
4190             SVCOMPARE_t cmp, U32 flags)'},'ss_dup' => {'name' => 'ss_dup','text' => ''},'stack_grow' => {'name' => 'stack_grow','text' => ''},'start_subparse' => {'name' => 'start_subparse','text' => ''},'strEQ' => {'name' => 'strEQ','text' => 'Test two strings to see if they are equal. Returns true or false.
4191              
4192             bool strEQ(char* s1, char* s2)'},'strGE' => {'name' => 'strGE','text' => 'Test two strings to see if the first, C, is greater than or equal to
4193             the second, C. Returns true or false.
4194              
4195             bool strGE(char* s1, char* s2)'},'strGT' => {'name' => 'strGT','text' => 'Test two strings to see if the first, C, is greater than the second,
4196             C. Returns true or false.
4197              
4198             bool strGT(char* s1, char* s2)'},'strLE' => {'name' => 'strLE','text' => 'Test two strings to see if the first, C, is less than or equal to the
4199             second, C. Returns true or false.
4200              
4201             bool strLE(char* s1, char* s2)'},'strLT' => {'name' => 'strLT','text' => 'Test two strings to see if the first, C, is less than the second,
4202             C. Returns true or false.
4203              
4204             bool strLT(char* s1, char* s2)'},'strNE' => {'name' => 'strNE','text' => 'Test two strings to see if they are different. Returns true or
4205             false.
4206              
4207             bool strNE(char* s1, char* s2)'},'str_to_version' => {'name' => 'str_to_version','text' => ''},'strnEQ' => {'name' => 'strnEQ','text' => 'Test two strings to see if they are equal. The C parameter indicates
4208             the number of bytes to compare. Returns true or false. (A wrapper for
4209             C).
4210              
4211             bool strnEQ(char* s1, char* s2, STRLEN len)'},'strnNE' => {'name' => 'strnNE','text' => 'Test two strings to see if they are different. The C parameter
4212             indicates the number of bytes to compare. Returns true or false. (A
4213             wrapper for C).
4214              
4215             bool strnNE(char* s1, char* s2, STRLEN len)'},'sv_2bool' => {'name' => 'sv_2bool','text' => 'This macro is only used by sv_true() or its macro equivalent, and only if
4216             the latter\'s argument is neither SvPOK, SvIOK nor SvNOK.
4217             It calls sv_2bool_flags with the SV_GMAGIC flag.
4218              
4219             bool sv_2bool(SV *const sv)'},'sv_2bool_flags' => {'name' => 'sv_2bool_flags','text' => 'This function is only used by sv_true() and friends, and only if
4220             the latter\'s argument is neither SvPOK, SvIOK nor SvNOK. If the flags
4221             contain SV_GMAGIC, then it does an mg_get() first.
4222              
4223              
4224             bool sv_2bool_flags(SV *sv, I32 flags)'},'sv_2cv' => {'name' => 'sv_2cv','text' => 'Using various gambits, try to get a CV from an SV; in addition, try if
4225             possible to set C<*st> and C<*gvp> to the stash and GV associated with it.
4226             The flags in C are passed to gv_fetchsv.
4227              
4228             CV* sv_2cv(SV* sv, HV **const st, GV **const gvp,
4229             const I32 lref)'},'sv_2io' => {'name' => 'sv_2io','text' => 'Using various gambits, try to get an IO from an SV: the IO slot if its a
4230             GV; or the recursive result if we\'re an RV; or the IO slot of the symbol
4231             named after the PV if we\'re a string.
4232              
4233             \'Get\' magic is ignored on the sv passed in, but will be called on
4234             C if sv is an RV.
4235              
4236             IO* sv_2io(SV *const sv)'},'sv_2iv' => {'name' => 'sv_2iv','text' => ''},'sv_2iv_flags' => {'name' => 'sv_2iv_flags','text' => 'Return the integer value of an SV, doing any necessary string
4237             conversion. If flags includes SV_GMAGIC, does an mg_get() first.
4238             Normally used via the C and C macros.
4239              
4240             IV sv_2iv_flags(SV *const sv, const I32 flags)'},'sv_2mortal' => {'name' => 'sv_2mortal','text' => 'Marks an existing SV as mortal. The SV will be destroyed "soon", either
4241             by an explicit call to FREETMPS, or by an implicit call at places such as
4242             statement boundaries. SvTEMP() is turned on which means that the SV\'s
4243             string buffer can be "stolen" if this SV is copied. See also C
4244             and C.
4245              
4246             SV* sv_2mortal(SV *const sv)'},'sv_2nv_flags' => {'name' => 'sv_2nv_flags','text' => 'Return the num value of an SV, doing any necessary string or integer
4247             conversion. If flags includes SV_GMAGIC, does an mg_get() first.
4248             Normally used via the C and C macros.
4249              
4250             NV sv_2nv_flags(SV *const sv, const I32 flags)'},'sv_2pv' => {'name' => 'sv_2pv','text' => ''},'sv_2pv_flags' => {'name' => 'sv_2pv_flags','text' => 'Returns a pointer to the string value of an SV, and sets *lp to its length.
4251             If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a
4252             string if necessary. Normally invoked via the C macro.
4253             C and C usually end up here too.
4254              
4255             char* sv_2pv_flags(SV *const sv, STRLEN *const lp,
4256             const I32 flags)'},'sv_2pv_nolen' => {'name' => 'sv_2pv_nolen','text' => 'Like C, but doesn\'t return the length too. You should usually
4257             use the macro wrapper C instead.
4258              
4259             char* sv_2pv_nolen(SV* sv)'},'sv_2pvbyte' => {'name' => 'sv_2pvbyte','text' => 'Return a pointer to the byte-encoded representation of the SV, and set *lp
4260             to its length. May cause the SV to be downgraded from UTF-8 as a
4261             side-effect.
4262              
4263             Usually accessed via the C macro.
4264              
4265             char* sv_2pvbyte(SV *sv, STRLEN *const lp)'},'sv_2pvbyte_nolen' => {'name' => 'sv_2pvbyte_nolen','text' => 'Return a pointer to the byte-encoded representation of the SV.
4266             May cause the SV to be downgraded from UTF-8 as a side-effect.
4267              
4268             Usually accessed via the C macro.
4269              
4270             char* sv_2pvbyte_nolen(SV* sv)'},'sv_2pvutf8' => {'name' => 'sv_2pvutf8','text' => 'Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
4271             to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
4272              
4273             Usually accessed via the C macro.
4274              
4275             char* sv_2pvutf8(SV *sv, STRLEN *const lp)'},'sv_2pvutf8_nolen' => {'name' => 'sv_2pvutf8_nolen','text' => 'Return a pointer to the UTF-8-encoded representation of the SV.
4276             May cause the SV to be upgraded to UTF-8 as a side-effect.
4277              
4278             Usually accessed via the C macro.
4279              
4280             char* sv_2pvutf8_nolen(SV* sv)'},'sv_2uv' => {'name' => 'sv_2uv','text' => ''},'sv_2uv_flags' => {'name' => 'sv_2uv_flags','text' => 'Return the unsigned integer value of an SV, doing any necessary string
4281             conversion. If flags includes SV_GMAGIC, does an mg_get() first.
4282             Normally used via the C and C macros.
4283              
4284             UV sv_2uv_flags(SV *const sv, const I32 flags)'},'sv_backoff' => {'name' => 'sv_backoff','text' => 'Remove any string offset. You should normally use the C macro
4285             wrapper instead.
4286              
4287             int sv_backoff(SV *const sv)'},'sv_bless' => {'name' => 'sv_bless','text' => 'Blesses an SV into a specified package. The SV must be an RV. The package
4288             must be designated by its stash (see C). The reference count
4289             of the SV is unaffected.
4290              
4291             SV* sv_bless(SV *const sv, HV *const stash)'},'sv_cat_decode' => {'name' => 'sv_cat_decode','text' => 'The encoding is assumed to be an Encode object, the PV of the ssv is
4292             assumed to be octets in that encoding and decoding the input starts
4293             from the position which (PV + *offset) pointed to. The dsv will be
4294             concatenated the decoded UTF-8 string from ssv. Decoding will terminate
4295             when the string tstr appears in decoding output or the input ends on
4296             the PV of the ssv. The value which the offset points will be modified
4297             to the last input position on the ssv.
4298              
4299             Returns TRUE if the terminator was found, else returns FALSE.
4300              
4301             bool sv_cat_decode(SV* dsv, SV *encoding, SV *ssv,
4302             int *offset, char* tstr, int tlen)'},'sv_catpv' => {'name' => 'sv_catpv','text' => 'Concatenates the C-terminated string onto the end of the string which is
4303             in the SV.
4304             If the SV has the UTF-8 status set, then the bytes appended should be
4305             valid UTF-8. Handles \'get\' magic, but not \'set\' magic. See C.
4306              
4307             void sv_catpv(SV *const sv, const char* ptr)'},'sv_catpv_flags' => {'name' => 'sv_catpv_flags','text' => 'Concatenates the C-terminated string onto the end of the string which is
4308             in the SV.
4309             If the SV has the UTF-8 status set, then the bytes appended should
4310             be valid UTF-8. If C has the C bit set, will C
4311             on the modified SV if appropriate.
4312              
4313             void sv_catpv_flags(SV *dstr, const char *sstr,
4314             const I32 flags)'},'sv_catpv_mg' => {'name' => 'sv_catpv_mg','text' => 'Like C, but also handles \'set\' magic.
4315              
4316             void sv_catpv_mg(SV *const sv, const char *const ptr)'},'sv_catpv_nomg' => {'name' => 'sv_catpv_nomg','text' => 'Like C but doesn\'t process magic.
4317              
4318             void sv_catpv_nomg(SV* sv, const char* ptr)'},'sv_catpvf' => {'name' => 'sv_catpvf','text' => 'Processes its arguments like C and appends the formatted
4319             output to an SV. If the appended data contains "wide" characters
4320             (including, but not limited to, SVs with a UTF-8 PV formatted with %s,
4321             and characters >255 formatted with %c), the original SV might get
4322             upgraded to UTF-8. Handles \'get\' magic, but not \'set\' magic. See
4323             C. If the original SV was UTF-8, the pattern should be
4324             valid UTF-8; if the original SV was bytes, the pattern should be too.
4325              
4326             void sv_catpvf(SV *const sv, const char *const pat,
4327             ...)'},'sv_catpvf_mg' => {'name' => 'sv_catpvf_mg','text' => 'Like C, but also handles \'set\' magic.
4328              
4329             void sv_catpvf_mg(SV *const sv,
4330             const char *const pat, ...)'},'sv_catpvf_mg_nocontext' => {'name' => 'sv_catpvf_mg_nocontext','text' => ''},'sv_catpvf_nocontext' => {'name' => 'sv_catpvf_nocontext','text' => ''},'sv_catpvn' => {'name' => 'sv_catpvn','text' => 'Concatenates the string onto the end of the string which is in the SV. The
4331             C indicates number of bytes to copy. If the SV has the UTF-8
4332             status set, then the bytes appended should be valid UTF-8.
4333             Handles \'get\' magic, but not \'set\' magic. See C.
4334              
4335             void sv_catpvn(SV *dsv, const char *sstr, STRLEN len)'},'sv_catpvn_flags' => {'name' => 'sv_catpvn_flags','text' => 'Concatenates the string onto the end of the string which is in the SV. The
4336             C indicates number of bytes to copy. If the SV has the UTF-8
4337             status set, then the bytes appended should be valid UTF-8.
4338             If C has the C bit set, will
4339             C on C afterwards if appropriate.
4340             C and C are implemented
4341             in terms of this function.
4342              
4343             void sv_catpvn_flags(SV *const dstr,
4344             const char *sstr,
4345             const STRLEN len,
4346             const I32 flags)'},'sv_catpvn_mg' => {'name' => 'sv_catpvn_mg','text' => 'Like C, but also handles \'set\' magic.
4347              
4348             void sv_catpvn_mg(SV *sv, const char *ptr,
4349             STRLEN len)'},'sv_catpvn_nomg' => {'name' => 'sv_catpvn_nomg','text' => 'Like C but doesn\'t process magic.
4350              
4351             void sv_catpvn_nomg(SV* sv, const char* ptr,
4352             STRLEN len)'},'sv_catpvs' => {'name' => 'sv_catpvs','text' => 'Like C, but takes a literal string instead of a string/length pair.
4353              
4354             void sv_catpvs(SV* sv, const char* s)'},'sv_catpvs_flags' => {'name' => 'sv_catpvs_flags','text' => 'Like C, but takes a literal C-terminated string instead
4355             of a string/length pair.
4356              
4357             void sv_catpvs_flags(SV* sv, const char* s,
4358             I32 flags)'},'sv_catpvs_mg' => {'name' => 'sv_catpvs_mg','text' => 'Like C, but takes a literal string instead of a
4359             string/length pair.
4360              
4361             void sv_catpvs_mg(SV* sv, const char* s)'},'sv_catpvs_nomg' => {'name' => 'sv_catpvs_nomg','text' => 'Like C, but takes a literal string instead of a
4362             string/length pair.
4363              
4364             void sv_catpvs_nomg(SV* sv, const char* s)'},'sv_catsv' => {'name' => 'sv_catsv','text' => 'Concatenates the string from SV C onto the end of the string in SV
4365             C. If C is null, does nothing; otherwise modifies only C.
4366             Handles \'get\' magic on both SVs, but no \'set\' magic. See C and
4367             C.
4368              
4369             void sv_catsv(SV *dstr, SV *sstr)'},'sv_catsv_flags' => {'name' => 'sv_catsv_flags','text' => 'Concatenates the string from SV C onto the end of the string in SV
4370             C. If C is null, does nothing; otherwise modifies only C.
4371             If C include C bit set, will call C on both SVs if
4372             appropriate. If C include C, C will be called on
4373             the modified SV afterward, if appropriate. C, C,
4374             and C are implemented in terms of this function.
4375              
4376             void sv_catsv_flags(SV *const dsv, SV *const ssv,
4377             const I32 flags)'},'sv_catsv_mg' => {'name' => 'sv_catsv_mg','text' => 'Like C, but also handles \'set\' magic.
4378              
4379             void sv_catsv_mg(SV *dsv, SV *ssv)'},'sv_catsv_nomg' => {'name' => 'sv_catsv_nomg','text' => 'Like C but doesn\'t process magic.
4380              
4381             void sv_catsv_nomg(SV* dsv, SV* ssv)'},'sv_chop' => {'name' => 'sv_chop','text' => 'Efficient removal of characters from the beginning of the string buffer.
4382             SvPOK(sv), or at least SvPOKp(sv), must be true and the C must be a
4383             pointer to somewhere inside the string buffer. The C becomes the first
4384             character of the adjusted string. Uses the "OOK hack". On return, only
4385             SvPOK(sv) and SvPOKp(sv) among the OK flags will be true.
4386              
4387             Beware: after this function returns, C and SvPVX_const(sv) may no longer
4388             refer to the same chunk of data.
4389              
4390             The unfortunate similarity of this function\'s name to that of Perl\'s C
4391             operator is strictly coincidental. This function works from the left;
4392             C works from the right.
4393              
4394             void sv_chop(SV *const sv, const char *const ptr)'},'sv_clear' => {'name' => 'sv_clear','text' => 'Clear an SV: call any destructors, free up any memory used by the body,
4395             and free the body itself. The SV\'s head is I freed, although
4396             its type is set to all 1\'s so that it won\'t inadvertently be assumed
4397             to be live during global destruction etc.
4398             This function should only be called when REFCNT is zero. Most of the time
4399             you\'ll want to call C (or its macro wrapper C)
4400             instead.
4401              
4402             void sv_clear(SV *const orig_sv)'},'sv_cmp' => {'name' => 'sv_cmp','text' => 'Compares the strings in two SVs. Returns -1, 0, or 1 indicating whether the
4403             string in C is less than, equal to, or greater than the string in
4404             C. Is UTF-8 and \'use bytes\' aware, handles get magic, and will
4405             coerce its args to strings if necessary. See also C.
4406              
4407             I32 sv_cmp(SV *const sv1, SV *const sv2)'},'sv_cmp_flags' => {'name' => 'sv_cmp_flags','text' => 'Compares the strings in two SVs. Returns -1, 0, or 1 indicating whether the
4408             string in C is less than, equal to, or greater than the string in
4409             C. Is UTF-8 and \'use bytes\' aware and will coerce its args to strings
4410             if necessary. If the flags include SV_GMAGIC, it handles get magic. See
4411             also C.
4412              
4413             I32 sv_cmp_flags(SV *const sv1, SV *const sv2,
4414             const U32 flags)'},'sv_cmp_locale' => {'name' => 'sv_cmp_locale','text' => 'Compares the strings in two SVs in a locale-aware manner. Is UTF-8 and
4415             \'use bytes\' aware, handles get magic, and will coerce its args to strings
4416             if necessary. See also C.
4417              
4418             I32 sv_cmp_locale(SV *const sv1, SV *const sv2)'},'sv_cmp_locale_flags' => {'name' => 'sv_cmp_locale_flags','text' => 'Compares the strings in two SVs in a locale-aware manner. Is UTF-8 and
4419             \'use bytes\' aware and will coerce its args to strings if necessary. If the
4420             flags contain SV_GMAGIC, it handles get magic. See also C.
4421              
4422             I32 sv_cmp_locale_flags(SV *const sv1,
4423             SV *const sv2,
4424             const U32 flags)'},'sv_collxfrm' => {'name' => 'sv_collxfrm','text' => 'This calls C with the SV_GMAGIC flag. See
4425             C.
4426              
4427             char* sv_collxfrm(SV *const sv, STRLEN *const nxp)'},'sv_collxfrm_flags' => {'name' => 'sv_collxfrm_flags','text' => 'Add Collate Transform magic to an SV if it doesn\'t already have it. If the
4428             flags contain SV_GMAGIC, it handles get-magic.
4429              
4430             Any scalar variable may carry PERL_MAGIC_collxfrm magic that contains the
4431             scalar data of the variable, but transformed to such a format that a normal
4432             memory comparison can be used to compare the data according to the locale
4433             settings.
4434              
4435             char* sv_collxfrm_flags(SV *const sv,
4436             STRLEN *const nxp,
4437             I32 const flags)'},'sv_copypv_flags' => {'name' => 'sv_copypv_flags','text' => 'Implementation of sv_copypv and sv_copypv_nomg. Calls get magic iff flags
4438             include SV_GMAGIC.
4439              
4440             void sv_copypv_flags(SV *const dsv, SV *const ssv,
4441             const I32 flags)'},'sv_copypv_nomg' => {'name' => 'sv_copypv_nomg','text' => 'Like sv_copypv, but doesn\'t invoke get magic first.
4442              
4443             void sv_copypv_nomg(SV *const dsv, SV *const ssv)'},'sv_dec' => {'name' => 'sv_dec','text' => 'Auto-decrement of the value in the SV, doing string to numeric conversion
4444             if necessary. Handles \'get\' magic and operator overloading.
4445              
4446             void sv_dec(SV *const sv)'},'sv_dec_nomg' => {'name' => 'sv_dec_nomg','text' => 'Auto-decrement of the value in the SV, doing string to numeric conversion
4447             if necessary. Handles operator overloading. Skips handling \'get\' magic.
4448              
4449             void sv_dec_nomg(SV *const sv)'},'sv_derived_from' => {'name' => 'sv_derived_from','text' => 'Exactly like L, but doesn\'t take a C parameter.
4450              
4451             bool sv_derived_from(SV* sv, const char *const name)'},'sv_derived_from_pv' => {'name' => 'sv_derived_from_pv','text' => 'Exactly like L, but takes a nul-terminated string
4452             instead of a string/length pair.
4453              
4454             bool sv_derived_from_pv(SV* sv,
4455             const char *const name,
4456             U32 flags)'},'sv_derived_from_pvn' => {'name' => 'sv_derived_from_pvn','text' => 'Returns a boolean indicating whether the SV is derived from the specified class
4457             I. To check derivation at the Perl level, call C as a
4458             normal Perl method.
4459              
4460             Currently, the only significant value for C is SVf_UTF8.
4461              
4462             bool sv_derived_from_pvn(SV* sv,
4463             const char *const name,
4464             const STRLEN len, U32 flags)'},'sv_derived_from_sv' => {'name' => 'sv_derived_from_sv','text' => 'Exactly like L, but takes the name string in the form
4465             of an SV instead of a string/length pair.
4466              
4467             bool sv_derived_from_sv(SV* sv, SV *namesv,
4468             U32 flags)'},'sv_destroyable' => {'name' => 'sv_destroyable','text' => 'Dummy routine which reports that object can be destroyed when there is no
4469             sharing module present. It ignores its single SV argument, and returns
4470             \'true\'. Exists to avoid test for a NULL function pointer and because it
4471             could potentially warn under some level of strict-ness.
4472              
4473             bool sv_destroyable(SV *sv)'},'sv_does' => {'name' => 'sv_does','text' => 'Like L, but doesn\'t take a C parameter.
4474              
4475             bool sv_does(SV* sv, const char *const name)'},'sv_does_pv' => {'name' => 'sv_does_pv','text' => 'Like L, but takes a nul-terminated string instead of an SV.
4476              
4477             bool sv_does_pv(SV* sv, const char *const name,
4478             U32 flags)'},'sv_does_pvn' => {'name' => 'sv_does_pvn','text' => 'Like L, but takes a string/length pair instead of an SV.
4479              
4480             bool sv_does_pvn(SV* sv, const char *const name,
4481             const STRLEN len, U32 flags)'},'sv_does_sv' => {'name' => 'sv_does_sv','text' => 'Returns a boolean indicating whether the SV performs a specific, named role.
4482             The SV can be a Perl object or the name of a Perl class.
4483              
4484             bool sv_does_sv(SV* sv, SV* namesv, U32 flags)'},'sv_dump' => {'name' => 'sv_dump','text' => 'Dumps the contents of an SV to the C filehandle.
4485              
4486             For an example of its output, see L.
4487              
4488             void sv_dump(SV* sv)'},'sv_dup' => {'name' => 'sv_dup','text' => ''},'sv_dup_inc' => {'name' => 'sv_dup_inc','text' => ''},'sv_eq' => {'name' => 'sv_eq','text' => 'Returns a boolean indicating whether the strings in the two SVs are
4489             identical. Is UTF-8 and \'use bytes\' aware, handles get magic, and will
4490             coerce its args to strings if necessary.
4491              
4492             I32 sv_eq(SV* sv1, SV* sv2)'},'sv_eq_flags' => {'name' => 'sv_eq_flags','text' => 'Returns a boolean indicating whether the strings in the two SVs are
4493             identical. Is UTF-8 and \'use bytes\' aware and coerces its args to strings
4494             if necessary. If the flags include SV_GMAGIC, it handles get-magic, too.
4495              
4496             I32 sv_eq_flags(SV* sv1, SV* sv2, const U32 flags)'},'sv_force_normal' => {'name' => 'sv_force_normal','text' => 'Undo various types of fakery on an SV: if the PV is a shared string, make
4497             a private copy; if we\'re a ref, stop refing; if we\'re a glob, downgrade to
4498             an xpvmg. See also C.
4499              
4500             void sv_force_normal(SV *sv)'},'sv_force_normal_flags' => {'name' => 'sv_force_normal_flags','text' => 'Undo various types of fakery on an SV, where fakery means
4501             "more than" a string: if the PV is a shared string, make
4502             a private copy; if we\'re a ref, stop refing; if we\'re a glob, downgrade to
4503             an xpvmg; if we\'re a copy-on-write scalar, this is the on-write time when
4504             we do the copy, and is also used locally; if this is a
4505             vstring, drop the vstring magic. If C is set
4506             then a copy-on-write scalar drops its PV buffer (if any) and becomes
4507             SvPOK_off rather than making a copy. (Used where this
4508             scalar is about to be set to some other value.) In addition,
4509             the C parameter gets passed to C
4510             when unreffing. C calls this function
4511             with flags set to 0.
4512              
4513             This function is expected to be used to signal to perl that this SV is
4514             about to be written to, and any extra book-keeping needs to be taken care
4515             of. Hence, it croaks on read-only values.
4516              
4517             void sv_force_normal_flags(SV *const sv,
4518             const U32 flags)'},'sv_free' => {'name' => 'sv_free','text' => 'Decrement an SV\'s reference count, and if it drops to zero, call
4519             C to invoke destructors and free up any memory used by
4520             the body; finally, deallocate the SV\'s head itself.
4521             Normally called via a wrapper macro C.
4522              
4523             void sv_free(SV *const sv)'},'sv_gets' => {'name' => 'sv_gets','text' => 'Get a line from the filehandle and store it into the SV, optionally
4524             appending to the currently-stored string. If C is not 0, the
4525             line is appended to the SV instead of overwriting it. C should
4526             be set to the byte offset that the appended string should start at
4527             in the SV (typically, C is a suitable choice).
4528              
4529             char* sv_gets(SV *const sv, PerlIO *const fp,
4530             I32 append)'},'sv_grow' => {'name' => 'sv_grow','text' => 'Expands the character buffer in the SV. If necessary, uses C and
4531             upgrades the SV to C. Returns a pointer to the character buffer.
4532             Use the C wrapper instead.
4533              
4534             char* sv_grow(SV *const sv, STRLEN newlen)'},'sv_inc' => {'name' => 'sv_inc','text' => 'Auto-increment of the value in the SV, doing string to numeric conversion
4535             if necessary. Handles \'get\' magic and operator overloading.
4536              
4537             void sv_inc(SV *const sv)'},'sv_inc_nomg' => {'name' => 'sv_inc_nomg','text' => 'Auto-increment of the value in the SV, doing string to numeric conversion
4538             if necessary. Handles operator overloading. Skips handling \'get\' magic.
4539              
4540             void sv_inc_nomg(SV *const sv)'},'sv_insert' => {'name' => 'sv_insert','text' => 'Inserts a string at the specified offset/length within the SV. Similar to
4541             the Perl substr() function. Handles get magic.
4542              
4543             void sv_insert(SV *const bigstr, const STRLEN offset,
4544             const STRLEN len,
4545             const char *const little,
4546             const STRLEN littlelen)'},'sv_insert_flags' => {'name' => 'sv_insert_flags','text' => 'Same as C, but the extra C are passed to the
4547             C that applies to C.
4548              
4549             void sv_insert_flags(SV *const bigstr,
4550             const STRLEN offset,
4551             const STRLEN len,
4552             const char *const little,
4553             const STRLEN littlelen,
4554             const U32 flags)'},'sv_isa' => {'name' => 'sv_isa','text' => 'Returns a boolean indicating whether the SV is blessed into the specified
4555             class. This does not check for subtypes; use C to verify
4556             an inheritance relationship.
4557              
4558             int sv_isa(SV* sv, const char *const name)'},'sv_isobject' => {'name' => 'sv_isobject','text' => 'Returns a boolean indicating whether the SV is an RV pointing to a blessed
4559             object. If the SV is not an RV, or if the object is not blessed, then this
4560             will return false.
4561              
4562             int sv_isobject(SV* sv)'},'sv_iv' => {'name' => 'sv_iv','text' => 'A private implementation of the C macro for compilers which can\'t
4563             cope with complex macro expressions. Always use the macro instead.
4564              
4565             IV sv_iv(SV* sv)'},'sv_len' => {'name' => 'sv_len','text' => 'Returns the length of the string in the SV. Handles magic and type
4566             coercion and sets the UTF8 flag appropriately. See also C, which
4567             gives raw access to the xpv_cur slot.
4568              
4569             STRLEN sv_len(SV *const sv)'},'sv_len_utf8' => {'name' => 'sv_len_utf8','text' => 'Returns the number of characters in the string in an SV, counting wide
4570             UTF-8 bytes as a single character. Handles magic and type coercion.
4571              
4572             STRLEN sv_len_utf8(SV *const sv)'},'sv_magic' => {'name' => 'sv_magic','text' => 'Adds magic to an SV. First upgrades C to type C if
4573             necessary, then adds a new magic item of type C to the head of the
4574             magic list.
4575              
4576             See C (which C now calls) for a description of the
4577             handling of the C and C arguments.
4578              
4579             You need to use C to add magic to SvREADONLY SVs and also
4580             to add more than one instance of the same \'how\'.
4581              
4582             void sv_magic(SV *const sv, SV *const obj,
4583             const int how, const char *const name,
4584             const I32 namlen)'},'sv_magicext' => {'name' => 'sv_magicext','text' => 'Adds magic to an SV, upgrading it if necessary. Applies the
4585             supplied vtable and returns a pointer to the magic added.
4586              
4587             Note that C will allow things that C will not.
4588             In particular, you can add magic to SvREADONLY SVs, and add more than
4589             one instance of the same \'how\'.
4590              
4591             If C is greater than zero then a C I of C is
4592             stored, if C is zero then C is stored as-is and - as another
4593             special case - if C<(name && namlen == HEf_SVKEY)> then C is assumed
4594             to contain an C and is stored as-is with its REFCNT incremented.
4595              
4596             (This is now used as a subroutine by C.)
4597              
4598             MAGIC * sv_magicext(SV *const sv, SV *const obj,
4599             const int how,
4600             const MGVTBL *const vtbl,
4601             const char *const name,
4602             const I32 namlen)'},'sv_mortalcopy' => {'name' => 'sv_mortalcopy','text' => 'Creates a new SV which is a copy of the original SV (using C).
4603             The new SV is marked as mortal. It will be destroyed "soon", either by an
4604             explicit call to FREETMPS, or by an implicit call at places such as
4605             statement boundaries. See also C and C.
4606              
4607             SV* sv_mortalcopy(SV *const oldsv)'},'sv_newmortal' => {'name' => 'sv_newmortal','text' => 'Creates a new null SV which is mortal. The reference count of the SV is
4608             set to 1. It will be destroyed "soon", either by an explicit call to
4609             FREETMPS, or by an implicit call at places such as statement boundaries.
4610             See also C and C.
4611              
4612             SV* sv_newmortal()'},'sv_newref' => {'name' => 'sv_newref','text' => 'Increment an SV\'s reference count. Use the C wrapper
4613             instead.
4614              
4615             SV* sv_newref(SV *const sv)'},'sv_nolocking' => {'name' => 'sv_nolocking','text' => 'Dummy routine which "locks" an SV when there is no locking module present.
4616             Exists to avoid test for a NULL function pointer and because it could
4617             potentially warn under some level of strict-ness.
4618              
4619             "Superseded" by sv_nosharing().
4620              
4621             void sv_nolocking(SV *sv)'},'sv_nosharing' => {'name' => 'sv_nosharing','text' => 'Dummy routine which "shares" an SV when there is no sharing module present.
4622             Or "locks" it. Or "unlocks" it. In other
4623             words, ignores its single SV argument.
4624             Exists to avoid test for a NULL function pointer and because it could
4625             potentially warn under some level of strict-ness.
4626              
4627             void sv_nosharing(SV *sv)'},'sv_nounlocking' => {'name' => 'sv_nounlocking','text' => 'Dummy routine which "unlocks" an SV when there is no locking module present.
4628             Exists to avoid test for a NULL function pointer and because it could
4629             potentially warn under some level of strict-ness.
4630              
4631             "Superseded" by sv_nosharing().
4632              
4633             void sv_nounlocking(SV *sv)'},'sv_nv' => {'name' => 'sv_nv','text' => 'A private implementation of the C macro for compilers which can\'t
4634             cope with complex macro expressions. Always use the macro instead.
4635              
4636             NV sv_nv(SV* sv)'},'sv_peek' => {'name' => 'sv_peek','text' => ''},'sv_pos_b2u' => {'name' => 'sv_pos_b2u','text' => 'Converts the value pointed to by offsetp from a count of bytes from the
4637             start of the string, to a count of the equivalent number of UTF-8 chars.
4638             Handles magic and type coercion.
4639              
4640             Use C in preference, which correctly handles strings
4641             longer than 2Gb.
4642              
4643             void sv_pos_b2u(SV *const sv, I32 *const offsetp)'},'sv_pos_b2u_flags' => {'name' => 'sv_pos_b2u_flags','text' => 'Converts the offset from a count of bytes from the start of the string, to
4644             a count of the equivalent number of UTF-8 chars. Handles type coercion.
4645             I is passed to C, and usually should be
4646             C to handle magic.
4647              
4648             STRLEN sv_pos_b2u_flags(SV *const sv,
4649             STRLEN const offset, U32 flags)'},'sv_pos_u2b' => {'name' => 'sv_pos_u2b','text' => 'Converts the value pointed to by offsetp from a count of UTF-8 chars from
4650             the start of the string, to a count of the equivalent number of bytes; if
4651             lenp is non-zero, it does the same to lenp, but this time starting from
4652             the offset, rather than from the start of the string. Handles magic and
4653             type coercion.
4654              
4655             Use C in preference, which correctly handles strings longer
4656             than 2Gb.
4657              
4658             void sv_pos_u2b(SV *const sv, I32 *const offsetp,
4659             I32 *const lenp)'},'sv_pos_u2b_flags' => {'name' => 'sv_pos_u2b_flags','text' => 'Converts the offset from a count of UTF-8 chars from
4660             the start of the string, to a count of the equivalent number of bytes; if
4661             lenp is non-zero, it does the same to lenp, but this time starting from
4662             the offset, rather than from the start
4663             of the string. Handles type coercion.
4664             I is passed to C, and usually should be
4665             C to handle magic.
4666              
4667             STRLEN sv_pos_u2b_flags(SV *const sv, STRLEN uoffset,
4668             STRLEN *const lenp, U32 flags)'},'sv_pv' => {'name' => 'sv_pv','text' => 'Use the C macro instead
4669              
4670             char* sv_pv(SV *sv)'},'sv_pvbyte' => {'name' => 'sv_pvbyte','text' => 'Use C instead.
4671              
4672             char* sv_pvbyte(SV *sv)'},'sv_pvbyten' => {'name' => 'sv_pvbyten','text' => 'A private implementation of the C macro for compilers
4673             which can\'t cope with complex macro expressions. Always use the macro
4674             instead.
4675              
4676             char* sv_pvbyten(SV *sv, STRLEN *lp)'},'sv_pvbyten_force' => {'name' => 'sv_pvbyten_force','text' => 'The backend for the C macro. Always use the macro
4677             instead.
4678              
4679             char* sv_pvbyten_force(SV *const sv, STRLEN *const lp)'},'sv_pvn' => {'name' => 'sv_pvn','text' => 'A private implementation of the C macro for compilers which can\'t
4680             cope with complex macro expressions. Always use the macro instead.
4681              
4682             char* sv_pvn(SV *sv, STRLEN *lp)'},'sv_pvn_force' => {'name' => 'sv_pvn_force','text' => 'Get a sensible string out of the SV somehow.
4683             A private implementation of the C macro for compilers which
4684             can\'t cope with complex macro expressions. Always use the macro instead.
4685              
4686             char* sv_pvn_force(SV* sv, STRLEN* lp)'},'sv_pvn_force_flags' => {'name' => 'sv_pvn_force_flags','text' => 'Get a sensible string out of the SV somehow.
4687             If C has C bit set, will C on C if
4688             appropriate, else not. C and C are
4689             implemented in terms of this function.
4690             You normally want to use the various wrapper macros instead: see
4691             C and C
4692              
4693             char* sv_pvn_force_flags(SV *const sv,
4694             STRLEN *const lp,
4695             const I32 flags)'},'sv_pvn_nomg' => {'name' => 'sv_pvn_nomg','text' => ''},'sv_pvutf8' => {'name' => 'sv_pvutf8','text' => 'Use the C macro instead
4696              
4697             char* sv_pvutf8(SV *sv)'},'sv_pvutf8n' => {'name' => 'sv_pvutf8n','text' => 'A private implementation of the C macro for compilers
4698             which can\'t cope with complex macro expressions. Always use the macro
4699             instead.
4700              
4701             char* sv_pvutf8n(SV *sv, STRLEN *lp)'},'sv_pvutf8n_force' => {'name' => 'sv_pvutf8n_force','text' => 'The backend for the C macro. Always use the macro
4702             instead.
4703              
4704             char* sv_pvutf8n_force(SV *const sv, STRLEN *const lp)'},'sv_recode_to_utf8' => {'name' => 'sv_recode_to_utf8','text' => 'The encoding is assumed to be an Encode object, on entry the PV
4705             of the sv is assumed to be octets in that encoding, and the sv
4706             will be converted into Unicode (and UTF-8).
4707              
4708             If the sv already is UTF-8 (or if it is not POK), or if the encoding
4709             is not a reference, nothing is done to the sv. If the encoding is not
4710             an C Encoding object, bad things will happen.
4711             (See F and L.)
4712              
4713             The PV of the sv is returned.
4714              
4715             char* sv_recode_to_utf8(SV* sv, SV *encoding)'},'sv_reftype' => {'name' => 'sv_reftype','text' => 'Returns a string describing what the SV is a reference to.
4716              
4717             const char* sv_reftype(const SV *const sv, const int ob)'},'sv_replace' => {'name' => 'sv_replace','text' => 'Make the first argument a copy of the second, then delete the original.
4718             The target SV physically takes over ownership of the body of the source SV
4719             and inherits its flags; however, the target keeps any magic it owns,
4720             and any magic in the source is discarded.
4721             Note that this is a rather specialist SV copying operation; most of the
4722             time you\'ll want to use C or one of its many macro front-ends.
4723              
4724             void sv_replace(SV *const sv, SV *const nsv)'},'sv_report_used' => {'name' => 'sv_report_used','text' => 'Dump the contents of all SVs not yet freed (debugging aid).
4725              
4726             void sv_report_used()'},'sv_reset' => {'name' => 'sv_reset','text' => 'Underlying implementation for the C Perl function.
4727             Note that the perl-level function is vaguely deprecated.
4728              
4729             void sv_reset(const char* s, HV *const stash)'},'sv_rvweaken' => {'name' => 'sv_rvweaken','text' => 'Weaken a reference: set the C flag on this RV; give the
4730             referred-to SV C magic if it hasn\'t already; and
4731             push a back-reference to this RV onto the array of backreferences
4732             associated with that magic. If the RV is magical, set magic will be
4733             called after the RV is cleared.
4734              
4735             SV* sv_rvweaken(SV *const sv)'},'sv_setiv' => {'name' => 'sv_setiv','text' => 'Copies an integer into the given SV, upgrading first if necessary.
4736             Does not handle \'set\' magic. See also C.
4737              
4738             void sv_setiv(SV *const sv, const IV num)'},'sv_setiv_mg' => {'name' => 'sv_setiv_mg','text' => 'Like C, but also handles \'set\' magic.
4739              
4740             void sv_setiv_mg(SV *const sv, const IV i)'},'sv_setnv' => {'name' => 'sv_setnv','text' => 'Copies a double into the given SV, upgrading first if necessary.
4741             Does not handle \'set\' magic. See also C.
4742              
4743             void sv_setnv(SV *const sv, const NV num)'},'sv_setnv_mg' => {'name' => 'sv_setnv_mg','text' => 'Like C, but also handles \'set\' magic.
4744              
4745             void sv_setnv_mg(SV *const sv, const NV num)'},'sv_setpv' => {'name' => 'sv_setpv','text' => 'Copies a string into an SV. The string must be terminated with a C
4746             character.
4747             Does not handle \'set\' magic. See C.
4748              
4749             void sv_setpv(SV *const sv, const char *const ptr)'},'sv_setpv_mg' => {'name' => 'sv_setpv_mg','text' => 'Like C, but also handles \'set\' magic.
4750              
4751             void sv_setpv_mg(SV *const sv, const char *const ptr)'},'sv_setpvf' => {'name' => 'sv_setpvf','text' => 'Works like C but copies the text into the SV instead of
4752             appending it. Does not handle \'set\' magic. See C.
4753              
4754             void sv_setpvf(SV *const sv, const char *const pat,
4755             ...)'},'sv_setpvf_mg' => {'name' => 'sv_setpvf_mg','text' => 'Like C, but also handles \'set\' magic.
4756              
4757             void sv_setpvf_mg(SV *const sv,
4758             const char *const pat, ...)'},'sv_setpvf_mg_nocontext' => {'name' => 'sv_setpvf_mg_nocontext','text' => ''},'sv_setpvf_nocontext' => {'name' => 'sv_setpvf_nocontext','text' => ''},'sv_setpviv' => {'name' => 'sv_setpviv','text' => 'Copies an integer into the given SV, also updating its string value.
4759             Does not handle \'set\' magic. See C.
4760              
4761             void sv_setpviv(SV *const sv, const IV num)'},'sv_setpviv_mg' => {'name' => 'sv_setpviv_mg','text' => 'Like C, but also handles \'set\' magic.
4762              
4763             void sv_setpviv_mg(SV *const sv, const IV iv)'},'sv_setpvn' => {'name' => 'sv_setpvn','text' => 'Copies a string (possibly containing embedded C characters) into an SV.
4764             The C parameter indicates the number of
4765             bytes to be copied. If the C argument is NULL the SV will become
4766             undefined. Does not handle \'set\' magic. See C.
4767              
4768             void sv_setpvn(SV *const sv, const char *const ptr,
4769             const STRLEN len)'},'sv_setpvn_mg' => {'name' => 'sv_setpvn_mg','text' => 'Like C, but also handles \'set\' magic.
4770              
4771             void sv_setpvn_mg(SV *const sv,
4772             const char *const ptr,
4773             const STRLEN len)'},'sv_setpvs' => {'name' => 'sv_setpvs','text' => 'Like C, but takes a literal string instead of a string/length pair.
4774              
4775             void sv_setpvs(SV* sv, const char* s)'},'sv_setpvs_mg' => {'name' => 'sv_setpvs_mg','text' => 'Like C, but takes a literal string instead of a
4776             string/length pair.
4777              
4778             void sv_setpvs_mg(SV* sv, const char* s)'},'sv_setref_iv' => {'name' => 'sv_setref_iv','text' => 'Copies an integer into a new SV, optionally blessing the SV. The C
4779             argument will be upgraded to an RV. That RV will be modified to point to
4780             the new SV. The C argument indicates the package for the
4781             blessing. Set C to C to avoid the blessing. The new SV
4782             will have a reference count of 1, and the RV will be returned.
4783              
4784             SV* sv_setref_iv(SV *const rv,
4785             const char *const classname,
4786             const IV iv)'},'sv_setref_nv' => {'name' => 'sv_setref_nv','text' => 'Copies a double into a new SV, optionally blessing the SV. The C
4787             argument will be upgraded to an RV. That RV will be modified to point to
4788             the new SV. The C argument indicates the package for the
4789             blessing. Set C to C to avoid the blessing. The new SV
4790             will have a reference count of 1, and the RV will be returned.
4791              
4792             SV* sv_setref_nv(SV *const rv,
4793             const char *const classname,
4794             const NV nv)'},'sv_setref_pv' => {'name' => 'sv_setref_pv','text' => 'Copies a pointer into a new SV, optionally blessing the SV. The C
4795             argument will be upgraded to an RV. That RV will be modified to point to
4796             the new SV. If the C argument is NULL then C will be placed
4797             into the SV. The C argument indicates the package for the
4798             blessing. Set C to C to avoid the blessing. The new SV
4799             will have a reference count of 1, and the RV will be returned.
4800              
4801             Do not use with other Perl types such as HV, AV, SV, CV, because those
4802             objects will become corrupted by the pointer copy process.
4803              
4804             Note that C copies the string while this copies the pointer.
4805              
4806             SV* sv_setref_pv(SV *const rv,
4807             const char *const classname,
4808             void *const pv)'},'sv_setref_pvn' => {'name' => 'sv_setref_pvn','text' => 'Copies a string into a new SV, optionally blessing the SV. The length of the
4809             string must be specified with C. The C argument will be upgraded to
4810             an RV. That RV will be modified to point to the new SV. The C
4811             argument indicates the package for the blessing. Set C to
4812             C to avoid the blessing. The new SV will have a reference count
4813             of 1, and the RV will be returned.
4814              
4815             Note that C copies the pointer while this copies the string.
4816              
4817             SV* sv_setref_pvn(SV *const rv,
4818             const char *const classname,
4819             const char *const pv,
4820             const STRLEN n)'},'sv_setref_pvs' => {'name' => 'sv_setref_pvs','text' => 'Like C, but takes a literal string instead of a
4821             string/length pair.
4822              
4823             SV * sv_setref_pvs(const char* s)'},'sv_setref_uv' => {'name' => 'sv_setref_uv','text' => 'Copies an unsigned integer into a new SV, optionally blessing the SV. The C
4824             argument will be upgraded to an RV. That RV will be modified to point to
4825             the new SV. The C argument indicates the package for the
4826             blessing. Set C to C to avoid the blessing. The new SV
4827             will have a reference count of 1, and the RV will be returned.
4828              
4829             SV* sv_setref_uv(SV *const rv,
4830             const char *const classname,
4831             const UV uv)'},'sv_setsv' => {'name' => 'sv_setsv','text' => 'Copies the contents of the source SV C into the destination SV
4832             C. The source SV may be destroyed if it is mortal, so don\'t use this
4833             function if the source SV needs to be reused. Does not handle \'set\' magic on
4834             destination SV. Calls \'get\' magic on source SV. Loosely speaking, it
4835             performs a copy-by-value, obliterating any previous content of the
4836             destination.
4837              
4838             You probably want to use one of the assortment of wrappers, such as
4839             C, C, C and
4840             C.
4841              
4842             void sv_setsv(SV *dstr, SV *sstr)'},'sv_setsv_flags' => {'name' => 'sv_setsv_flags','text' => 'Copies the contents of the source SV C into the destination SV
4843             C. The source SV may be destroyed if it is mortal, so don\'t use this
4844             function if the source SV needs to be reused. Does not handle \'set\' magic.
4845             Loosely speaking, it performs a copy-by-value, obliterating any previous
4846             content of the destination.
4847             If the C parameter has the C bit set, will C on
4848             C if appropriate, else not. If the C
4849             parameter has the C bit set then the
4850             buffers of temps will not be stolen.
4851             and C are implemented in terms of this function.
4852              
4853             You probably want to use one of the assortment of wrappers, such as
4854             C, C, C and
4855             C.
4856              
4857             This is the primary function for copying scalars, and most other
4858             copy-ish functions and macros use this underneath.
4859              
4860             void sv_setsv_flags(SV *dstr, SV *sstr,
4861             const I32 flags)'},'sv_setsv_mg' => {'name' => 'sv_setsv_mg','text' => 'Like C, but also handles \'set\' magic.
4862              
4863             void sv_setsv_mg(SV *const dstr, SV *const sstr)'},'sv_setsv_nomg' => {'name' => 'sv_setsv_nomg','text' => 'Like C but doesn\'t process magic.
4864              
4865             void sv_setsv_nomg(SV* dsv, SV* ssv)'},'sv_setuv' => {'name' => 'sv_setuv','text' => 'Copies an unsigned integer into the given SV, upgrading first if necessary.
4866             Does not handle \'set\' magic. See also C.
4867              
4868             void sv_setuv(SV *const sv, const UV num)'},'sv_setuv_mg' => {'name' => 'sv_setuv_mg','text' => 'Like C, but also handles \'set\' magic.
4869              
4870             void sv_setuv_mg(SV *const sv, const UV u)'},'sv_taint' => {'name' => 'sv_taint','text' => 'Taint an SV. Use C instead.
4871              
4872             void sv_taint(SV* sv)'},'sv_tainted' => {'name' => 'sv_tainted','text' => 'Test an SV for taintedness. Use C instead.
4873              
4874             bool sv_tainted(SV *const sv)'},'sv_true' => {'name' => 'sv_true','text' => 'Returns true if the SV has a true value by Perl\'s rules.
4875             Use the C macro instead, which may call C or may
4876             instead use an in-line version.
4877              
4878             I32 sv_true(SV *const sv)'},'sv_uni_display' => {'name' => 'sv_uni_display','text' => 'Build to the scalar C a displayable version of the scalar C,
4879             the displayable version being at most C bytes long
4880             (if longer, the rest is truncated and "..." will be appended).
4881              
4882             The C argument is as in L().
4883              
4884             The pointer to the PV of the C is returned.
4885              
4886             char* sv_uni_display(SV *dsv, SV *ssv, STRLEN pvlim,
4887             UV flags)'},'sv_unmagic' => {'name' => 'sv_unmagic','text' => 'Removes all magic of type C from an SV.
4888              
4889             int sv_unmagic(SV *const sv, const int type)'},'sv_unmagicext' => {'name' => 'sv_unmagicext','text' => 'Removes all magic of type C with the specified C from an SV.
4890              
4891             int sv_unmagicext(SV *const sv, const int type,
4892             MGVTBL *vtbl)'},'sv_unref' => {'name' => 'sv_unref','text' => 'Unsets the RV status of the SV, and decrements the reference count of
4893             whatever was being referenced by the RV. This can almost be thought of
4894             as a reversal of C. This is C with the C
4895             being zero. See C.
4896              
4897             void sv_unref(SV* sv)'},'sv_unref_flags' => {'name' => 'sv_unref_flags','text' => 'Unsets the RV status of the SV, and decrements the reference count of
4898             whatever was being referenced by the RV. This can almost be thought of
4899             as a reversal of C. The C argument can contain
4900             C to force the reference count to be decremented
4901             (otherwise the decrementing is conditional on the reference count being
4902             different from one or the reference being a readonly SV).
4903             See C.
4904              
4905             void sv_unref_flags(SV *const ref, const U32 flags)'},'sv_untaint' => {'name' => 'sv_untaint','text' => 'Untaint an SV. Use C instead.
4906              
4907             void sv_untaint(SV *const sv)'},'sv_upgrade' => {'name' => 'sv_upgrade','text' => 'Upgrade an SV to a more complex form. Generally adds a new body type to the
4908             SV, then copies across as much information as possible from the old body.
4909             It croaks if the SV is already in a more complex form than requested. You
4910             generally want to use the C macro wrapper, which checks the type
4911             before calling C, and hence does not croak. See also
4912             C.
4913              
4914             void sv_upgrade(SV *const sv, svtype new_type)'},'sv_usepvn' => {'name' => 'sv_usepvn','text' => 'Tells an SV to use C to find its string value. Implemented by
4915             calling C with C of 0, hence does not handle \'set\'
4916             magic. See C.
4917              
4918             void sv_usepvn(SV* sv, char* ptr, STRLEN len)'},'sv_usepvn_flags' => {'name' => 'sv_usepvn_flags','text' => 'Tells an SV to use C to find its string value. Normally the
4919             string is stored inside the SV, but sv_usepvn allows the SV to use an
4920             outside string. The C should point to memory that was allocated
4921             by L. It must be
4922             the start of a Newx-ed block of memory, and not a pointer to the
4923             middle of it (beware of L and copy-on-write),
4924             and not be from a non-Newx memory allocator like C. The
4925             string length, C, must be supplied. By default this function
4926             will C (i.e. realloc, move) the memory pointed to by C,
4927             so that pointer should not be freed or used by the programmer after
4928             giving it to sv_usepvn, and neither should any pointers from "behind"
4929             that pointer (e.g. ptr + 1) be used.
4930              
4931             If C & SV_SMAGIC is true, will call SvSETMAGIC. If C &
4932             SV_HAS_TRAILING_NUL is true, then C must be C, and the realloc
4933             will be skipped (i.e. the buffer is actually at least 1 byte longer than
4934             C, and already meets the requirements for storing in C).
4935              
4936             void sv_usepvn_flags(SV *const sv, char* ptr,
4937             const STRLEN len,
4938             const U32 flags)'},'sv_usepvn_mg' => {'name' => 'sv_usepvn_mg','text' => 'Like C, but also handles \'set\' magic.
4939              
4940             void sv_usepvn_mg(SV *sv, char *ptr, STRLEN len)'},'sv_utf8_decode' => {'name' => 'sv_utf8_decode','text' => 'NOTE: this function is experimental and may change or be
4941             removed without notice.
4942              
4943              
4944             If the PV of the SV is an octet sequence in UTF-8
4945             and contains a multiple-byte character, the C flag is turned on
4946             so that it looks like a character. If the PV contains only single-byte
4947             characters, the C flag stays off.
4948             Scans PV for validity and returns false if the PV is invalid UTF-8.
4949              
4950             bool sv_utf8_decode(SV *const sv)'},'sv_utf8_downgrade' => {'name' => 'sv_utf8_downgrade','text' => 'NOTE: this function is experimental and may change or be
4951             removed without notice.
4952              
4953              
4954             Attempts to convert the PV of an SV from characters to bytes.
4955             If the PV contains a character that cannot fit
4956             in a byte, this conversion will fail;
4957             in this case, either returns false or, if C is not
4958             true, croaks.
4959              
4960             This is not a general purpose Unicode to byte encoding interface:
4961             use the Encode extension for that.
4962              
4963             bool sv_utf8_downgrade(SV *const sv,
4964             const bool fail_ok)'},'sv_utf8_encode' => {'name' => 'sv_utf8_encode','text' => 'Converts the PV of an SV to UTF-8, but then turns the C
4965             flag off so that it looks like octets again.
4966              
4967             void sv_utf8_encode(SV *const sv)'},'sv_utf8_upgrade' => {'name' => 'sv_utf8_upgrade','text' => 'Converts the PV of an SV to its UTF-8-encoded form.
4968             Forces the SV to string form if it is not already.
4969             Will C on C if appropriate.
4970             Always sets the SvUTF8 flag to avoid future validity checks even
4971             if the whole string is the same in UTF-8 as not.
4972             Returns the number of bytes in the converted string
4973              
4974             This is not a general purpose byte encoding to Unicode interface:
4975             use the Encode extension for that.
4976              
4977             STRLEN sv_utf8_upgrade(SV *sv)'},'sv_utf8_upgrade_flags' => {'name' => 'sv_utf8_upgrade_flags','text' => 'Converts the PV of an SV to its UTF-8-encoded form.
4978             Forces the SV to string form if it is not already.
4979             Always sets the SvUTF8 flag to avoid future validity checks even
4980             if all the bytes are invariant in UTF-8.
4981             If C has C bit set,
4982             will C on C if appropriate, else not.
4983              
4984             If C has SV_FORCE_UTF8_UPGRADE set, this function assumes that the PV
4985             will expand when converted to UTF-8, and skips the extra work of checking for
4986             that. Typically this flag is used by a routine that has already parsed the
4987             string and found such characters, and passes this information on so that the
4988             work doesn\'t have to be repeated.
4989              
4990             Returns the number of bytes in the converted string.
4991              
4992             This is not a general purpose byte encoding to Unicode interface:
4993             use the Encode extension for that.
4994              
4995             STRLEN sv_utf8_upgrade_flags(SV *const sv,
4996             const I32 flags)'},'sv_utf8_upgrade_flags_grow' => {'name' => 'sv_utf8_upgrade_flags_grow','text' => 'Like sv_utf8_upgrade_flags, but has an additional parameter C, which is
4997             the number of unused bytes the string of \'sv\' is guaranteed to have free after
4998             it upon return. This allows the caller to reserve extra space that it intends
4999             to fill, to avoid extra grows.
5000              
5001             C, C, and C
5002             are implemented in terms of this function.
5003              
5004             Returns the number of bytes in the converted string (not including the spares).
5005              
5006             STRLEN sv_utf8_upgrade_flags_grow(SV *const sv,
5007             const I32 flags,
5008             STRLEN extra)'},'sv_utf8_upgrade_nomg' => {'name' => 'sv_utf8_upgrade_nomg','text' => 'Like sv_utf8_upgrade, but doesn\'t do magic on C.
5009              
5010             STRLEN sv_utf8_upgrade_nomg(SV *sv)'},'sv_uv' => {'name' => 'sv_uv','text' => 'A private implementation of the C macro for compilers which can\'t
5011             cope with complex macro expressions. Always use the macro instead.
5012              
5013             UV sv_uv(SV* sv)'},'sv_vcatpvf' => {'name' => 'sv_vcatpvf','text' => 'Processes its arguments like C and appends the formatted output
5014             to an SV. Does not handle \'set\' magic. See C.
5015              
5016             Usually used via its frontend C.
5017              
5018             void sv_vcatpvf(SV *const sv, const char *const pat,
5019             va_list *const args)'},'sv_vcatpvf_mg' => {'name' => 'sv_vcatpvf_mg','text' => 'Like C, but also handles \'set\' magic.
5020              
5021             Usually used via its frontend C.
5022              
5023             void sv_vcatpvf_mg(SV *const sv,
5024             const char *const pat,
5025             va_list *const args)'},'sv_vcatpvfn' => {'name' => 'sv_vcatpvfn','text' => 'void sv_vcatpvfn(SV *const sv, const char *const pat,
5026             const STRLEN patlen,
5027             va_list *const args,
5028             SV **const svargs, const I32 svmax,
5029             bool *const maybe_tainted)'},'sv_vcatpvfn_flags' => {'name' => 'sv_vcatpvfn_flags','text' => 'Processes its arguments like C and appends the formatted output
5030             to an SV. Uses an array of SVs if the C style variable argument list is
5031             missing (NULL). When running with taint checks enabled, indicates via
5032             C if results are untrustworthy (often due to the use of
5033             locales).
5034              
5035             If called as C or flags include C, calls get magic.
5036              
5037             Usually used via one of its frontends C and C.
5038              
5039             void sv_vcatpvfn_flags(SV *const sv,
5040             const char *const pat,
5041             const STRLEN patlen,
5042             va_list *const args,
5043             SV **const svargs,
5044             const I32 svmax,
5045             bool *const maybe_tainted,
5046             const U32 flags)'},'sv_vsetpvf' => {'name' => 'sv_vsetpvf','text' => 'Works like C but copies the text into the SV instead of
5047             appending it. Does not handle \'set\' magic. See C.
5048              
5049             Usually used via its frontend C.
5050              
5051             void sv_vsetpvf(SV *const sv, const char *const pat,
5052             va_list *const args)'},'sv_vsetpvf_mg' => {'name' => 'sv_vsetpvf_mg','text' => 'Like C, but also handles \'set\' magic.
5053              
5054             Usually used via its frontend C.
5055              
5056             void sv_vsetpvf_mg(SV *const sv,
5057             const char *const pat,
5058             va_list *const args)'},'sv_vsetpvfn' => {'name' => 'sv_vsetpvfn','text' => 'Works like C but copies the text into the SV instead of
5059             appending it.
5060              
5061             Usually used via one of its frontends C and C.
5062              
5063             void sv_vsetpvfn(SV *const sv, const char *const pat,
5064             const STRLEN patlen,
5065             va_list *const args,
5066             SV **const svargs, const I32 svmax,
5067             bool *const maybe_tainted)'},'svtype' => {'name' => 'svtype','text' => 'An enum of flags for Perl types. These are found in the file B
5068             in the C enum. Test these flags with the C macro.
5069              
5070             The types are:
5071              
5072             SVt_NULL
5073             SVt_IV
5074             SVt_NV
5075             SVt_RV
5076             SVt_PV
5077             SVt_PVIV
5078             SVt_PVNV
5079             SVt_PVMG
5080             SVt_INVLIST
5081             SVt_REGEXP
5082             SVt_PVGV
5083             SVt_PVLV
5084             SVt_PVAV
5085             SVt_PVHV
5086             SVt_PVCV
5087             SVt_PVFM
5088             SVt_PVIO
5089              
5090             These are most easily explained from the bottom up.
5091              
5092             SVt_PVIO is for I/O objects, SVt_PVFM for formats, SVt_PVCV for
5093             subroutines, SVt_PVHV for hashes and SVt_PVAV for arrays.
5094              
5095             All the others are scalar types, that is, things that can be bound to a
5096             C<$> variable. For these, the internal types are mostly orthogonal to
5097             types in the Perl language.
5098              
5099             Hence, checking C<< SvTYPE(sv) < SVt_PVAV >> is the best way to see whether
5100             something is a scalar.
5101              
5102             SVt_PVGV represents a typeglob. If !SvFAKE(sv), then it is a real,
5103             incoercible typeglob. If SvFAKE(sv), then it is a scalar to which a
5104             typeglob has been assigned. Assigning to it again will stop it from being
5105             a typeglob. SVt_PVLV represents a scalar that delegates to another scalar
5106             behind the scenes. It is used, e.g., for the return value of C and
5107             for tied hash and array elements. It can hold any scalar value, including
5108             a typeglob. SVt_REGEXP is for regular
5109             expressions. SVt_INVLIST is for Perl
5110             core internal use only.
5111              
5112             SVt_PVMG represents a "normal" scalar (not a typeglob, regular expression,
5113             or delegate). Since most scalars do not need all the internal fields of a
5114             PVMG, we save memory by allocating smaller structs when possible. All the
5115             other types are just simpler forms of SVt_PVMG, with fewer internal fields.
5116             SVt_NULL can only hold undef. SVt_IV can hold undef, an integer, or a
5117             reference. (SVt_RV is an alias for SVt_IV, which exists for backward
5118             compatibility.) SVt_NV can hold any of those or a double. SVt_PV can only
5119             hold undef or a string. SVt_PVIV is a superset of SVt_PV and SVt_IV.
5120             SVt_PVNV is similar. SVt_PVMG can hold anything SVt_PVNV can hold, but it
5121             can, but does not have to, be blessed or magical.'},'swash_fetch' => {'name' => 'swash_fetch','text' => ''},'swash_init' => {'name' => 'swash_init','text' => ''},'sync_locale' => {'name' => 'sync_locale','text' => 'Changing the program\'s locale should be avoided by XS code. Nevertheless,
5122             certain non-Perl libraries called from XS, such as C do so. When this
5123             happens, Perl needs to be told that the locale has changed. Use this macro
5124             to do so, before returning to Perl code.
5125              
5126             void sync_locale()'},'sys_init' => {'name' => 'sys_init','text' => ''},'sys_init3' => {'name' => 'sys_init3','text' => ''},'sys_intern_clear' => {'name' => 'sys_intern_clear','text' => ''},'sys_intern_dup' => {'name' => 'sys_intern_dup','text' => ''},'sys_intern_init' => {'name' => 'sys_intern_init','text' => ''},'sys_term' => {'name' => 'sys_term','text' => ''},'taint_env' => {'name' => 'taint_env','text' => ''},'taint_proper' => {'name' => 'taint_proper','text' => ''},'tmps_grow' => {'name' => 'tmps_grow','text' => ''},'toFOLD' => {'name' => 'toFOLD','text' => 'Converts the specified character to foldcase. If the input is anything but an
5127             ASCII uppercase character, that input character itself is returned. Variant
5128             C is equivalent. (There is no equivalent C for the full
5129             Latin1 range, as the full generality of L is needed there.)
5130              
5131             U8 toFOLD(U8 ch)'},'toFOLD_uni' => {'name' => 'toFOLD_uni','text' => 'Converts the Unicode code point C to its foldcase version, and
5132             stores that in UTF-8 in C, and its length in bytes in C. Note
5133             that the buffer pointed to by C needs to be at least C
5134             bytes since the foldcase version may be longer than the original character.
5135              
5136             The first code point of the foldcased version is returned
5137             (but note, as explained just above, that there may be more.)
5138              
5139             UV toFOLD_uni(UV cp, U8* s, STRLEN* lenp)'},'toFOLD_utf8' => {'name' => 'toFOLD_utf8','text' => 'Converts the UTF-8 encoded character at C

to its foldcase version, and

5140             stores that in UTF-8 in C, and its length in bytes in C. Note
5141             that the buffer pointed to by C needs to be at least C
5142             bytes since the foldcase version may be longer than the original character.
5143              
5144             The first code point of the foldcased version is returned
5145             (but note, as explained just above, that there may be more.)
5146              
5147             The input character at C

is assumed to be well-formed.

5148              
5149             UV toFOLD_utf8(U8* p, U8* s, STRLEN* lenp)'},'toLOWER' => {'name' => 'toLOWER','text' => 'Converts the specified character to lowercase. If the input is anything but an
5150             ASCII uppercase character, that input character itself is returned. Variant
5151             C is equivalent.
5152              
5153             U8 toLOWER(U8 ch)'},'toLOWER_L1' => {'name' => 'toLOWER_L1','text' => 'Converts the specified Latin1 character to lowercase. The results are undefined if
5154             the input doesn\'t fit in a byte.
5155              
5156             U8 toLOWER_L1(U8 ch)'},'toLOWER_LC' => {'name' => 'toLOWER_LC','text' => 'Converts the specified character to lowercase using the current locale\'s rules,
5157             if possible; otherwise returns the input character itself.
5158              
5159             U8 toLOWER_LC(U8 ch)'},'toLOWER_uni' => {'name' => 'toLOWER_uni','text' => 'Converts the Unicode code point C to its lowercase version, and
5160             stores that in UTF-8 in C, and its length in bytes in C. Note
5161             that the buffer pointed to by C needs to be at least C
5162             bytes since the lowercase version may be longer than the original character.
5163              
5164             The first code point of the lowercased version is returned
5165             (but note, as explained just above, that there may be more.)
5166              
5167             UV toLOWER_uni(UV cp, U8* s, STRLEN* lenp)'},'toLOWER_utf8' => {'name' => 'toLOWER_utf8','text' => 'Converts the UTF-8 encoded character at C

to its lowercase version, and

5168             stores that in UTF-8 in C, and its length in bytes in C. Note
5169             that the buffer pointed to by C needs to be at least C
5170             bytes since the lowercase version may be longer than the original character.
5171              
5172             The first code point of the lowercased version is returned
5173             (but note, as explained just above, that there may be more.)
5174              
5175             The input character at C

is assumed to be well-formed.

5176              
5177             UV toLOWER_utf8(U8* p, U8* s, STRLEN* lenp)'},'toTITLE' => {'name' => 'toTITLE','text' => 'Converts the specified character to titlecase. If the input is anything but an
5178             ASCII lowercase character, that input character itself is returned. Variant
5179             C is equivalent. (There is no C for the full Latin1 range,
5180             as the full generality of L is needed there. Titlecase is not a
5181             concept used in locale handling, so there is no functionality for that.)
5182              
5183             U8 toTITLE(U8 ch)'},'toTITLE_uni' => {'name' => 'toTITLE_uni','text' => 'Converts the Unicode code point C to its titlecase version, and
5184             stores that in UTF-8 in C, and its length in bytes in C. Note
5185             that the buffer pointed to by C needs to be at least C
5186             bytes since the titlecase version may be longer than the original character.
5187              
5188             The first code point of the titlecased version is returned
5189             (but note, as explained just above, that there may be more.)
5190              
5191             UV toTITLE_uni(UV cp, U8* s, STRLEN* lenp)'},'toTITLE_utf8' => {'name' => 'toTITLE_utf8','text' => 'Converts the UTF-8 encoded character at C

to its titlecase version, and

5192             stores that in UTF-8 in C, and its length in bytes in C. Note
5193             that the buffer pointed to by C needs to be at least C
5194             bytes since the titlecase version may be longer than the original character.
5195              
5196             The first code point of the titlecased version is returned
5197             (but note, as explained just above, that there may be more.)
5198              
5199             The input character at C

is assumed to be well-formed.

5200              
5201             UV toTITLE_utf8(U8* p, U8* s, STRLEN* lenp)'},'toUPPER' => {'name' => 'toUPPER','text' => 'Converts the specified character to uppercase. If the input is anything but an
5202             ASCII lowercase character, that input character itself is returned. Variant
5203             C is equivalent.
5204              
5205             U8 toUPPER(U8 ch)'},'toUPPER_uni' => {'name' => 'toUPPER_uni','text' => 'Converts the Unicode code point C to its uppercase version, and
5206             stores that in UTF-8 in C, and its length in bytes in C. Note
5207             that the buffer pointed to by C needs to be at least C
5208             bytes since the uppercase version may be longer than the original character.
5209              
5210             The first code point of the uppercased version is returned
5211             (but note, as explained just above, that there may be more.)
5212              
5213             UV toUPPER_uni(UV cp, U8* s, STRLEN* lenp)'},'toUPPER_utf8' => {'name' => 'toUPPER_utf8','text' => 'Converts the UTF-8 encoded character at C

to its uppercase version, and

5214             stores that in UTF-8 in C, and its length in bytes in C. Note
5215             that the buffer pointed to by C needs to be at least C
5216             bytes since the uppercase version may be longer than the original character.
5217              
5218             The first code point of the uppercased version is returned
5219             (but note, as explained just above, that there may be more.)
5220              
5221             The input character at C

is assumed to be well-formed.

5222              
5223             UV toUPPER_utf8(U8* p, U8* s, STRLEN* lenp)'},'to_utf8_case' => {'name' => 'to_utf8_case','text' => 'C

contains the pointer to the UTF-8 string encoding

5224             the character that is being converted. This routine assumes that the character
5225             at C

is well-formed.

5226              
5227             C is a pointer to the character buffer to put the
5228             conversion result to. C is a pointer to the length
5229             of the result.
5230              
5231             C is a pointer to the swash to use.
5232              
5233             Both the special and normal mappings are stored in F,
5234             and loaded by SWASHNEW, using F. C (usually,
5235             but not always, a multicharacter mapping), is tried first.
5236              
5237             C is a string, normally C or C<"">. C means to not use
5238             any special mappings; C<""> means to use the special mappings. Values other
5239             than these two are treated as the name of the hash containing the special
5240             mappings, like C<"utf8::ToSpecLower">.
5241              
5242             C is a string like "ToLower" which means the swash
5243             %utf8::ToLower.
5244              
5245             UV to_utf8_case(const U8 *p, U8* ustrp,
5246             STRLEN *lenp, SV **swashp,
5247             const char *normal,
5248             const char *special)'},'to_utf8_fold' => {'name' => 'to_utf8_fold','text' => 'Instead use L.
5249              
5250             UV to_utf8_fold(const U8 *p, U8* ustrp,
5251             STRLEN *lenp)'},'to_utf8_lower' => {'name' => 'to_utf8_lower','text' => 'Instead use L.
5252              
5253             UV to_utf8_lower(const U8 *p, U8* ustrp,
5254             STRLEN *lenp)'},'to_utf8_title' => {'name' => 'to_utf8_title','text' => 'Instead use L.
5255              
5256             UV to_utf8_title(const U8 *p, U8* ustrp,
5257             STRLEN *lenp)'},'to_utf8_upper' => {'name' => 'to_utf8_upper','text' => 'Instead use L.
5258              
5259             UV to_utf8_upper(const U8 *p, U8* ustrp,
5260             STRLEN *lenp)'},'unlnk' => {'name' => 'unlnk','text' => ''},'unpack_str' => {'name' => 'unpack_str','text' => 'The engine implementing unpack() Perl function. Note: parameters strbeg,
5261             new_s and ocnt are not used. This call should not be used, use
5262             unpackstring instead.
5263              
5264             I32 unpack_str(const char *pat, const char *patend,
5265             const char *s, const char *strbeg,
5266             const char *strend, char **new_s,
5267             I32 ocnt, U32 flags)'},'unpackstring' => {'name' => 'unpackstring','text' => 'The engine implementing the unpack() Perl function.
5268              
5269             Using the template pat..patend, this function unpacks the string
5270             s..strend into a number of mortal SVs, which it pushes onto the perl
5271             argument (@_) stack (so you will need to issue a C before and
5272             C after the call to this function). It returns the number of
5273             pushed elements.
5274              
5275             The strend and patend pointers should point to the byte following the last
5276             character of each string.
5277              
5278             Although this function returns its values on the perl argument stack, it
5279             doesn\'t take any parameters from that stack (and thus in particular
5280             there\'s no need to do a PUSHMARK before calling it, unlike L for
5281             example).
5282              
5283             I32 unpackstring(const char *pat,
5284             const char *patend, const char *s,
5285             const char *strend, U32 flags)'},'unsharepvn' => {'name' => 'unsharepvn','text' => ''},'upg_version' => {'name' => 'upg_version','text' => 'In-place upgrade of the supplied SV to a version object.
5286              
5287             SV *sv = upg_version(SV *sv, bool qv);
5288              
5289             Returns a pointer to the upgraded SV. Set the boolean qv if you want
5290             to force this SV to be interpreted as an "extended" version.
5291              
5292             SV* upg_version(SV *ver, bool qv)'},'utf16_to_utf8' => {'name' => 'utf16_to_utf8','text' => ''},'utf16_to_utf8_reversed' => {'name' => 'utf16_to_utf8_reversed','text' => ''},'utf8_distance' => {'name' => 'utf8_distance','text' => 'Returns the number of UTF-8 characters between the UTF-8 pointers C
5293             and C.
5294              
5295             WARNING: use only if you *know* that the pointers point inside the
5296             same UTF-8 buffer.
5297              
5298             IV utf8_distance(const U8 *a, const U8 *b)'},'utf8_hop' => {'name' => 'utf8_hop','text' => 'Return the UTF-8 pointer C displaced by C characters, either
5299             forward or backward.
5300              
5301             WARNING: do not use the following unless you *know* C is within
5302             the UTF-8 data pointed to by C *and* that on entry C is aligned
5303             on the first byte of character or just after the last byte of a character.
5304              
5305             U8* utf8_hop(const U8 *s, I32 off)'},'utf8_length' => {'name' => 'utf8_length','text' => 'Return the length of the UTF-8 char encoded string C in characters.
5306             Stops at C (inclusive). If C s> or if the scan would end
5307             up past C, croaks.
5308              
5309             STRLEN utf8_length(const U8* s, const U8 *e)'},'utf8_to_bytes' => {'name' => 'utf8_to_bytes','text' => 'NOTE: this function is experimental and may change or be
5310             removed without notice.
5311              
5312              
5313             Converts a string C of length C from UTF-8 into native byte encoding.
5314             Unlike L, this over-writes the original string, and
5315             updates C to contain the new length.
5316             Returns zero on failure, setting C to -1.
5317              
5318             If you need a copy of the string, see L.
5319              
5320             U8* utf8_to_bytes(U8 *s, STRLEN *len)'},'utf8_to_uvchr' => {'name' => 'utf8_to_uvchr','text' => 'DEPRECATED! It is planned to remove this function from a
5321             future release of Perl. Do not use it for new code; remove it from
5322             existing code.
5323              
5324              
5325             Returns the native code point of the first character in the string C
5326             which is assumed to be in UTF-8 encoding; C will be set to the
5327             length, in bytes, of that character.
5328              
5329             Some, but not all, UTF-8 malformations are detected, and in fact, some
5330             malformed input could cause reading beyond the end of the input buffer, which
5331             is why this function is deprecated. Use L instead.
5332              
5333             If C points to one of the detected malformations, and UTF8 warnings are
5334             enabled, zero is returned and C<*retlen> is set (if C isn\'t
5335             NULL) to -1. If those warnings are off, the computed value if well-defined (or
5336             the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
5337             is set (if C isn\'t NULL) so that (S + C<*retlen>>) is the
5338             next possible position in C that could begin a non-malformed character.
5339             See L for details on when the REPLACEMENT CHARACTER is returned.
5340              
5341             UV utf8_to_uvchr(const U8 *s, STRLEN *retlen)'},'utf8_to_uvchr_buf' => {'name' => 'utf8_to_uvchr_buf','text' => 'Returns the native code point of the first character in the string C which
5342             is assumed to be in UTF-8 encoding; C points to 1 beyond the end of C.
5343             C<*retlen> will be set to the length, in bytes, of that character.
5344              
5345             If C does not point to a well-formed UTF-8 character and UTF8 warnings are
5346             enabled, zero is returned and C<*retlen> is set (if C isn\'t
5347             NULL) to -1. If those warnings are off, the computed value, if well-defined
5348             (or the Unicode REPLACEMENT CHARACTER if not), is silently returned, and
5349             C<*retlen> is set (if C isn\'t NULL) so that (S + C<*retlen>>) is
5350             the next possible position in C that could begin a non-malformed character.
5351             See L for details on when the REPLACEMENT CHARACTER is
5352             returned.
5353              
5354             UV utf8_to_uvchr_buf(const U8 *s, const U8 *send,
5355             STRLEN *retlen)'},'utf8_to_uvuni' => {'name' => 'utf8_to_uvuni','text' => 'DEPRECATED! It is planned to remove this function from a
5356             future release of Perl. Do not use it for new code; remove it from
5357             existing code.
5358              
5359              
5360             Returns the Unicode code point of the first character in the string C
5361             which is assumed to be in UTF-8 encoding; C will be set to the
5362             length, in bytes, of that character.
5363              
5364             Some, but not all, UTF-8 malformations are detected, and in fact, some
5365             malformed input could cause reading beyond the end of the input buffer, which
5366             is one reason why this function is deprecated. The other is that only in
5367             extremely limited circumstances should the Unicode versus native code point be
5368             of any interest to you. See L for alternatives.
5369              
5370             If C points to one of the detected malformations, and UTF8 warnings are
5371             enabled, zero is returned and C<*retlen> is set (if C doesn\'t point to
5372             NULL) to -1. If those warnings are off, the computed value if well-defined (or
5373             the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
5374             is set (if C isn\'t NULL) so that (S + C<*retlen>>) is the
5375             next possible position in C that could begin a non-malformed character.
5376             See L for details on when the REPLACEMENT CHARACTER is returned.
5377              
5378             UV utf8_to_uvuni(const U8 *s, STRLEN *retlen)'},'utf8_to_uvuni_buf' => {'name' => 'utf8_to_uvuni_buf','text' => 'DEPRECATED! It is planned to remove this function from a
5379             future release of Perl. Do not use it for new code; remove it from
5380             existing code.
5381              
5382              
5383             Only in very rare circumstances should code need to be dealing in Unicode
5384             (as opposed to native) code points. In those few cases, use
5385             C> instead.
5386              
5387             Returns the Unicode (not-native) code point of the first character in the
5388             string C which
5389             is assumed to be in UTF-8 encoding; C points to 1 beyond the end of C.
5390             C will be set to the length, in bytes, of that character.
5391              
5392             If C does not point to a well-formed UTF-8 character and UTF8 warnings are
5393             enabled, zero is returned and C<*retlen> is set (if C isn\'t
5394             NULL) to -1. If those warnings are off, the computed value if well-defined (or
5395             the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
5396             is set (if C isn\'t NULL) so that (S + C<*retlen>>) is the
5397             next possible position in C that could begin a non-malformed character.
5398             See L for details on when the REPLACEMENT CHARACTER is returned.
5399              
5400             UV utf8_to_uvuni_buf(const U8 *s, const U8 *send,
5401             STRLEN *retlen)'},'utf8n_to_uvchr' => {'name' => 'utf8n_to_uvchr','text' => 'THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
5402             Most code should use L() rather than call this directly.
5403              
5404             Bottom level UTF-8 decode routine.
5405             Returns the native code point value of the first character in the string C,
5406             which is assumed to be in UTF-8 (or UTF-EBCDIC) encoding, and no longer than
5407             C bytes; C<*retlen> (if C isn\'t NULL) will be set to
5408             the length, in bytes, of that character.
5409              
5410             The value of C determines the behavior when C does not point to a
5411             well-formed UTF-8 character. If C is 0, when a malformation is found,
5412             zero is returned and C<*retlen> is set so that (S + C<*retlen>>) is the
5413             next possible position in C that could begin a non-malformed character.
5414             Also, if UTF-8 warnings haven\'t been lexically disabled, a warning is raised.
5415              
5416             Various ALLOW flags can be set in C to allow (and not warn on)
5417             individual types of malformations, such as the sequence being overlong (that
5418             is, when there is a shorter sequence that can express the same code point;
5419             overlong sequences are expressly forbidden in the UTF-8 standard due to
5420             potential security issues). Another malformation example is the first byte of
5421             a character not being a legal first byte. See F for the list of such
5422             flags. For allowed 0 length strings, this function returns 0; for allowed
5423             overlong sequences, the computed code point is returned; for all other allowed
5424             malformations, the Unicode REPLACEMENT CHARACTER is returned, as these have no
5425             determinable reasonable value.
5426              
5427             The UTF8_CHECK_ONLY flag overrides the behavior when a non-allowed (by other
5428             flags) malformation is found. If this flag is set, the routine assumes that
5429             the caller will raise a warning, and this function will silently just set
5430             C to C<-1> (cast to C) and return zero.
5431              
5432             Note that this API requires disambiguation between successful decoding a C
5433             character, and an error return (unless the UTF8_CHECK_ONLY flag is set), as
5434             in both cases, 0 is returned. To disambiguate, upon a zero return, see if the
5435             first byte of C is 0 as well. If so, the input was a C; if not, the
5436             input had an error.
5437              
5438             Certain code points are considered problematic. These are Unicode surrogates,
5439             Unicode non-characters, and code points above the Unicode maximum of 0x10FFFF.
5440             By default these are considered regular code points, but certain situations
5441             warrant special handling for them. If C contains
5442             UTF8_DISALLOW_ILLEGAL_INTERCHANGE, all three classes are treated as
5443             malformations and handled as such. The flags UTF8_DISALLOW_SURROGATE,
5444             UTF8_DISALLOW_NONCHAR, and UTF8_DISALLOW_SUPER (meaning above the legal Unicode
5445             maximum) can be set to disallow these categories individually.
5446              
5447             The flags UTF8_WARN_ILLEGAL_INTERCHANGE, UTF8_WARN_SURROGATE,
5448             UTF8_WARN_NONCHAR, and UTF8_WARN_SUPER will cause warning messages to be raised
5449             for their respective categories, but otherwise the code points are considered
5450             valid (not malformations). To get a category to both be treated as a
5451             malformation and raise a warning, specify both the WARN and DISALLOW flags.
5452             (But note that warnings are not raised if lexically disabled nor if
5453             UTF8_CHECK_ONLY is also specified.)
5454              
5455             Very large code points (above 0x7FFF_FFFF) are considered more problematic than
5456             the others that are above the Unicode legal maximum. There are several
5457             reasons: they requre at least 32 bits to represent them on ASCII platforms, are
5458             not representable at all on EBCDIC platforms, and the original UTF-8
5459             specification never went above this number (the current 0x10FFFF limit was
5460             imposed later). (The smaller ones, those that fit into 32 bits, are
5461             representable by a UV on ASCII platforms, but not by an IV, which means that
5462             the number of operations that can be performed on them is quite restricted.)
5463             The UTF-8 encoding on ASCII platforms for these large code points begins with a
5464             byte containing 0xFE or 0xFF. The UTF8_DISALLOW_FE_FF flag will cause them to
5465             be treated as malformations, while allowing smaller above-Unicode code points.
5466             (Of course UTF8_DISALLOW_SUPER will treat all above-Unicode code points,
5467             including these, as malformations.)
5468             Similarly, UTF8_WARN_FE_FF acts just like
5469             the other WARN flags, but applies just to these code points.
5470              
5471             All other code points corresponding to Unicode characters, including private
5472             use and those yet to be assigned, are never considered malformed and never
5473             warn.
5474              
5475             UV utf8n_to_uvchr(const U8 *s, STRLEN curlen,
5476             STRLEN *retlen, U32 flags)'},'utf8n_to_uvuni' => {'name' => 'utf8n_to_uvuni','text' => 'Instead use L, or rarely, L.
5477              
5478             This function was useful for code that wanted to handle both EBCDIC and
5479             ASCII platforms with Unicode properties, but starting in Perl v5.20, the
5480             distinctions between the platforms have mostly been made invisible to most
5481             code, so this function is quite unlikely to be what you want. If you do need
5482             this precise functionality, use instead
5483             C>
5484             or C>.
5485              
5486             UV utf8n_to_uvuni(const U8 *s, STRLEN curlen,
5487             STRLEN *retlen, U32 flags)'},'uvchr_to_utf8' => {'name' => 'uvchr_to_utf8','text' => 'Adds the UTF-8 representation of the native code point C to the end
5488             of the string C; C should have at least C (up to
5489             C) free bytes available. The return value is the pointer to
5490             the byte after the end of the new character. In other words,
5491              
5492             d = uvchr_to_utf8(d, uv);
5493              
5494             is the recommended wide native character-aware way of saying
5495              
5496             *(d++) = uv;
5497              
5498             This function accepts any UV as input. To forbid or warn on non-Unicode code
5499             points, or those that may be problematic, see L.
5500              
5501             U8* uvchr_to_utf8(U8 *d, UV uv)'},'uvchr_to_utf8_flags' => {'name' => 'uvchr_to_utf8_flags','text' => 'Adds the UTF-8 representation of the native code point C to the end
5502             of the string C; C should have at least C (up to
5503             C) free bytes available. The return value is the pointer to
5504             the byte after the end of the new character. In other words,
5505              
5506             d = uvchr_to_utf8_flags(d, uv, flags);
5507              
5508             or, in most cases,
5509              
5510             d = uvchr_to_utf8_flags(d, uv, 0);
5511              
5512             This is the Unicode-aware way of saying
5513              
5514             *(d++) = uv;
5515              
5516             This function will convert to UTF-8 (and not warn) even code points that aren\'t
5517             legal Unicode or are problematic, unless C contains one or more of the
5518             following flags:
5519              
5520             If C is a Unicode surrogate code point and UNICODE_WARN_SURROGATE is set,
5521             the function will raise a warning, provided UTF8 warnings are enabled. If instead
5522             UNICODE_DISALLOW_SURROGATE is set, the function will fail and return NULL.
5523             If both flags are set, the function will both warn and return NULL.
5524              
5525             The UNICODE_WARN_NONCHAR and UNICODE_DISALLOW_NONCHAR flags
5526             affect how the function handles a Unicode non-character. And likewise, the
5527             UNICODE_WARN_SUPER and UNICODE_DISALLOW_SUPER flags affect the handling of
5528             code points that are
5529             above the Unicode maximum of 0x10FFFF. Code points above 0x7FFF_FFFF (which are
5530             even less portable) can be warned and/or disallowed even if other above-Unicode
5531             code points are accepted, by the UNICODE_WARN_FE_FF and UNICODE_DISALLOW_FE_FF
5532             flags.
5533              
5534             And finally, the flag UNICODE_WARN_ILLEGAL_INTERCHANGE selects all four of the
5535             above WARN flags; and UNICODE_DISALLOW_ILLEGAL_INTERCHANGE selects all four
5536             DISALLOW flags.
5537              
5538             U8* uvchr_to_utf8_flags(U8 *d, UV uv, UV flags)'},'uvoffuni_to_utf8_flags' => {'name' => 'uvoffuni_to_utf8_flags','text' => 'THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
5539             Instead, B or
5540             L>.
5541              
5542             This function is like them, but the input is a strict Unicode
5543             (as opposed to native) code point. Only in very rare circumstances should code
5544             not be using the native code point.
5545              
5546             For details, see the description for L>.
5547              
5548             U8* uvoffuni_to_utf8_flags(U8 *d, UV uv, UV flags)'},'uvuni_to_utf8' => {'name' => 'uvuni_to_utf8','text' => ''},'uvuni_to_utf8_flags' => {'name' => 'uvuni_to_utf8_flags','text' => 'Instead you almost certainly want to use L or
5549             L>.
5550              
5551             This function is a deprecated synonym for L,
5552             which itself, while not deprecated, should be used only in isolated
5553             circumstances. These functions were useful for code that wanted to handle
5554             both EBCDIC and ASCII platforms with Unicode properties, but starting in Perl
5555             v5.20, the distinctions between the platforms have mostly been made invisible
5556             to most code, so this function is quite unlikely to be what you want.
5557              
5558             U8* uvuni_to_utf8_flags(U8 *d, UV uv, UV flags)'},'vcmp' => {'name' => 'vcmp','text' => 'Version object aware cmp. Both operands must already have been
5559             converted into version objects.
5560              
5561             int vcmp(SV *lhv, SV *rhv)'},'vcroak' => {'name' => 'vcroak','text' => 'This is an XS interface to Perl\'s C function.
5562              
5563             C and C are a sprintf-style format pattern and encapsulated
5564             argument list. These are used to generate a string message. If the
5565             message does not end with a newline, then it will be extended with
5566             some indication of the current location in the code, as described for
5567             L.
5568              
5569             The error message will be used as an exception, by default
5570             returning control to the nearest enclosing C, but subject to
5571             modification by a C<$SIG{__DIE__}> handler. In any case, the C
5572             function never returns normally.
5573              
5574             For historical reasons, if C is null then the contents of C
5575             (C<$@>) will be used as an error message or object instead of building an
5576             error message from arguments. If you want to throw a non-string object,
5577             or build an error message in an SV yourself, it is preferable to use
5578             the L function, which does not involve clobbering C.
5579              
5580             void vcroak(const char *pat, va_list *args)'},'vdeb' => {'name' => 'vdeb','text' => ''},'vform' => {'name' => 'vform','text' => ''},'vload_module' => {'name' => 'vload_module','text' => ''},'vmess' => {'name' => 'vmess','text' => 'C and C are a sprintf-style format pattern and encapsulated
5581             argument list. These are used to generate a string message. If the
5582             message does not end with a newline, then it will be extended with
5583             some indication of the current location in the code, as described for
5584             L.
5585              
5586             Normally, the resulting message is returned in a new mortal SV.
5587             During global destruction a single SV may be shared between uses of
5588             this function.
5589              
5590             SV * vmess(const char *pat, va_list *args)'},'vnewSVpvf' => {'name' => 'vnewSVpvf','text' => ''},'vnormal' => {'name' => 'vnormal','text' => 'Accepts a version object and returns the normalized string
5591             representation. Call like:
5592              
5593             sv = vnormal(rv);
5594              
5595             NOTE: you can pass either the object directly or the SV
5596             contained within the RV.
5597              
5598             The SV returned has a refcount of 1.
5599              
5600             SV* vnormal(SV *vs)'},'vnumify' => {'name' => 'vnumify','text' => 'Accepts a version object and returns the normalized floating
5601             point representation. Call like:
5602              
5603             sv = vnumify(rv);
5604              
5605             NOTE: you can pass either the object directly or the SV
5606             contained within the RV.
5607              
5608             The SV returned has a refcount of 1.
5609              
5610             SV* vnumify(SV *vs)'},'vstringify' => {'name' => 'vstringify','text' => 'In order to maintain maximum compatibility with earlier versions
5611             of Perl, this function will return either the floating point
5612             notation or the multiple dotted notation, depending on whether
5613             the original version contained 1 or more dots, respectively.
5614              
5615             The SV returned has a refcount of 1.
5616              
5617             SV* vstringify(SV *vs)'},'vverify' => {'name' => 'vverify','text' => 'Validates that the SV contains valid internal structure for a version object.
5618             It may be passed either the version object (RV) or the hash itself (HV). If
5619             the structure is valid, it returns the HV. If the structure is invalid,
5620             it returns NULL.
5621              
5622             SV *hv = vverify(sv);
5623              
5624             Note that it only confirms the bare minimum structure (so as not to get
5625             confused by derived classes which may contain additional hash entries):
5626              
5627             SV* vverify(SV *vs)'},'vwarn' => {'name' => 'vwarn','text' => 'This is an XS interface to Perl\'s C function.
5628              
5629             C and C are a sprintf-style format pattern and encapsulated
5630             argument list. These are used to generate a string message. If the
5631             message does not end with a newline, then it will be extended with
5632             some indication of the current location in the code, as described for
5633             L.
5634              
5635             The error message or object will by default be written to standard error,
5636             but this is subject to modification by a C<$SIG{__WARN__}> handler.
5637              
5638             Unlike with L, C is not permitted to be null.
5639              
5640             void vwarn(const char *pat, va_list *args)'},'vwarner' => {'name' => 'vwarner','text' => ''},'warn' => {'name' => 'warn','text' => 'This is an XS interface to Perl\'s C function.
5641              
5642             Take a sprintf-style format pattern and argument list. These are used to
5643             generate a string message. If the message does not end with a newline,
5644             then it will be extended with some indication of the current location
5645             in the code, as described for L.
5646              
5647             The error message or object will by default be written to standard error,
5648             but this is subject to modification by a C<$SIG{__WARN__}> handler.
5649              
5650             Unlike with L, C is not permitted to be null.
5651              
5652             void warn(const char *pat, ...)'},'warn_nocontext' => {'name' => 'warn_nocontext','text' => ''},'warn_sv' => {'name' => 'warn_sv','text' => 'This is an XS interface to Perl\'s C function.
5653              
5654             C is the error message or object. If it is a reference, it
5655             will be used as-is. Otherwise it is used as a string, and if it does
5656             not end with a newline then it will be extended with some indication of
5657             the current location in the code, as described for L.
5658              
5659             The error message or object will by default be written to standard error,
5660             but this is subject to modification by a C<$SIG{__WARN__}> handler.
5661              
5662             To warn with a simple string message, the L function may be
5663             more convenient.
5664              
5665             void warn_sv(SV *baseex)'},'warner' => {'name' => 'warner','text' => ''},'warner_nocontext' => {'name' => 'warner_nocontext','text' => ''},'whichsig' => {'name' => 'whichsig','text' => ''},'whichsig_pv' => {'name' => 'whichsig_pv','text' => ''},'whichsig_pvn' => {'name' => 'whichsig_pvn','text' => ''},'whichsig_sv' => {'name' => 'whichsig_sv','text' => ''},'wrap_op_checker' => {'name' => 'wrap_op_checker','text' => 'Puts a C function into the chain of check functions for a specified op
5666             type. This is the preferred way to manipulate the L array.
5667             I specifies which type of op is to be affected. I
5668             is a pointer to the C function that is to be added to that opcode\'s
5669             check chain, and I points to the storage location where a
5670             pointer to the next function in the chain will be stored. The value of
5671             I is written into the L array, while the value
5672             previously stored there is written to I<*old_checker_p>.
5673              
5674             The function should be defined like this:
5675              
5676             static OP *new_checker(pTHX_ OP *op) { ... }
5677              
5678             It is intended to be called in this manner:
5679              
5680             new_checker(aTHX_ op)
5681              
5682             I should be defined like this:
5683              
5684             static Perl_check_t old_checker_p;
5685              
5686             L is global to an entire process, and a module wishing to
5687             hook op checking may find itself invoked more than once per process,
5688             typically in different threads. To handle that situation, this function
5689             is idempotent. The location I<*old_checker_p> must initially (once
5690             per process) contain a null pointer. A C variable of static duration
5691             (declared at file scope, typically also marked C to give
5692             it internal linkage) will be implicitly initialised appropriately,
5693             if it does not have an explicit initialiser. This function will only
5694             actually modify the check chain if it finds I<*old_checker_p> to be null.
5695             This function is also thread safe on the small scale. It uses appropriate
5696             locking to avoid race conditions in accessing L.
5697              
5698             When this function is called, the function referenced by I
5699             must be ready to be called, except for I<*old_checker_p> being unfilled.
5700             In a threading situation, I may be called immediately,
5701             even before this function has returned. I<*old_checker_p> will always
5702             be appropriately set before I is called. If I
5703             decides not to do anything special with an op that it is given (which
5704             is the usual case for most uses of op check hooking), it must chain the
5705             check function referenced by I<*old_checker_p>.
5706              
5707             If you want to influence compilation of calls to a specific subroutine,
5708             then use L rather than hooking checking of all
5709             C ops.
5710              
5711             void wrap_op_checker(Optype opcode,
5712             Perl_check_t new_checker,
5713             Perl_check_t *old_checker_p)'}};};
5714              
5715 1         56 my $self = bless({
5716             'index' => $VAR1,
5717             perl_version => '5.020002',
5718             } => $class);
5719 1         481 return $self;
5720             }
5721              
5722             1;