File Coverage

d2s.c
Criterion Covered Total %
statement 168 249 67.4
branch 60 136 44.1
condition n/a
subroutine n/a
pod n/a
total 228 385 59.2


line stmt bran cond sub pod time code
1             // Copyright 2018 Ulf Adams
2             //
3             // The contents of this file may be used under the terms of the Apache License,
4             // Version 2.0.
5             //
6             // (See accompanying file LICENSE-Apache or copy at
7             // http://www.apache.org/licenses/LICENSE-2.0)
8             //
9             // Alternatively, the contents of this file may be used under the terms of
10             // the Boost Software License, Version 1.0.
11             // (See accompanying file LICENSE-Boost or copy at
12             // https://www.boost.org/LICENSE_1_0.txt)
13             //
14             // Unless required by applicable law or agreed to in writing, this software
15             // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
16             // KIND, either express or implied.
17              
18             // Runtime compiler options:
19             // -DRYU_DEBUG Generate verbose debugging output to stdout.
20             //
21             // -DRYU_ONLY_64_BIT_OPS Avoid using uint128_t or 64-bit intrinsics. Slower,
22             // depending on your compiler.
23             //
24             // -DRYU_OPTIMIZE_SIZE Use smaller lookup tables. Instead of storing every
25             // required power of 5, only store every 26th entry, and compute
26             // intermediate values with a multiplication. This reduces the lookup table
27             // size by about 10x (only one case, and only double) at the cost of some
28             // performance. Currently requires MSVC intrinsics.
29              
30             /* Sisyphus has applied some superficial changes to this file because perl has *
31             * not always honored "C99 mode". The location of the header files, relative *
32             * to the location of this file, has also changed */
33              
34             #include "ryu_headers/ryu.h"
35              
36             #include
37             #include
38             #include
39             #include
40             #include
41              
42             #ifdef RYU_DEBUG
43             #include
44             #include
45             #endif
46              
47             #include "ryu_headers/common.h"
48             #include "ryu_headers/digit_table.h"
49             #include "ryu_headers/d2s_intrinsics.h"
50              
51             // Include either the small or the full lookup tables depending on the mode.
52             #if defined(RYU_OPTIMIZE_SIZE)
53             #include "ryu_headers/d2s_small_table.h"
54             #else
55             #include "ryu_headers/d2s_full_table.h"
56             #endif
57              
58             #define DOUBLE_MANTISSA_BITS 52
59             #define DOUBLE_EXPONENT_BITS 11
60             #define DOUBLE_BIAS 1023
61              
62 2           static inline uint32_t decimalLength17(const uint64_t v) {
63             // This is slightly faster than a loop.
64             // The average output length is 16.38 digits, so we check high-to-low.
65             // Function precondition: v is not an 18, 19, or 20-digit number.
66             // (17 digits are sufficient for round-tripping.)
67 2 50         assert(v < 100000000000000000L);
68 2 100         if (v >= 10000000000000000L) { return 17; }
69 1 50         if (v >= 1000000000000000L) { return 16; }
70 1 50         if (v >= 100000000000000L) { return 15; }
71 1 50         if (v >= 10000000000000L) { return 14; }
72 1 50         if (v >= 1000000000000L) { return 13; }
73 1 50         if (v >= 100000000000L) { return 12; }
74 1 50         if (v >= 10000000000L) { return 11; }
75 1 50         if (v >= 1000000000L) { return 10; }
76 1 50         if (v >= 100000000L) { return 9; }
77 1 50         if (v >= 10000000L) { return 8; }
78 1 50         if (v >= 1000000L) { return 7; }
79 1 50         if (v >= 100000L) { return 6; }
80 1 50         if (v >= 10000L) { return 5; }
81 1 50         if (v >= 1000L) { return 4; }
82 1 50         if (v >= 100L) { return 3; }
83 1 50         if (v >= 10L) { return 2; }
84 1           return 1;
85             }
86              
87             // A floating decimal representing m * 10^e.
88             typedef struct floating_decimal_64 {
89             uint64_t mantissa;
90             // Decimal exponent's range is -324 to 308
91             // inclusive, and can fit in a short if needed.
92             int32_t exponent;
93             } floating_decimal_64;
94              
95 2           static inline floating_decimal_64 d2d(const uint64_t ieeeMantissa, const uint32_t ieeeExponent) {
96             int32_t e2;
97             uint64_t m2;
98 2 100         if (ieeeExponent == 0) {
99             // We subtract 2 so that the bounds computation has 2 additional bits.
100 1           e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
101 1           m2 = ieeeMantissa;
102             } else {
103 1           e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
104 1           m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
105             }
106 2           const bool even = (m2 & 1) == 0;
107 2           const bool acceptBounds = even;
108              
109             #ifdef RYU_DEBUG
110 2           printf("-> %" PRIu64 " * 2^%d\n", m2, e2 + 2);
111             #endif
112              
113             // Step 2: Determine the interval of valid decimal representations.
114 2           const uint64_t mv = 4 * m2;
115             // Implicit bool -> int conversion. True is 1, false is 0.
116 2 50         const uint32_t mmShift = ieeeMantissa != 0 || ieeeExponent <= 1;
    0          
117             // We would compute mp and mm like this:
118             // uint64_t mp = 4 * m2 + 2;
119             // uint64_t mm = mv - 1 - mmShift;
120              
121             // Step 3: Convert to a decimal power base using 128-bit arithmetic.
122             uint64_t vr, vp, vm;
123             int32_t e10;
124 2           bool vmIsTrailingZeros = false;
125 2           bool vrIsTrailingZeros = false;
126 2 50         if (e2 >= 0) {
127             // I tried special-casing q == 0, but there was no effect on performance.
128             // This expression is slightly faster than max(0, log10Pow2(e2) - 1).
129 0           const uint32_t q = log10Pow2(e2) - (e2 > 3);
130 0           e10 = (int32_t) q;
131 0           const int32_t k = DOUBLE_POW5_INV_BITCOUNT + pow5bits((int32_t) q) - 1;
132 0           const int32_t i = -e2 + (int32_t) q + k;
133             #if defined(RYU_OPTIMIZE_SIZE)
134             uint64_t pow5[2];
135             double_computeInvPow5(q, pow5);
136             vr = mulShiftAll64(m2, pow5, i, &vp, &vm, mmShift);
137             #else
138 0           vr = mulShiftAll64(m2, DOUBLE_POW5_INV_SPLIT[q], i, &vp, &vm, mmShift);
139             #endif
140             #ifdef RYU_DEBUG
141 0           printf("%" PRIu64 " * 2^%d / 10^%u\n", mv, e2, q);
142 0           printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
143             #endif
144 0 0         if (q <= 21) {
145             // This should use q <= 22, but I think 21 is also safe. Smaller values
146             // may still be safe, but it's more difficult to reason about them.
147             // Only one of mp, mv, and mm can be a multiple of 5, if any.
148 0           const uint32_t mvMod5 = ((uint32_t) mv) - 5 * ((uint32_t) div5(mv));
149 0 0         if (mvMod5 == 0) {
150 0           vrIsTrailingZeros = multipleOfPowerOf5(mv, q);
151 0 0         } else if (acceptBounds) {
152             // Same as min(e2 + (~mm & 1), pow5Factor(mm)) >= q
153             // <=> e2 + (~mm & 1) >= q && pow5Factor(mm) >= q
154             // <=> true && pow5Factor(mm) >= q, since e2 >= q.
155 0           vmIsTrailingZeros = multipleOfPowerOf5(mv - 1 - mmShift, q);
156             } else {
157             // Same as min(e2 + 1, pow5Factor(mp)) >= q.
158 0           vp -= multipleOfPowerOf5(mv + 2, q);
159             }
160             }
161             } else {
162             // This expression is slightly faster than max(0, log10Pow5(-e2) - 1).
163 2           const uint32_t q = log10Pow5(-e2) - (-e2 > 1);
164 2           e10 = (int32_t) q + e2;
165 2           const int32_t i = -e2 - (int32_t) q;
166 2           const int32_t k = pow5bits(i) - DOUBLE_POW5_BITCOUNT;
167 2           const int32_t j = (int32_t) q - k;
168             #if defined(RYU_OPTIMIZE_SIZE)
169             uint64_t pow5[2];
170             double_computePow5(i, pow5);
171             vr = mulShiftAll64(m2, pow5, j, &vp, &vm, mmShift);
172             #else
173 2           vr = mulShiftAll64(m2, DOUBLE_POW5_SPLIT[i], j, &vp, &vm, mmShift);
174             #endif
175             #ifdef RYU_DEBUG
176 2           printf("%" PRIu64 " * 5^%d / 10^%u\n", mv, -e2, q);
177 2           printf("%u %d %d %d\n", q, i, k, j);
178 2           printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
179             #endif
180 2 50         if (q <= 1) {
181             // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
182             // mv = 4 * m2, so it always has at least two trailing 0 bits.
183 0           vrIsTrailingZeros = true;
184 0 0         if (acceptBounds) {
185             // mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1.
186 0           vmIsTrailingZeros = mmShift == 1;
187             } else {
188             // mp = mv + 2, so it always has at least one trailing 0 bit.
189 0           --vp;
190             }
191 2 100         } else if (q < 63) { // TODO(ulfjack): Use a tighter bound here.
192             // We want to know if the full product has at least q trailing zeros.
193             // We need to compute min(p2(mv), p5(mv) - e2) >= q
194             // <=> p2(mv) >= q && p5(mv) - e2 >= q
195             // <=> p2(mv) >= q (because -e2 >= q)
196 1           vrIsTrailingZeros = multipleOfPowerOf2(mv, q);
197             #ifdef RYU_DEBUG
198 1 50         printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
199             #endif
200             }
201             }
202             #ifdef RYU_DEBUG
203 2           printf("e10=%d\n", e10);
204 2           printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
205 2 50         printf("vm is trailing zeros=%s\n", vmIsTrailingZeros ? "true" : "false");
206 2 50         printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
207             #endif
208              
209             // Step 4: Find the shortest decimal representation in the interval of valid representations.
210 2           int32_t removed = 0;
211 2           uint8_t lastRemovedDigit = 0;
212             uint64_t output;
213             // On average, we remove ~2 digits.
214 2 50         if (vmIsTrailingZeros || vrIsTrailingZeros) {
    50          
215             // General case, which happens rarely (~0.7%).
216             for (;;) {
217 0           const uint64_t vpDiv10 = div10(vp);
218 0           const uint64_t vmDiv10 = div10(vm);
219 0 0         if (vpDiv10 <= vmDiv10) {
220 0           break;
221             }
222 0           const uint32_t vmMod10 = ((uint32_t) vm) - 10 * ((uint32_t) vmDiv10);
223 0           const uint64_t vrDiv10 = div10(vr);
224 0           const uint32_t vrMod10 = ((uint32_t) vr) - 10 * ((uint32_t) vrDiv10);
225 0           vmIsTrailingZeros &= vmMod10 == 0;
226 0           vrIsTrailingZeros &= lastRemovedDigit == 0;
227 0           lastRemovedDigit = (uint8_t) vrMod10;
228 0           vr = vrDiv10;
229 0           vp = vpDiv10;
230 0           vm = vmDiv10;
231 0           ++removed;
232 0           }
233             #ifdef RYU_DEBUG
234 0           printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
235 0 0         printf("d-10=%s\n", vmIsTrailingZeros ? "true" : "false");
236             #endif
237 0 0         if (vmIsTrailingZeros) {
238             for (;;) {
239 0           const uint64_t vmDiv10 = div10(vm);
240 0           const uint32_t vmMod10 = ((uint32_t) vm) - 10 * ((uint32_t) vmDiv10);
241 0 0         if (vmMod10 != 0) {
242 0           break;
243             }
244 0           const uint64_t vpDiv10 = div10(vp);
245 0           const uint64_t vrDiv10 = div10(vr);
246 0           const uint32_t vrMod10 = ((uint32_t) vr) - 10 * ((uint32_t) vrDiv10);
247 0           vrIsTrailingZeros &= lastRemovedDigit == 0;
248 0           lastRemovedDigit = (uint8_t) vrMod10;
249 0           vr = vrDiv10;
250 0           vp = vpDiv10;
251 0           vm = vmDiv10;
252 0           ++removed;
253 0           }
254             }
255             #ifdef RYU_DEBUG
256 0           printf("%" PRIu64 " %d\n", vr, lastRemovedDigit);
257 0 0         printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
258             #endif
259 0 0         if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0) {
    0          
    0          
260             // Round even if the exact number is .....50..0.
261 0           lastRemovedDigit = 4;
262             }
263             // We need to take vr + 1 if vr is outside bounds or we need to round up.
264 0 0         output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5);
    0          
    0          
    0          
265             } else {
266             // Specialized for the common case (~99.3%). Percentages below are relative to this.
267 2           bool roundUp = false;
268 2           const uint64_t vpDiv100 = div100(vp);
269 2           const uint64_t vmDiv100 = div100(vm);
270 2 100         if (vpDiv100 > vmDiv100) { // Optimization: remove two digits at a time (~86.2%).
271 1           const uint64_t vrDiv100 = div100(vr);
272 1           const uint32_t vrMod100 = ((uint32_t) vr) - 100 * ((uint32_t) vrDiv100);
273 1           roundUp = vrMod100 >= 50;
274 1           vr = vrDiv100;
275 1           vp = vpDiv100;
276 1           vm = vmDiv100;
277 1           removed += 2;
278             }
279             // Loop iterations below (approximately), without optimization above:
280             // 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02%
281             // Loop iterations below (approximately), with optimization above:
282             // 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
283             for (;;) {
284 3           const uint64_t vpDiv10 = div10(vp);
285 3           const uint64_t vmDiv10 = div10(vm);
286 3 100         if (vpDiv10 <= vmDiv10) {
287 2           break;
288             }
289 1           const uint64_t vrDiv10 = div10(vr);
290 1           const uint32_t vrMod10 = ((uint32_t) vr) - 10 * ((uint32_t) vrDiv10);
291 1           roundUp = vrMod10 >= 5;
292 1           vr = vrDiv10;
293 1           vp = vpDiv10;
294 1           vm = vmDiv10;
295 1           ++removed;
296 1           }
297             #ifdef RYU_DEBUG
298 2 50         printf("%" PRIu64 " roundUp=%s\n", vr, roundUp ? "true" : "false");
299 2 50         printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
300             #endif
301             // We need to take vr + 1 if vr is outside bounds or we need to round up.
302 2 50         output = vr + (vr == vm || roundUp);
    50          
303             }
304 2           const int32_t exp = e10 + removed;
305              
306             #ifdef RYU_DEBUG
307 2           printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
308 2           printf("O=%" PRIu64 "\n", output);
309 2           printf("EXP=%d\n", exp);
310             #endif
311              
312             floating_decimal_64 fd;
313 2           fd.exponent = exp;
314 2           fd.mantissa = output;
315 2           return fd;
316             }
317              
318 2           static inline int to_chars(const floating_decimal_64 v, const bool sign, char* const result) {
319             // Step 5: Print the decimal representation.
320 2           int index = 0;
321 2 50         if (sign) {
322 0           result[index++] = '-';
323             }
324              
325 2           uint64_t output = v.mantissa;
326 2           const uint32_t olength = decimalLength17(output);
327              
328             #ifdef RYU_DEBUG
329 2           printf("DIGITS=%" PRIu64 "\n", v.mantissa);
330 2           printf("OLEN=%u\n", olength);
331 2           printf("EXP=%u\n", v.exponent + olength);
332             #endif
333              
334             // Print the decimal digits.
335             // The following code is equivalent to:
336             // for (uint32_t i = 0; i < olength - 1; ++i) {
337             // const uint32_t c = output % 10; output /= 10;
338             // result[index + olength - i] = (char) ('0' + c);
339             // }
340             // result[index] = '0' + output % 10;
341              
342 2           uint32_t i = 0;
343             // We prefer 32-bit operations, even on 64-bit platforms.
344             // We have at most 17 digits, and uint32_t can store 9 digits.
345             // If output doesn't fit into uint32_t, we cut off 8 digits,
346             // so the rest will fit into uint32_t.
347 2 100         if ((output >> 32) != 0) {
348             // Expensive 64-bit division.
349 1           const uint64_t q = div1e8(output);
350 1           uint32_t output2 = ((uint32_t) output) - 100000000 * ((uint32_t) q);
351 1           output = q;
352              
353 1           const uint32_t c = output2 % 10000;
354 1           output2 /= 10000;
355 1           const uint32_t d = output2 % 10000;
356 1           const uint32_t c0 = (c % 100) << 1;
357 1           const uint32_t c1 = (c / 100) << 1;
358 1           const uint32_t d0 = (d % 100) << 1;
359 1           const uint32_t d1 = (d / 100) << 1;
360 1           memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2);
361 1           memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2);
362 1           memcpy(result + index + olength - i - 5, DIGIT_TABLE + d0, 2);
363 1           memcpy(result + index + olength - i - 7, DIGIT_TABLE + d1, 2);
364 1           i += 8;
365             }
366 2           uint32_t output2 = (uint32_t) output;
367 4 100         while (output2 >= 10000) {
368             #ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217
369             const uint32_t c = output2 - 10000 * (output2 / 10000);
370             #else
371 2           const uint32_t c = output2 % 10000;
372             #endif
373 2           output2 /= 10000;
374 2           const uint32_t c0 = (c % 100) << 1;
375 2           const uint32_t c1 = (c / 100) << 1;
376 2           memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2);
377 2           memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2);
378 2           i += 4;
379             }
380 2 50         if (output2 >= 100) {
381 0           const uint32_t c = (output2 % 100) << 1;
382 0           output2 /= 100;
383 0           memcpy(result + index + olength - i - 1, DIGIT_TABLE + c, 2);
384 0           i += 2;
385             }
386 2 50         if (output2 >= 10) {
387 0           const uint32_t c = output2 << 1;
388             // We can't use memcpy here: the decimal dot goes between these two digits.
389 0           result[index + olength - i] = DIGIT_TABLE[c + 1];
390 0           result[index] = DIGIT_TABLE[c];
391             } else {
392 2           result[index] = (char) ('0' + output2);
393             }
394              
395             // Print decimal point if needed.
396 2 100         if (olength > 1) {
397 1           result[index + 1] = '.';
398 1           index += olength + 1;
399             } else {
400 1           ++index;
401             }
402              
403             // Print the exponent.
404 2           result[index++] = 'E';
405 2           int32_t exp = v.exponent + (int32_t) olength - 1;
406 2 50         if (exp < 0) {
407 2           result[index++] = '-';
408 2           exp = -exp;
409             }
410              
411 2 100         if (exp >= 100) {
412 1           const int32_t c = exp % 10;
413 1           memcpy(result + index, DIGIT_TABLE + 2 * (exp / 10), 2);
414 1           result[index + 2] = (char) ('0' + c);
415 1           index += 3;
416 1 50         } else if (exp >= 10) {
417 0           memcpy(result + index, DIGIT_TABLE + 2 * exp, 2);
418 0           index += 2;
419             } else {
420 1           result[index++] = (char) ('0' + exp);
421             }
422              
423 2           return index;
424             }
425              
426 2           static inline bool d2d_small_int(const uint64_t ieeeMantissa, const uint32_t ieeeExponent,
427             floating_decimal_64* const v) {
428 2           const uint64_t m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
429 2           const int32_t e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS;
430              
431 2 50         if (e2 > 0) {
432             // f = m2 * 2^e2 >= 2^53 is an integer.
433             // Ignore this case for now.
434 0           return false;
435             }
436              
437 2 50         if (e2 < -52) {
438             // f < 1.
439 2           return false;
440             }
441              
442             // Since 2^52 <= m2 < 2^53 and 0 <= -e2 <= 52: 1 <= f = m2 / 2^-e2 < 2^53.
443             // Test if the lower -e2 bits of the significand are 0, i.e. whether the fraction is 0.
444 0           const uint64_t mask = (1ull << -e2) - 1;
445 0           const uint64_t fraction = m2 & mask;
446 0 0         if (fraction != 0) {
447 0           return false;
448             }
449              
450             // f is an integer in the range [1, 2^53).
451             // Note: mantissa might contain trailing (decimal) 0's.
452             // Note: since 2^53 < 10^16, there is no need to adjust decimalLength17().
453 0           v->mantissa = m2 >> -e2;
454 0           v->exponent = 0;
455 0           return true;
456             }
457              
458 2           int d2s_buffered_n(double f, char* result) {
459             // Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
460 2           const uint64_t bits = double_to_bits(f);
461              
462             #ifdef RYU_DEBUG
463             int32_t bit;
464 2           printf("IN=");
465 130 100         for (bit = 63; bit >= 0; --bit) {
466 128           printf("%d", (int) ((bits >> bit) & 1));
467             }
468 2           printf("\n");
469             #endif
470              
471             // Decode bits into sign, mantissa, and exponent.
472 2           const bool ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0;
473 2           const uint64_t ieeeMantissa = bits & ((1ull << DOUBLE_MANTISSA_BITS) - 1);
474 2           const uint32_t ieeeExponent = (uint32_t) ((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1));
475             // Case distinction; exit early for the easy cases.
476 2 50         if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0)) {
    100          
    50          
477 0           return copy_special_str(result, ieeeSign, ieeeExponent, ieeeMantissa);
478             }
479              
480             floating_decimal_64 v;
481 2           const bool isSmallInt = d2d_small_int(ieeeMantissa, ieeeExponent, &v);
482 2 50         if (isSmallInt) {
483             // For small integers in the range [1, 2^53), v.mantissa might contain trailing (decimal) zeros.
484             // For scientific notation we need to move these zeros into the exponent.
485             // (This is not needed for fixed-point notation, so it might be beneficial to trim
486             // trailing zeros in to_chars only if needed - once fixed-point notation output is implemented.)
487             for (;;) {
488 0           const uint64_t q = div10(v.mantissa);
489 0           const uint32_t r = ((uint32_t) v.mantissa) - 10 * ((uint32_t) q);
490 0 0         if (r != 0) {
491 0           break;
492             }
493 0           v.mantissa = q;
494 0           ++v.exponent;
495 0           }
496             } else {
497 2           v = d2d(ieeeMantissa, ieeeExponent);
498             }
499              
500 2           return to_chars(v, ieeeSign, result);
501             }
502              
503 2           void d2s_buffered(double f, char* result) {
504 2           const int index = d2s_buffered_n(f, result);
505              
506             // Terminate the string.
507 2           result[index] = '\0';
508 2           }
509              
510 2           char* d2s(double f) {
511 2           char* const result = (char*) malloc(25);
512 2           d2s_buffered(f, result);
513 2           return result;
514             }