| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////// |
|
2
|
|
|
|
|
|
|
// |
|
3
|
|
|
|
|
|
|
// Solution of linear systems involved in the Levenberg - Marquardt |
|
4
|
|
|
|
|
|
|
// minimization algorithm |
|
5
|
|
|
|
|
|
|
// Copyright (C) 2004 Manolis Lourakis (lourakis at ics forth gr) |
|
6
|
|
|
|
|
|
|
// Institute of Computer Science, Foundation for Research & Technology - Hellas |
|
7
|
|
|
|
|
|
|
// Heraklion, Crete, Greece. |
|
8
|
|
|
|
|
|
|
// |
|
9
|
|
|
|
|
|
|
// This program is free software; you can redistribute it and/or modify |
|
10
|
|
|
|
|
|
|
// it under the terms of the GNU General Public License as published by |
|
11
|
|
|
|
|
|
|
// the Free Software Foundation; either version 2 of the License, or |
|
12
|
|
|
|
|
|
|
// (at your option) any later version. |
|
13
|
|
|
|
|
|
|
// |
|
14
|
|
|
|
|
|
|
// This program is distributed in the hope that it will be useful, |
|
15
|
|
|
|
|
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
16
|
|
|
|
|
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
17
|
|
|
|
|
|
|
// GNU General Public License for more details. |
|
18
|
|
|
|
|
|
|
// |
|
19
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////// |
|
20
|
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
/* Solvers for the linear systems Ax=b. Solvers should NOT modify their A & B arguments! */ |
|
23
|
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
#ifndef LM_REAL // not included by Axb.c |
|
26
|
|
|
|
|
|
|
#error This file should not be compiled directly! |
|
27
|
|
|
|
|
|
|
#endif |
|
28
|
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY |
|
31
|
|
|
|
|
|
|
#define __STATIC__ static |
|
32
|
|
|
|
|
|
|
#else |
|
33
|
|
|
|
|
|
|
#define __STATIC__ // empty |
|
34
|
|
|
|
|
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */ |
|
35
|
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
#ifdef HAVE_LAPACK |
|
37
|
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
/* prototypes of LAPACK routines */ |
|
39
|
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
#define GEQRF LM_MK_LAPACK_NAME(geqrf) |
|
41
|
|
|
|
|
|
|
#define ORGQR LM_MK_LAPACK_NAME(orgqr) |
|
42
|
|
|
|
|
|
|
#define TRTRS LM_MK_LAPACK_NAME(trtrs) |
|
43
|
|
|
|
|
|
|
#define POTF2 LM_MK_LAPACK_NAME(potf2) |
|
44
|
|
|
|
|
|
|
#define POTRF LM_MK_LAPACK_NAME(potrf) |
|
45
|
|
|
|
|
|
|
#define POTRS LM_MK_LAPACK_NAME(potrs) |
|
46
|
|
|
|
|
|
|
#define GETRF LM_MK_LAPACK_NAME(getrf) |
|
47
|
|
|
|
|
|
|
#define GETRS LM_MK_LAPACK_NAME(getrs) |
|
48
|
|
|
|
|
|
|
#define GESVD LM_MK_LAPACK_NAME(gesvd) |
|
49
|
|
|
|
|
|
|
#define GESDD LM_MK_LAPACK_NAME(gesdd) |
|
50
|
|
|
|
|
|
|
#define SYTRF LM_MK_LAPACK_NAME(sytrf) |
|
51
|
|
|
|
|
|
|
#define SYTRS LM_MK_LAPACK_NAME(sytrs) |
|
52
|
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
/* QR decomposition */ |
|
54
|
|
|
|
|
|
|
extern int GEQRF(int *m, int *n, LM_REAL *a, int *lda, LM_REAL *tau, LM_REAL *work, int *lwork, int *info); |
|
55
|
|
|
|
|
|
|
extern int ORGQR(int *m, int *n, int *k, LM_REAL *a, int *lda, LM_REAL *tau, LM_REAL *work, int *lwork, int *info); |
|
56
|
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
/* solution of triangular systems */ |
|
58
|
|
|
|
|
|
|
extern int TRTRS(char *uplo, char *trans, char *diag, int *n, int *nrhs, LM_REAL *a, int *lda, LM_REAL *b, int *ldb, int *info); |
|
59
|
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
/* Cholesky decomposition and systems solution */ |
|
61
|
|
|
|
|
|
|
extern int POTF2(char *uplo, int *n, LM_REAL *a, int *lda, int *info); |
|
62
|
|
|
|
|
|
|
extern int POTRF(char *uplo, int *n, LM_REAL *a, int *lda, int *info); /* block version of dpotf2 */ |
|
63
|
|
|
|
|
|
|
extern int POTRS(char *uplo, int *n, int *nrhs, LM_REAL *a, int *lda, LM_REAL *b, int *ldb, int *info); |
|
64
|
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
/* LU decomposition and systems solution */ |
|
66
|
|
|
|
|
|
|
extern int GETRF(int *m, int *n, LM_REAL *a, int *lda, int *ipiv, int *info); |
|
67
|
|
|
|
|
|
|
extern int GETRS(char *trans, int *n, int *nrhs, LM_REAL *a, int *lda, int *ipiv, LM_REAL *b, int *ldb, int *info); |
|
68
|
|
|
|
|
|
|
|
|
69
|
|
|
|
|
|
|
/* Singular Value Decomposition (SVD) */ |
|
70
|
|
|
|
|
|
|
extern int GESVD(char *jobu, char *jobvt, int *m, int *n, LM_REAL *a, int *lda, LM_REAL *s, LM_REAL *u, int *ldu, |
|
71
|
|
|
|
|
|
|
LM_REAL *vt, int *ldvt, LM_REAL *work, int *lwork, int *info); |
|
72
|
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
/* lapack 3.0 new SVD routine, faster than xgesvd(). |
|
74
|
|
|
|
|
|
|
* In case that your version of LAPACK does not include them, use the above two older routines |
|
75
|
|
|
|
|
|
|
*/ |
|
76
|
|
|
|
|
|
|
extern int GESDD(char *jobz, int *m, int *n, LM_REAL *a, int *lda, LM_REAL *s, LM_REAL *u, int *ldu, LM_REAL *vt, int *ldvt, |
|
77
|
|
|
|
|
|
|
LM_REAL *work, int *lwork, int *iwork, int *info); |
|
78
|
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
/* LDLt/UDUt factorization and systems solution */ |
|
80
|
|
|
|
|
|
|
extern int SYTRF(char *uplo, int *n, LM_REAL *a, int *lda, int *ipiv, LM_REAL *work, int *lwork, int *info); |
|
81
|
|
|
|
|
|
|
extern int SYTRS(char *uplo, int *n, int *nrhs, LM_REAL *a, int *lda, int *ipiv, LM_REAL *b, int *ldb, int *info); |
|
82
|
|
|
|
|
|
|
|
|
83
|
|
|
|
|
|
|
/* precision-specific definitions */ |
|
84
|
|
|
|
|
|
|
#define AX_EQ_B_QR LM_ADD_PREFIX(Ax_eq_b_QR) |
|
85
|
|
|
|
|
|
|
#define AX_EQ_B_QRLS LM_ADD_PREFIX(Ax_eq_b_QRLS) |
|
86
|
|
|
|
|
|
|
#define AX_EQ_B_CHOL LM_ADD_PREFIX(Ax_eq_b_Chol) |
|
87
|
|
|
|
|
|
|
#define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU) |
|
88
|
|
|
|
|
|
|
#define AX_EQ_B_SVD LM_ADD_PREFIX(Ax_eq_b_SVD) |
|
89
|
|
|
|
|
|
|
#define AX_EQ_B_BK LM_ADD_PREFIX(Ax_eq_b_BK) |
|
90
|
|
|
|
|
|
|
|
|
91
|
|
|
|
|
|
|
/* |
|
92
|
|
|
|
|
|
|
* This function returns the solution of Ax = b |
|
93
|
|
|
|
|
|
|
* |
|
94
|
|
|
|
|
|
|
* The function is based on QR decomposition with explicit computation of Q: |
|
95
|
|
|
|
|
|
|
* If A=Q R with Q orthogonal and R upper triangular, the linear system becomes |
|
96
|
|
|
|
|
|
|
* Q R x = b or R x = Q^T b. |
|
97
|
|
|
|
|
|
|
* The last equation can be solved directly. |
|
98
|
|
|
|
|
|
|
* |
|
99
|
|
|
|
|
|
|
* A is mxm, b is mx1 |
|
100
|
|
|
|
|
|
|
* |
|
101
|
|
|
|
|
|
|
* The function returns 0 in case of error, 1 if successful |
|
102
|
|
|
|
|
|
|
* |
|
103
|
|
|
|
|
|
|
* This function is often called repetitively to solve problems of identical |
|
104
|
|
|
|
|
|
|
* dimensions. To avoid repetitive malloc's and free's, allocated memory is |
|
105
|
|
|
|
|
|
|
* retained between calls and free'd-malloc'ed when not of the appropriate size. |
|
106
|
|
|
|
|
|
|
* A call with NULL as the first argument forces this memory to be released. |
|
107
|
|
|
|
|
|
|
*/ |
|
108
|
|
|
|
|
|
|
int AX_EQ_B_QR(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m) |
|
109
|
|
|
|
|
|
|
{ |
|
110
|
|
|
|
|
|
|
__STATIC__ LM_REAL *buf=NULL; |
|
111
|
|
|
|
|
|
|
__STATIC__ int buf_sz=0; |
|
112
|
|
|
|
|
|
|
|
|
113
|
|
|
|
|
|
|
static int nb=0; /* no __STATIC__ decl. here! */ |
|
114
|
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
LM_REAL *a, *tau, *r, *work; |
|
116
|
|
|
|
|
|
|
int a_sz, tau_sz, r_sz, tot_sz; |
|
117
|
|
|
|
|
|
|
register int i, j; |
|
118
|
|
|
|
|
|
|
int info, worksz, nrhs=1; |
|
119
|
|
|
|
|
|
|
register LM_REAL sum; |
|
120
|
|
|
|
|
|
|
|
|
121
|
|
|
|
|
|
|
if(!A) |
|
122
|
|
|
|
|
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY |
|
123
|
|
|
|
|
|
|
{ |
|
124
|
|
|
|
|
|
|
if(buf) free(buf); |
|
125
|
|
|
|
|
|
|
buf=NULL; |
|
126
|
|
|
|
|
|
|
buf_sz=0; |
|
127
|
|
|
|
|
|
|
|
|
128
|
|
|
|
|
|
|
return 1; |
|
129
|
|
|
|
|
|
|
} |
|
130
|
|
|
|
|
|
|
#else |
|
131
|
|
|
|
|
|
|
return 1; /* NOP */ |
|
132
|
|
|
|
|
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */ |
|
133
|
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
/* calculate required memory size */ |
|
135
|
|
|
|
|
|
|
a_sz=m*m; |
|
136
|
|
|
|
|
|
|
tau_sz=m; |
|
137
|
|
|
|
|
|
|
r_sz=m*m; /* only the upper triangular part really needed */ |
|
138
|
|
|
|
|
|
|
if(!nb){ |
|
139
|
|
|
|
|
|
|
LM_REAL tmp; |
|
140
|
|
|
|
|
|
|
|
|
141
|
|
|
|
|
|
|
worksz=-1; // workspace query; optimal size is returned in tmp |
|
142
|
|
|
|
|
|
|
GEQRF((int *)&m, (int *)&m, NULL, (int *)&m, NULL, (LM_REAL *)&tmp, (int *)&worksz, (int *)&info); |
|
143
|
|
|
|
|
|
|
nb=((int)tmp)/m; // optimal worksize is m*nb |
|
144
|
|
|
|
|
|
|
} |
|
145
|
|
|
|
|
|
|
worksz=nb*m; |
|
146
|
|
|
|
|
|
|
tot_sz=a_sz + tau_sz + r_sz + worksz; |
|
147
|
|
|
|
|
|
|
|
|
148
|
|
|
|
|
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY |
|
149
|
|
|
|
|
|
|
if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */ |
|
150
|
|
|
|
|
|
|
if(buf) free(buf); /* free previously allocated memory */ |
|
151
|
|
|
|
|
|
|
|
|
152
|
|
|
|
|
|
|
buf_sz=tot_sz; |
|
153
|
|
|
|
|
|
|
buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL)); |
|
154
|
|
|
|
|
|
|
if(!buf){ |
|
155
|
|
|
|
|
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QR) "() failed!\n"); |
|
156
|
|
|
|
|
|
|
exit(1); |
|
157
|
|
|
|
|
|
|
} |
|
158
|
|
|
|
|
|
|
} |
|
159
|
|
|
|
|
|
|
#else |
|
160
|
|
|
|
|
|
|
buf_sz=tot_sz; |
|
161
|
|
|
|
|
|
|
buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL)); |
|
162
|
|
|
|
|
|
|
if(!buf){ |
|
163
|
|
|
|
|
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QR) "() failed!\n"); |
|
164
|
|
|
|
|
|
|
exit(1); |
|
165
|
|
|
|
|
|
|
} |
|
166
|
|
|
|
|
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */ |
|
167
|
|
|
|
|
|
|
|
|
168
|
|
|
|
|
|
|
a=buf; |
|
169
|
|
|
|
|
|
|
tau=a+a_sz; |
|
170
|
|
|
|
|
|
|
r=tau+tau_sz; |
|
171
|
|
|
|
|
|
|
work=r+r_sz; |
|
172
|
|
|
|
|
|
|
|
|
173
|
|
|
|
|
|
|
/* store A (column major!) into a */ |
|
174
|
|
|
|
|
|
|
for(i=0; i
|
|
175
|
|
|
|
|
|
|
for(j=0; j
|
|
176
|
|
|
|
|
|
|
a[i+j*m]=A[i*m+j]; |
|
177
|
|
|
|
|
|
|
|
|
178
|
|
|
|
|
|
|
/* QR decomposition of A */ |
|
179
|
|
|
|
|
|
|
GEQRF((int *)&m, (int *)&m, a, (int *)&m, tau, work, (int *)&worksz, (int *)&info); |
|
180
|
|
|
|
|
|
|
/* error treatment */ |
|
181
|
|
|
|
|
|
|
if(info!=0){ |
|
182
|
|
|
|
|
|
|
if(info<0){ |
|
183
|
|
|
|
|
|
|
fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GEQRF) " in ", AX_EQ_B_QR) "()\n", -info); |
|
184
|
|
|
|
|
|
|
exit(1); |
|
185
|
|
|
|
|
|
|
} |
|
186
|
|
|
|
|
|
|
else{ |
|
187
|
|
|
|
|
|
|
fprintf(stderr, RCAT(RCAT("Unknown LAPACK error %d for ", GEQRF) " in ", AX_EQ_B_QR) "()\n", info); |
|
188
|
|
|
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY |
|
189
|
|
|
|
|
|
|
free(buf); |
|
190
|
|
|
|
|
|
|
#endif |
|
191
|
|
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
return 0; |
|
193
|
|
|
|
|
|
|
} |
|
194
|
|
|
|
|
|
|
} |
|
195
|
|
|
|
|
|
|
|
|
196
|
|
|
|
|
|
|
/* R is stored in the upper triangular part of a; copy it in r so that ORGQR() below won't destroy it */ |
|
197
|
|
|
|
|
|
|
for(i=0; i
|
|
198
|
|
|
|
|
|
|
r[i]=a[i]; |
|
199
|
|
|
|
|
|
|
|
|
200
|
|
|
|
|
|
|
/* compute Q using the elementary reflectors computed by the above decomposition */ |
|
201
|
|
|
|
|
|
|
ORGQR((int *)&m, (int *)&m, (int *)&m, a, (int *)&m, tau, work, (int *)&worksz, (int *)&info); |
|
202
|
|
|
|
|
|
|
if(info!=0){ |
|
203
|
|
|
|
|
|
|
if(info<0){ |
|
204
|
|
|
|
|
|
|
fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", ORGQR) " in ", AX_EQ_B_QR) "()\n", -info); |
|
205
|
|
|
|
|
|
|
exit(1); |
|
206
|
|
|
|
|
|
|
} |
|
207
|
|
|
|
|
|
|
else{ |
|
208
|
|
|
|
|
|
|
fprintf(stderr, RCAT("Unknown LAPACK error (%d) in ", AX_EQ_B_QR) "()\n", info); |
|
209
|
|
|
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY |
|
210
|
|
|
|
|
|
|
free(buf); |
|
211
|
|
|
|
|
|
|
#endif |
|
212
|
|
|
|
|
|
|
|
|
213
|
|
|
|
|
|
|
return 0; |
|
214
|
|
|
|
|
|
|
} |
|
215
|
|
|
|
|
|
|
} |
|
216
|
|
|
|
|
|
|
|
|
217
|
|
|
|
|
|
|
/* Q is now in a; compute Q^T b in x */ |
|
218
|
|
|
|
|
|
|
for(i=0; i
|
|
219
|
|
|
|
|
|
|
for(j=0, sum=0.0; j
|
|
220
|
|
|
|
|
|
|
sum+=a[i*m+j]*B[j]; |
|
221
|
|
|
|
|
|
|
x[i]=sum; |
|
222
|
|
|
|
|
|
|
} |
|
223
|
|
|
|
|
|
|
|
|
224
|
|
|
|
|
|
|
/* solve the linear system R x = Q^t b */ |
|
225
|
|
|
|
|
|
|
TRTRS("U", "N", "N", (int *)&m, (int *)&nrhs, r, (int *)&m, x, (int *)&m, &info); |
|
226
|
|
|
|
|
|
|
/* error treatment */ |
|
227
|
|
|
|
|
|
|
if(info!=0){ |
|
228
|
|
|
|
|
|
|
if(info<0){ |
|
229
|
|
|
|
|
|
|
fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_QR) "()\n", -info); |
|
230
|
|
|
|
|
|
|
exit(1); |
|
231
|
|
|
|
|
|
|
} |
|
232
|
|
|
|
|
|
|
else{ |
|
233
|
|
|
|
|
|
|
fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_QR) "()\n", info); |
|
234
|
|
|
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY |
|
235
|
|
|
|
|
|
|
free(buf); |
|
236
|
|
|
|
|
|
|
#endif |
|
237
|
|
|
|
|
|
|
|
|
238
|
|
|
|
|
|
|
return 0; |
|
239
|
|
|
|
|
|
|
} |
|
240
|
|
|
|
|
|
|
} |
|
241
|
|
|
|
|
|
|
|
|
242
|
|
|
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY |
|
243
|
|
|
|
|
|
|
free(buf); |
|
244
|
|
|
|
|
|
|
#endif |
|
245
|
|
|
|
|
|
|
|
|
246
|
|
|
|
|
|
|
return 1; |
|
247
|
|
|
|
|
|
|
} |
|
248
|
|
|
|
|
|
|
|
|
249
|
|
|
|
|
|
|
/* |
|
250
|
|
|
|
|
|
|
* This function returns the solution of min_x ||Ax - b|| |
|
251
|
|
|
|
|
|
|
* |
|
252
|
|
|
|
|
|
|
* || . || is the second order (i.e. L2) norm. This is a least squares technique that |
|
253
|
|
|
|
|
|
|
* is based on QR decomposition: |
|
254
|
|
|
|
|
|
|
* If A=Q R with Q orthogonal and R upper triangular, the normal equations become |
|
255
|
|
|
|
|
|
|
* (A^T A) x = A^T b or (R^T Q^T Q R) x = A^T b or (R^T R) x = A^T b. |
|
256
|
|
|
|
|
|
|
* This amounts to solving R^T y = A^T b for y and then R x = y for x |
|
257
|
|
|
|
|
|
|
* Note that Q does not need to be explicitly computed |
|
258
|
|
|
|
|
|
|
* |
|
259
|
|
|
|
|
|
|
* A is mxn, b is mx1 |
|
260
|
|
|
|
|
|
|
* |
|
261
|
|
|
|
|
|
|
* The function returns 0 in case of error, 1 if successful |
|
262
|
|
|
|
|
|
|
* |
|
263
|
|
|
|
|
|
|
* This function is often called repetitively to solve problems of identical |
|
264
|
|
|
|
|
|
|
* dimensions. To avoid repetitive malloc's and free's, allocated memory is |
|
265
|
|
|
|
|
|
|
* retained between calls and free'd-malloc'ed when not of the appropriate size. |
|
266
|
|
|
|
|
|
|
* A call with NULL as the first argument forces this memory to be released. |
|
267
|
|
|
|
|
|
|
*/ |
|
268
|
|
|
|
|
|
|
int AX_EQ_B_QRLS(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m, int n) |
|
269
|
|
|
|
|
|
|
{ |
|
270
|
|
|
|
|
|
|
__STATIC__ LM_REAL *buf=NULL; |
|
271
|
|
|
|
|
|
|
__STATIC__ int buf_sz=0; |
|
272
|
|
|
|
|
|
|
|
|
273
|
|
|
|
|
|
|
static int nb=0; /* no __STATIC__ decl. here! */ |
|
274
|
|
|
|
|
|
|
|
|
275
|
|
|
|
|
|
|
LM_REAL *a, *tau, *r, *work; |
|
276
|
|
|
|
|
|
|
int a_sz, tau_sz, r_sz, tot_sz; |
|
277
|
|
|
|
|
|
|
register int i, j; |
|
278
|
|
|
|
|
|
|
int info, worksz, nrhs=1; |
|
279
|
|
|
|
|
|
|
register LM_REAL sum; |
|
280
|
|
|
|
|
|
|
|
|
281
|
|
|
|
|
|
|
if(!A) |
|
282
|
|
|
|
|
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY |
|
283
|
|
|
|
|
|
|
{ |
|
284
|
|
|
|
|
|
|
if(buf) free(buf); |
|
285
|
|
|
|
|
|
|
buf=NULL; |
|
286
|
|
|
|
|
|
|
buf_sz=0; |
|
287
|
|
|
|
|
|
|
|
|
288
|
|
|
|
|
|
|
return 1; |
|
289
|
|
|
|
|
|
|
} |
|
290
|
|
|
|
|
|
|
#else |
|
291
|
|
|
|
|
|
|
return 1; /* NOP */ |
|
292
|
|
|
|
|
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */ |
|
293
|
|
|
|
|
|
|
|
|
294
|
|
|
|
|
|
|
if(m
|
|
295
|
|
|
|
|
|
|
fprintf(stderr, RCAT("Normal equations require that the number of rows is greater than number of columns in ", AX_EQ_B_QRLS) "() [%d x %d]! -- try transposing\n", m, n); |
|
296
|
|
|
|
|
|
|
exit(1); |
|
297
|
|
|
|
|
|
|
} |
|
298
|
|
|
|
|
|
|
|
|
299
|
|
|
|
|
|
|
/* calculate required memory size */ |
|
300
|
|
|
|
|
|
|
a_sz=m*n; |
|
301
|
|
|
|
|
|
|
tau_sz=n; |
|
302
|
|
|
|
|
|
|
r_sz=n*n; |
|
303
|
|
|
|
|
|
|
if(!nb){ |
|
304
|
|
|
|
|
|
|
LM_REAL tmp; |
|
305
|
|
|
|
|
|
|
|
|
306
|
|
|
|
|
|
|
worksz=-1; // workspace query; optimal size is returned in tmp |
|
307
|
|
|
|
|
|
|
GEQRF((int *)&m, (int *)&m, NULL, (int *)&m, NULL, (LM_REAL *)&tmp, (int *)&worksz, (int *)&info); |
|
308
|
|
|
|
|
|
|
nb=((int)tmp)/m; // optimal worksize is m*nb |
|
309
|
|
|
|
|
|
|
} |
|
310
|
|
|
|
|
|
|
worksz=nb*m; |
|
311
|
|
|
|
|
|
|
tot_sz=a_sz + tau_sz + r_sz + worksz; |
|
312
|
|
|
|
|
|
|
|
|
313
|
|
|
|
|
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY |
|
314
|
|
|
|
|
|
|
if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */ |
|
315
|
|
|
|
|
|
|
if(buf) free(buf); /* free previously allocated memory */ |
|
316
|
|
|
|
|
|
|
|
|
317
|
|
|
|
|
|
|
buf_sz=tot_sz; |
|
318
|
|
|
|
|
|
|
buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL)); |
|
319
|
|
|
|
|
|
|
if(!buf){ |
|
320
|
|
|
|
|
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QRLS) "() failed!\n"); |
|
321
|
|
|
|
|
|
|
exit(1); |
|
322
|
|
|
|
|
|
|
} |
|
323
|
|
|
|
|
|
|
} |
|
324
|
|
|
|
|
|
|
#else |
|
325
|
|
|
|
|
|
|
buf_sz=tot_sz; |
|
326
|
|
|
|
|
|
|
buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL)); |
|
327
|
|
|
|
|
|
|
if(!buf){ |
|
328
|
|
|
|
|
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QRLS) "() failed!\n"); |
|
329
|
|
|
|
|
|
|
exit(1); |
|
330
|
|
|
|
|
|
|
} |
|
331
|
|
|
|
|
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */ |
|
332
|
|
|
|
|
|
|
|
|
333
|
|
|
|
|
|
|
a=buf; |
|
334
|
|
|
|
|
|
|
tau=a+a_sz; |
|
335
|
|
|
|
|
|
|
r=tau+tau_sz; |
|
336
|
|
|
|
|
|
|
work=r+r_sz; |
|
337
|
|
|
|
|
|
|
|
|
338
|
|
|
|
|
|
|
/* store A (column major!) into a */ |
|
339
|
|
|
|
|
|
|
for(i=0; i
|
|
340
|
|
|
|
|
|
|
for(j=0; j
|
|
341
|
|
|
|
|
|
|
a[i+j*m]=A[i*n+j]; |
|
342
|
|
|
|
|
|
|
|
|
343
|
|
|
|
|
|
|
/* compute A^T b in x */ |
|
344
|
|
|
|
|
|
|
for(i=0; i
|
|
345
|
|
|
|
|
|
|
for(j=0, sum=0.0; j
|
|
346
|
|
|
|
|
|
|
sum+=A[j*n+i]*B[j]; |
|
347
|
|
|
|
|
|
|
x[i]=sum; |
|
348
|
|
|
|
|
|
|
} |
|
349
|
|
|
|
|
|
|
|
|
350
|
|
|
|
|
|
|
/* QR decomposition of A */ |
|
351
|
|
|
|
|
|
|
GEQRF((int *)&m, (int *)&n, a, (int *)&m, tau, work, (int *)&worksz, (int *)&info); |
|
352
|
|
|
|
|
|
|
/* error treatment */ |
|
353
|
|
|
|
|
|
|
if(info!=0){ |
|
354
|
|
|
|
|
|
|
if(info<0){ |
|
355
|
|
|
|
|
|
|
fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GEQRF) " in ", AX_EQ_B_QRLS) "()\n", -info); |
|
356
|
|
|
|
|
|
|
exit(1); |
|
357
|
|
|
|
|
|
|
} |
|
358
|
|
|
|
|
|
|
else{ |
|
359
|
|
|
|
|
|
|
fprintf(stderr, RCAT(RCAT("Unknown LAPACK error %d for ", GEQRF) " in ", AX_EQ_B_QRLS) "()\n", info); |
|
360
|
|
|
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY |
|
361
|
|
|
|
|
|
|
free(buf); |
|
362
|
|
|
|
|
|
|
#endif |
|
363
|
|
|
|
|
|
|
|
|
364
|
|
|
|
|
|
|
return 0; |
|
365
|
|
|
|
|
|
|
} |
|
366
|
|
|
|
|
|
|
} |
|
367
|
|
|
|
|
|
|
|
|
368
|
|
|
|
|
|
|
/* R is stored in the upper triangular part of a. Note that a is mxn while r nxn */ |
|
369
|
|
|
|
|
|
|
for(j=0; j
|
|
370
|
|
|
|
|
|
|
for(i=0; i<=j; i++) |
|
371
|
|
|
|
|
|
|
r[i+j*n]=a[i+j*m]; |
|
372
|
|
|
|
|
|
|
|
|
373
|
|
|
|
|
|
|
/* lower part is zero */ |
|
374
|
|
|
|
|
|
|
for(i=j+1; i
|
|
375
|
|
|
|
|
|
|
r[i+j*n]=0.0; |
|
376
|
|
|
|
|
|
|
} |
|
377
|
|
|
|
|
|
|
|
|
378
|
|
|
|
|
|
|
/* solve the linear system R^T y = A^t b */ |
|
379
|
|
|
|
|
|
|
TRTRS("U", "T", "N", (int *)&n, (int *)&nrhs, r, (int *)&n, x, (int *)&n, &info); |
|
380
|
|
|
|
|
|
|
/* error treatment */ |
|
381
|
|
|
|
|
|
|
if(info!=0){ |
|
382
|
|
|
|
|
|
|
if(info<0){ |
|
383
|
|
|
|
|
|
|
fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_QRLS) "()\n", -info); |
|
384
|
|
|
|
|
|
|
exit(1); |
|
385
|
|
|
|
|
|
|
} |
|
386
|
|
|
|
|
|
|
else{ |
|
387
|
|
|
|
|
|
|
fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_QRLS) "()\n", info); |
|
388
|
|
|
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY |
|
389
|
|
|
|
|
|
|
free(buf); |
|
390
|
|
|
|
|
|
|
#endif |
|
391
|
|
|
|
|
|
|
|
|
392
|
|
|
|
|
|
|
return 0; |
|
393
|
|
|
|
|
|
|
} |
|
394
|
|
|
|
|
|
|
} |
|
395
|
|
|
|
|
|
|
|
|
396
|
|
|
|
|
|
|
/* solve the linear system R x = y */ |
|
397
|
|
|
|
|
|
|
TRTRS("U", "N", "N", (int *)&n, (int *)&nrhs, r, (int *)&n, x, (int *)&n, &info); |
|
398
|
|
|
|
|
|
|
/* error treatment */ |
|
399
|
|
|
|
|
|
|
if(info!=0){ |
|
400
|
|
|
|
|
|
|
if(info<0){ |
|
401
|
|
|
|
|
|
|
fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_QRLS) "()\n", -info); |
|
402
|
|
|
|
|
|
|
exit(1); |
|
403
|
|
|
|
|
|
|
} |
|
404
|
|
|
|
|
|
|
else{ |
|
405
|
|
|
|
|
|
|
fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_QRLS) "()\n", info); |
|
406
|
|
|
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY |
|
407
|
|
|
|
|
|
|
free(buf); |
|
408
|
|
|
|
|
|
|
#endif |
|
409
|
|
|
|
|
|
|
|
|
410
|
|
|
|
|
|
|
return 0; |
|
411
|
|
|
|
|
|
|
} |
|
412
|
|
|
|
|
|
|
} |
|
413
|
|
|
|
|
|
|
|
|
414
|
|
|
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY |
|
415
|
|
|
|
|
|
|
free(buf); |
|
416
|
|
|
|
|
|
|
#endif |
|
417
|
|
|
|
|
|
|
|
|
418
|
|
|
|
|
|
|
return 1; |
|
419
|
|
|
|
|
|
|
} |
|
420
|
|
|
|
|
|
|
|
|
421
|
|
|
|
|
|
|
/* |
|
422
|
|
|
|
|
|
|
* This function returns the solution of Ax=b |
|
423
|
|
|
|
|
|
|
* |
|
424
|
|
|
|
|
|
|
* The function assumes that A is symmetric & postive definite and employs |
|
425
|
|
|
|
|
|
|
* the Cholesky decomposition: |
|
426
|
|
|
|
|
|
|
* If A=U^T U with U upper triangular, the system to be solved becomes |
|
427
|
|
|
|
|
|
|
* (U^T U) x = b |
|
428
|
|
|
|
|
|
|
* This amount to solving U^T y = b for y and then U x = y for x |
|
429
|
|
|
|
|
|
|
* |
|
430
|
|
|
|
|
|
|
* A is mxm, b is mx1 |
|
431
|
|
|
|
|
|
|
* |
|
432
|
|
|
|
|
|
|
* The function returns 0 in case of error, 1 if successful |
|
433
|
|
|
|
|
|
|
* |
|
434
|
|
|
|
|
|
|
* This function is often called repetitively to solve problems of identical |
|
435
|
|
|
|
|
|
|
* dimensions. To avoid repetitive malloc's and free's, allocated memory is |
|
436
|
|
|
|
|
|
|
* retained between calls and free'd-malloc'ed when not of the appropriate size. |
|
437
|
|
|
|
|
|
|
* A call with NULL as the first argument forces this memory to be released. |
|
438
|
|
|
|
|
|
|
*/ |
|
439
|
|
|
|
|
|
|
int AX_EQ_B_CHOL(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m) |
|
440
|
|
|
|
|
|
|
{ |
|
441
|
|
|
|
|
|
|
__STATIC__ LM_REAL *buf=NULL; |
|
442
|
|
|
|
|
|
|
__STATIC__ int buf_sz=0; |
|
443
|
|
|
|
|
|
|
|
|
444
|
|
|
|
|
|
|
LM_REAL *a; |
|
445
|
|
|
|
|
|
|
int a_sz, tot_sz; |
|
446
|
|
|
|
|
|
|
register int i; |
|
447
|
|
|
|
|
|
|
int info, nrhs=1; |
|
448
|
|
|
|
|
|
|
|
|
449
|
|
|
|
|
|
|
if(!A) |
|
450
|
|
|
|
|
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY |
|
451
|
|
|
|
|
|
|
{ |
|
452
|
|
|
|
|
|
|
if(buf) free(buf); |
|
453
|
|
|
|
|
|
|
buf=NULL; |
|
454
|
|
|
|
|
|
|
buf_sz=0; |
|
455
|
|
|
|
|
|
|
|
|
456
|
|
|
|
|
|
|
return 1; |
|
457
|
|
|
|
|
|
|
} |
|
458
|
|
|
|
|
|
|
#else |
|
459
|
|
|
|
|
|
|
return 1; /* NOP */ |
|
460
|
|
|
|
|
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */ |
|
461
|
|
|
|
|
|
|
|
|
462
|
|
|
|
|
|
|
/* calculate required memory size */ |
|
463
|
|
|
|
|
|
|
a_sz=m*m; |
|
464
|
|
|
|
|
|
|
tot_sz=a_sz; |
|
465
|
|
|
|
|
|
|
|
|
466
|
|
|
|
|
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY |
|
467
|
|
|
|
|
|
|
if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */ |
|
468
|
|
|
|
|
|
|
if(buf) free(buf); /* free previously allocated memory */ |
|
469
|
|
|
|
|
|
|
|
|
470
|
|
|
|
|
|
|
buf_sz=tot_sz; |
|
471
|
|
|
|
|
|
|
buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL)); |
|
472
|
|
|
|
|
|
|
if(!buf){ |
|
473
|
|
|
|
|
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_CHOL) "() failed!\n"); |
|
474
|
|
|
|
|
|
|
exit(1); |
|
475
|
|
|
|
|
|
|
} |
|
476
|
|
|
|
|
|
|
} |
|
477
|
|
|
|
|
|
|
#else |
|
478
|
|
|
|
|
|
|
buf_sz=tot_sz; |
|
479
|
|
|
|
|
|
|
buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL)); |
|
480
|
|
|
|
|
|
|
if(!buf){ |
|
481
|
|
|
|
|
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_CHOL) "() failed!\n"); |
|
482
|
|
|
|
|
|
|
exit(1); |
|
483
|
|
|
|
|
|
|
} |
|
484
|
|
|
|
|
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */ |
|
485
|
|
|
|
|
|
|
|
|
486
|
|
|
|
|
|
|
a=buf; |
|
487
|
|
|
|
|
|
|
|
|
488
|
|
|
|
|
|
|
/* store A into a and B into x. A is assumed symmetric, |
|
489
|
|
|
|
|
|
|
* hence no transposition is needed |
|
490
|
|
|
|
|
|
|
*/ |
|
491
|
|
|
|
|
|
|
for(i=0; i
|
|
492
|
|
|
|
|
|
|
a[i]=A[i]; |
|
493
|
|
|
|
|
|
|
x[i]=B[i]; |
|
494
|
|
|
|
|
|
|
} |
|
495
|
|
|
|
|
|
|
for(i=m; i
|
|
496
|
|
|
|
|
|
|
a[i]=A[i]; |
|
497
|
|
|
|
|
|
|
|
|
498
|
|
|
|
|
|
|
/* Cholesky decomposition of A */ |
|
499
|
|
|
|
|
|
|
//POTF2("U", (int *)&m, a, (int *)&m, (int *)&info); |
|
500
|
|
|
|
|
|
|
POTRF("U", (int *)&m, a, (int *)&m, (int *)&info); |
|
501
|
|
|
|
|
|
|
/* error treatment */ |
|
502
|
|
|
|
|
|
|
if(info!=0){ |
|
503
|
|
|
|
|
|
|
if(info<0){ |
|
504
|
|
|
|
|
|
|
fprintf(stderr, RCAT(RCAT(RCAT("LAPACK error: illegal value for argument %d of ", POTF2) "/", POTRF) " in ", |
|
505
|
|
|
|
|
|
|
AX_EQ_B_CHOL) "()\n", -info); |
|
506
|
|
|
|
|
|
|
exit(1); |
|
507
|
|
|
|
|
|
|
} |
|
508
|
|
|
|
|
|
|
else{ |
|
509
|
|
|
|
|
|
|
fprintf(stderr, RCAT(RCAT(RCAT("LAPACK error: the leading minor of order %d is not positive definite,\nthe factorization could not be completed for ", POTF2) "/", POTRF) " in ", AX_EQ_B_CHOL) "()\n", info); |
|
510
|
|
|
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY |
|
511
|
|
|
|
|
|
|
free(buf); |
|
512
|
|
|
|
|
|
|
#endif |
|
513
|
|
|
|
|
|
|
|
|
514
|
|
|
|
|
|
|
return 0; |
|
515
|
|
|
|
|
|
|
} |
|
516
|
|
|
|
|
|
|
} |
|
517
|
|
|
|
|
|
|
|
|
518
|
|
|
|
|
|
|
/* solve using the computed Cholesky in one lapack call */ |
|
519
|
|
|
|
|
|
|
POTRS("U", (int *)&m, (int *)&nrhs, a, (int *)&m, x, (int *)&m, &info); |
|
520
|
|
|
|
|
|
|
if(info<0){ |
|
521
|
|
|
|
|
|
|
fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", POTRS) " in ", AX_EQ_B_CHOL) "()\n", -info); |
|
522
|
|
|
|
|
|
|
exit(1); |
|
523
|
|
|
|
|
|
|
} |
|
524
|
|
|
|
|
|
|
|
|
525
|
|
|
|
|
|
|
#if 0 |
|
526
|
|
|
|
|
|
|
/* alternative: solve the linear system U^T y = b ... */ |
|
527
|
|
|
|
|
|
|
TRTRS("U", "T", "N", (int *)&m, (int *)&nrhs, a, (int *)&m, x, (int *)&m, &info); |
|
528
|
|
|
|
|
|
|
/* error treatment */ |
|
529
|
|
|
|
|
|
|
if(info!=0){ |
|
530
|
|
|
|
|
|
|
if(info<0){ |
|
531
|
|
|
|
|
|
|
fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_CHOL) "()\n", -info); |
|
532
|
|
|
|
|
|
|
exit(1); |
|
533
|
|
|
|
|
|
|
} |
|
534
|
|
|
|
|
|
|
else{ |
|
535
|
|
|
|
|
|
|
fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_CHOL) "()\n", info); |
|
536
|
|
|
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY |
|
537
|
|
|
|
|
|
|
free(buf); |
|
538
|
|
|
|
|
|
|
#endif |
|
539
|
|
|
|
|
|
|
|
|
540
|
|
|
|
|
|
|
return 0; |
|
541
|
|
|
|
|
|
|
} |
|
542
|
|
|
|
|
|
|
} |
|
543
|
|
|
|
|
|
|
|
|
544
|
|
|
|
|
|
|
/* ... solve the linear system U x = y */ |
|
545
|
|
|
|
|
|
|
TRTRS("U", "N", "N", (int *)&m, (int *)&nrhs, a, (int *)&m, x, (int *)&m, &info); |
|
546
|
|
|
|
|
|
|
/* error treatment */ |
|
547
|
|
|
|
|
|
|
if(info!=0){ |
|
548
|
|
|
|
|
|
|
if(info<0){ |
|
549
|
|
|
|
|
|
|
fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) "in ", AX_EQ_B_CHOL) "()\n", -info); |
|
550
|
|
|
|
|
|
|
exit(1); |
|
551
|
|
|
|
|
|
|
} |
|
552
|
|
|
|
|
|
|
else{ |
|
553
|
|
|
|
|
|
|
fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_CHOL) "()\n", info); |
|
554
|
|
|
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY |
|
555
|
|
|
|
|
|
|
free(buf); |
|
556
|
|
|
|
|
|
|
#endif |
|
557
|
|
|
|
|
|
|
|
|
558
|
|
|
|
|
|
|
return 0; |
|
559
|
|
|
|
|
|
|
} |
|
560
|
|
|
|
|
|
|
} |
|
561
|
|
|
|
|
|
|
#endif /* 0 */ |
|
562
|
|
|
|
|
|
|
|
|
563
|
|
|
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY |
|
564
|
|
|
|
|
|
|
free(buf); |
|
565
|
|
|
|
|
|
|
#endif |
|
566
|
|
|
|
|
|
|
|
|
567
|
|
|
|
|
|
|
return 1; |
|
568
|
|
|
|
|
|
|
} |
|
569
|
|
|
|
|
|
|
|
|
570
|
|
|
|
|
|
|
/* |
|
571
|
|
|
|
|
|
|
* This function returns the solution of Ax = b |
|
572
|
|
|
|
|
|
|
* |
|
573
|
|
|
|
|
|
|
* The function employs LU decomposition: |
|
574
|
|
|
|
|
|
|
* If A=L U with L lower and U upper triangular, then the original system |
|
575
|
|
|
|
|
|
|
* amounts to solving |
|
576
|
|
|
|
|
|
|
* L y = b, U x = y |
|
577
|
|
|
|
|
|
|
* |
|
578
|
|
|
|
|
|
|
* A is mxm, b is mx1 |
|
579
|
|
|
|
|
|
|
* |
|
580
|
|
|
|
|
|
|
* The function returns 0 in case of error, 1 if successful |
|
581
|
|
|
|
|
|
|
* |
|
582
|
|
|
|
|
|
|
* This function is often called repetitively to solve problems of identical |
|
583
|
|
|
|
|
|
|
* dimensions. To avoid repetitive malloc's and free's, allocated memory is |
|
584
|
|
|
|
|
|
|
* retained between calls and free'd-malloc'ed when not of the appropriate size. |
|
585
|
|
|
|
|
|
|
* A call with NULL as the first argument forces this memory to be released. |
|
586
|
|
|
|
|
|
|
*/ |
|
587
|
|
|
|
|
|
|
int AX_EQ_B_LU(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m) |
|
588
|
|
|
|
|
|
|
{ |
|
589
|
|
|
|
|
|
|
__STATIC__ LM_REAL *buf=NULL; |
|
590
|
|
|
|
|
|
|
__STATIC__ int buf_sz=0; |
|
591
|
|
|
|
|
|
|
|
|
592
|
|
|
|
|
|
|
int a_sz, ipiv_sz, tot_sz; |
|
593
|
|
|
|
|
|
|
register int i, j; |
|
594
|
|
|
|
|
|
|
int info, *ipiv, nrhs=1; |
|
595
|
|
|
|
|
|
|
LM_REAL *a; |
|
596
|
|
|
|
|
|
|
|
|
597
|
|
|
|
|
|
|
if(!A) |
|
598
|
|
|
|
|
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY |
|
599
|
|
|
|
|
|
|
{ |
|
600
|
|
|
|
|
|
|
if(buf) free(buf); |
|
601
|
|
|
|
|
|
|
buf=NULL; |
|
602
|
|
|
|
|
|
|
buf_sz=0; |
|
603
|
|
|
|
|
|
|
|
|
604
|
|
|
|
|
|
|
return 1; |
|
605
|
|
|
|
|
|
|
} |
|
606
|
|
|
|
|
|
|
#else |
|
607
|
|
|
|
|
|
|
return 1; /* NOP */ |
|
608
|
|
|
|
|
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */ |
|
609
|
|
|
|
|
|
|
|
|
610
|
|
|
|
|
|
|
/* calculate required memory size */ |
|
611
|
|
|
|
|
|
|
ipiv_sz=m; |
|
612
|
|
|
|
|
|
|
a_sz=m*m; |
|
613
|
|
|
|
|
|
|
tot_sz=a_sz*sizeof(LM_REAL) + ipiv_sz*sizeof(int); /* should be arranged in that order for proper doubles alignment */ |
|
614
|
|
|
|
|
|
|
|
|
615
|
|
|
|
|
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY |
|
616
|
|
|
|
|
|
|
if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */ |
|
617
|
|
|
|
|
|
|
if(buf) free(buf); /* free previously allocated memory */ |
|
618
|
|
|
|
|
|
|
|
|
619
|
|
|
|
|
|
|
buf_sz=tot_sz; |
|
620
|
|
|
|
|
|
|
buf=(LM_REAL *)malloc(buf_sz); |
|
621
|
|
|
|
|
|
|
if(!buf){ |
|
622
|
|
|
|
|
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_LU) "() failed!\n"); |
|
623
|
|
|
|
|
|
|
exit(1); |
|
624
|
|
|
|
|
|
|
} |
|
625
|
|
|
|
|
|
|
} |
|
626
|
|
|
|
|
|
|
#else |
|
627
|
|
|
|
|
|
|
buf_sz=tot_sz; |
|
628
|
|
|
|
|
|
|
buf=(LM_REAL *)malloc(buf_sz); |
|
629
|
|
|
|
|
|
|
if(!buf){ |
|
630
|
|
|
|
|
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_LU) "() failed!\n"); |
|
631
|
|
|
|
|
|
|
exit(1); |
|
632
|
|
|
|
|
|
|
} |
|
633
|
|
|
|
|
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */ |
|
634
|
|
|
|
|
|
|
|
|
635
|
|
|
|
|
|
|
a=buf; |
|
636
|
|
|
|
|
|
|
ipiv=(int *)(a+a_sz); |
|
637
|
|
|
|
|
|
|
|
|
638
|
|
|
|
|
|
|
/* store A (column major!) into a and B into x */ |
|
639
|
|
|
|
|
|
|
for(i=0; i
|
|
640
|
|
|
|
|
|
|
for(j=0; j
|
|
641
|
|
|
|
|
|
|
a[i+j*m]=A[i*m+j]; |
|
642
|
|
|
|
|
|
|
|
|
643
|
|
|
|
|
|
|
x[i]=B[i]; |
|
644
|
|
|
|
|
|
|
} |
|
645
|
|
|
|
|
|
|
|
|
646
|
|
|
|
|
|
|
/* LU decomposition for A */ |
|
647
|
|
|
|
|
|
|
GETRF((int *)&m, (int *)&m, a, (int *)&m, ipiv, (int *)&info); |
|
648
|
|
|
|
|
|
|
if(info!=0){ |
|
649
|
|
|
|
|
|
|
if(info<0){ |
|
650
|
|
|
|
|
|
|
fprintf(stderr, RCAT(RCAT("argument %d of ", GETRF) " illegal in ", AX_EQ_B_LU) "()\n", -info); |
|
651
|
|
|
|
|
|
|
exit(1); |
|
652
|
|
|
|
|
|
|
} |
|
653
|
|
|
|
|
|
|
else{ |
|
654
|
|
|
|
|
|
|
fprintf(stderr, RCAT(RCAT("singular matrix A for ", GETRF) " in ", AX_EQ_B_LU) "()\n"); |
|
655
|
|
|
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY |
|
656
|
|
|
|
|
|
|
free(buf); |
|
657
|
|
|
|
|
|
|
#endif |
|
658
|
|
|
|
|
|
|
|
|
659
|
|
|
|
|
|
|
return 0; |
|
660
|
|
|
|
|
|
|
} |
|
661
|
|
|
|
|
|
|
} |
|
662
|
|
|
|
|
|
|
|
|
663
|
|
|
|
|
|
|
/* solve the system with the computed LU */ |
|
664
|
|
|
|
|
|
|
GETRS("N", (int *)&m, (int *)&nrhs, a, (int *)&m, ipiv, x, (int *)&m, (int *)&info); |
|
665
|
|
|
|
|
|
|
if(info!=0){ |
|
666
|
|
|
|
|
|
|
if(info<0){ |
|
667
|
|
|
|
|
|
|
fprintf(stderr, RCAT(RCAT("argument %d of ", GETRS) " illegal in ", AX_EQ_B_LU) "()\n", -info); |
|
668
|
|
|
|
|
|
|
exit(1); |
|
669
|
|
|
|
|
|
|
} |
|
670
|
|
|
|
|
|
|
else{ |
|
671
|
|
|
|
|
|
|
fprintf(stderr, RCAT(RCAT("unknown error for ", GETRS) " in ", AX_EQ_B_LU) "()\n"); |
|
672
|
|
|
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY |
|
673
|
|
|
|
|
|
|
free(buf); |
|
674
|
|
|
|
|
|
|
#endif |
|
675
|
|
|
|
|
|
|
|
|
676
|
|
|
|
|
|
|
return 0; |
|
677
|
|
|
|
|
|
|
} |
|
678
|
|
|
|
|
|
|
} |
|
679
|
|
|
|
|
|
|
|
|
680
|
|
|
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY |
|
681
|
|
|
|
|
|
|
free(buf); |
|
682
|
|
|
|
|
|
|
#endif |
|
683
|
|
|
|
|
|
|
|
|
684
|
|
|
|
|
|
|
return 1; |
|
685
|
|
|
|
|
|
|
} |
|
686
|
|
|
|
|
|
|
|
|
687
|
|
|
|
|
|
|
/* |
|
688
|
|
|
|
|
|
|
* This function returns the solution of Ax = b |
|
689
|
|
|
|
|
|
|
* |
|
690
|
|
|
|
|
|
|
* The function is based on SVD decomposition: |
|
691
|
|
|
|
|
|
|
* If A=U D V^T with U, V orthogonal and D diagonal, the linear system becomes |
|
692
|
|
|
|
|
|
|
* (U D V^T) x = b or x=V D^{-1} U^T b |
|
693
|
|
|
|
|
|
|
* Note that V D^{-1} U^T is the pseudoinverse A^+ |
|
694
|
|
|
|
|
|
|
* |
|
695
|
|
|
|
|
|
|
* A is mxm, b is mx1. |
|
696
|
|
|
|
|
|
|
* |
|
697
|
|
|
|
|
|
|
* The function returns 0 in case of error, 1 if successful |
|
698
|
|
|
|
|
|
|
* |
|
699
|
|
|
|
|
|
|
* This function is often called repetitively to solve problems of identical |
|
700
|
|
|
|
|
|
|
* dimensions. To avoid repetitive malloc's and free's, allocated memory is |
|
701
|
|
|
|
|
|
|
* retained between calls and free'd-malloc'ed when not of the appropriate size. |
|
702
|
|
|
|
|
|
|
* A call with NULL as the first argument forces this memory to be released. |
|
703
|
|
|
|
|
|
|
*/ |
|
704
|
|
|
|
|
|
|
int AX_EQ_B_SVD(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m) |
|
705
|
|
|
|
|
|
|
{ |
|
706
|
|
|
|
|
|
|
__STATIC__ LM_REAL *buf=NULL; |
|
707
|
|
|
|
|
|
|
__STATIC__ int buf_sz=0; |
|
708
|
|
|
|
|
|
|
static LM_REAL eps=LM_CNST(-1.0); |
|
709
|
|
|
|
|
|
|
|
|
710
|
|
|
|
|
|
|
register int i, j; |
|
711
|
|
|
|
|
|
|
LM_REAL *a, *u, *s, *vt, *work; |
|
712
|
|
|
|
|
|
|
int a_sz, u_sz, s_sz, vt_sz, tot_sz; |
|
713
|
|
|
|
|
|
|
LM_REAL thresh, one_over_denom; |
|
714
|
|
|
|
|
|
|
register LM_REAL sum; |
|
715
|
|
|
|
|
|
|
int info, rank, worksz, *iwork, iworksz; |
|
716
|
|
|
|
|
|
|
|
|
717
|
|
|
|
|
|
|
if(!A) |
|
718
|
|
|
|
|
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY |
|
719
|
|
|
|
|
|
|
{ |
|
720
|
|
|
|
|
|
|
if(buf) free(buf); |
|
721
|
|
|
|
|
|
|
buf=NULL; |
|
722
|
|
|
|
|
|
|
buf_sz=0; |
|
723
|
|
|
|
|
|
|
|
|
724
|
|
|
|
|
|
|
return 1; |
|
725
|
|
|
|
|
|
|
} |
|
726
|
|
|
|
|
|
|
#else |
|
727
|
|
|
|
|
|
|
return 1; /* NOP */ |
|
728
|
|
|
|
|
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */ |
|
729
|
|
|
|
|
|
|
|
|
730
|
|
|
|
|
|
|
/* calculate required memory size */ |
|
731
|
|
|
|
|
|
|
#if 1 /* use optimal size */ |
|
732
|
|
|
|
|
|
|
worksz=-1; // workspace query. Keep in mind that GESDD requires more memory than GESVD |
|
733
|
|
|
|
|
|
|
/* note that optimal work size is returned in thresh */ |
|
734
|
|
|
|
|
|
|
GESVD("A", "A", (int *)&m, (int *)&m, NULL, (int *)&m, NULL, NULL, (int *)&m, NULL, (int *)&m, (LM_REAL *)&thresh, (int *)&worksz, &info); |
|
735
|
|
|
|
|
|
|
//GESDD("A", (int *)&m, (int *)&m, NULL, (int *)&m, NULL, NULL, (int *)&m, NULL, (int *)&m, (LM_REAL *)&thresh, (int *)&worksz, NULL, &info); |
|
736
|
|
|
|
|
|
|
worksz=(int)thresh; |
|
737
|
|
|
|
|
|
|
#else /* use minimum size */ |
|
738
|
|
|
|
|
|
|
worksz=5*m; // min worksize for GESVD |
|
739
|
|
|
|
|
|
|
//worksz=m*(7*m+4); // min worksize for GESDD |
|
740
|
|
|
|
|
|
|
#endif |
|
741
|
|
|
|
|
|
|
iworksz=8*m; |
|
742
|
|
|
|
|
|
|
a_sz=m*m; |
|
743
|
|
|
|
|
|
|
u_sz=m*m; s_sz=m; vt_sz=m*m; |
|
744
|
|
|
|
|
|
|
|
|
745
|
|
|
|
|
|
|
tot_sz=(a_sz + u_sz + s_sz + vt_sz + worksz)*sizeof(LM_REAL) + iworksz*sizeof(int); /* should be arranged in that order for proper doubles alignment */ |
|
746
|
|
|
|
|
|
|
|
|
747
|
|
|
|
|
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY |
|
748
|
|
|
|
|
|
|
if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */ |
|
749
|
|
|
|
|
|
|
if(buf) free(buf); /* free previously allocated memory */ |
|
750
|
|
|
|
|
|
|
|
|
751
|
|
|
|
|
|
|
buf_sz=tot_sz; |
|
752
|
|
|
|
|
|
|
buf=(LM_REAL *)malloc(buf_sz); |
|
753
|
|
|
|
|
|
|
if(!buf){ |
|
754
|
|
|
|
|
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_SVD) "() failed!\n"); |
|
755
|
|
|
|
|
|
|
exit(1); |
|
756
|
|
|
|
|
|
|
} |
|
757
|
|
|
|
|
|
|
} |
|
758
|
|
|
|
|
|
|
#else |
|
759
|
|
|
|
|
|
|
buf_sz=tot_sz; |
|
760
|
|
|
|
|
|
|
buf=(LM_REAL *)malloc(buf_sz); |
|
761
|
|
|
|
|
|
|
if(!buf){ |
|
762
|
|
|
|
|
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_SVD) "() failed!\n"); |
|
763
|
|
|
|
|
|
|
exit(1); |
|
764
|
|
|
|
|
|
|
} |
|
765
|
|
|
|
|
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */ |
|
766
|
|
|
|
|
|
|
|
|
767
|
|
|
|
|
|
|
a=buf; |
|
768
|
|
|
|
|
|
|
u=a+a_sz; |
|
769
|
|
|
|
|
|
|
s=u+u_sz; |
|
770
|
|
|
|
|
|
|
vt=s+s_sz; |
|
771
|
|
|
|
|
|
|
work=vt+vt_sz; |
|
772
|
|
|
|
|
|
|
iwork=(int *)(work+worksz); |
|
773
|
|
|
|
|
|
|
|
|
774
|
|
|
|
|
|
|
/* store A (column major!) into a */ |
|
775
|
|
|
|
|
|
|
for(i=0; i
|
|
776
|
|
|
|
|
|
|
for(j=0; j
|
|
777
|
|
|
|
|
|
|
a[i+j*m]=A[i*m+j]; |
|
778
|
|
|
|
|
|
|
|
|
779
|
|
|
|
|
|
|
/* SVD decomposition of A */ |
|
780
|
|
|
|
|
|
|
GESVD("A", "A", (int *)&m, (int *)&m, a, (int *)&m, s, u, (int *)&m, vt, (int *)&m, work, (int *)&worksz, &info); |
|
781
|
|
|
|
|
|
|
//GESDD("A", (int *)&m, (int *)&m, a, (int *)&m, s, u, (int *)&m, vt, (int *)&m, work, (int *)&worksz, iwork, &info); |
|
782
|
|
|
|
|
|
|
|
|
783
|
|
|
|
|
|
|
/* error treatment */ |
|
784
|
|
|
|
|
|
|
if(info!=0){ |
|
785
|
|
|
|
|
|
|
if(info<0){ |
|
786
|
|
|
|
|
|
|
fprintf(stderr, RCAT(RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GESVD), "/" GESDD) " in ", AX_EQ_B_SVD) "()\n", -info); |
|
787
|
|
|
|
|
|
|
exit(1); |
|
788
|
|
|
|
|
|
|
} |
|
789
|
|
|
|
|
|
|
else{ |
|
790
|
|
|
|
|
|
|
fprintf(stderr, RCAT("LAPACK error: dgesdd (dbdsdc)/dgesvd (dbdsqr) failed to converge in ", AX_EQ_B_SVD) "() [info=%d]\n", info); |
|
791
|
|
|
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY |
|
792
|
|
|
|
|
|
|
free(buf); |
|
793
|
|
|
|
|
|
|
#endif |
|
794
|
|
|
|
|
|
|
|
|
795
|
|
|
|
|
|
|
return 0; |
|
796
|
|
|
|
|
|
|
} |
|
797
|
|
|
|
|
|
|
} |
|
798
|
|
|
|
|
|
|
|
|
799
|
|
|
|
|
|
|
if(eps<0.0){ |
|
800
|
|
|
|
|
|
|
LM_REAL aux; |
|
801
|
|
|
|
|
|
|
|
|
802
|
|
|
|
|
|
|
/* compute machine epsilon */ |
|
803
|
|
|
|
|
|
|
for(eps=LM_CNST(1.0); aux=eps+LM_CNST(1.0), aux-LM_CNST(1.0)>0.0; eps*=LM_CNST(0.5)) |
|
804
|
|
|
|
|
|
|
; |
|
805
|
|
|
|
|
|
|
eps*=LM_CNST(2.0); |
|
806
|
|
|
|
|
|
|
} |
|
807
|
|
|
|
|
|
|
|
|
808
|
|
|
|
|
|
|
/* compute the pseudoinverse in a */ |
|
809
|
|
|
|
|
|
|
for(i=0; i
|
|
810
|
|
|
|
|
|
|
for(rank=0, thresh=eps*s[0]; rankthresh; rank++){ |
|
811
|
|
|
|
|
|
|
one_over_denom=LM_CNST(1.0)/s[rank]; |
|
812
|
|
|
|
|
|
|
|
|
813
|
|
|
|
|
|
|
for(j=0; j
|
|
814
|
|
|
|
|
|
|
for(i=0; i
|
|
815
|
|
|
|
|
|
|
a[i*m+j]+=vt[rank+i*m]*u[j+rank*m]*one_over_denom; |
|
816
|
|
|
|
|
|
|
} |
|
817
|
|
|
|
|
|
|
|
|
818
|
|
|
|
|
|
|
/* compute A^+ b in x */ |
|
819
|
|
|
|
|
|
|
for(i=0; i
|
|
820
|
|
|
|
|
|
|
for(j=0, sum=0.0; j
|
|
821
|
|
|
|
|
|
|
sum+=a[i*m+j]*B[j]; |
|
822
|
|
|
|
|
|
|
x[i]=sum; |
|
823
|
|
|
|
|
|
|
} |
|
824
|
|
|
|
|
|
|
|
|
825
|
|
|
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY |
|
826
|
|
|
|
|
|
|
free(buf); |
|
827
|
|
|
|
|
|
|
#endif |
|
828
|
|
|
|
|
|
|
|
|
829
|
|
|
|
|
|
|
return 1; |
|
830
|
|
|
|
|
|
|
} |
|
831
|
|
|
|
|
|
|
|
|
832
|
|
|
|
|
|
|
/* |
|
833
|
|
|
|
|
|
|
* This function returns the solution of Ax = b for a real symmetric matrix A |
|
834
|
|
|
|
|
|
|
* |
|
835
|
|
|
|
|
|
|
* The function is based on UDUT factorization with the pivoting |
|
836
|
|
|
|
|
|
|
* strategy of Bunch and Kaufman: |
|
837
|
|
|
|
|
|
|
* A is factored as U*D*U^T where U is upper triangular and |
|
838
|
|
|
|
|
|
|
* D symmetric and block diagonal (aka spectral decomposition, |
|
839
|
|
|
|
|
|
|
* Banachiewicz factorization, modified Cholesky factorization) |
|
840
|
|
|
|
|
|
|
* |
|
841
|
|
|
|
|
|
|
* A is mxm, b is mx1. |
|
842
|
|
|
|
|
|
|
* |
|
843
|
|
|
|
|
|
|
* The function returns 0 in case of error, 1 if successfull |
|
844
|
|
|
|
|
|
|
* |
|
845
|
|
|
|
|
|
|
* This function is often called repetitively to solve problems of identical |
|
846
|
|
|
|
|
|
|
* dimensions. To avoid repetitive malloc's and free's, allocated memory is |
|
847
|
|
|
|
|
|
|
* retained between calls and free'd-malloc'ed when not of the appropriate size. |
|
848
|
|
|
|
|
|
|
* A call with NULL as the first argument forces this memory to be released. |
|
849
|
|
|
|
|
|
|
*/ |
|
850
|
|
|
|
|
|
|
int AX_EQ_B_BK(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m) |
|
851
|
|
|
|
|
|
|
{ |
|
852
|
|
|
|
|
|
|
__STATIC__ LM_REAL *buf=NULL; |
|
853
|
|
|
|
|
|
|
__STATIC__ int buf_sz=0, nb=0; |
|
854
|
|
|
|
|
|
|
|
|
855
|
|
|
|
|
|
|
LM_REAL *a, *work; |
|
856
|
|
|
|
|
|
|
int a_sz, ipiv_sz, work_sz, tot_sz; |
|
857
|
|
|
|
|
|
|
register int i, j; |
|
858
|
|
|
|
|
|
|
int info, *ipiv, nrhs=1; |
|
859
|
|
|
|
|
|
|
|
|
860
|
|
|
|
|
|
|
if(!A) |
|
861
|
|
|
|
|
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY |
|
862
|
|
|
|
|
|
|
{ |
|
863
|
|
|
|
|
|
|
if(buf) free(buf); |
|
864
|
|
|
|
|
|
|
buf=NULL; |
|
865
|
|
|
|
|
|
|
buf_sz=0; |
|
866
|
|
|
|
|
|
|
|
|
867
|
|
|
|
|
|
|
return 1; |
|
868
|
|
|
|
|
|
|
} |
|
869
|
|
|
|
|
|
|
#else |
|
870
|
|
|
|
|
|
|
return 1; /* NOP */ |
|
871
|
|
|
|
|
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */ |
|
872
|
|
|
|
|
|
|
|
|
873
|
|
|
|
|
|
|
/* calculate required memory size */ |
|
874
|
|
|
|
|
|
|
ipiv_sz=m; |
|
875
|
|
|
|
|
|
|
a_sz=m*m; |
|
876
|
|
|
|
|
|
|
if(!nb){ |
|
877
|
|
|
|
|
|
|
LM_REAL tmp; |
|
878
|
|
|
|
|
|
|
|
|
879
|
|
|
|
|
|
|
work_sz=-1; // workspace query; optimal size is returned in tmp |
|
880
|
|
|
|
|
|
|
SYTRF("U", (int *)&m, NULL, (int *)&m, NULL, (LM_REAL *)&tmp, (int *)&work_sz, (int *)&info); |
|
881
|
|
|
|
|
|
|
nb=((int)tmp)/m; // optimal worksize is m*nb |
|
882
|
|
|
|
|
|
|
} |
|
883
|
|
|
|
|
|
|
work_sz=(nb!=-1)? nb*m : 1; |
|
884
|
|
|
|
|
|
|
tot_sz=(a_sz + work_sz)*sizeof(LM_REAL) + ipiv_sz*sizeof(int); /* should be arranged in that order for proper doubles alignment */ |
|
885
|
|
|
|
|
|
|
|
|
886
|
|
|
|
|
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY |
|
887
|
|
|
|
|
|
|
if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */ |
|
888
|
|
|
|
|
|
|
if(buf) free(buf); /* free previously allocated memory */ |
|
889
|
|
|
|
|
|
|
|
|
890
|
|
|
|
|
|
|
buf_sz=tot_sz; |
|
891
|
|
|
|
|
|
|
buf=(LM_REAL *)malloc(buf_sz); |
|
892
|
|
|
|
|
|
|
if(!buf){ |
|
893
|
|
|
|
|
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_BK) "() failed!\n"); |
|
894
|
|
|
|
|
|
|
exit(1); |
|
895
|
|
|
|
|
|
|
} |
|
896
|
|
|
|
|
|
|
} |
|
897
|
|
|
|
|
|
|
#else |
|
898
|
|
|
|
|
|
|
buf_sz=tot_sz; |
|
899
|
|
|
|
|
|
|
buf=(LM_REAL *)malloc(buf_sz); |
|
900
|
|
|
|
|
|
|
if(!buf){ |
|
901
|
|
|
|
|
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_BK) "() failed!\n"); |
|
902
|
|
|
|
|
|
|
exit(1); |
|
903
|
|
|
|
|
|
|
} |
|
904
|
|
|
|
|
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */ |
|
905
|
|
|
|
|
|
|
|
|
906
|
|
|
|
|
|
|
a=buf; |
|
907
|
|
|
|
|
|
|
work=a+a_sz; |
|
908
|
|
|
|
|
|
|
ipiv=(int *)(work+work_sz); |
|
909
|
|
|
|
|
|
|
|
|
910
|
|
|
|
|
|
|
/* store A into a and B into x; A is assumed to be symmetric, hence |
|
911
|
|
|
|
|
|
|
* the column and row major order representations are the same |
|
912
|
|
|
|
|
|
|
*/ |
|
913
|
|
|
|
|
|
|
for(i=0; i
|
|
914
|
|
|
|
|
|
|
a[i]=A[i]; |
|
915
|
|
|
|
|
|
|
x[i]=B[i]; |
|
916
|
|
|
|
|
|
|
} |
|
917
|
|
|
|
|
|
|
for(j=m*m; i
|
|
918
|
|
|
|
|
|
|
a[i]=A[i]; |
|
919
|
|
|
|
|
|
|
|
|
920
|
|
|
|
|
|
|
/* UDUt factorization for A */ |
|
921
|
|
|
|
|
|
|
SYTRF("U", (int *)&m, a, (int *)&m, ipiv, work, (int *)&work_sz, (int *)&info); |
|
922
|
|
|
|
|
|
|
if(info!=0){ |
|
923
|
|
|
|
|
|
|
if(info<0){ |
|
924
|
|
|
|
|
|
|
fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", SYTRF) " in ", AX_EQ_B_BK) "()\n", -info); |
|
925
|
|
|
|
|
|
|
exit(1); |
|
926
|
|
|
|
|
|
|
} |
|
927
|
|
|
|
|
|
|
else{ |
|
928
|
|
|
|
|
|
|
fprintf(stderr, RCAT(RCAT("LAPACK error: singular block diagonal matrix D for", SYTRF) " in ", AX_EQ_B_BK)"() [D(%d, %d) is zero]\n", info, info); |
|
929
|
|
|
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY |
|
930
|
|
|
|
|
|
|
free(buf); |
|
931
|
|
|
|
|
|
|
#endif |
|
932
|
|
|
|
|
|
|
|
|
933
|
|
|
|
|
|
|
return 0; |
|
934
|
|
|
|
|
|
|
} |
|
935
|
|
|
|
|
|
|
} |
|
936
|
|
|
|
|
|
|
|
|
937
|
|
|
|
|
|
|
/* solve the system with the computed factorization */ |
|
938
|
|
|
|
|
|
|
SYTRS("U", (int *)&m, (int *)&nrhs, a, (int *)&m, ipiv, x, (int *)&m, (int *)&info); |
|
939
|
|
|
|
|
|
|
if(info<0){ |
|
940
|
|
|
|
|
|
|
fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", SYTRS) " in ", AX_EQ_B_BK) "()\n", -info); |
|
941
|
|
|
|
|
|
|
exit(1); |
|
942
|
|
|
|
|
|
|
} |
|
943
|
|
|
|
|
|
|
|
|
944
|
|
|
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY |
|
945
|
|
|
|
|
|
|
free(buf); |
|
946
|
|
|
|
|
|
|
#endif |
|
947
|
|
|
|
|
|
|
|
|
948
|
|
|
|
|
|
|
return 1; |
|
949
|
|
|
|
|
|
|
} |
|
950
|
|
|
|
|
|
|
|
|
951
|
|
|
|
|
|
|
/* undefine all. IT MUST REMAIN IN THIS POSITION IN FILE */ |
|
952
|
|
|
|
|
|
|
#undef AX_EQ_B_QR |
|
953
|
|
|
|
|
|
|
#undef AX_EQ_B_QRLS |
|
954
|
|
|
|
|
|
|
#undef AX_EQ_B_CHOL |
|
955
|
|
|
|
|
|
|
#undef AX_EQ_B_LU |
|
956
|
|
|
|
|
|
|
#undef AX_EQ_B_SVD |
|
957
|
|
|
|
|
|
|
#undef AX_EQ_B_BK |
|
958
|
|
|
|
|
|
|
|
|
959
|
|
|
|
|
|
|
#undef GEQRF |
|
960
|
|
|
|
|
|
|
#undef ORGQR |
|
961
|
|
|
|
|
|
|
#undef TRTRS |
|
962
|
|
|
|
|
|
|
#undef POTF2 |
|
963
|
|
|
|
|
|
|
#undef POTRF |
|
964
|
|
|
|
|
|
|
#undef POTRS |
|
965
|
|
|
|
|
|
|
#undef GETRF |
|
966
|
|
|
|
|
|
|
#undef GETRS |
|
967
|
|
|
|
|
|
|
#undef GESVD |
|
968
|
|
|
|
|
|
|
#undef GESDD |
|
969
|
|
|
|
|
|
|
#undef SYTRF |
|
970
|
|
|
|
|
|
|
#undef SYTRS |
|
971
|
|
|
|
|
|
|
|
|
972
|
|
|
|
|
|
|
#else // no LAPACK |
|
973
|
|
|
|
|
|
|
|
|
974
|
|
|
|
|
|
|
/* precision-specific definitions */ |
|
975
|
|
|
|
|
|
|
#define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU_noLapack) |
|
976
|
|
|
|
|
|
|
|
|
977
|
|
|
|
|
|
|
/* |
|
978
|
|
|
|
|
|
|
* This function returns the solution of Ax = b |
|
979
|
|
|
|
|
|
|
* |
|
980
|
|
|
|
|
|
|
* The function employs LU decomposition followed by forward/back substitution (see |
|
981
|
|
|
|
|
|
|
* also the LAPACK-based LU solver above) |
|
982
|
|
|
|
|
|
|
* |
|
983
|
|
|
|
|
|
|
* A is mxm, b is mx1 |
|
984
|
|
|
|
|
|
|
* |
|
985
|
|
|
|
|
|
|
* The function returns 0 in case of error, 1 if successful |
|
986
|
|
|
|
|
|
|
* |
|
987
|
|
|
|
|
|
|
* This function is often called repetitively to solve problems of identical |
|
988
|
|
|
|
|
|
|
* dimensions. To avoid repetitive malloc's and free's, allocated memory is |
|
989
|
|
|
|
|
|
|
* retained between calls and free'd-malloc'ed when not of the appropriate size. |
|
990
|
|
|
|
|
|
|
* A call with NULL as the first argument forces this memory to be released. |
|
991
|
|
|
|
|
|
|
*/ |
|
992
|
102370
|
|
|
|
|
|
int AX_EQ_B_LU(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m) |
|
993
|
|
|
|
|
|
|
{ |
|
994
|
|
|
|
|
|
|
__STATIC__ void *buf=NULL; |
|
995
|
|
|
|
|
|
|
__STATIC__ int buf_sz=0; |
|
996
|
|
|
|
|
|
|
|
|
997
|
|
|
|
|
|
|
register int i, j, k; |
|
998
|
102370
|
|
|
|
|
|
int *idx, maxi=-1, idx_sz, a_sz, work_sz, tot_sz; |
|
999
|
|
|
|
|
|
|
LM_REAL *a, *work, max, sum, tmp; |
|
1000
|
|
|
|
|
|
|
|
|
1001
|
102370
|
100
|
|
|
|
|
if(!A) |
|
|
|
100
|
|
|
|
|
|
|
1002
|
|
|
|
|
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY |
|
1003
|
|
|
|
|
|
|
{ |
|
1004
|
159
|
50
|
|
|
|
|
if(buf) free(buf); |
|
|
|
50
|
|
|
|
|
|
|
1005
|
159
|
|
|
|
|
|
buf=NULL; |
|
1006
|
159
|
|
|
|
|
|
buf_sz=0; |
|
1007
|
|
|
|
|
|
|
|
|
1008
|
159
|
|
|
|
|
|
return 1; |
|
1009
|
|
|
|
|
|
|
} |
|
1010
|
|
|
|
|
|
|
#else |
|
1011
|
|
|
|
|
|
|
return 1; /* NOP */ |
|
1012
|
|
|
|
|
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */ |
|
1013
|
|
|
|
|
|
|
|
|
1014
|
|
|
|
|
|
|
/* calculate required memory size */ |
|
1015
|
102211
|
|
|
|
|
|
idx_sz=m; |
|
1016
|
102211
|
|
|
|
|
|
a_sz=m*m; |
|
1017
|
102211
|
|
|
|
|
|
work_sz=m; |
|
1018
|
102211
|
|
|
|
|
|
tot_sz=(a_sz+work_sz)*sizeof(LM_REAL) + idx_sz*sizeof(int); /* should be arranged in that order for proper doubles alignment */ |
|
1019
|
|
|
|
|
|
|
|
|
1020
|
|
|
|
|
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY |
|
1021
|
102211
|
100
|
|
|
|
|
if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */ |
|
|
|
100
|
|
|
|
|
|
|
1022
|
159
|
50
|
|
|
|
|
if(buf) free(buf); /* free previously allocated memory */ |
|
|
|
50
|
|
|
|
|
|
|
1023
|
|
|
|
|
|
|
|
|
1024
|
159
|
|
|
|
|
|
buf_sz=tot_sz; |
|
1025
|
159
|
|
|
|
|
|
buf=(void *)malloc(tot_sz); |
|
1026
|
159
|
50
|
|
|
|
|
if(!buf){ |
|
|
|
50
|
|
|
|
|
|
|
1027
|
0
|
|
|
|
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_LU) "() failed!\n"); |
|
1028
|
0
|
|
|
|
|
|
exit(1); |
|
1029
|
|
|
|
|
|
|
} |
|
1030
|
|
|
|
|
|
|
} |
|
1031
|
|
|
|
|
|
|
#else |
|
1032
|
|
|
|
|
|
|
buf_sz=tot_sz; |
|
1033
|
|
|
|
|
|
|
buf=(void *)malloc(tot_sz); |
|
1034
|
|
|
|
|
|
|
if(!buf){ |
|
1035
|
|
|
|
|
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_LU) "() failed!\n"); |
|
1036
|
|
|
|
|
|
|
exit(1); |
|
1037
|
|
|
|
|
|
|
} |
|
1038
|
|
|
|
|
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */ |
|
1039
|
|
|
|
|
|
|
|
|
1040
|
102211
|
|
|
|
|
|
a=buf; |
|
1041
|
102211
|
|
|
|
|
|
work=a+a_sz; |
|
1042
|
102211
|
|
|
|
|
|
idx=(int *)(work+work_sz); |
|
1043
|
|
|
|
|
|
|
|
|
1044
|
|
|
|
|
|
|
/* avoid destroying A, B by copying them to a, x resp. */ |
|
1045
|
427695
|
100
|
|
|
|
|
for(i=0; i
|
|
|
|
100
|
|
|
|
|
|
|
1046
|
325484
|
|
|
|
|
|
a[i]=A[i]; |
|
1047
|
325484
|
|
|
|
|
|
x[i]=B[i]; |
|
1048
|
|
|
|
|
|
|
} |
|
1049
|
911825
|
100
|
|
|
|
|
for( ; i
|
|
|
|
100
|
|
|
|
|
|
|
1050
|
|
|
|
|
|
|
/**** |
|
1051
|
|
|
|
|
|
|
for(i=0; i
|
|
1052
|
|
|
|
|
|
|
for(j=0; j
|
|
1053
|
|
|
|
|
|
|
a[i*m+j]=A[i*m+j]; |
|
1054
|
|
|
|
|
|
|
x[i]=B[i]; |
|
1055
|
|
|
|
|
|
|
} |
|
1056
|
|
|
|
|
|
|
****/ |
|
1057
|
|
|
|
|
|
|
|
|
1058
|
|
|
|
|
|
|
/* compute the LU decomposition of a row permutation of matrix a; the permutation itself is saved in idx[] */ |
|
1059
|
427695
|
100
|
|
|
|
|
for(i=0; i
|
|
|
|
100
|
|
|
|
|
|
|
1060
|
325484
|
|
|
|
|
|
max=0.0; |
|
1061
|
1460582
|
100
|
|
|
|
|
for(j=0; j
|
|
|
|
100
|
|
|
|
|
|
|
1062
|
1135098
|
100
|
|
|
|
|
if((tmp=FABS(a[i*m+j]))>max) |
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
1063
|
487239
|
|
|
|
|
|
max=tmp; |
|
1064
|
325484
|
50
|
|
|
|
|
if(max==0.0){ |
|
|
|
50
|
|
|
|
|
|
|
1065
|
0
|
|
|
|
|
|
fprintf(stderr, RCAT("Singular matrix A in ", AX_EQ_B_LU) "()!\n"); |
|
1066
|
|
|
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY |
|
1067
|
|
|
|
|
|
|
free(buf); |
|
1068
|
|
|
|
|
|
|
#endif |
|
1069
|
|
|
|
|
|
|
|
|
1070
|
0
|
|
|
|
|
|
return 0; |
|
1071
|
|
|
|
|
|
|
} |
|
1072
|
325484
|
|
|
|
|
|
work[i]=LM_CNST(1.0)/max; |
|
1073
|
|
|
|
|
|
|
} |
|
1074
|
|
|
|
|
|
|
|
|
1075
|
427695
|
100
|
|
|
|
|
for(j=0; j
|
|
|
|
100
|
|
|
|
|
|
|
1076
|
730291
|
100
|
|
|
|
|
for(i=0; i
|
|
|
|
100
|
|
|
|
|
|
|
1077
|
404807
|
|
|
|
|
|
sum=a[i*m+j]; |
|
1078
|
646813
|
100
|
|
|
|
|
for(k=0; k
|
|
|
|
100
|
|
|
|
|
|
|
1079
|
242006
|
|
|
|
|
|
sum-=a[i*m+k]*a[k*m+j]; |
|
1080
|
404807
|
|
|
|
|
|
a[i*m+j]=sum; |
|
1081
|
|
|
|
|
|
|
} |
|
1082
|
325484
|
|
|
|
|
|
max=0.0; |
|
1083
|
1055775
|
100
|
|
|
|
|
for(i=j; i
|
|
|
|
100
|
|
|
|
|
|
|
1084
|
730291
|
|
|
|
|
|
sum=a[i*m+j]; |
|
1085
|
1377104
|
100
|
|
|
|
|
for(k=0; k
|
|
|
|
100
|
|
|
|
|
|
|
1086
|
646813
|
|
|
|
|
|
sum-=a[i*m+k]*a[k*m+j]; |
|
1087
|
730291
|
|
|
|
|
|
a[i*m+j]=sum; |
|
1088
|
730291
|
100
|
|
|
|
|
if((tmp=work[i]*FABS(sum))>=max){ |
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
1089
|
387470
|
|
|
|
|
|
max=tmp; |
|
1090
|
387470
|
|
|
|
|
|
maxi=i; |
|
1091
|
|
|
|
|
|
|
} |
|
1092
|
|
|
|
|
|
|
} |
|
1093
|
325484
|
100
|
|
|
|
|
if(j!=maxi){ |
|
|
|
100
|
|
|
|
|
|
|
1094
|
306905
|
100
|
|
|
|
|
for(k=0; k
|
|
|
|
100
|
|
|
|
|
|
|
1095
|
244930
|
|
|
|
|
|
tmp=a[maxi*m+k]; |
|
1096
|
244930
|
|
|
|
|
|
a[maxi*m+k]=a[j*m+k]; |
|
1097
|
244930
|
|
|
|
|
|
a[j*m+k]=tmp; |
|
1098
|
|
|
|
|
|
|
} |
|
1099
|
61975
|
|
|
|
|
|
work[maxi]=work[j]; |
|
1100
|
|
|
|
|
|
|
} |
|
1101
|
325484
|
|
|
|
|
|
idx[j]=maxi; |
|
1102
|
325484
|
50
|
|
|
|
|
if(a[j*m+j]==0.0) |
|
|
|
50
|
|
|
|
|
|
|
1103
|
0
|
|
|
|
|
|
a[j*m+j]=LM_REAL_EPSILON; |
|
1104
|
325484
|
100
|
|
|
|
|
if(j!=m-1){ |
|
|
|
100
|
|
|
|
|
|
|
1105
|
223273
|
|
|
|
|
|
tmp=LM_CNST(1.0)/(a[j*m+j]); |
|
1106
|
628080
|
100
|
|
|
|
|
for(i=j+1; i
|
|
|
|
100
|
|
|
|
|
|
|
1107
|
404807
|
|
|
|
|
|
a[i*m+j]*=tmp; |
|
1108
|
|
|
|
|
|
|
} |
|
1109
|
|
|
|
|
|
|
} |
|
1110
|
|
|
|
|
|
|
|
|
1111
|
|
|
|
|
|
|
/* The decomposition has now replaced a. Solve the linear system using |
|
1112
|
|
|
|
|
|
|
* forward and back substitution |
|
1113
|
|
|
|
|
|
|
*/ |
|
1114
|
427695
|
100
|
|
|
|
|
for(i=k=0; i
|
|
|
|
100
|
|
|
|
|
|
|
1115
|
325484
|
|
|
|
|
|
j=idx[i]; |
|
1116
|
325484
|
|
|
|
|
|
sum=x[j]; |
|
1117
|
325484
|
|
|
|
|
|
x[j]=x[i]; |
|
1118
|
325484
|
100
|
|
|
|
|
if(k!=0) |
|
|
|
100
|
|
|
|
|
|
|
1119
|
628080
|
100
|
|
|
|
|
for(j=k-1; j
|
|
|
|
100
|
|
|
|
|
|
|
1120
|
404807
|
|
|
|
|
|
sum-=a[i*m+j]*x[j]; |
|
1121
|
|
|
|
|
|
|
else |
|
1122
|
102211
|
50
|
|
|
|
|
if(sum!=0.0) |
|
|
|
50
|
|
|
|
|
|
|
1123
|
102211
|
|
|
|
|
|
k=i+1; |
|
1124
|
325484
|
|
|
|
|
|
x[i]=sum; |
|
1125
|
|
|
|
|
|
|
} |
|
1126
|
|
|
|
|
|
|
|
|
1127
|
427695
|
100
|
|
|
|
|
for(i=m-1; i>=0; --i){ |
|
|
|
100
|
|
|
|
|
|
|
1128
|
325484
|
|
|
|
|
|
sum=x[i]; |
|
1129
|
730291
|
100
|
|
|
|
|
for(j=i+1; j
|
|
|
|
100
|
|
|
|
|
|
|
1130
|
404807
|
|
|
|
|
|
sum-=a[i*m+j]*x[j]; |
|
1131
|
325484
|
|
|
|
|
|
x[i]=sum/a[i*m+i]; |
|
1132
|
|
|
|
|
|
|
} |
|
1133
|
|
|
|
|
|
|
|
|
1134
|
|
|
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY |
|
1135
|
|
|
|
|
|
|
free(buf); |
|
1136
|
|
|
|
|
|
|
#endif |
|
1137
|
|
|
|
|
|
|
|
|
1138
|
102211
|
|
|
|
|
|
return 1; |
|
1139
|
|
|
|
|
|
|
} |
|
1140
|
|
|
|
|
|
|
|
|
1141
|
|
|
|
|
|
|
/* undefine all. IT MUST REMAIN IN THIS POSITION IN FILE */ |
|
1142
|
|
|
|
|
|
|
#undef AX_EQ_B_LU |
|
1143
|
|
|
|
|
|
|
|
|
1144
|
|
|
|
|
|
|
#endif /* HAVE_LAPACK */ |