File Coverage

blib/lib/Paws/MachineLearning/RedshiftDataSpec.pm
Criterion Covered Total %
statement 3 3 100.0
branch n/a
condition n/a
subroutine 1 1 100.0
pod n/a
total 4 4 100.0


line stmt bran cond sub pod time code
1             package Paws::MachineLearning::RedshiftDataSpec;
2 1     1   508 use Moose;
  1         3  
  1         10  
3             has DatabaseCredentials => (is => 'ro', isa => 'Paws::MachineLearning::RedshiftDatabaseCredentials', required => 1);
4             has DatabaseInformation => (is => 'ro', isa => 'Paws::MachineLearning::RedshiftDatabase', required => 1);
5             has DataRearrangement => (is => 'ro', isa => 'Str');
6             has DataSchema => (is => 'ro', isa => 'Str');
7             has DataSchemaUri => (is => 'ro', isa => 'Str');
8             has S3StagingLocation => (is => 'ro', isa => 'Str', required => 1);
9             has SelectSqlQuery => (is => 'ro', isa => 'Str', required => 1);
10             1;
11              
12             ### main pod documentation begin ###
13              
14             =head1 NAME
15              
16             Paws::MachineLearning::RedshiftDataSpec
17              
18             =head1 USAGE
19              
20             This class represents one of two things:
21              
22             =head3 Arguments in a call to a service
23              
24             Use the attributes of this class as arguments to methods. You shouldn't make instances of this class.
25             Each attribute should be used as a named argument in the calls that expect this type of object.
26              
27             As an example, if Att1 is expected to be a Paws::MachineLearning::RedshiftDataSpec object:
28              
29             $service_obj->Method(Att1 => { DatabaseCredentials => $value, ..., SelectSqlQuery => $value });
30              
31             =head3 Results returned from an API call
32              
33             Use accessors for each attribute. If Att1 is expected to be an Paws::MachineLearning::RedshiftDataSpec object:
34              
35             $result = $service_obj->Method(...);
36             $result->Att1->DatabaseCredentials
37              
38             =head1 DESCRIPTION
39              
40             Describes the data specification of an Amazon Redshift C<DataSource>.
41              
42             =head1 ATTRIBUTES
43              
44              
45             =head2 B<REQUIRED> DatabaseCredentials => L<Paws::MachineLearning::RedshiftDatabaseCredentials>
46              
47             Describes AWS Identity and Access Management (IAM) credentials that are
48             used connect to the Amazon Redshift database.
49              
50              
51             =head2 B<REQUIRED> DatabaseInformation => L<Paws::MachineLearning::RedshiftDatabase>
52              
53             Describes the C<DatabaseName> and C<ClusterIdentifier> for an Amazon
54             Redshift C<DataSource>.
55              
56              
57             =head2 DataRearrangement => Str
58              
59             A JSON string that represents the splitting and rearrangement
60             processing to be applied to a C<DataSource>. If the
61             C<DataRearrangement> parameter is not provided, all of the input data
62             is used to create the C<Datasource>.
63              
64             There are multiple parameters that control what data is used to create
65             a datasource:
66              
67             =over
68              
69             =item *
70              
71             B<C<percentBegin>>
72              
73             Use C<percentBegin> to indicate the beginning of the range of the data
74             used to create the Datasource. If you do not include C<percentBegin>
75             and C<percentEnd>, Amazon ML includes all of the data when creating the
76             datasource.
77              
78             =item *
79              
80             B<C<percentEnd>>
81              
82             Use C<percentEnd> to indicate the end of the range of the data used to
83             create the Datasource. If you do not include C<percentBegin> and
84             C<percentEnd>, Amazon ML includes all of the data when creating the
85             datasource.
86              
87             =item *
88              
89             B<C<complement>>
90              
91             The C<complement> parameter instructs Amazon ML to use the data that is
92             not included in the range of C<percentBegin> to C<percentEnd> to create
93             a datasource. The C<complement> parameter is useful if you need to
94             create complementary datasources for training and evaluation. To create
95             a complementary datasource, use the same values for C<percentBegin> and
96             C<percentEnd>, along with the C<complement> parameter.
97              
98             For example, the following two datasources do not share any data, and
99             can be used to train and evaluate a model. The first datasource has 25
100             percent of the data, and the second one has 75 percent of the data.
101              
102             Datasource for evaluation: C<{"splitting":{"percentBegin":0,
103             "percentEnd":25}}>
104              
105             Datasource for training: C<{"splitting":{"percentBegin":0,
106             "percentEnd":25, "complement":"true"}}>
107              
108             =item *
109              
110             B<C<strategy>>
111              
112             To change how Amazon ML splits the data for a datasource, use the
113             C<strategy> parameter.
114              
115             The default value for the C<strategy> parameter is C<sequential>,
116             meaning that Amazon ML takes all of the data records between the
117             C<percentBegin> and C<percentEnd> parameters for the datasource, in the
118             order that the records appear in the input data.
119              
120             The following two C<DataRearrangement> lines are examples of
121             sequentially ordered training and evaluation datasources:
122              
123             Datasource for evaluation: C<{"splitting":{"percentBegin":70,
124             "percentEnd":100, "strategy":"sequential"}}>
125              
126             Datasource for training: C<{"splitting":{"percentBegin":70,
127             "percentEnd":100, "strategy":"sequential", "complement":"true"}}>
128              
129             To randomly split the input data into the proportions indicated by the
130             percentBegin and percentEnd parameters, set the C<strategy> parameter
131             to C<random> and provide a string that is used as the seed value for
132             the random data splitting (for example, you can use the S3 path to your
133             data as the random seed string). If you choose the random split
134             strategy, Amazon ML assigns each row of data a pseudo-random number
135             between 0 and 100, and then selects the rows that have an assigned
136             number between C<percentBegin> and C<percentEnd>. Pseudo-random numbers
137             are assigned using both the input seed string value and the byte offset
138             as a seed, so changing the data results in a different split. Any
139             existing ordering is preserved. The random splitting strategy ensures
140             that variables in the training and evaluation data are distributed
141             similarly. It is useful in the cases where the input data may have an
142             implicit sort order, which would otherwise result in training and
143             evaluation datasources containing non-similar data records.
144              
145             The following two C<DataRearrangement> lines are examples of
146             non-sequentially ordered training and evaluation datasources:
147              
148             Datasource for evaluation: C<{"splitting":{"percentBegin":70,
149             "percentEnd":100, "strategy":"random",
150             "randomSeed"="s3://my_s3_path/bucket/file.csv"}}>
151              
152             Datasource for training: C<{"splitting":{"percentBegin":70,
153             "percentEnd":100, "strategy":"random",
154             "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}>
155              
156             =back
157              
158              
159              
160             =head2 DataSchema => Str
161              
162             A JSON string that represents the schema for an Amazon Redshift
163             C<DataSource>. The C<DataSchema> defines the structure of the
164             observation data in the data file(s) referenced in the C<DataSource>.
165              
166             A C<DataSchema> is not required if you specify a C<DataSchemaUri>.
167              
168             Define your C<DataSchema> as a series of key-value pairs. C<attributes>
169             and C<excludedVariableNames> have an array of key-value pairs for their
170             value. Use the following format to define your C<DataSchema>.
171              
172             { "version": "1.0",
173              
174             "recordAnnotationFieldName": "F1",
175              
176             "recordWeightFieldName": "F2",
177              
178             "targetFieldName": "F3",
179              
180             "dataFormat": "CSV",
181              
182             "dataFileContainsHeader": true,
183              
184             "attributes": [
185              
186             { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2",
187             "fieldType": "NUMERIC" }, { "fieldName": "F3", "fieldType":
188             "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, {
189             "fieldName": "F5", "fieldType": "CATEGORICAL" }, { "fieldName": "F6",
190             "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType":
191             "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType":
192             "WEIGHTED_STRING_SEQUENCE" } ],
193              
194             "excludedVariableNames": [ "F6" ] }
195              
196              
197             =head2 DataSchemaUri => Str
198              
199             Describes the schema location for an Amazon Redshift C<DataSource>.
200              
201              
202             =head2 B<REQUIRED> S3StagingLocation => Str
203              
204             Describes an Amazon S3 location to store the result set of the
205             C<SelectSqlQuery> query.
206              
207              
208             =head2 B<REQUIRED> SelectSqlQuery => Str
209              
210             Describes the SQL Query to execute on an Amazon Redshift database for
211             an Amazon Redshift C<DataSource>.
212              
213              
214              
215             =head1 SEE ALSO
216              
217             This class forms part of L<Paws>, describing an object used in L<Paws::MachineLearning>
218              
219             =head1 BUGS and CONTRIBUTIONS
220              
221             The source code is located here: https://github.com/pplu/aws-sdk-perl
222              
223             Please report bugs to: https://github.com/pplu/aws-sdk-perl/issues
224              
225             =cut
226