| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Math::Prime::Util::PP; |
|
2
|
40
|
|
|
40
|
|
1256442
|
use strict; |
|
|
40
|
|
|
|
|
98
|
|
|
|
40
|
|
|
|
|
1406
|
|
|
3
|
40
|
|
|
40
|
|
224
|
use warnings; |
|
|
40
|
|
|
|
|
95
|
|
|
|
40
|
|
|
|
|
1451
|
|
|
4
|
40
|
|
|
40
|
|
223
|
use Carp qw/carp croak confess/; |
|
|
40
|
|
|
|
|
84
|
|
|
|
40
|
|
|
|
|
3608
|
|
|
5
|
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
BEGIN { |
|
7
|
40
|
|
|
40
|
|
185
|
$Math::Prime::Util::PP::AUTHORITY = 'cpan:DANAJ'; |
|
8
|
40
|
|
|
|
|
2088
|
$Math::Prime::Util::PP::VERSION = '0.73'; |
|
9
|
|
|
|
|
|
|
} |
|
10
|
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
BEGIN { |
|
12
|
40
|
100
|
|
40
|
|
669
|
do { require Math::BigInt; Math::BigInt->import(try=>"GMP,Pari"); } |
|
|
28
|
|
|
|
|
31244
|
|
|
|
28
|
|
|
|
|
708043
|
|
|
13
|
|
|
|
|
|
|
unless defined $Math::BigInt::VERSION; |
|
14
|
|
|
|
|
|
|
} |
|
15
|
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
# The Pure Perl versions of all the Math::Prime::Util routines. |
|
17
|
|
|
|
|
|
|
# |
|
18
|
|
|
|
|
|
|
# Some of these will be relatively similar in performance, some will be |
|
19
|
|
|
|
|
|
|
# very slow in comparison. |
|
20
|
|
|
|
|
|
|
# |
|
21
|
|
|
|
|
|
|
# Most of these are pretty simple. Also, you really should look at the C |
|
22
|
|
|
|
|
|
|
# code for more detailed comments, including references to papers. |
|
23
|
|
|
|
|
|
|
|
|
24
|
0
|
|
|
|
|
0
|
BEGIN { |
|
25
|
40
|
|
|
40
|
|
715535
|
use constant OLD_PERL_VERSION=> $] < 5.008; |
|
|
40
|
|
|
|
|
106
|
|
|
|
40
|
|
|
|
|
3114
|
|
|
26
|
40
|
|
|
40
|
|
262
|
use constant MPU_MAXBITS => (~0 == 4294967295) ? 32 : 64; |
|
|
40
|
|
|
|
|
87
|
|
|
|
40
|
|
|
|
|
2091
|
|
|
27
|
40
|
|
|
40
|
|
248
|
use constant MPU_64BIT => MPU_MAXBITS == 64; |
|
|
40
|
|
|
|
|
94
|
|
|
|
40
|
|
|
|
|
2024
|
|
|
28
|
40
|
|
|
40
|
|
241
|
use constant MPU_32BIT => MPU_MAXBITS == 32; |
|
|
40
|
|
|
|
|
98
|
|
|
|
40
|
|
|
|
|
1921
|
|
|
29
|
|
|
|
|
|
|
#use constant MPU_MAXPARAM => MPU_32BIT ? 4294967295 : 18446744073709551615; |
|
30
|
|
|
|
|
|
|
#use constant MPU_MAXDIGITS => MPU_32BIT ? 10 : 20; |
|
31
|
40
|
|
|
40
|
|
255
|
use constant MPU_MAXPRIME => MPU_32BIT ? 4294967291 : 18446744073709551557; |
|
|
40
|
|
|
|
|
96
|
|
|
|
40
|
|
|
|
|
1918
|
|
|
32
|
40
|
|
|
40
|
|
255
|
use constant MPU_MAXPRIMEIDX => MPU_32BIT ? 203280221 : 425656284035217743; |
|
|
40
|
|
|
|
|
79
|
|
|
|
40
|
|
|
|
|
1971
|
|
|
33
|
40
|
|
|
40
|
|
250
|
use constant MPU_HALFWORD => MPU_32BIT ? 65536 : OLD_PERL_VERSION ? 33554432 : 4294967296; |
|
|
40
|
|
|
|
|
119
|
|
|
|
40
|
|
|
|
|
2176
|
|
|
34
|
40
|
|
|
40
|
|
285
|
use constant UVPACKLET => MPU_32BIT ? 'L' : 'Q'; |
|
|
40
|
|
|
|
|
98
|
|
|
|
40
|
|
|
|
|
2729
|
|
|
35
|
40
|
|
|
40
|
|
256
|
use constant MPU_INFINITY => (65535 > 0+'inf') ? 20**20**20 : 0+'inf'; |
|
|
40
|
|
|
|
|
91
|
|
|
|
40
|
|
|
|
|
2216
|
|
|
36
|
40
|
|
|
40
|
|
250
|
use constant BZERO => Math::BigInt->bzero; |
|
|
40
|
|
|
|
|
88
|
|
|
|
40
|
|
|
|
|
347
|
|
|
37
|
40
|
|
|
40
|
|
6953
|
use constant BONE => Math::BigInt->bone; |
|
|
40
|
|
|
|
|
146
|
|
|
|
40
|
|
|
|
|
334
|
|
|
38
|
40
|
|
|
40
|
|
4740
|
use constant BTWO => Math::BigInt->new(2); |
|
|
40
|
|
|
|
|
182
|
|
|
|
40
|
|
|
|
|
412
|
|
|
39
|
40
|
|
|
40
|
|
5232
|
use constant INTMAX => (!OLD_PERL_VERSION || MPU_32BIT) ? ~0 : 562949953421312; |
|
|
40
|
|
|
|
|
269
|
|
|
|
40
|
|
|
|
|
2659
|
|
|
40
|
40
|
|
|
40
|
|
706
|
use constant BMAX => Math::BigInt->new('' . INTMAX); |
|
|
40
|
|
|
|
|
190
|
|
|
|
40
|
|
|
|
|
313
|
|
|
41
|
40
|
|
|
40
|
|
5232
|
use constant B_PRIM767 => Math::BigInt->new("261944051702675568529303"); |
|
|
40
|
|
|
|
|
94
|
|
|
|
40
|
|
|
|
|
205
|
|
|
42
|
40
|
|
|
40
|
|
4622
|
use constant B_PRIM235 => Math::BigInt->new("30"); |
|
|
40
|
|
|
|
|
85
|
|
|
|
40
|
|
|
|
|
169
|
|
|
43
|
40
|
|
|
40
|
|
3929
|
use constant PI_TIMES_8 => 25.13274122871834590770114707; |
|
|
40
|
|
|
0
|
|
105
|
|
|
|
40
|
|
|
|
|
772863
|
|
|
44
|
|
|
|
|
|
|
} |
|
45
|
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
my $_precalc_size = 0; |
|
47
|
|
|
|
|
|
|
sub prime_precalc { |
|
48
|
0
|
|
|
0
|
0
|
0
|
my($n) = @_; |
|
49
|
0
|
0
|
|
|
|
0
|
croak "Parameter '$n' must be a positive integer" unless _is_positive_int($n); |
|
50
|
0
|
0
|
|
|
|
0
|
$_precalc_size = $n if $n > $_precalc_size; |
|
51
|
|
|
|
|
|
|
} |
|
52
|
|
|
|
|
|
|
sub prime_memfree { |
|
53
|
10
|
|
|
10
|
0
|
45
|
$_precalc_size = 0; |
|
54
|
10
|
50
|
33
|
|
|
54
|
eval { Math::Prime::Util::GMP::_GMP_memfree(); } |
|
|
0
|
|
|
|
|
0
|
|
|
55
|
|
|
|
|
|
|
if defined $Math::Prime::Util::GMP::VERSION && $Math::Prime::Util::GMP::VERSION >= 0.49; |
|
56
|
|
|
|
|
|
|
} |
|
57
|
5
|
|
|
5
|
|
17
|
sub _get_prime_cache_size { $_precalc_size } |
|
58
|
0
|
|
|
0
|
|
0
|
sub _prime_memfreeall { prime_memfree; } |
|
59
|
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
|
|
61
|
|
|
|
|
|
|
sub _is_positive_int { |
|
62
|
0
|
0
|
0
|
0
|
|
0
|
((defined $_[0]) && $_[0] ne '' && ($_[0] !~ tr/0123456789//c)); |
|
63
|
|
|
|
|
|
|
} |
|
64
|
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
sub _bigint_to_int { |
|
66
|
|
|
|
|
|
|
#if (OLD_PERL_VERSION) { |
|
67
|
|
|
|
|
|
|
# my $pack = ($_[0] < 0) ? lc(UVPACKLET) : UVPACKLET; |
|
68
|
|
|
|
|
|
|
# return unpack($pack,pack($pack,"$_[0]")); |
|
69
|
|
|
|
|
|
|
#} |
|
70
|
16602
|
|
|
16602
|
|
1388287
|
int("$_[0]"); |
|
71
|
|
|
|
|
|
|
} |
|
72
|
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
sub _upgrade_to_float { |
|
74
|
1012
|
100
|
|
1012
|
|
5147
|
do { require Math::BigFloat; Math::BigFloat->import(); } |
|
|
1
|
|
|
|
|
1011
|
|
|
|
1
|
|
|
|
|
23737
|
|
|
75
|
|
|
|
|
|
|
if !defined $Math::BigFloat::VERSION; |
|
76
|
1012
|
|
|
|
|
4871
|
Math::BigFloat->new(@_); |
|
77
|
|
|
|
|
|
|
} |
|
78
|
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
# Get the accuracy of variable x, or the max default from BigInt/BigFloat |
|
80
|
|
|
|
|
|
|
# One might think to use ref($x)->accuracy() but numbers get upgraded and |
|
81
|
|
|
|
|
|
|
# downgraded willy-nilly, and it will do the wrong thing from the user's |
|
82
|
|
|
|
|
|
|
# perspective. |
|
83
|
|
|
|
|
|
|
sub _find_big_acc { |
|
84
|
34
|
|
|
34
|
|
95
|
my($x) = @_; |
|
85
|
34
|
|
|
|
|
67
|
my $b; |
|
86
|
|
|
|
|
|
|
|
|
87
|
34
|
50
|
|
|
|
219
|
$b = $x->accuracy() if ref($x) =~ /^Math::Big/; |
|
88
|
34
|
100
|
|
|
|
415
|
return $b if defined $b; |
|
89
|
|
|
|
|
|
|
|
|
90
|
15
|
|
|
|
|
75
|
my ($i,$f) = (Math::BigInt->accuracy(), Math::BigFloat->accuracy()); |
|
91
|
15
|
0
|
33
|
|
|
356
|
return (($i > $f) ? $i : $f) if defined $i && defined $f; |
|
|
|
50
|
|
|
|
|
|
|
92
|
15
|
50
|
|
|
|
62
|
return $i if defined $i; |
|
93
|
15
|
50
|
|
|
|
53
|
return $f if defined $f; |
|
94
|
|
|
|
|
|
|
|
|
95
|
15
|
|
|
|
|
79
|
($i,$f) = (Math::BigInt->div_scale(), Math::BigFloat->div_scale()); |
|
96
|
15
|
50
|
33
|
|
|
460
|
return (($i > $f) ? $i : $f) if defined $i && defined $f; |
|
|
|
50
|
|
|
|
|
|
|
97
|
15
|
0
|
|
|
|
0
|
return $i if defined $i; |
|
98
|
15
|
0
|
|
|
|
0
|
return $f if defined $f; |
|
99
|
15
|
|
|
|
|
0
|
return 18; |
|
100
|
|
|
|
|
|
|
} |
|
101
|
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
sub _bfdigits { |
|
103
|
0
|
|
|
0
|
|
0
|
my($wantbf, $xdigits) = (0, 17); |
|
104
|
0
|
0
|
0
|
|
|
0
|
if (defined $bignum::VERSION || ref($_[0]) =~ /^Math::Big/) { |
|
105
|
0
|
0
|
|
|
|
0
|
do { require Math::BigFloat; Math::BigFloat->import(); } |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
106
|
|
|
|
|
|
|
if !defined $Math::BigFloat::VERSION; |
|
107
|
0
|
0
|
|
|
|
0
|
if (ref($_[0]) eq 'Math::BigInt') { |
|
108
|
0
|
|
|
|
|
0
|
my $xacc = ($_[0])->accuracy(); |
|
109
|
0
|
|
|
|
|
0
|
$_[0] = Math::BigFloat->new($_[0]); |
|
110
|
0
|
0
|
|
|
|
0
|
($_[0])->accuracy($xacc) if $xacc; |
|
111
|
|
|
|
|
|
|
} |
|
112
|
0
|
0
|
|
|
|
0
|
$_[0] = Math::BigFloat->new("$_[0]") if ref($_[0]) ne 'Math::BigFloat'; |
|
113
|
0
|
|
|
|
|
0
|
$wantbf = _find_big_acc($_[0]); |
|
114
|
0
|
|
|
|
|
0
|
$xdigits = $wantbf; |
|
115
|
|
|
|
|
|
|
} |
|
116
|
0
|
|
|
|
|
0
|
($wantbf, $xdigits); |
|
117
|
|
|
|
|
|
|
} |
|
118
|
|
|
|
|
|
|
|
|
119
|
|
|
|
|
|
|
|
|
120
|
|
|
|
|
|
|
sub _validate_num { |
|
121
|
269
|
|
|
269
|
|
725
|
my($n, $min, $max) = @_; |
|
122
|
269
|
50
|
|
|
|
890
|
croak "Parameter must be defined" if !defined $n; |
|
123
|
269
|
100
|
|
|
|
886
|
return 0 if ref($n); |
|
124
|
236
|
50
|
33
|
|
|
1227
|
croak "Parameter '$n' must be a positive integer" |
|
|
|
|
33
|
|
|
|
|
|
125
|
|
|
|
|
|
|
if $n eq '' || ($n =~ tr/0123456789//c && $n !~ /^\+\d+$/); |
|
126
|
236
|
50
|
33
|
|
|
864
|
croak "Parameter '$n' must be >= $min" if defined $min && $n < $min; |
|
127
|
236
|
50
|
33
|
|
|
654
|
croak "Parameter '$n' must be <= $max" if defined $max && $n > $max; |
|
128
|
236
|
50
|
|
|
|
769
|
substr($_[0],0,1,'') if substr($n,0,1) eq '+'; |
|
129
|
236
|
100
|
66
|
|
|
819
|
return 0 unless $n < ~0 || int($n) eq ''.~0; |
|
130
|
232
|
|
|
|
|
598
|
1; |
|
131
|
|
|
|
|
|
|
} |
|
132
|
|
|
|
|
|
|
|
|
133
|
|
|
|
|
|
|
sub _validate_positive_integer { |
|
134
|
16409
|
|
|
16409
|
|
28525
|
my($n, $min, $max) = @_; |
|
135
|
16409
|
50
|
|
|
|
32271
|
croak "Parameter must be defined" if !defined $n; |
|
136
|
16409
|
50
|
|
|
|
32541
|
if (ref($n) eq 'CODE') { |
|
137
|
0
|
|
|
|
|
0
|
$_[0] = $_[0]->(); |
|
138
|
0
|
|
|
|
|
0
|
$n = $_[0]; |
|
139
|
|
|
|
|
|
|
} |
|
140
|
16409
|
100
|
|
|
|
38008
|
if (ref($n) eq 'Math::BigInt') { |
|
|
|
50
|
|
|
|
|
|
|
141
|
727
|
50
|
33
|
|
|
2675
|
croak "Parameter '$n' must be a positive integer" |
|
142
|
|
|
|
|
|
|
if $n->sign() ne '+' || !$n->is_int(); |
|
143
|
727
|
100
|
|
|
|
13838
|
$_[0] = _bigint_to_int($_[0]) if $n <= BMAX; |
|
144
|
|
|
|
|
|
|
} elsif (ref($n) eq 'Math::GMPz') { |
|
145
|
0
|
0
|
|
|
|
0
|
croak "Parameter '$n' must be a positive integer" if Math::GMPz::Rmpz_sgn($n) < 0; |
|
146
|
0
|
0
|
|
|
|
0
|
$_[0] = _bigint_to_int($_[0]) if $n <= INTMAX; |
|
147
|
|
|
|
|
|
|
} else { |
|
148
|
15682
|
|
|
|
|
26454
|
my $strn = "$n"; |
|
149
|
15682
|
50
|
|
|
|
28925
|
if ($strn eq '-0') { $_[0] = 0; $strn = '0'; } |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
150
|
15682
|
100
|
66
|
|
|
50020
|
croak "Parameter '$strn' must be a positive integer" |
|
|
|
|
66
|
|
|
|
|
|
151
|
|
|
|
|
|
|
if $strn eq '' || ($strn =~ tr/0123456789//c && $strn !~ /^\+?\d+$/); |
|
152
|
15681
|
100
|
|
|
|
30124
|
if ($n <= INTMAX) { |
|
153
|
15547
|
50
|
|
|
|
30846
|
$_[0] = $strn if ref($n); |
|
154
|
|
|
|
|
|
|
} else { |
|
155
|
134
|
|
|
|
|
589
|
$_[0] = Math::BigInt->new($strn) |
|
156
|
|
|
|
|
|
|
} |
|
157
|
|
|
|
|
|
|
} |
|
158
|
16408
|
50
|
66
|
|
|
72447
|
$_[0]->upgrade(undef) if ref($_[0]) eq 'Math::BigInt' && $_[0]->upgrade(); |
|
159
|
16408
|
50
|
66
|
|
|
42134
|
croak "Parameter '$_[0]' must be >= $min" if defined $min && $_[0] < $min; |
|
160
|
16408
|
50
|
33
|
|
|
31728
|
croak "Parameter '$_[0]' must be <= $max" if defined $max && $_[0] > $max; |
|
161
|
16408
|
|
|
|
|
23009
|
1; |
|
162
|
|
|
|
|
|
|
} |
|
163
|
|
|
|
|
|
|
|
|
164
|
|
|
|
|
|
|
sub _validate_integer { |
|
165
|
1215
|
|
|
1215
|
|
2333
|
my($n) = @_; |
|
166
|
1215
|
50
|
|
|
|
2583
|
croak "Parameter must be defined" if !defined $n; |
|
167
|
1215
|
50
|
|
|
|
2990
|
if (ref($n) eq 'CODE') { |
|
168
|
0
|
|
|
|
|
0
|
$_[0] = $_[0]->(); |
|
169
|
0
|
|
|
|
|
0
|
$n = $_[0]; |
|
170
|
|
|
|
|
|
|
} |
|
171
|
1215
|
|
|
|
|
2244
|
my $poscmp = OLD_PERL_VERSION ? 562949953421312 : ''.~0; |
|
172
|
1215
|
|
|
|
|
1771
|
my $negcmp = OLD_PERL_VERSION ? -562949953421312 : -(~0 >> 1); |
|
173
|
1215
|
100
|
|
|
|
2872
|
if (ref($n) eq 'Math::BigInt') { |
|
174
|
1185
|
50
|
|
|
|
3288
|
croak "Parameter '$n' must be an integer" if !$n->is_int(); |
|
175
|
1185
|
100
|
100
|
|
|
10189
|
$_[0] = _bigint_to_int($_[0]) if $n <= $poscmp && $n >= $negcmp; |
|
176
|
|
|
|
|
|
|
} else { |
|
177
|
30
|
|
|
|
|
61
|
my $strn = "$n"; |
|
178
|
30
|
50
|
|
|
|
72
|
if ($strn eq '-0') { $_[0] = 0; $strn = '0'; } |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
179
|
30
|
50
|
33
|
|
|
150
|
croak "Parameter '$strn' must be an integer" |
|
|
|
|
33
|
|
|
|
|
|
180
|
|
|
|
|
|
|
if $strn eq '' || ($strn =~ tr/-0123456789//c && $strn !~ /^[-+]?\d+$/); |
|
181
|
30
|
100
|
100
|
|
|
146
|
if ($n <= $poscmp && $n >= $negcmp) { |
|
182
|
27
|
50
|
|
|
|
73
|
$_[0] = $strn if ref($n); |
|
183
|
|
|
|
|
|
|
} else { |
|
184
|
3
|
|
|
|
|
19
|
$_[0] = Math::BigInt->new($strn) |
|
185
|
|
|
|
|
|
|
} |
|
186
|
|
|
|
|
|
|
} |
|
187
|
1215
|
50
|
66
|
|
|
131299
|
$_[0]->upgrade(undef) if ref($_[0]) && $_[0]->upgrade(); |
|
188
|
1215
|
|
|
|
|
9156
|
1; |
|
189
|
|
|
|
|
|
|
} |
|
190
|
|
|
|
|
|
|
|
|
191
|
|
|
|
|
|
|
sub _binary_search { |
|
192
|
0
|
|
|
0
|
|
0
|
my($n, $lo, $hi, $sub, $exitsub) = @_; |
|
193
|
0
|
|
|
|
|
0
|
while ($lo < $hi) { |
|
194
|
0
|
|
|
|
|
0
|
my $mid = $lo + int(($hi-$lo) >> 1); |
|
195
|
0
|
0
|
0
|
|
|
0
|
return $mid if defined $exitsub && $exitsub->($n,$lo,$hi); |
|
196
|
0
|
0
|
|
|
|
0
|
if ($sub->($mid) < $n) { $lo = $mid+1; } |
|
|
0
|
|
|
|
|
0
|
|
|
197
|
0
|
|
|
|
|
0
|
else { $hi = $mid; } |
|
198
|
|
|
|
|
|
|
} |
|
199
|
0
|
|
|
|
|
0
|
return $lo-1; |
|
200
|
|
|
|
|
|
|
} |
|
201
|
|
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
my @_primes_small = (0,2); |
|
203
|
|
|
|
|
|
|
{ |
|
204
|
|
|
|
|
|
|
my($n, $s, $sieveref) = (7-2, 3, _sieve_erat_string(5003)); |
|
205
|
|
|
|
|
|
|
push @_primes_small, 2*pos($$sieveref)-1 while $$sieveref =~ m/0/g; |
|
206
|
|
|
|
|
|
|
} |
|
207
|
|
|
|
|
|
|
my @_prime_next_small = ( |
|
208
|
|
|
|
|
|
|
2,2,3,5,5,7,7,11,11,11,11,13,13,17,17,17,17,19,19,23,23,23,23, |
|
209
|
|
|
|
|
|
|
29,29,29,29,29,29,31,31,37,37,37,37,37,37,41,41,41,41,43,43,47, |
|
210
|
|
|
|
|
|
|
47,47,47,53,53,53,53,53,53,59,59,59,59,59,59,61,61,67,67,67,67,67,67,71); |
|
211
|
|
|
|
|
|
|
|
|
212
|
|
|
|
|
|
|
# For wheel-30 |
|
213
|
|
|
|
|
|
|
my @_prime_indices = (1, 7, 11, 13, 17, 19, 23, 29); |
|
214
|
|
|
|
|
|
|
my @_nextwheel30 = (1,7,7,7,7,7,7,11,11,11,11,13,13,17,17,17,17,19,19,23,23,23,23,29,29,29,29,29,29,1); |
|
215
|
|
|
|
|
|
|
my @_prevwheel30 = (29,29,1,1,1,1,1,1,7,7,7,7,11,11,13,13,13,13,17,17,19,19,19,19,23,23,23,23,23,23); |
|
216
|
|
|
|
|
|
|
my @_wheeladvance30 = (1,6,5,4,3,2,1,4,3,2,1,2,1,4,3,2,1,2,1,4,3,2,1,6,5,4,3,2,1,2); |
|
217
|
|
|
|
|
|
|
my @_wheelretreat30 = (1,2,1,2,3,4,5,6,1,2,3,4,1,2,1,2,3,4,1,2,1,2,3,4,1,2,3,4,5,6); |
|
218
|
|
|
|
|
|
|
|
|
219
|
|
|
|
|
|
|
sub _tiny_prime_count { |
|
220
|
2
|
|
|
2
|
|
4
|
my($n) = @_; |
|
221
|
2
|
50
|
|
|
|
6
|
return if $n >= $_primes_small[-1]; |
|
222
|
2
|
|
|
|
|
6
|
my $j = $#_primes_small; |
|
223
|
2
|
|
|
|
|
5
|
my $i = 1 + ($n >> 4); |
|
224
|
2
|
|
|
|
|
8
|
while ($i < $j) { |
|
225
|
18
|
|
|
|
|
25
|
my $mid = ($i+$j)>>1; |
|
226
|
18
|
100
|
|
|
|
34
|
if ($_primes_small[$mid] <= $n) { $i = $mid+1; } |
|
|
8
|
|
|
|
|
16
|
|
|
227
|
10
|
|
|
|
|
18
|
else { $j = $mid; } |
|
228
|
|
|
|
|
|
|
} |
|
229
|
2
|
|
|
|
|
10
|
return $i-1; |
|
230
|
|
|
|
|
|
|
} |
|
231
|
|
|
|
|
|
|
|
|
232
|
|
|
|
|
|
|
sub _is_prime7 { # n must not be divisible by 2, 3, or 5 |
|
233
|
9711
|
|
|
9711
|
|
21787
|
my($n) = @_; |
|
234
|
|
|
|
|
|
|
|
|
235
|
9711
|
50
|
66
|
|
|
21073
|
$n = _bigint_to_int($n) if ref($n) eq 'Math::BigInt' && $n <= BMAX; |
|
236
|
9711
|
100
|
|
|
|
26925
|
if (ref($n) eq 'Math::BigInt') { |
|
237
|
280
|
100
|
|
|
|
1047
|
return 0 unless Math::BigInt::bgcd($n, B_PRIM767)->is_one; |
|
238
|
217
|
100
|
|
|
|
793228
|
return 0 unless _miller_rabin_2($n); |
|
239
|
103
|
|
|
|
|
5123
|
my $is_esl_prime = is_extra_strong_lucas_pseudoprime($n); |
|
240
|
103
|
50
|
|
|
|
22582
|
return ($is_esl_prime) ? (($n <= "18446744073709551615") ? 2 : 1) : 0; |
|
|
|
100
|
|
|
|
|
|
|
241
|
|
|
|
|
|
|
} |
|
242
|
|
|
|
|
|
|
|
|
243
|
9431
|
100
|
|
|
|
16979
|
if ($n < 61*61) { |
|
244
|
3295
|
|
|
|
|
6145
|
foreach my $i (qw/7 11 13 17 19 23 29 31 37 41 43 47 53 59/) { |
|
245
|
19679
|
100
|
|
|
|
35253
|
return 2 if $i*$i > $n; |
|
246
|
17757
|
100
|
|
|
|
32670
|
return 0 if !($n % $i); |
|
247
|
|
|
|
|
|
|
} |
|
248
|
111
|
|
|
|
|
431
|
return 2; |
|
249
|
|
|
|
|
|
|
} |
|
250
|
|
|
|
|
|
|
|
|
251
|
6136
|
100
|
100
|
|
|
74794
|
return 0 if !($n % 7) || !($n % 11) || !($n % 13) || !($n % 17) || |
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
252
|
|
|
|
|
|
|
!($n % 19) || !($n % 23) || !($n % 29) || !($n % 31) || |
|
253
|
|
|
|
|
|
|
!($n % 37) || !($n % 41) || !($n % 43) || !($n % 47) || |
|
254
|
|
|
|
|
|
|
!($n % 53) || !($n % 59); |
|
255
|
|
|
|
|
|
|
|
|
256
|
|
|
|
|
|
|
# We could do: |
|
257
|
|
|
|
|
|
|
# return is_strong_pseudoprime($n, (2,299417)) if $n < 19471033; |
|
258
|
|
|
|
|
|
|
# or: |
|
259
|
|
|
|
|
|
|
# foreach my $p (@_primes_small[18..168]) { |
|
260
|
|
|
|
|
|
|
# last if $p > $limit; |
|
261
|
|
|
|
|
|
|
# return 0 unless $n % $p; |
|
262
|
|
|
|
|
|
|
# } |
|
263
|
|
|
|
|
|
|
# return 2; |
|
264
|
|
|
|
|
|
|
|
|
265
|
3683
|
100
|
|
|
|
7249
|
if ($n <= 1_500_000) { |
|
266
|
373
|
|
|
|
|
859
|
my $limit = int(sqrt($n)); |
|
267
|
373
|
|
|
|
|
522
|
my $i = 61; |
|
268
|
373
|
|
|
|
|
886
|
while (($i+30) <= $limit) { |
|
269
|
667
|
100
|
100
|
|
|
4798
|
return 0 unless ($n% $i ) && ($n%($i+ 6)) && |
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
270
|
|
|
|
|
|
|
($n%($i+10)) && ($n%($i+12)) && |
|
271
|
|
|
|
|
|
|
($n%($i+16)) && ($n%($i+18)) && |
|
272
|
|
|
|
|
|
|
($n%($i+22)) && ($n%($i+28)); |
|
273
|
624
|
|
|
|
|
914
|
$i += 30; |
|
274
|
|
|
|
|
|
|
} |
|
275
|
330
|
|
|
|
|
655
|
for my $inc (6,4,2,4,2,4,6,2) { |
|
276
|
921
|
100
|
|
|
|
1728
|
last if $i > $limit; |
|
277
|
629
|
100
|
|
|
|
1189
|
return 0 if !($n % $i); |
|
278
|
596
|
|
|
|
|
857
|
$i += $inc; |
|
279
|
|
|
|
|
|
|
} |
|
280
|
297
|
|
|
|
|
1037
|
return 2; |
|
281
|
|
|
|
|
|
|
} |
|
282
|
|
|
|
|
|
|
|
|
283
|
3310
|
100
|
|
|
|
5966
|
if ($n < 47636622961201) { # BPSW seems to be faster after this |
|
284
|
|
|
|
|
|
|
# Deterministic set of Miller-Rabin tests. If the MR routines can handle |
|
285
|
|
|
|
|
|
|
# bases greater than n, then this can be simplified. |
|
286
|
3255
|
|
|
|
|
4172
|
my @bases; |
|
287
|
|
|
|
|
|
|
# n > 1_000_000 because of the previous block. |
|
288
|
3255
|
100
|
|
|
|
5635
|
if ($n < 19471033) { @bases = ( 2, 299417); } |
|
|
3169
|
100
|
|
|
|
5159
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
289
|
4
|
|
|
|
|
6
|
elsif ($n < 38010307) { @bases = ( 2, 9332593); } |
|
290
|
12
|
|
|
|
|
24
|
elsif ($n < 316349281) { @bases = ( 11000544, 31481107); } |
|
291
|
29
|
|
|
|
|
54
|
elsif ($n < 4759123141) { @bases = ( 2, 7, 61); } |
|
292
|
40
|
|
|
|
|
120
|
elsif ($n < 154639673381) { @bases = ( 15, 176006322, 4221622697); } |
|
293
|
1
|
|
|
|
|
4
|
elsif ($n < 47636622961201) { @bases = ( 2, 2570940, 211991001, 3749873356); } |
|
294
|
0
|
|
|
|
|
0
|
elsif ($n < 3770579582154547) { @bases = ( 2, 2570940, 880937, 610386380, 4130785767); } |
|
295
|
0
|
|
|
|
|
0
|
else { @bases = ( 2, 325, 9375, 28178, 450775, 9780504, 1795265022); } |
|
296
|
3255
|
100
|
|
|
|
5869
|
return is_strong_pseudoprime($n, @bases) ? 2 : 0; |
|
297
|
|
|
|
|
|
|
} |
|
298
|
|
|
|
|
|
|
|
|
299
|
|
|
|
|
|
|
# Inlined BPSW |
|
300
|
55
|
100
|
|
|
|
234
|
return 0 unless _miller_rabin_2($n); |
|
301
|
46
|
100
|
|
|
|
257
|
return is_almost_extra_strong_lucas_pseudoprime($n) ? 2 : 0; |
|
302
|
|
|
|
|
|
|
} |
|
303
|
|
|
|
|
|
|
|
|
304
|
|
|
|
|
|
|
sub is_prime { |
|
305
|
6808
|
|
|
6808
|
0
|
65488
|
my($n) = @_; |
|
306
|
6808
|
50
|
33
|
|
|
22428
|
return 0 if defined($n) && int($n) < 0; |
|
307
|
6808
|
|
|
|
|
77349
|
_validate_positive_integer($n); |
|
308
|
|
|
|
|
|
|
|
|
309
|
6808
|
100
|
|
|
|
11319
|
if (ref($n) eq 'Math::BigInt') { |
|
310
|
323
|
100
|
|
|
|
1081
|
return 0 unless Math::BigInt::bgcd($n, B_PRIM235)->is_one; |
|
311
|
|
|
|
|
|
|
} else { |
|
312
|
6485
|
100
|
100
|
|
|
10769
|
if ($n < 7) { return ($n == 2) || ($n == 3) || ($n == 5) ? 2 : 0; } |
|
|
68
|
100
|
|
|
|
264
|
|
|
313
|
6417
|
100
|
100
|
|
|
28299
|
return 0 if !($n % 2) || !($n % 3) || !($n % 5); |
|
|
|
|
100
|
|
|
|
|
|
314
|
|
|
|
|
|
|
} |
|
315
|
3338
|
|
|
|
|
55289
|
return _is_prime7($n); |
|
316
|
|
|
|
|
|
|
} |
|
317
|
|
|
|
|
|
|
|
|
318
|
|
|
|
|
|
|
# is_prob_prime is the same thing for us. |
|
319
|
|
|
|
|
|
|
*is_prob_prime = \&is_prime; |
|
320
|
|
|
|
|
|
|
|
|
321
|
|
|
|
|
|
|
# BPSW probable prime. No composites are known to have passed this test |
|
322
|
|
|
|
|
|
|
# since it was published in 1980, though we know infinitely many exist. |
|
323
|
|
|
|
|
|
|
# It has also been verified that no 64-bit composite will return true. |
|
324
|
|
|
|
|
|
|
# Slow since it's all in PP and uses bigints. |
|
325
|
|
|
|
|
|
|
sub is_bpsw_prime { |
|
326
|
32
|
|
|
32
|
0
|
106
|
my($n) = @_; |
|
327
|
32
|
50
|
33
|
|
|
179
|
return 0 if defined($n) && int($n) < 0; |
|
328
|
32
|
|
|
|
|
7354
|
_validate_positive_integer($n); |
|
329
|
32
|
100
|
|
|
|
110
|
return 0 unless _miller_rabin_2($n); |
|
330
|
7
|
50
|
|
|
|
368
|
if ($n <= 18446744073709551615) { |
|
331
|
0
|
0
|
|
|
|
0
|
return is_almost_extra_strong_lucas_pseudoprime($n) ? 2 : 0; |
|
332
|
|
|
|
|
|
|
} |
|
333
|
7
|
100
|
|
|
|
1256
|
return is_extra_strong_lucas_pseudoprime($n) ? 1 : 0; |
|
334
|
|
|
|
|
|
|
} |
|
335
|
|
|
|
|
|
|
|
|
336
|
|
|
|
|
|
|
sub is_provable_prime { |
|
337
|
5
|
|
|
5
|
0
|
119
|
my($n) = @_; |
|
338
|
5
|
50
|
33
|
|
|
62
|
return 0 if defined $n && $n < 2; |
|
339
|
5
|
|
|
|
|
57
|
_validate_positive_integer($n); |
|
340
|
5
|
50
|
|
|
|
34
|
if ($n <= 18446744073709551615) { |
|
341
|
0
|
0
|
|
|
|
0
|
return 0 unless _miller_rabin_2($n); |
|
342
|
0
|
0
|
|
|
|
0
|
return 0 unless is_almost_extra_strong_lucas_pseudoprime($n); |
|
343
|
0
|
|
|
|
|
0
|
return 2; |
|
344
|
|
|
|
|
|
|
} |
|
345
|
5
|
|
|
|
|
687
|
my($is_prime, $cert) = Math::Prime::Util::is_provable_prime_with_cert($n); |
|
346
|
5
|
|
|
|
|
65
|
$is_prime; |
|
347
|
|
|
|
|
|
|
} |
|
348
|
|
|
|
|
|
|
|
|
349
|
|
|
|
|
|
|
# Possible sieve storage: |
|
350
|
|
|
|
|
|
|
# 1) vec with mod-30 wheel: 8 bits / 30 |
|
351
|
|
|
|
|
|
|
# 2) vec with mod-2 wheel : 15 bits / 30 |
|
352
|
|
|
|
|
|
|
# 3) str with mod-30 wheel: 8 bytes / 30 |
|
353
|
|
|
|
|
|
|
# 4) str with mod-2 wheel : 15 bytes / 30 |
|
354
|
|
|
|
|
|
|
# |
|
355
|
|
|
|
|
|
|
# It looks like using vecs is about 2x slower than strs, and the strings also |
|
356
|
|
|
|
|
|
|
# let us do some fast operations on the results. E.g. |
|
357
|
|
|
|
|
|
|
# Count all primes: |
|
358
|
|
|
|
|
|
|
# $count += $$sieveref =~ tr/0//; |
|
359
|
|
|
|
|
|
|
# Loop over primes: |
|
360
|
|
|
|
|
|
|
# foreach my $s (split("0", $$sieveref, -1)) { |
|
361
|
|
|
|
|
|
|
# $n += 2 + 2 * length($s); |
|
362
|
|
|
|
|
|
|
# .. do something with the prime $n |
|
363
|
|
|
|
|
|
|
# } |
|
364
|
|
|
|
|
|
|
# |
|
365
|
|
|
|
|
|
|
# We're using method 4, though sadly it is memory intensive relative to the |
|
366
|
|
|
|
|
|
|
# other methods. I will point out that it is 30-60x less memory than sieves |
|
367
|
|
|
|
|
|
|
# using an array, and the performance of this function is over 10x that |
|
368
|
|
|
|
|
|
|
# of naive sieves. |
|
369
|
|
|
|
|
|
|
|
|
370
|
|
|
|
|
|
|
sub _sieve_erat_string { |
|
371
|
56
|
|
|
56
|
|
181
|
my($end) = @_; |
|
372
|
56
|
100
|
|
|
|
300
|
$end-- if ($end & 1) == 0; |
|
373
|
56
|
|
|
|
|
155
|
my $s_end = $end >> 1; |
|
374
|
|
|
|
|
|
|
|
|
375
|
56
|
|
|
|
|
286
|
my $whole = int( $s_end / 15); # Prefill with 3 and 5 already marked. |
|
376
|
56
|
50
|
|
|
|
220
|
croak "Sieve too large" if $whole > 1_145_324_612; # ~32 GB string |
|
377
|
56
|
|
|
|
|
4823
|
my $sieve = '100010010010110' . '011010010010110' x $whole; |
|
378
|
56
|
|
|
|
|
258
|
substr($sieve, $s_end+1) = ''; # Ensure we don't make too many entries |
|
379
|
56
|
|
|
|
|
220
|
my ($n, $limit) = ( 7, int(sqrt($end)) ); |
|
380
|
56
|
|
|
|
|
294
|
while ( $n <= $limit ) { |
|
381
|
1622
|
|
|
|
|
3250
|
for (my $s = ($n*$n) >> 1; $s <= $s_end; $s += $n) { |
|
382
|
2487327
|
|
|
|
|
3994527
|
substr($sieve, $s, 1) = '1'; |
|
383
|
|
|
|
|
|
|
} |
|
384
|
1622
|
|
|
|
|
2197
|
do { $n += 2 } while substr($sieve, $n>>1, 1); |
|
|
3912
|
|
|
|
|
7689
|
|
|
385
|
|
|
|
|
|
|
} |
|
386
|
56
|
|
|
|
|
2067
|
return \$sieve; |
|
387
|
|
|
|
|
|
|
} |
|
388
|
|
|
|
|
|
|
|
|
389
|
|
|
|
|
|
|
# TODO: this should be plugged into precalc, memfree, etc. just like the C code |
|
390
|
|
|
|
|
|
|
{ |
|
391
|
|
|
|
|
|
|
my $primary_size_limit = 15000; |
|
392
|
|
|
|
|
|
|
my $primary_sieve_size = 0; |
|
393
|
|
|
|
|
|
|
my $primary_sieve_ref; |
|
394
|
|
|
|
|
|
|
sub _sieve_erat { |
|
395
|
620
|
|
|
620
|
|
1035
|
my($end) = @_; |
|
396
|
|
|
|
|
|
|
|
|
397
|
620
|
100
|
|
|
|
1190
|
return _sieve_erat_string($end) if $end > $primary_size_limit; |
|
398
|
|
|
|
|
|
|
|
|
399
|
606
|
100
|
|
|
|
1209
|
if ($primary_sieve_size == 0) { |
|
400
|
2
|
|
|
|
|
4
|
$primary_sieve_size = $primary_size_limit; |
|
401
|
2
|
|
|
|
|
6
|
$primary_sieve_ref = _sieve_erat_string($primary_sieve_size); |
|
402
|
|
|
|
|
|
|
} |
|
403
|
606
|
|
|
|
|
1426
|
my $sieve = substr($$primary_sieve_ref, 0, ($end+1)>>1); |
|
404
|
606
|
|
|
|
|
1398
|
return \$sieve; |
|
405
|
|
|
|
|
|
|
} |
|
406
|
|
|
|
|
|
|
} |
|
407
|
|
|
|
|
|
|
|
|
408
|
|
|
|
|
|
|
|
|
409
|
|
|
|
|
|
|
sub _sieve_segment { |
|
410
|
547
|
|
|
547
|
|
1051
|
my($beg,$end,$limit) = @_; |
|
411
|
547
|
50
|
33
|
|
|
1129
|
($beg, $end) = map { _bigint_to_int($_) } ($beg, $end) |
|
|
0
|
|
|
|
|
0
|
|
|
412
|
|
|
|
|
|
|
if ref($end) && $end <= BMAX; |
|
413
|
547
|
50
|
|
|
|
1174
|
croak "Internal error: segment beg is even" if ($beg % 2) == 0; |
|
414
|
547
|
50
|
|
|
|
1013
|
croak "Internal error: segment end is even" if ($end % 2) == 0; |
|
415
|
547
|
50
|
|
|
|
944
|
croak "Internal error: segment end < beg" if $end < $beg; |
|
416
|
547
|
50
|
|
|
|
914
|
croak "Internal error: segment beg should be >= 3" if $beg < 3; |
|
417
|
547
|
|
|
|
|
1086
|
my $range = int( ($end - $beg) / 2 ) + 1; |
|
418
|
|
|
|
|
|
|
|
|
419
|
|
|
|
|
|
|
# Prefill with 3 and 5 already marked, and offset to the segment start. |
|
420
|
547
|
|
|
|
|
895
|
my $whole = int( ($range+14) / 15); |
|
421
|
547
|
|
|
|
|
908
|
my $startp = ($beg % 30) >> 1; |
|
422
|
547
|
|
|
|
|
3306
|
my $sieve = substr('011010010010110', $startp) . '011010010010110' x $whole; |
|
423
|
|
|
|
|
|
|
# Set 3 and 5 to prime if we're sieving them. |
|
424
|
547
|
100
|
|
|
|
1181
|
substr($sieve,0,2) = '00' if $beg == 3; |
|
425
|
547
|
100
|
|
|
|
916
|
substr($sieve,0,1) = '0' if $beg == 5; |
|
426
|
|
|
|
|
|
|
# Get rid of any extra we added. |
|
427
|
547
|
|
|
|
|
1015
|
substr($sieve, $range) = ''; |
|
428
|
|
|
|
|
|
|
|
|
429
|
|
|
|
|
|
|
# If the end value is below 7^2, then the pre-sieve is all we needed. |
|
430
|
547
|
100
|
|
|
|
971
|
return \$sieve if $end < 49; |
|
431
|
|
|
|
|
|
|
|
|
432
|
536
|
50
|
|
|
|
1149
|
my $sqlimit = ref($end) ? $end->copy->bsqrt() : int(sqrt($end)+0.0000001); |
|
433
|
536
|
50
|
33
|
|
|
1204
|
$limit = $sqlimit if !defined $limit || $sqlimit < $limit; |
|
434
|
|
|
|
|
|
|
# For large value of end, it's a huge win to just walk primes. |
|
435
|
|
|
|
|
|
|
|
|
436
|
536
|
|
|
|
|
1084
|
my($p, $s, $primesieveref) = (7-2, 3, _sieve_erat($limit)); |
|
437
|
536
|
|
|
|
|
1469
|
while ( (my $nexts = 1 + index($$primesieveref, '0', $s)) > 0 ) { |
|
438
|
40025
|
|
|
|
|
51445
|
$p += 2 * ($nexts - $s); |
|
439
|
40025
|
|
|
|
|
46200
|
$s = $nexts; |
|
440
|
40025
|
|
|
|
|
48583
|
my $p2 = $p*$p; |
|
441
|
40025
|
100
|
|
|
|
58545
|
if ($p2 < $beg) { |
|
442
|
39327
|
|
|
|
|
56036
|
my $f = 1+int(($beg-1)/$p); |
|
443
|
39327
|
100
|
|
|
|
62634
|
$f++ unless $f % 2; |
|
444
|
39327
|
|
|
|
|
47810
|
$p2 = $p * $f; |
|
445
|
|
|
|
|
|
|
} |
|
446
|
|
|
|
|
|
|
# With large bases and small segments, it's common to find we don't hit |
|
447
|
|
|
|
|
|
|
# the segment at all. Skip all the setup if we find this now. |
|
448
|
40025
|
100
|
|
|
|
71722
|
if ($p2 <= $end) { |
|
449
|
|
|
|
|
|
|
# Inner loop marking multiples of p |
|
450
|
|
|
|
|
|
|
# (everything is divided by 2 to keep inner loop simpler) |
|
451
|
20147
|
|
|
|
|
25950
|
my $filter_end = ($end - $beg) >> 1; |
|
452
|
20147
|
|
|
|
|
26352
|
my $filter_p2 = ($p2 - $beg) >> 1; |
|
453
|
20147
|
|
|
|
|
31573
|
while ($filter_p2 <= $filter_end) { |
|
454
|
726651
|
|
|
|
|
895908
|
substr($sieve, $filter_p2, 1) = "1"; |
|
455
|
726651
|
|
|
|
|
1129642
|
$filter_p2 += $p; |
|
456
|
|
|
|
|
|
|
} |
|
457
|
|
|
|
|
|
|
} |
|
458
|
|
|
|
|
|
|
} |
|
459
|
536
|
|
|
|
|
1668
|
\$sieve; |
|
460
|
|
|
|
|
|
|
} |
|
461
|
|
|
|
|
|
|
|
|
462
|
|
|
|
|
|
|
sub trial_primes { |
|
463
|
2
|
|
|
2
|
0
|
2158
|
my($low,$high) = @_; |
|
464
|
2
|
100
|
|
|
|
8
|
if (!defined $high) { |
|
465
|
1
|
|
|
|
|
2
|
$high = $low; |
|
466
|
1
|
|
|
|
|
1
|
$low = 2; |
|
467
|
|
|
|
|
|
|
} |
|
468
|
2
|
|
|
|
|
8
|
_validate_positive_integer($low); |
|
469
|
2
|
|
|
|
|
6
|
_validate_positive_integer($high); |
|
470
|
2
|
50
|
|
|
|
6
|
return if $low > $high; |
|
471
|
2
|
|
|
|
|
46
|
my @primes; |
|
472
|
|
|
|
|
|
|
|
|
473
|
|
|
|
|
|
|
# For a tiny range, just use next_prime calls |
|
474
|
2
|
50
|
|
|
|
9
|
if (($high-$low) < 1000) { |
|
475
|
2
|
50
|
|
|
|
330
|
$low-- if $low >= 2; |
|
476
|
2
|
|
|
|
|
191
|
my $curprime = next_prime($low); |
|
477
|
2
|
|
|
|
|
19
|
while ($curprime <= $high) { |
|
478
|
24
|
|
|
|
|
130
|
push @primes, $curprime; |
|
479
|
24
|
|
|
|
|
33
|
$curprime = next_prime($curprime); |
|
480
|
|
|
|
|
|
|
} |
|
481
|
2
|
|
|
|
|
79
|
return \@primes; |
|
482
|
|
|
|
|
|
|
} |
|
483
|
|
|
|
|
|
|
|
|
484
|
|
|
|
|
|
|
# Sieve to 10k then BPSW test |
|
485
|
0
|
0
|
0
|
|
|
0
|
push @primes, 2 if ($low <= 2) && ($high >= 2); |
|
486
|
0
|
0
|
0
|
|
|
0
|
push @primes, 3 if ($low <= 3) && ($high >= 3); |
|
487
|
0
|
0
|
0
|
|
|
0
|
push @primes, 5 if ($low <= 5) && ($high >= 5); |
|
488
|
0
|
0
|
|
|
|
0
|
$low = 7 if $low < 7; |
|
489
|
0
|
0
|
|
|
|
0
|
$low++ if ($low % 2) == 0; |
|
490
|
0
|
0
|
|
|
|
0
|
$high-- if ($high % 2) == 0; |
|
491
|
0
|
|
|
|
|
0
|
my $sieveref = _sieve_segment($low, $high, 10000); |
|
492
|
0
|
|
|
|
|
0
|
my $n = $low-2; |
|
493
|
0
|
|
|
|
|
0
|
while ($$sieveref =~ m/0/g) { |
|
494
|
0
|
|
|
|
|
0
|
my $p = $n+2*pos($$sieveref); |
|
495
|
0
|
0
|
0
|
|
|
0
|
push @primes, $p if _miller_rabin_2($p) && is_extra_strong_lucas_pseudoprime($p); |
|
496
|
|
|
|
|
|
|
} |
|
497
|
0
|
|
|
|
|
0
|
return \@primes; |
|
498
|
|
|
|
|
|
|
} |
|
499
|
|
|
|
|
|
|
|
|
500
|
|
|
|
|
|
|
sub primes { |
|
501
|
169
|
|
|
169
|
0
|
16026
|
my($low,$high) = @_; |
|
502
|
169
|
100
|
|
|
|
503
|
if (scalar @_ > 1) { |
|
503
|
65
|
|
|
|
|
224
|
_validate_positive_integer($low); |
|
504
|
65
|
|
|
|
|
235
|
_validate_positive_integer($high); |
|
505
|
65
|
100
|
|
|
|
203
|
$low = 2 if $low < 2; |
|
506
|
|
|
|
|
|
|
} else { |
|
507
|
104
|
|
|
|
|
224
|
($low,$high) = (2, $low); |
|
508
|
104
|
|
|
|
|
260
|
_validate_positive_integer($high); |
|
509
|
|
|
|
|
|
|
} |
|
510
|
169
|
|
|
|
|
453
|
my $sref = []; |
|
511
|
169
|
100
|
66
|
|
|
771
|
return $sref if ($low > $high) || ($high < 2); |
|
512
|
163
|
100
|
|
|
|
1302
|
return [grep { $_ >= $low && $_ <= $high } @_primes_small] |
|
|
270187
|
100
|
|
|
|
650791
|
|
|
513
|
|
|
|
|
|
|
if $high <= $_primes_small[-1]; |
|
514
|
|
|
|
|
|
|
|
|
515
|
|
|
|
|
|
|
return [ Math::Prime::Util::GMP::sieve_primes($low, $high, 0) ] |
|
516
|
13
|
50
|
33
|
|
|
173
|
if $Math::Prime::Util::_GMPfunc{"sieve_primes"} && $Math::Prime::Util::GMP::VERSION >= 0.34; |
|
517
|
|
|
|
|
|
|
|
|
518
|
|
|
|
|
|
|
# At some point even the pretty-fast pure perl sieve is going to be a |
|
519
|
|
|
|
|
|
|
# dog, and we should move to trials. This is typical with a small range |
|
520
|
|
|
|
|
|
|
# on a large base. More thought on the switchover should be done. |
|
521
|
13
|
50
|
66
|
|
|
120
|
return trial_primes($low, $high) if ref($low) eq 'Math::BigInt' |
|
|
|
|
33
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
522
|
|
|
|
|
|
|
|| ref($high) eq 'Math::BigInt' |
|
523
|
|
|
|
|
|
|
|| ($low > 1_000_000_000_000 && ($high-$low) < int($low/1_000_000)); |
|
524
|
|
|
|
|
|
|
|
|
525
|
12
|
100
|
66
|
|
|
92
|
push @$sref, 2 if ($low <= 2) && ($high >= 2); |
|
526
|
12
|
100
|
66
|
|
|
62
|
push @$sref, 3 if ($low <= 3) && ($high >= 3); |
|
527
|
12
|
100
|
66
|
|
|
53
|
push @$sref, 5 if ($low <= 5) && ($high >= 5); |
|
528
|
12
|
100
|
|
|
|
36
|
$low = 7 if $low < 7; |
|
529
|
12
|
100
|
|
|
|
46
|
$low++ if ($low % 2) == 0; |
|
530
|
12
|
100
|
|
|
|
39
|
$high-- if ($high % 2) == 0; |
|
531
|
12
|
50
|
|
|
|
39
|
return $sref if $low > $high; |
|
532
|
|
|
|
|
|
|
|
|
533
|
12
|
|
|
|
|
25
|
my($n,$sieveref); |
|
534
|
12
|
100
|
|
|
|
35
|
if ($low == 7) { |
|
535
|
5
|
|
|
|
|
10
|
$n = 0; |
|
536
|
5
|
|
|
|
|
21
|
$sieveref = _sieve_erat($high); |
|
537
|
5
|
|
|
|
|
42
|
substr($$sieveref,0,3,'111'); |
|
538
|
|
|
|
|
|
|
} else { |
|
539
|
7
|
|
|
|
|
10
|
$n = $low-1; |
|
540
|
7
|
|
|
|
|
23
|
$sieveref = _sieve_segment($low,$high); |
|
541
|
|
|
|
|
|
|
} |
|
542
|
12
|
|
|
|
|
34551
|
push @$sref, $n+2*pos($$sieveref)-1 while $$sieveref =~ m/0/g; |
|
543
|
12
|
|
|
|
|
2899
|
$sref; |
|
544
|
|
|
|
|
|
|
} |
|
545
|
|
|
|
|
|
|
|
|
546
|
|
|
|
|
|
|
sub sieve_range { |
|
547
|
0
|
|
|
0
|
0
|
0
|
my($n, $width, $depth) = @_; |
|
548
|
0
|
|
|
|
|
0
|
_validate_positive_integer($n); |
|
549
|
0
|
|
|
|
|
0
|
_validate_positive_integer($width); |
|
550
|
0
|
|
|
|
|
0
|
_validate_positive_integer($depth); |
|
551
|
|
|
|
|
|
|
|
|
552
|
0
|
|
|
|
|
0
|
my @candidates; |
|
553
|
0
|
|
|
|
|
0
|
my $start = $n; |
|
554
|
|
|
|
|
|
|
|
|
555
|
0
|
0
|
|
|
|
0
|
if ($n < 5) { |
|
556
|
0
|
0
|
0
|
|
|
0
|
push @candidates, (2-$n) if $n <= 2 && $n+$width-1 >= 2; |
|
557
|
0
|
0
|
0
|
|
|
0
|
push @candidates, (3-$n) if $n <= 3 && $n+$width-1 >= 3; |
|
558
|
0
|
0
|
0
|
|
|
0
|
push @candidates, (4-$n) if $n <= 4 && $n+$width-1 >= 4 && $depth < 2; |
|
|
|
|
0
|
|
|
|
|
|
559
|
0
|
|
|
|
|
0
|
$start = 5; |
|
560
|
0
|
|
|
|
|
0
|
$width -= ($start - $n); |
|
561
|
|
|
|
|
|
|
} |
|
562
|
|
|
|
|
|
|
|
|
563
|
0
|
0
|
|
|
|
0
|
return @candidates, map {$start+$_-$n } 0 .. $width-1 if $depth < 2; |
|
|
0
|
|
|
|
|
0
|
|
|
564
|
0
|
|
|
|
|
0
|
return @candidates, map { $_ - $n } |
|
565
|
0
|
0
|
0
|
|
|
0
|
grep { ($_ & 1) && ($depth < 3 || ($_ % 3)) } |
|
566
|
0
|
0
|
|
|
|
0
|
map { $start+$_ } |
|
|
0
|
|
|
|
|
0
|
|
|
567
|
|
|
|
|
|
|
0 .. $width-1 if $depth < 5; |
|
568
|
|
|
|
|
|
|
|
|
569
|
0
|
0
|
|
|
|
0
|
if (!($start & 1)) { $start++; $width--; } |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
570
|
0
|
0
|
|
|
|
0
|
$width-- if !($width&1); |
|
571
|
0
|
0
|
|
|
|
0
|
return @candidates if $width < 1; |
|
572
|
|
|
|
|
|
|
|
|
573
|
0
|
|
|
|
|
0
|
my $sieveref = _sieve_segment($start, $start+$width-1, $depth); |
|
574
|
0
|
|
|
|
|
0
|
my $offset = $start - $n - 2; |
|
575
|
0
|
|
|
|
|
0
|
while ($$sieveref =~ m/0/g) { |
|
576
|
0
|
|
|
|
|
0
|
push @candidates, $offset + (pos($$sieveref) << 1); |
|
577
|
|
|
|
|
|
|
} |
|
578
|
0
|
|
|
|
|
0
|
return @candidates; |
|
579
|
|
|
|
|
|
|
} |
|
580
|
|
|
|
|
|
|
|
|
581
|
|
|
|
|
|
|
sub sieve_prime_cluster { |
|
582
|
12
|
|
|
12
|
0
|
8097
|
my($lo,$hi,@cl) = @_; |
|
583
|
12
|
|
|
|
|
67
|
my $_verbose = Math::Prime::Util::prime_get_config()->{'verbose'}; |
|
584
|
12
|
|
|
|
|
67
|
_validate_positive_integer($lo); |
|
585
|
12
|
|
|
|
|
35
|
_validate_positive_integer($hi); |
|
586
|
|
|
|
|
|
|
|
|
587
|
12
|
50
|
|
|
|
54
|
if ($Math::Prime::Util::_GMPfunc{"sieve_prime_cluster"}) { |
|
588
|
0
|
0
|
|
|
|
0
|
return map { ($_ > ''.~0) ? Math::BigInt->new(''.$_) : $_ } |
|
|
0
|
|
|
|
|
0
|
|
|
589
|
|
|
|
|
|
|
Math::Prime::Util::GMP::sieve_prime_cluster($lo,$hi,@cl); |
|
590
|
|
|
|
|
|
|
} |
|
591
|
|
|
|
|
|
|
|
|
592
|
12
|
50
|
|
|
|
38
|
return @{primes($lo,$hi)} if scalar(@cl) == 0; |
|
|
0
|
|
|
|
|
0
|
|
|
593
|
|
|
|
|
|
|
|
|
594
|
12
|
|
|
|
|
36
|
unshift @cl, 0; |
|
595
|
12
|
|
|
|
|
47
|
for my $i (1 .. $#cl) { |
|
596
|
36
|
|
|
|
|
77
|
_validate_positive_integer($cl[$i]); |
|
597
|
36
|
50
|
|
|
|
94
|
croak "sieve_prime_cluster: values must be even" if $cl[$i] & 1; |
|
598
|
36
|
50
|
|
|
|
110
|
croak "sieve_prime_cluster: values must be increasing" if $cl[$i] <= $cl[$i-1]; |
|
599
|
|
|
|
|
|
|
} |
|
600
|
12
|
|
|
|
|
39
|
my($p,$sievelim,@p) = (17, 2000); |
|
601
|
12
|
50
|
|
|
|
42
|
$p = 13 if ($hi-$lo) < 50_000_000; |
|
602
|
12
|
50
|
|
|
|
2636
|
$p = 11 if ($hi-$lo) < 1_000_000; |
|
603
|
12
|
100
|
100
|
|
|
2173
|
$p = 7 if ($hi-$lo) < 20_000 && $lo < INTMAX; |
|
604
|
|
|
|
|
|
|
|
|
605
|
|
|
|
|
|
|
# Add any cases under our sieving point. |
|
606
|
12
|
100
|
|
|
|
3320
|
if ($lo <= $sievelim) { |
|
607
|
2
|
50
|
|
|
|
6
|
$sievelim = $hi if $sievelim > $hi; |
|
608
|
2
|
|
|
|
|
24
|
for my $n (@{primes($lo,$sievelim)}) { |
|
|
2
|
|
|
|
|
9
|
|
|
609
|
606
|
|
|
|
|
791
|
my $ac = 1; |
|
610
|
606
|
|
|
|
|
1014
|
for my $ci (1 .. $#cl) { |
|
611
|
606
|
100
|
|
|
|
1048
|
if (!is_prime($n+$cl[$ci])) { $ac = 0; last; } |
|
|
484
|
|
|
|
|
681
|
|
|
|
484
|
|
|
|
|
636
|
|
|
612
|
|
|
|
|
|
|
} |
|
613
|
606
|
100
|
|
|
|
1180
|
push @p, $n if $ac; |
|
614
|
|
|
|
|
|
|
} |
|
615
|
2
|
|
|
|
|
32
|
$lo = next_prime($sievelim); |
|
616
|
|
|
|
|
|
|
} |
|
617
|
12
|
50
|
|
|
|
940
|
return @p if $lo > $hi; |
|
618
|
|
|
|
|
|
|
|
|
619
|
|
|
|
|
|
|
# Compute acceptable residues. |
|
620
|
12
|
|
|
|
|
450
|
my $pr = primorial($p); |
|
621
|
12
|
|
|
|
|
55
|
my $startpr = _bigint_to_int($lo % $pr); |
|
622
|
|
|
|
|
|
|
|
|
623
|
12
|
100
|
|
|
|
714
|
my @acc = grep { ($_ & 1) && $_%3 } ($startpr .. $startpr + $pr - 1); |
|
|
25620
|
|
|
|
|
41818
|
|
|
624
|
12
|
|
|
|
|
415
|
for my $c (@cl) { |
|
625
|
48
|
50
|
|
|
|
90
|
if ($p >= 7) { |
|
626
|
48
|
100
|
100
|
|
|
94
|
@acc = grep { (($_+$c)%3) && (($_+$c)%5) && (($_+$c)%7) } @acc; |
|
|
16618
|
|
|
|
|
39272
|
|
|
627
|
|
|
|
|
|
|
} else { |
|
628
|
0
|
0
|
|
|
|
0
|
@acc = grep { (($_+$c)%3) && (($_+$c)%5) } @acc; |
|
|
0
|
|
|
|
|
0
|
|
|
629
|
|
|
|
|
|
|
} |
|
630
|
|
|
|
|
|
|
} |
|
631
|
12
|
|
|
|
|
37
|
for my $c (@cl) { |
|
632
|
48
|
|
|
|
|
71
|
@acc = grep { Math::Prime::Util::gcd($_+$c,$pr) == 1 } @acc; |
|
|
1912
|
|
|
|
|
3750
|
|
|
633
|
|
|
|
|
|
|
} |
|
634
|
12
|
|
|
|
|
31
|
@acc = map { $_-$startpr } @acc; |
|
|
606
|
|
|
|
|
717
|
|
|
635
|
|
|
|
|
|
|
|
|
636
|
12
|
50
|
|
|
|
49
|
print "cluster sieve using ",scalar(@acc)," residues mod $pr\n" if $_verbose; |
|
637
|
12
|
50
|
|
|
|
35
|
return @p if scalar(@acc) == 0; |
|
638
|
|
|
|
|
|
|
|
|
639
|
|
|
|
|
|
|
# Prepare table for more sieving. |
|
640
|
12
|
|
|
|
|
19
|
my @mprimes = @{primes( $p+1, $sievelim)}; |
|
|
12
|
|
|
|
|
34
|
|
|
641
|
12
|
|
|
|
|
95
|
my @vprem; |
|
642
|
12
|
|
|
|
|
39
|
for my $p (@mprimes) { |
|
643
|
3577
|
|
|
|
|
4798
|
for my $c (@cl) { |
|
644
|
14306
|
|
|
|
|
35209
|
$vprem[$p]->[ ($p-($c%$p)) % $p ] = 1; |
|
645
|
|
|
|
|
|
|
} |
|
646
|
|
|
|
|
|
|
} |
|
647
|
|
|
|
|
|
|
|
|
648
|
|
|
|
|
|
|
# Walk the range in primorial chunks, doing primality tests. |
|
649
|
12
|
|
|
|
|
36
|
my($nummr, $numlucas) = (0,0); |
|
650
|
12
|
|
|
|
|
81
|
while ($lo <= $hi) { |
|
651
|
|
|
|
|
|
|
|
|
652
|
70
|
|
|
|
|
7142
|
my @racc = @acc; |
|
653
|
|
|
|
|
|
|
|
|
654
|
|
|
|
|
|
|
# Make sure we don't do anything past the limit |
|
655
|
70
|
100
|
|
|
|
191
|
if (($lo+$acc[-1]) > $hi) { |
|
656
|
12
|
|
|
|
|
1783
|
my $max = _bigint_to_int($hi-$lo); |
|
657
|
12
|
|
|
|
|
271
|
@racc = grep { $_ <= $max } @racc; |
|
|
606
|
|
|
|
|
846
|
|
|
658
|
|
|
|
|
|
|
} |
|
659
|
|
|
|
|
|
|
|
|
660
|
|
|
|
|
|
|
# Sieve more values using native math |
|
661
|
70
|
|
|
|
|
6673
|
foreach my $p (@mprimes) { |
|
662
|
12500
|
|
|
|
|
20373
|
my $rem = _bigint_to_int( $lo % $p ); |
|
663
|
12500
|
|
|
|
|
105067
|
@racc = grep { !$vprem[$p]->[ ($rem+$_) % $p ] } @racc; |
|
|
191619
|
|
|
|
|
327084
|
|
|
664
|
12500
|
100
|
|
|
|
26400
|
last unless scalar(@racc); |
|
665
|
|
|
|
|
|
|
} |
|
666
|
|
|
|
|
|
|
|
|
667
|
|
|
|
|
|
|
# Do final primality tests. |
|
668
|
70
|
100
|
|
|
|
195
|
if ($lo < 1e13) { |
|
669
|
24
|
|
|
|
|
45
|
for my $r (@racc) { |
|
670
|
442
|
|
|
|
|
677
|
my($good, $p) = (1, $lo + $r); |
|
671
|
442
|
|
|
|
|
605
|
for my $c (@cl) { |
|
672
|
884
|
|
|
|
|
1067
|
$nummr++; |
|
673
|
884
|
50
|
|
|
|
2064
|
if (!Math::Prime::Util::is_prime($p+$c)) { $good = 0; last; } |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
674
|
|
|
|
|
|
|
} |
|
675
|
442
|
50
|
|
|
|
904
|
push @p, $p if $good; |
|
676
|
|
|
|
|
|
|
} |
|
677
|
|
|
|
|
|
|
} else { |
|
678
|
46
|
|
|
|
|
5934
|
for my $r (@racc) { |
|
679
|
106
|
|
|
|
|
526
|
my($good, $p) = (1, $lo + $r); |
|
680
|
106
|
|
|
|
|
19785
|
for my $c (@cl) { |
|
681
|
140
|
|
|
|
|
273
|
$nummr++; |
|
682
|
140
|
100
|
|
|
|
429
|
if (!Math::Prime::Util::is_strong_pseudoprime($p+$c,2)) { $good = 0; last; } |
|
|
100
|
|
|
|
|
197
|
|
|
|
100
|
|
|
|
|
195
|
|
|
683
|
|
|
|
|
|
|
} |
|
684
|
106
|
100
|
|
|
|
684
|
next unless $good; |
|
685
|
6
|
|
|
|
|
17
|
for my $c (@cl) { |
|
686
|
12
|
|
|
|
|
1691
|
$numlucas++; |
|
687
|
12
|
50
|
|
|
|
45
|
if (!Math::Prime::Util::is_extra_strong_lucas_pseudoprime($p+$c)) { $good = 0; last; } |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
688
|
|
|
|
|
|
|
} |
|
689
|
6
|
50
|
|
|
|
995
|
push @p, $p if $good; |
|
690
|
|
|
|
|
|
|
} |
|
691
|
|
|
|
|
|
|
} |
|
692
|
|
|
|
|
|
|
|
|
693
|
70
|
|
|
|
|
272
|
$lo += $pr; |
|
694
|
|
|
|
|
|
|
} |
|
695
|
12
|
50
|
|
|
|
1662
|
print "cluster sieve ran $nummr MR and $numlucas Lucas tests\n" if $_verbose; |
|
696
|
12
|
|
|
|
|
11227
|
@p; |
|
697
|
|
|
|
|
|
|
} |
|
698
|
|
|
|
|
|
|
|
|
699
|
|
|
|
|
|
|
|
|
700
|
|
|
|
|
|
|
sub _n_ramanujan_primes { |
|
701
|
0
|
|
|
0
|
|
0
|
my($n) = @_; |
|
702
|
0
|
0
|
|
|
|
0
|
return [] if $n <= 0; |
|
703
|
0
|
|
|
|
|
0
|
my $max = nth_prime_upper(int(48/19*$n)+1); |
|
704
|
0
|
|
|
|
|
0
|
my @L = (2, (0) x $n-1); |
|
705
|
0
|
|
|
|
|
0
|
my $s = 1; |
|
706
|
0
|
|
|
|
|
0
|
for (my $k = 7; $k <= $max; $k += 2) { |
|
707
|
0
|
0
|
|
|
|
0
|
$s++ if is_prime($k); |
|
708
|
0
|
0
|
|
|
|
0
|
$L[$s] = $k+1 if $s < $n; |
|
709
|
0
|
0
|
0
|
|
|
0
|
$s-- if ($k&3) == 1 && is_prime(($k+1)>>1); |
|
710
|
0
|
0
|
|
|
|
0
|
$L[$s] = $k+2 if $s < $n; |
|
711
|
|
|
|
|
|
|
} |
|
712
|
0
|
|
|
|
|
0
|
\@L; |
|
713
|
|
|
|
|
|
|
} |
|
714
|
|
|
|
|
|
|
|
|
715
|
|
|
|
|
|
|
sub _ramanujan_primes { |
|
716
|
0
|
|
|
0
|
|
0
|
my($low,$high) = @_; |
|
717
|
0
|
0
|
|
|
|
0
|
($low,$high) = (2, $low) unless defined $high; |
|
718
|
0
|
0
|
0
|
|
|
0
|
return [] if ($low > $high) || ($high < 2); |
|
719
|
0
|
|
|
|
|
0
|
my $nn = prime_count_upper($high) >> 1; |
|
720
|
0
|
|
|
|
|
0
|
my $L = _n_ramanujan_primes($nn); |
|
721
|
0
|
|
0
|
|
|
0
|
shift @$L while @$L && $L->[0] < $low; |
|
722
|
0
|
|
0
|
|
|
0
|
pop @$L while @$L && $L->[-1] > $high; |
|
723
|
0
|
|
|
|
|
0
|
$L; |
|
724
|
|
|
|
|
|
|
} |
|
725
|
|
|
|
|
|
|
|
|
726
|
|
|
|
|
|
|
sub is_ramanujan_prime { |
|
727
|
0
|
|
|
0
|
0
|
0
|
my($n) = @_; |
|
728
|
0
|
0
|
|
|
|
0
|
return 1 if $n == 2; |
|
729
|
0
|
0
|
|
|
|
0
|
return 0 if $n < 11; |
|
730
|
0
|
|
|
|
|
0
|
my $L = _ramanujan_primes($n,$n); |
|
731
|
0
|
0
|
|
|
|
0
|
return (scalar(@$L) > 0) ? 1 : 0; |
|
732
|
|
|
|
|
|
|
} |
|
733
|
|
|
|
|
|
|
|
|
734
|
|
|
|
|
|
|
sub nth_ramanujan_prime { |
|
735
|
0
|
|
|
0
|
0
|
0
|
my($n) = @_; |
|
736
|
0
|
0
|
|
|
|
0
|
return undef if $n <= 0; ## no critic qw(ProhibitExplicitReturnUndef) |
|
737
|
0
|
|
|
|
|
0
|
my $L = _n_ramanujan_primes($n); |
|
738
|
0
|
|
|
|
|
0
|
return $L->[$n-1]; |
|
739
|
|
|
|
|
|
|
} |
|
740
|
|
|
|
|
|
|
|
|
741
|
|
|
|
|
|
|
sub next_prime { |
|
742
|
4959
|
|
|
4959
|
0
|
245475
|
my($n) = @_; |
|
743
|
4959
|
|
|
|
|
12199
|
_validate_positive_integer($n); |
|
744
|
4958
|
100
|
|
|
|
15825
|
return $_prime_next_small[$n] if $n <= $#_prime_next_small; |
|
745
|
|
|
|
|
|
|
# This turns out not to be faster. |
|
746
|
|
|
|
|
|
|
# return $_primes_small[1+_tiny_prime_count($n)] if $n < $_primes_small[-1]; |
|
747
|
|
|
|
|
|
|
|
|
748
|
933
|
100
|
100
|
|
|
5022
|
return Math::BigInt->new(MPU_32BIT ? "4294967311" : "18446744073709551629") |
|
749
|
|
|
|
|
|
|
if ref($n) ne 'Math::BigInt' && $n >= MPU_MAXPRIME; |
|
750
|
|
|
|
|
|
|
# n is now either 1) not bigint and < maxprime, or (2) bigint and >= uvmax |
|
751
|
|
|
|
|
|
|
|
|
752
|
928
|
50
|
66
|
|
|
2008
|
if ($n > 4294967295 && Math::Prime::Util::prime_get_config()->{'gmp'}) { |
|
753
|
0
|
|
|
|
|
0
|
return Math::Prime::Util::_reftyped($_[0], Math::Prime::Util::GMP::next_prime($n)); |
|
754
|
|
|
|
|
|
|
} |
|
755
|
|
|
|
|
|
|
|
|
756
|
928
|
100
|
|
|
|
1926
|
if (ref($n) eq 'Math::BigInt') { |
|
757
|
11
|
|
100
|
|
|
27
|
do { |
|
|
|
|
66
|
|
|
|
|
|
758
|
115
|
|
|
|
|
199905
|
$n += $_wheeladvance30[$n%30]; |
|
759
|
|
|
|
|
|
|
} while !Math::BigInt::bgcd($n, B_PRIM767)->is_one || |
|
760
|
|
|
|
|
|
|
!_miller_rabin_2($n) || !is_extra_strong_lucas_pseudoprime($n); |
|
761
|
|
|
|
|
|
|
} else { |
|
762
|
917
|
|
100
|
|
|
1322
|
do { |
|
763
|
4260
|
|
|
|
|
11581
|
$n += $_wheeladvance30[$n%30]; |
|
764
|
|
|
|
|
|
|
} while !($n%7) || !_is_prime7($n); |
|
765
|
|
|
|
|
|
|
} |
|
766
|
928
|
|
|
|
|
6779
|
$n; |
|
767
|
|
|
|
|
|
|
} |
|
768
|
|
|
|
|
|
|
|
|
769
|
|
|
|
|
|
|
sub prev_prime { |
|
770
|
157
|
|
|
157
|
0
|
3213
|
my($n) = @_; |
|
771
|
157
|
|
|
|
|
345
|
_validate_positive_integer($n); |
|
772
|
157
|
100
|
|
|
|
301
|
return (undef,undef,undef,2,3,3,5,5,7,7,7,7)[$n] if $n <= 11; |
|
773
|
156
|
50
|
66
|
|
|
509
|
if ($n > 4294967295 && Math::Prime::Util::prime_get_config()->{'gmp'}) { |
|
774
|
0
|
|
|
|
|
0
|
return Math::Prime::Util::_reftyped($_[0], Math::Prime::Util::GMP::prev_prime($n)); |
|
775
|
|
|
|
|
|
|
} |
|
776
|
|
|
|
|
|
|
|
|
777
|
156
|
100
|
|
|
|
323
|
if (ref($n) eq 'Math::BigInt') { |
|
778
|
2
|
|
100
|
|
|
5
|
do { |
|
|
|
|
100
|
|
|
|
|
|
779
|
22
|
|
|
|
|
44818
|
$n -= $_wheelretreat30[$n%30]; |
|
780
|
|
|
|
|
|
|
} while !Math::BigInt::bgcd($n, B_PRIM767)->is_one || |
|
781
|
|
|
|
|
|
|
!_miller_rabin_2($n) || !is_extra_strong_lucas_pseudoprime($n); |
|
782
|
|
|
|
|
|
|
} else { |
|
783
|
154
|
|
100
|
|
|
194
|
do { |
|
784
|
3082
|
|
|
|
|
7214
|
$n -= $_wheelretreat30[$n%30]; |
|
785
|
|
|
|
|
|
|
} while !($n%7) || !_is_prime7($n); |
|
786
|
|
|
|
|
|
|
} |
|
787
|
156
|
|
|
|
|
1349
|
$n; |
|
788
|
|
|
|
|
|
|
} |
|
789
|
|
|
|
|
|
|
|
|
790
|
|
|
|
|
|
|
sub partitions { |
|
791
|
57
|
|
|
57
|
0
|
106
|
my $n = shift; |
|
792
|
|
|
|
|
|
|
|
|
793
|
57
|
|
|
|
|
161
|
my $d = int(sqrt($n+1)); |
|
794
|
57
|
|
|
|
|
151
|
my @pent = (1, map { (($_*(3*$_+1))>>1, (($_+1)*(3*$_+2))>>1) } 1 .. $d); |
|
|
422
|
|
|
|
|
821
|
|
|
795
|
57
|
100
|
|
|
|
156
|
my $ZERO = ($n >= ((~0 > 4294967295) ? 400 : 270)) ? BZERO : 0; |
|
796
|
57
|
|
|
|
|
111
|
my @part = ($ZERO+1); |
|
797
|
57
|
|
|
|
|
936
|
foreach my $j (scalar @part .. $n) { |
|
798
|
9683
|
|
|
|
|
1130776
|
my ($psum1, $psum2, $k) = ($ZERO, $ZERO, 1); |
|
799
|
9683
|
|
|
|
|
14598
|
foreach my $p (@pent) { |
|
800
|
474063
|
100
|
|
|
|
27246547
|
last if $p > $j; |
|
801
|
464380
|
100
|
|
|
|
728457
|
if ((++$k) & 2) { $psum1 += $part[ $j - $p ] } |
|
|
237074
|
|
|
|
|
491790
|
|
|
802
|
227306
|
|
|
|
|
472979
|
else { $psum2 += $part[ $j - $p ] } |
|
803
|
|
|
|
|
|
|
} |
|
804
|
9683
|
|
|
|
|
19375
|
$part[$j] = $psum1 - $psum2; |
|
805
|
|
|
|
|
|
|
} |
|
806
|
57
|
|
|
|
|
4146
|
return $part[$n]; |
|
807
|
|
|
|
|
|
|
} |
|
808
|
|
|
|
|
|
|
|
|
809
|
|
|
|
|
|
|
sub primorial { |
|
810
|
67
|
|
|
67
|
0
|
127
|
my $n = shift; |
|
811
|
|
|
|
|
|
|
|
|
812
|
67
|
|
|
|
|
108
|
my @plist = @{primes($n)}; |
|
|
67
|
|
|
|
|
171
|
|
|
813
|
67
|
|
|
|
|
195
|
my $max = (MPU_32BIT) ? 29 : (OLD_PERL_VERSION) ? 43 : 53; |
|
814
|
|
|
|
|
|
|
|
|
815
|
|
|
|
|
|
|
# If small enough, multiply the small primes. |
|
816
|
67
|
100
|
|
|
|
169
|
if ($n < $max) { |
|
817
|
30
|
|
|
|
|
69
|
my $pn = 1; |
|
818
|
30
|
|
|
|
|
114
|
$pn *= $_ for @plist; |
|
819
|
30
|
|
|
|
|
168
|
return $pn; |
|
820
|
|
|
|
|
|
|
} |
|
821
|
|
|
|
|
|
|
|
|
822
|
|
|
|
|
|
|
# Otherwise, combine them as UVs, then combine using product tree. |
|
823
|
37
|
|
|
|
|
65
|
my $i = 0; |
|
824
|
37
|
|
|
|
|
84
|
while ($i < $#plist) { |
|
825
|
960
|
|
|
|
|
1485
|
my $m = $plist[$i] * $plist[$i+1]; |
|
826
|
960
|
100
|
|
|
|
1428
|
if ($m <= INTMAX) { splice(@plist, $i, 2, $m); } |
|
|
893
|
|
|
|
|
2204
|
|
|
827
|
67
|
|
|
|
|
134
|
else { $i++; } |
|
828
|
|
|
|
|
|
|
} |
|
829
|
37
|
|
|
|
|
134
|
vecprod(@plist); |
|
830
|
|
|
|
|
|
|
} |
|
831
|
|
|
|
|
|
|
|
|
832
|
|
|
|
|
|
|
sub consecutive_integer_lcm { |
|
833
|
103
|
|
|
103
|
0
|
195
|
my $n = shift; |
|
834
|
|
|
|
|
|
|
|
|
835
|
103
|
|
|
|
|
159
|
my $max = (MPU_32BIT) ? 22 : (OLD_PERL_VERSION) ? 37 : 46; |
|
836
|
103
|
100
|
|
|
|
408
|
my $pn = ref($n) ? ref($n)->new(1) : ($n >= $max) ? Math::BigInt->bone() : 1; |
|
|
|
50
|
|
|
|
|
|
|
837
|
103
|
|
|
|
|
2925
|
for (my $p = 2; $p <= $n; $p = next_prime($p)) { |
|
838
|
1789
|
|
|
|
|
4023
|
my($p_power, $pmin) = ($p, int($n/$p)); |
|
839
|
1789
|
|
|
|
|
3567
|
$p_power *= $p while $p_power <= $pmin; |
|
840
|
1789
|
|
|
|
|
3987
|
$pn *= $p_power; |
|
841
|
|
|
|
|
|
|
} |
|
842
|
103
|
100
|
|
|
|
304
|
$pn = _bigint_to_int($pn) if $pn <= BMAX; |
|
843
|
103
|
|
|
|
|
2626
|
return $pn; |
|
844
|
|
|
|
|
|
|
} |
|
845
|
|
|
|
|
|
|
|
|
846
|
|
|
|
|
|
|
sub jordan_totient { |
|
847
|
25
|
|
|
25
|
0
|
2682
|
my($k, $n) = @_; |
|
848
|
25
|
0
|
|
|
|
74
|
return ($n == 1) ? 1 : 0 if $k == 0; |
|
|
|
50
|
|
|
|
|
|
|
849
|
25
|
50
|
|
|
|
482
|
return euler_phi($n) if $k == 1; |
|
850
|
25
|
0
|
|
|
|
308
|
return ($n == 1) ? 1 : 0 if $n <= 1; |
|
|
|
50
|
|
|
|
|
|
|
851
|
|
|
|
|
|
|
|
|
852
|
|
|
|
|
|
|
return Math::Prime::Util::_reftyped($_[0], Math::Prime::Util::GMP::jordan_totient($k, $n)) |
|
853
|
25
|
50
|
|
|
|
291
|
if $Math::Prime::Util::_GMPfunc{"jordan_totient"}; |
|
854
|
|
|
|
|
|
|
|
|
855
|
|
|
|
|
|
|
|
|
856
|
25
|
|
|
|
|
126
|
my @pe = Math::Prime::Util::factor_exp($n); |
|
857
|
25
|
100
|
|
|
|
148
|
$n = Math::BigInt->new("$n") unless ref($n) eq 'Math::BigInt'; |
|
858
|
25
|
|
|
|
|
1048
|
my $totient = BONE->copy; |
|
859
|
25
|
|
|
|
|
571
|
foreach my $f (@pe) { |
|
860
|
38
|
|
|
|
|
187
|
my ($p, $e) = @$f; |
|
861
|
38
|
|
|
|
|
109
|
$p = Math::BigInt->new("$p")->bpow($k); |
|
862
|
38
|
|
|
|
|
12890
|
$totient->bmul($p->copy->bdec()); |
|
863
|
38
|
|
|
|
|
5079
|
$totient->bmul($p) for 2 .. $e; |
|
864
|
|
|
|
|
|
|
} |
|
865
|
25
|
100
|
|
|
|
477
|
$totient = _bigint_to_int($totient) if $totient->bacmp(BMAX) <= 0; |
|
866
|
25
|
|
|
|
|
704
|
return $totient; |
|
867
|
|
|
|
|
|
|
} |
|
868
|
|
|
|
|
|
|
|
|
869
|
|
|
|
|
|
|
sub euler_phi { |
|
870
|
108
|
100
|
|
108
|
1
|
12537
|
return euler_phi_range(@_) if scalar @_ > 1; |
|
871
|
105
|
|
|
|
|
157
|
my($n) = @_; |
|
872
|
105
|
50
|
33
|
|
|
300
|
return 0 if defined $n && $n < 0; |
|
873
|
|
|
|
|
|
|
|
|
874
|
|
|
|
|
|
|
return Math::Prime::Util::_reftyped($_[0],Math::Prime::Util::GMP::totient($n)) |
|
875
|
105
|
50
|
|
|
|
407
|
if $Math::Prime::Util::_GMPfunc{"totient"}; |
|
876
|
|
|
|
|
|
|
|
|
877
|
105
|
|
|
|
|
227
|
_validate_positive_integer($n); |
|
878
|
105
|
100
|
|
|
|
184
|
return $n if $n <= 1; |
|
879
|
|
|
|
|
|
|
|
|
880
|
101
|
|
|
|
|
264
|
my $totient = $n - $n + 1; |
|
881
|
|
|
|
|
|
|
|
|
882
|
|
|
|
|
|
|
# Fast reduction of multiples of 2, may also reduce n for factoring |
|
883
|
101
|
100
|
|
|
|
520
|
if (ref($n) eq 'Math::BigInt') { |
|
884
|
1
|
|
|
|
|
5
|
my $s = 0; |
|
885
|
1
|
50
|
|
|
|
5
|
if ($n->is_even) { |
|
886
|
1
|
|
|
|
|
18
|
do { $n->brsft(BONE); $s++; } while $n->is_even; |
|
|
1
|
|
|
|
|
8
|
|
|
|
1
|
|
|
|
|
138
|
|
|
887
|
1
|
50
|
|
|
|
15
|
$totient->blsft($s-1) if $s > 1; |
|
888
|
|
|
|
|
|
|
} |
|
889
|
|
|
|
|
|
|
} else { |
|
890
|
100
|
|
|
|
|
194
|
while (($n % 4) == 0) { $n >>= 1; $totient <<= 1; } |
|
|
49
|
|
|
|
|
64
|
|
|
|
49
|
|
|
|
|
84
|
|
|
891
|
100
|
100
|
|
|
|
173
|
if (($n % 2) == 0) { $n >>= 1; } |
|
|
50
|
|
|
|
|
73
|
|
|
892
|
|
|
|
|
|
|
} |
|
893
|
|
|
|
|
|
|
|
|
894
|
101
|
|
|
|
|
355
|
my @pe = Math::Prime::Util::factor_exp($n); |
|
895
|
|
|
|
|
|
|
|
|
896
|
101
|
100
|
100
|
|
|
340
|
if ($#pe == 0 && $pe[0]->[1] == 1) { |
|
|
|
100
|
|
|
|
|
|
|
897
|
49
|
50
|
|
|
|
94
|
if (ref($n) ne 'Math::BigInt') { $totient *= $n-1; } |
|
|
49
|
|
|
|
|
71
|
|
|
898
|
0
|
|
|
|
|
0
|
else { $totient->bmul($n->bdec()); } |
|
899
|
|
|
|
|
|
|
} elsif (ref($n) ne 'Math::BigInt') { |
|
900
|
51
|
|
|
|
|
94
|
foreach my $f (@pe) { |
|
901
|
83
|
|
|
|
|
138
|
my ($p, $e) = @$f; |
|
902
|
83
|
|
|
|
|
105
|
$totient *= $p - 1; |
|
903
|
83
|
|
|
|
|
165
|
$totient *= $p for 2 .. $e; |
|
904
|
|
|
|
|
|
|
} |
|
905
|
|
|
|
|
|
|
} else { |
|
906
|
1
|
|
|
|
|
5
|
my $zero = $n->copy->bzero; |
|
907
|
1
|
|
|
|
|
53
|
foreach my $f (@pe) { |
|
908
|
10
|
|
|
|
|
26
|
my ($p, $e) = @$f; |
|
909
|
10
|
|
|
|
|
1056
|
$p = $zero->copy->badd("$p"); |
|
910
|
10
|
|
|
|
|
1548
|
$totient->bmul($p->copy->bdec()); |
|
911
|
10
|
|
|
|
|
1279
|
$totient->bmul($p) for 2 .. $e; |
|
912
|
|
|
|
|
|
|
} |
|
913
|
|
|
|
|
|
|
} |
|
914
|
101
|
50
|
66
|
|
|
214
|
$totient = _bigint_to_int($totient) if ref($totient) eq 'Math::BigInt' |
|
915
|
|
|
|
|
|
|
&& $totient->bacmp(BMAX) <= 0; |
|
916
|
101
|
|
|
|
|
280
|
return $totient; |
|
917
|
|
|
|
|
|
|
} |
|
918
|
|
|
|
|
|
|
|
|
919
|
|
|
|
|
|
|
sub inverse_totient { |
|
920
|
0
|
|
|
0
|
0
|
0
|
my($n) = @_; |
|
921
|
0
|
|
|
|
|
0
|
_validate_positive_integer($n); |
|
922
|
|
|
|
|
|
|
|
|
923
|
0
|
0
|
|
|
|
0
|
return wantarray ? (1,2) : 2 if $n == 1; |
|
|
|
0
|
|
|
|
|
|
|
924
|
0
|
0
|
0
|
|
|
0
|
return wantarray ? () : 0 if $n < 1 || ($n & 1); |
|
|
|
0
|
|
|
|
|
|
|
925
|
|
|
|
|
|
|
|
|
926
|
0
|
0
|
0
|
|
|
0
|
$n = Math::Prime::Util::_to_bigint("$n") if !ref($n) && $n > 2**49; |
|
927
|
0
|
|
|
|
|
0
|
my $do_bigint = ref($n); |
|
928
|
|
|
|
|
|
|
|
|
929
|
0
|
0
|
|
|
|
0
|
if (is_prime($n >> 1)) { # Coleman Remark 3.3 (Thm 3.1) and Prop 6.2 |
|
930
|
0
|
0
|
|
|
|
0
|
return wantarray ? () : 0 if !is_prime($n+1); |
|
|
|
0
|
|
|
|
|
|
|
931
|
0
|
0
|
|
|
|
0
|
return wantarray ? ($n+1, 2*$n+2) : 2 if $n >= 10; |
|
|
|
0
|
|
|
|
|
|
|
932
|
|
|
|
|
|
|
} |
|
933
|
|
|
|
|
|
|
|
|
934
|
0
|
0
|
|
|
|
0
|
if (!wantarray) { |
|
935
|
0
|
|
|
|
|
0
|
my %r = ( 1 => 1 ); |
|
936
|
0
|
|
|
0
|
|
0
|
Math::Prime::Util::fordivisors(sub { my $d = $_; |
|
937
|
0
|
0
|
|
|
|
0
|
$d = $do_bigint->new("$d") if $do_bigint; |
|
938
|
0
|
|
|
|
|
0
|
my $p = $d+1; |
|
939
|
0
|
0
|
|
|
|
0
|
if (Math::Prime::Util::is_prime($p)) { |
|
940
|
0
|
|
|
|
|
0
|
my($dp,@sumi,@sumv) = ($d); |
|
941
|
0
|
|
|
|
|
0
|
for my $v (1 .. 1 + Math::Prime::Util::valuation($n, $p)) { |
|
942
|
0
|
|
|
|
|
0
|
Math::Prime::Util::fordivisors(sub { my $d2 = $_; |
|
943
|
0
|
0
|
|
|
|
0
|
if (defined $r{$d2}) { push @sumi, $d2*$dp; push @sumv, $r{$d2}; } |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
944
|
0
|
|
|
|
|
0
|
}, $n / $dp); |
|
945
|
0
|
|
|
|
|
0
|
$dp *= $p; |
|
946
|
|
|
|
|
|
|
} |
|
947
|
0
|
|
|
|
|
0
|
$r{ $sumi[$_] } += $sumv[$_] for 0 .. $#sumi; |
|
948
|
|
|
|
|
|
|
} |
|
949
|
0
|
|
|
|
|
0
|
}, $n); |
|
950
|
0
|
0
|
|
|
|
0
|
return (defined $r{$n}) ? $r{$n} : 0; |
|
951
|
|
|
|
|
|
|
} else { |
|
952
|
0
|
|
|
|
|
0
|
my %r = ( 1 => [1] ); |
|
953
|
0
|
|
|
0
|
|
0
|
Math::Prime::Util::fordivisors(sub { my $d = $_; |
|
954
|
0
|
0
|
|
|
|
0
|
$d = $do_bigint->new("$d") if $do_bigint; |
|
955
|
0
|
|
|
|
|
0
|
my $p = $d+1; |
|
956
|
0
|
0
|
|
|
|
0
|
if (Math::Prime::Util::is_prime($p)) { |
|
957
|
0
|
|
|
|
|
0
|
my($dp,$pp,@T) = ($d,$p); |
|
958
|
0
|
|
|
|
|
0
|
for my $v (1 .. 1 + Math::Prime::Util::valuation($n, $p)) { |
|
959
|
0
|
|
|
|
|
0
|
Math::Prime::Util::fordivisors(sub { my $d2 = $_; |
|
960
|
0
|
0
|
|
|
|
0
|
push @T, [ $d2*$dp, [map { $_ * $pp } @{ $r{$d2} }] ] if defined $r{$d2}; |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
961
|
0
|
|
|
|
|
0
|
}, $n / $dp); |
|
962
|
0
|
|
|
|
|
0
|
$dp *= $p; |
|
963
|
0
|
|
|
|
|
0
|
$pp *= $p; |
|
964
|
|
|
|
|
|
|
} |
|
965
|
0
|
|
|
|
|
0
|
push @{$r{$_->[0]}}, @{$_->[1]} for @T; |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
966
|
|
|
|
|
|
|
} |
|
967
|
0
|
|
|
|
|
0
|
}, $n); |
|
968
|
0
|
0
|
|
|
|
0
|
return () unless defined $r{$n}; |
|
969
|
0
|
|
|
|
|
0
|
delete @r{ grep { $_ != $n } keys %r }; # Delete all intermediate results |
|
|
0
|
|
|
|
|
0
|
|
|
970
|
0
|
|
|
|
|
0
|
my @result = sort { $a <=> $b } @{$r{$n}}; |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
971
|
0
|
|
|
|
|
0
|
return @result; |
|
972
|
|
|
|
|
|
|
} |
|
973
|
|
|
|
|
|
|
} |
|
974
|
|
|
|
|
|
|
|
|
975
|
|
|
|
|
|
|
sub euler_phi_range { |
|
976
|
3
|
|
|
3
|
1
|
11
|
my($lo, $hi) = @_; |
|
977
|
3
|
|
|
|
|
13
|
_validate_integer($lo); |
|
978
|
3
|
|
|
|
|
10
|
_validate_integer($hi); |
|
979
|
|
|
|
|
|
|
|
|
980
|
3
|
|
|
|
|
5
|
my @totients; |
|
981
|
3
|
|
66
|
|
|
20
|
while ($lo < 0 && $lo <= $hi) { |
|
982
|
5
|
|
|
|
|
11
|
push @totients, 0; |
|
983
|
5
|
|
|
|
|
11
|
$lo++; |
|
984
|
|
|
|
|
|
|
} |
|
985
|
3
|
50
|
|
|
|
10
|
return @totients if $hi < $lo; |
|
986
|
|
|
|
|
|
|
|
|
987
|
3
|
50
|
33
|
|
|
22
|
if ($hi > 2**30 || $hi-$lo < 100) { |
|
988
|
3
|
|
|
|
|
9
|
while ($lo <= $hi) { |
|
989
|
101
|
|
|
|
|
195
|
push @totients, euler_phi($lo++); |
|
990
|
|
|
|
|
|
|
} |
|
991
|
|
|
|
|
|
|
} else { |
|
992
|
0
|
|
|
|
|
0
|
my @tot = (0 .. $hi); |
|
993
|
0
|
|
|
|
|
0
|
foreach my $i (2 .. $hi) { |
|
994
|
0
|
0
|
|
|
|
0
|
next unless $tot[$i] == $i; |
|
995
|
0
|
|
|
|
|
0
|
$tot[$i] = $i-1; |
|
996
|
0
|
|
|
|
|
0
|
foreach my $j (2 .. int($hi / $i)) { |
|
997
|
0
|
|
|
|
|
0
|
$tot[$i*$j] -= $tot[$i*$j]/$i; |
|
998
|
|
|
|
|
|
|
} |
|
999
|
|
|
|
|
|
|
} |
|
1000
|
0
|
0
|
|
|
|
0
|
splice(@tot, 0, $lo) if $lo > 0; |
|
1001
|
0
|
|
|
|
|
0
|
push @totients, @tot; |
|
1002
|
|
|
|
|
|
|
} |
|
1003
|
3
|
|
|
|
|
49
|
@totients; |
|
1004
|
|
|
|
|
|
|
} |
|
1005
|
|
|
|
|
|
|
|
|
1006
|
|
|
|
|
|
|
sub moebius { |
|
1007
|
102
|
100
|
|
102
|
1
|
9663
|
return moebius_range(@_) if scalar @_ > 1; |
|
1008
|
99
|
|
|
|
|
211
|
my($n) = @_; |
|
1009
|
99
|
50
|
33
|
|
|
428
|
$n = -$n if defined $n && $n < 0; |
|
1010
|
99
|
100
|
|
|
|
1691
|
_validate_num($n) || _validate_positive_integer($n); |
|
1011
|
99
|
0
|
|
|
|
207
|
return ($n == 1) ? 1 : 0 if $n <= 1; |
|
|
|
50
|
|
|
|
|
|
|
1012
|
99
|
100
|
66
|
|
|
1435
|
return 0 if ($n >= 49) && (!($n % 4) || !($n % 9) || !($n % 25) || !($n%49) ); |
|
|
|
|
100
|
|
|
|
|
|
1013
|
98
|
|
|
|
|
9816
|
my @factors = Math::Prime::Util::factor($n); |
|
1014
|
98
|
|
|
|
|
280
|
foreach my $i (1 .. $#factors) { |
|
1015
|
106
|
100
|
|
|
|
319
|
return 0 if $factors[$i] == $factors[$i-1]; |
|
1016
|
|
|
|
|
|
|
} |
|
1017
|
66
|
100
|
|
|
|
449
|
return ((scalar @factors) % 2) ? -1 : 1; |
|
1018
|
|
|
|
|
|
|
} |
|
1019
|
|
|
|
|
|
|
sub is_square_free { |
|
1020
|
4
|
100
|
|
4
|
0
|
937
|
return (Math::Prime::Util::moebius($_[0]) != 0) ? 1 : 0; |
|
1021
|
|
|
|
|
|
|
} |
|
1022
|
|
|
|
|
|
|
sub is_semiprime { |
|
1023
|
1
|
|
|
1
|
0
|
5
|
my($n) = @_; |
|
1024
|
1
|
|
|
|
|
4
|
_validate_positive_integer($n); |
|
1025
|
1
|
50
|
|
|
|
4
|
return ($n == 4) if $n < 6; |
|
1026
|
1
|
0
|
|
|
|
143
|
return (Math::Prime::Util::is_prob_prime($n>>1) ? 1 : 0) if ($n % 2) == 0; |
|
|
|
50
|
|
|
|
|
|
|
1027
|
1
|
0
|
|
|
|
414
|
return (Math::Prime::Util::is_prob_prime($n/3) ? 1 : 0) if ($n % 3) == 0; |
|
|
|
50
|
|
|
|
|
|
|
1028
|
1
|
0
|
|
|
|
351
|
return (Math::Prime::Util::is_prob_prime($n/5) ? 1 : 0) if ($n % 5) == 0; |
|
|
|
50
|
|
|
|
|
|
|
1029
|
|
|
|
|
|
|
{ |
|
1030
|
1
|
|
|
|
|
330
|
my @f = trial_factor($n, 4999); |
|
|
1
|
|
|
|
|
6
|
|
|
1031
|
1
|
50
|
|
|
|
35
|
return 0 if @f > 2; |
|
1032
|
0
|
0
|
|
|
|
0
|
return (_is_prime7($f[1]) ? 1 : 0) if @f == 2; |
|
|
|
0
|
|
|
|
|
|
|
1033
|
|
|
|
|
|
|
} |
|
1034
|
0
|
0
|
|
|
|
0
|
return 0 if _is_prime7($n); |
|
1035
|
|
|
|
|
|
|
{ |
|
1036
|
0
|
|
|
|
|
0
|
my @f = pminus1_factor ($n, 250_000); |
|
1037
|
0
|
0
|
|
|
|
0
|
return 0 if @f > 2; |
|
1038
|
0
|
0
|
|
|
|
0
|
return (_is_prime7($f[1]) ? 1 : 0) if @f == 2; |
|
|
|
0
|
|
|
|
|
|
|
1039
|
|
|
|
|
|
|
} |
|
1040
|
|
|
|
|
|
|
{ |
|
1041
|
0
|
|
|
|
|
0
|
my @f = pbrent_factor ($n, 128*1024, 3, 1); |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
1042
|
0
|
0
|
|
|
|
0
|
return 0 if @f > 2; |
|
1043
|
0
|
0
|
|
|
|
0
|
return (_is_prime7($f[1]) ? 1 : 0) if @f == 2; |
|
|
|
0
|
|
|
|
|
|
|
1044
|
|
|
|
|
|
|
} |
|
1045
|
0
|
0
|
|
|
|
0
|
return (scalar(Math::Prime::Util::factor($n)) == 2) ? 1 : 0; |
|
1046
|
|
|
|
|
|
|
} |
|
1047
|
|
|
|
|
|
|
|
|
1048
|
|
|
|
|
|
|
sub _totpred { |
|
1049
|
370
|
|
|
370
|
|
39746
|
my($n, $maxd) = @_; |
|
1050
|
370
|
50
|
100
|
|
|
1865
|
return 0 if $maxd <= 1 || (ref($n) ? $n->is_odd() : ($n & 1)); |
|
|
|
100
|
|
|
|
|
|
|
1051
|
131
|
50
|
33
|
|
|
2233
|
$n = Math::BigInt->new("$n") unless ref($n) || $n < INTMAX; |
|
1052
|
131
|
|
|
|
|
379
|
$n >>= 1; |
|
1053
|
131
|
100
|
100
|
|
|
27540
|
return 1 if $n == 1 || ($n < $maxd && Math::Prime::Util::is_prime(2*$n+1)); |
|
|
|
|
66
|
|
|
|
|
|
1054
|
130
|
|
|
|
|
33093
|
for my $d (Math::Prime::Util::divisors($n)) { |
|
1055
|
1001
|
100
|
|
|
|
81061
|
last if $d >= $maxd; |
|
1056
|
881
|
100
|
|
|
|
23015
|
my $p = ($d < (INTMAX >> 1)) ? ($d<<1)+1 : Math::Prime::Util::vecprod(2,$d)+1; |
|
1057
|
881
|
100
|
|
|
|
3737
|
next unless Math::Prime::Util::is_prime($p); |
|
1058
|
335
|
|
|
|
|
854
|
my $r = int($n / $d); |
|
1059
|
335
|
|
|
|
|
110429
|
while (1) { |
|
1060
|
368
|
100
|
100
|
|
|
11144
|
return 1 if $r == $p || _totpred($r, $d); |
|
1061
|
364
|
100
|
|
|
|
2041
|
last if $r % $p; |
|
1062
|
33
|
|
|
|
|
7274
|
$r = int($r / $p); |
|
1063
|
|
|
|
|
|
|
} |
|
1064
|
|
|
|
|
|
|
} |
|
1065
|
126
|
|
|
|
|
3770
|
0; |
|
1066
|
|
|
|
|
|
|
} |
|
1067
|
|
|
|
|
|
|
sub is_totient { |
|
1068
|
3
|
|
|
3
|
0
|
36
|
my($n) = @_; |
|
1069
|
3
|
|
|
|
|
11
|
_validate_positive_integer($n); |
|
1070
|
3
|
50
|
|
|
|
10
|
return 1 if $n == 1; |
|
1071
|
3
|
50
|
|
|
|
373
|
return 0 if $n <= 0; |
|
1072
|
3
|
|
|
|
|
546
|
return _totpred($n,$n); |
|
1073
|
|
|
|
|
|
|
} |
|
1074
|
|
|
|
|
|
|
|
|
1075
|
|
|
|
|
|
|
|
|
1076
|
|
|
|
|
|
|
sub moebius_range { |
|
1077
|
6
|
|
|
6
|
1
|
15
|
my($lo, $hi) = @_; |
|
1078
|
6
|
|
|
|
|
18
|
_validate_integer($lo); |
|
1079
|
6
|
|
|
|
|
15
|
_validate_integer($hi); |
|
1080
|
6
|
50
|
|
|
|
19
|
return () if $hi < $lo; |
|
1081
|
6
|
50
|
|
|
|
14
|
return moebius($lo) if $lo == $hi; |
|
1082
|
6
|
100
|
|
|
|
15
|
if ($lo < 0) { |
|
1083
|
2
|
100
|
|
|
|
6
|
if ($hi < 0) { |
|
1084
|
1
|
|
|
|
|
7
|
return reverse(moebius_range(-$hi,-$lo)); |
|
1085
|
|
|
|
|
|
|
} else { |
|
1086
|
1
|
|
|
|
|
3
|
return (reverse(moebius_range(1,-$lo)), moebius_range(0,$hi)); |
|
1087
|
|
|
|
|
|
|
} |
|
1088
|
|
|
|
|
|
|
} |
|
1089
|
4
|
50
|
|
|
|
12
|
if ($hi > 2**32) { |
|
1090
|
0
|
|
|
|
|
0
|
my @mu; |
|
1091
|
0
|
|
|
|
|
0
|
while ($lo <= $hi) { |
|
1092
|
0
|
|
|
|
|
0
|
push @mu, moebius($lo++); |
|
1093
|
|
|
|
|
|
|
} |
|
1094
|
0
|
|
|
|
|
0
|
return @mu; |
|
1095
|
|
|
|
|
|
|
} |
|
1096
|
4
|
|
|
|
|
13
|
my @mu = map { 1 } $lo .. $hi; |
|
|
44
|
|
|
|
|
64
|
|
|
1097
|
4
|
100
|
|
|
|
14
|
$mu[0] = 0 if $lo == 0; |
|
1098
|
4
|
|
|
|
|
17
|
my($p, $sqrtn) = (2, int(sqrt($hi)+0.5)); |
|
1099
|
4
|
|
|
|
|
13
|
while ($p <= $sqrtn) { |
|
1100
|
14
|
|
|
|
|
24
|
my $i = $p * $p; |
|
1101
|
14
|
100
|
|
|
|
35
|
$i = $i * int($lo/$i) + (($lo % $i) ? $i : 0) if $i < $lo; |
|
|
|
100
|
|
|
|
|
|
|
1102
|
14
|
|
|
|
|
32
|
while ($i <= $hi) { |
|
1103
|
15
|
|
|
|
|
25
|
$mu[$i-$lo] = 0; |
|
1104
|
15
|
|
|
|
|
27
|
$i += $p * $p; |
|
1105
|
|
|
|
|
|
|
} |
|
1106
|
14
|
|
|
|
|
25
|
$i = $p; |
|
1107
|
14
|
100
|
|
|
|
40
|
$i = $i * int($lo/$i) + (($lo % $i) ? $i : 0) if $i < $lo; |
|
|
|
100
|
|
|
|
|
|
|
1108
|
14
|
|
|
|
|
29
|
while ($i <= $hi) { |
|
1109
|
49
|
|
|
|
|
63
|
$mu[$i-$lo] *= -$p; |
|
1110
|
49
|
|
|
|
|
85
|
$i += $p; |
|
1111
|
|
|
|
|
|
|
} |
|
1112
|
14
|
|
|
|
|
38
|
$p = next_prime($p); |
|
1113
|
|
|
|
|
|
|
} |
|
1114
|
4
|
|
|
|
|
14
|
foreach my $i ($lo .. $hi) { |
|
1115
|
44
|
|
|
|
|
57
|
my $m = $mu[$i-$lo]; |
|
1116
|
44
|
100
|
|
|
|
79
|
$m *= -1 if abs($m) != $i; |
|
1117
|
44
|
|
|
|
|
73
|
$mu[$i-$lo] = ($m>0) - ($m<0); |
|
1118
|
|
|
|
|
|
|
} |
|
1119
|
4
|
|
|
|
|
55
|
return @mu; |
|
1120
|
|
|
|
|
|
|
} |
|
1121
|
|
|
|
|
|
|
|
|
1122
|
|
|
|
|
|
|
sub mertens { |
|
1123
|
1
|
|
|
1
|
0
|
3
|
my($n) = @_; |
|
1124
|
|
|
|
|
|
|
# This is the most basic Deléglise and Rivat algorithm. u = n^1/2 |
|
1125
|
|
|
|
|
|
|
# and no segmenting is done. Their algorithm uses u = n^1/3, breaks |
|
1126
|
|
|
|
|
|
|
# the summation into two parts, and calculates those in segments. Their |
|
1127
|
|
|
|
|
|
|
# computation time growth is half of this code. |
|
1128
|
1
|
50
|
|
|
|
4
|
return $n if $n <= 1; |
|
1129
|
1
|
|
|
|
|
4
|
my $u = int(sqrt($n)); |
|
1130
|
1
|
|
|
|
|
19
|
my @mu = (0, Math::Prime::Util::moebius(1, $u)); # Hold values of mu for 0-u |
|
1131
|
1
|
|
|
|
|
3
|
my $musum = 0; |
|
1132
|
1
|
|
|
|
|
3
|
my @M = map { $musum += $_; } @mu; # Hold values of M for 0-u |
|
|
65
|
|
|
|
|
91
|
|
|
1133
|
1
|
|
|
|
|
2
|
my $sum = $M[$u]; |
|
1134
|
1
|
|
|
|
|
4
|
foreach my $m (1 .. $u) { |
|
1135
|
64
|
100
|
|
|
|
110
|
next if $mu[$m] == 0; |
|
1136
|
39
|
|
|
|
|
49
|
my $inner_sum = 0; |
|
1137
|
39
|
|
|
|
|
59
|
my $lower = int($u/$m) + 1; |
|
1138
|
39
|
|
|
|
|
62
|
my $last_nmk = int($n/($m*$lower)); |
|
1139
|
39
|
|
|
|
|
63
|
my ($denom, $this_k, $next_k) = ($m, 0, int($n/($m*1))); |
|
1140
|
39
|
|
|
|
|
60
|
for my $nmk (1 .. $last_nmk) { |
|
1141
|
2048
|
|
|
|
|
2405
|
$denom += $m; |
|
1142
|
2048
|
|
|
|
|
2627
|
$this_k = int($n/$denom); |
|
1143
|
2048
|
100
|
|
|
|
3252
|
next if $this_k == $next_k; |
|
1144
|
982
|
|
|
|
|
1372
|
($this_k, $next_k) = ($next_k, $this_k); |
|
1145
|
982
|
|
|
|
|
1375
|
$inner_sum += $M[$nmk] * ($this_k - $next_k); |
|
1146
|
|
|
|
|
|
|
} |
|
1147
|
39
|
|
|
|
|
80
|
$sum -= $mu[$m] * $inner_sum; |
|
1148
|
|
|
|
|
|
|
} |
|
1149
|
1
|
|
|
|
|
11
|
return $sum; |
|
1150
|
|
|
|
|
|
|
} |
|
1151
|
|
|
|
|
|
|
|
|
1152
|
|
|
|
|
|
|
sub ramanujan_sum { |
|
1153
|
0
|
|
|
0
|
0
|
0
|
my($k,$n) = @_; |
|
1154
|
0
|
0
|
0
|
|
|
0
|
return 0 if $k < 1 || $n < 1; |
|
1155
|
0
|
|
|
|
|
0
|
my $g = $k / Math::Prime::Util::gcd($k,$n); |
|
1156
|
0
|
|
|
|
|
0
|
my $m = Math::Prime::Util::moebius($g); |
|
1157
|
0
|
0
|
0
|
|
|
0
|
return $m if $m == 0 || $k == $g; |
|
1158
|
0
|
|
|
|
|
0
|
$m * (Math::Prime::Util::euler_phi($k) / Math::Prime::Util::euler_phi($g)); |
|
1159
|
|
|
|
|
|
|
} |
|
1160
|
|
|
|
|
|
|
|
|
1161
|
|
|
|
|
|
|
sub liouville { |
|
1162
|
4
|
|
|
4
|
0
|
1057
|
my($n) = @_; |
|
1163
|
4
|
|
|
|
|
28
|
my $l = (-1) ** scalar Math::Prime::Util::factor($n); |
|
1164
|
4
|
|
|
|
|
39
|
return $l; |
|
1165
|
|
|
|
|
|
|
} |
|
1166
|
|
|
|
|
|
|
|
|
1167
|
|
|
|
|
|
|
# Exponential of Mangoldt function (A014963). |
|
1168
|
|
|
|
|
|
|
# Return p if n = p^m [p prime, m >= 1], 1 otherwise. |
|
1169
|
|
|
|
|
|
|
sub exp_mangoldt { |
|
1170
|
5
|
|
|
5
|
0
|
12
|
my($n) = @_; |
|
1171
|
5
|
|
|
|
|
8
|
my $p; |
|
1172
|
5
|
100
|
|
|
|
38
|
return 1 unless Math::Prime::Util::is_prime_power($n,\$p); |
|
1173
|
3
|
|
|
|
|
14
|
$p; |
|
1174
|
|
|
|
|
|
|
} |
|
1175
|
|
|
|
|
|
|
|
|
1176
|
|
|
|
|
|
|
sub carmichael_lambda { |
|
1177
|
3
|
|
|
3
|
0
|
1439
|
my($n) = @_; |
|
1178
|
3
|
50
|
|
|
|
16
|
return euler_phi($n) if $n < 8; # = phi(n) for n < 8 |
|
1179
|
3
|
50
|
|
|
|
258
|
return $n >> 2 if ($n & ($n-1)) == 0; # = phi(n)/2 = n/4 for 2^k, k>2 |
|
1180
|
|
|
|
|
|
|
|
|
1181
|
3
|
|
|
|
|
2323
|
my @pe = Math::Prime::Util::factor_exp($n); |
|
1182
|
3
|
50
|
66
|
|
|
25
|
$pe[0]->[1]-- if $pe[0]->[0] == 2 && $pe[0]->[1] > 2; |
|
1183
|
|
|
|
|
|
|
|
|
1184
|
3
|
|
|
|
|
8
|
my $lcm; |
|
1185
|
3
|
100
|
|
|
|
16
|
if (!ref($n)) { |
|
1186
|
|
|
|
|
|
|
$lcm = Math::Prime::Util::lcm( |
|
1187
|
1
|
|
|
|
|
4
|
map { ($_->[0] ** ($_->[1]-1)) * ($_->[0]-1) } @pe |
|
|
3
|
|
|
|
|
15
|
|
|
1188
|
|
|
|
|
|
|
); |
|
1189
|
|
|
|
|
|
|
} else { |
|
1190
|
|
|
|
|
|
|
$lcm = Math::BigInt::blcm( |
|
1191
|
14
|
|
|
|
|
4284
|
map { $_->[0]->copy->bpow($_->[1]->copy->bdec)->bmul($_->[0]->copy->bdec) } |
|
1192
|
2
|
|
|
|
|
7
|
map { [ map { Math::BigInt->new("$_") } @$_ ] } |
|
|
14
|
|
|
|
|
423
|
|
|
|
28
|
|
|
|
|
603
|
|
|
1193
|
|
|
|
|
|
|
@pe |
|
1194
|
|
|
|
|
|
|
); |
|
1195
|
2
|
100
|
|
|
|
2616
|
$lcm = _bigint_to_int($lcm) if $lcm->bacmp(BMAX) <= 0; |
|
1196
|
|
|
|
|
|
|
} |
|
1197
|
3
|
|
|
|
|
81
|
$lcm; |
|
1198
|
|
|
|
|
|
|
} |
|
1199
|
|
|
|
|
|
|
|
|
1200
|
|
|
|
|
|
|
sub is_carmichael { |
|
1201
|
1
|
|
|
1
|
0
|
5
|
my($n) = @_; |
|
1202
|
1
|
|
|
|
|
6
|
_validate_positive_integer($n); |
|
1203
|
|
|
|
|
|
|
|
|
1204
|
|
|
|
|
|
|
# This works fine, but very slow |
|
1205
|
|
|
|
|
|
|
# return !is_prime($n) && ($n % carmichael_lambda($n)) == 1; |
|
1206
|
|
|
|
|
|
|
|
|
1207
|
1
|
50
|
33
|
|
|
6
|
return 0 if $n < 561 || ($n % 2) == 0; |
|
1208
|
1
|
50
|
33
|
|
|
682
|
return 0 if (!($n % 9) || !($n % 25) || !($n%49) || !($n%121)); |
|
|
|
|
33
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
1209
|
|
|
|
|
|
|
|
|
1210
|
|
|
|
|
|
|
# Check Korselt's criterion for small divisors |
|
1211
|
1
|
|
|
|
|
892
|
my $fn = $n; |
|
1212
|
1
|
|
|
|
|
3
|
for my $a (5,7,11,13,17,19,23,29,31,37,41,43) { |
|
1213
|
12
|
50
|
|
|
|
3802
|
if (($fn % $a) == 0) { |
|
1214
|
0
|
0
|
|
|
|
0
|
return 0 if (($n-1) % ($a-1)) != 0; # Korselt |
|
1215
|
0
|
|
|
|
|
0
|
$fn /= $a; |
|
1216
|
0
|
0
|
|
|
|
0
|
return 0 unless $fn % $a; # not square free |
|
1217
|
|
|
|
|
|
|
} |
|
1218
|
|
|
|
|
|
|
} |
|
1219
|
1
|
50
|
|
|
|
351
|
return 0 if Math::Prime::Util::powmod(2, $n-1, $n) != 1; |
|
1220
|
|
|
|
|
|
|
|
|
1221
|
|
|
|
|
|
|
# After pre-tests, it's reasonably likely $n is a Carmichael number or prime |
|
1222
|
|
|
|
|
|
|
|
|
1223
|
|
|
|
|
|
|
# Use probabilistic test if too large to reasonably factor. |
|
1224
|
1
|
50
|
|
|
|
169
|
if (length($fn) > 50) { |
|
1225
|
0
|
0
|
|
|
|
0
|
return 0 if Math::Prime::Util::is_prime($n); |
|
1226
|
0
|
|
|
|
|
0
|
for my $t (13 .. 150) { |
|
1227
|
0
|
|
|
|
|
0
|
my $a = $_primes_small[$t]; |
|
1228
|
0
|
|
|
|
|
0
|
my $gcd = Math::Prime::Util::gcd($a, $fn); |
|
1229
|
0
|
0
|
|
|
|
0
|
if ($gcd == 1) { |
|
1230
|
0
|
0
|
|
|
|
0
|
return 0 if Math::Prime::Util::powmod($a, $n-1, $n) != 1; |
|
1231
|
|
|
|
|
|
|
} else { |
|
1232
|
0
|
0
|
|
|
|
0
|
return 0 if $gcd != $a; # Not square free |
|
1233
|
0
|
0
|
|
|
|
0
|
return 0 if (($n-1) % ($a-1)) != 0; # factor doesn't divide |
|
1234
|
0
|
|
|
|
|
0
|
$fn /= $a; |
|
1235
|
|
|
|
|
|
|
} |
|
1236
|
|
|
|
|
|
|
} |
|
1237
|
0
|
|
|
|
|
0
|
return 1; |
|
1238
|
|
|
|
|
|
|
} |
|
1239
|
|
|
|
|
|
|
|
|
1240
|
|
|
|
|
|
|
# Verify with factoring. |
|
1241
|
1
|
|
|
|
|
39
|
my @pe = Math::Prime::Util::factor_exp($n); |
|
1242
|
1
|
50
|
|
|
|
7
|
return 0 if scalar(@pe) < 3; |
|
1243
|
1
|
|
|
|
|
5
|
for my $pe (@pe) { |
|
1244
|
3
|
50
|
33
|
|
|
1759
|
return 0 if $pe->[1] > 1 || (($n-1) % ($pe->[0]-1)) != 0; |
|
1245
|
|
|
|
|
|
|
} |
|
1246
|
1
|
|
|
|
|
756
|
1; |
|
1247
|
|
|
|
|
|
|
} |
|
1248
|
|
|
|
|
|
|
|
|
1249
|
|
|
|
|
|
|
sub is_quasi_carmichael { |
|
1250
|
0
|
|
|
0
|
0
|
0
|
my($n) = @_; |
|
1251
|
0
|
|
|
|
|
0
|
_validate_positive_integer($n); |
|
1252
|
|
|
|
|
|
|
|
|
1253
|
0
|
0
|
|
|
|
0
|
return 0 if $n < 35; |
|
1254
|
0
|
0
|
0
|
|
|
0
|
return 0 if (!($n % 4) || !($n % 9) || !($n % 25) || !($n%49) || !($n%121)); |
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
1255
|
|
|
|
|
|
|
|
|
1256
|
0
|
|
|
|
|
0
|
my @pe = Math::Prime::Util::factor_exp($n); |
|
1257
|
|
|
|
|
|
|
# Not quasi-Carmichael if prime |
|
1258
|
0
|
0
|
|
|
|
0
|
return 0 if scalar(@pe) < 2; |
|
1259
|
|
|
|
|
|
|
# Not quasi-Carmichael if not square free |
|
1260
|
0
|
|
|
|
|
0
|
for my $pe (@pe) { |
|
1261
|
0
|
0
|
|
|
|
0
|
return 0 if $pe->[1] > 1; |
|
1262
|
|
|
|
|
|
|
} |
|
1263
|
0
|
|
|
|
|
0
|
my @f = map { $_->[0] } @pe; |
|
|
0
|
|
|
|
|
0
|
|
|
1264
|
0
|
|
|
|
|
0
|
my $nbases = 0; |
|
1265
|
0
|
0
|
|
|
|
0
|
if ($n < 2000) { |
|
1266
|
|
|
|
|
|
|
# In theory for performance, but mainly keeping to show direct method. |
|
1267
|
0
|
|
|
|
|
0
|
my $lim = $f[-1]; |
|
1268
|
0
|
|
|
|
|
0
|
$lim = (($n-$lim*$lim) + $lim - 1) / $lim; |
|
1269
|
0
|
|
|
|
|
0
|
for my $b (1 .. $f[0]-1) { |
|
1270
|
0
|
|
|
|
|
0
|
my $nb = $n - $b; |
|
1271
|
0
|
0
|
|
0
|
|
0
|
$nbases++ if Math::Prime::Util::vecall(sub { $nb % ($_-$b) == 0 }, @f); |
|
|
0
|
|
|
|
|
0
|
|
|
1272
|
|
|
|
|
|
|
} |
|
1273
|
0
|
0
|
|
|
|
0
|
if (scalar(@f) > 2) { |
|
1274
|
0
|
|
|
|
|
0
|
for my $b (1 .. $lim-1) { |
|
1275
|
0
|
|
|
|
|
0
|
my $nb = $n + $b; |
|
1276
|
0
|
0
|
|
0
|
|
0
|
$nbases++ if Math::Prime::Util::vecall(sub { $nb % ($_+$b) == 0 }, @f); |
|
|
0
|
|
|
|
|
0
|
|
|
1277
|
|
|
|
|
|
|
} |
|
1278
|
|
|
|
|
|
|
} |
|
1279
|
|
|
|
|
|
|
} else { |
|
1280
|
0
|
|
|
|
|
0
|
my($spf,$lpf) = ($f[0], $f[-1]); |
|
1281
|
0
|
0
|
|
|
|
0
|
if (scalar(@f) == 2) { |
|
1282
|
0
|
|
|
|
|
0
|
foreach my $d (Math::Prime::Util::divisors($n/$spf - 1)) { |
|
1283
|
0
|
|
|
|
|
0
|
my $k = $spf - $d; |
|
1284
|
0
|
|
|
|
|
0
|
my $p = $n - $k; |
|
1285
|
0
|
0
|
|
|
|
0
|
last if $d >= $spf; |
|
1286
|
0
|
0
|
|
0
|
|
0
|
$nbases++ if Math::Prime::Util::vecall(sub { my $j = $_-$k; $j && ($p % $j) == 0 }, @f); |
|
|
0
|
0
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
1287
|
|
|
|
|
|
|
} |
|
1288
|
|
|
|
|
|
|
} else { |
|
1289
|
0
|
|
|
|
|
0
|
foreach my $d (Math::Prime::Util::divisors($lpf * ($n/$lpf - 1))) { |
|
1290
|
0
|
|
|
|
|
0
|
my $k = $lpf - $d; |
|
1291
|
0
|
|
|
|
|
0
|
my $p = $n - $k; |
|
1292
|
0
|
0
|
0
|
|
|
0
|
next if $k == 0 || $k >= $spf; |
|
1293
|
0
|
0
|
|
0
|
|
0
|
$nbases++ if Math::Prime::Util::vecall(sub { my $j = $_-$k; $j && ($p % $j) == 0 }, @f); |
|
|
0
|
0
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
1294
|
|
|
|
|
|
|
} |
|
1295
|
|
|
|
|
|
|
} |
|
1296
|
|
|
|
|
|
|
} |
|
1297
|
0
|
|
|
|
|
0
|
$nbases; |
|
1298
|
|
|
|
|
|
|
} |
|
1299
|
|
|
|
|
|
|
|
|
1300
|
|
|
|
|
|
|
sub is_pillai { |
|
1301
|
0
|
|
|
0
|
0
|
0
|
my($p) = @_; |
|
1302
|
0
|
0
|
0
|
|
|
0
|
return 0 if defined($p) && int($p) < 0; |
|
1303
|
0
|
|
|
|
|
0
|
_validate_positive_integer($p); |
|
1304
|
0
|
0
|
|
|
|
0
|
return 0 if $p <= 2; |
|
1305
|
|
|
|
|
|
|
|
|
1306
|
0
|
|
|
|
|
0
|
my $pm1 = $p-1; |
|
1307
|
0
|
|
|
|
|
0
|
my $nfac = 5040 % $p; |
|
1308
|
0
|
|
|
|
|
0
|
for (my $n = 8; $n < $p; $n++) { |
|
1309
|
0
|
|
|
|
|
0
|
$nfac = Math::Prime::Util::mulmod($nfac, $n, $p); |
|
1310
|
0
|
0
|
0
|
|
|
0
|
return $n if $nfac == $pm1 && ($p % $n) != 1; |
|
1311
|
|
|
|
|
|
|
} |
|
1312
|
0
|
|
|
|
|
0
|
0; |
|
1313
|
|
|
|
|
|
|
} |
|
1314
|
|
|
|
|
|
|
|
|
1315
|
|
|
|
|
|
|
sub is_fundamental { |
|
1316
|
2
|
|
|
2
|
0
|
23
|
my($n) = @_; |
|
1317
|
2
|
|
|
|
|
11
|
_validate_integer($n); |
|
1318
|
2
|
|
|
|
|
9
|
my $neg = ($n < 0); |
|
1319
|
2
|
100
|
|
|
|
458
|
$n = -$n if $neg; |
|
1320
|
2
|
|
|
|
|
54
|
my $r = $n & 15; |
|
1321
|
2
|
50
|
|
|
|
751
|
if ($r) { |
|
1322
|
2
|
|
|
|
|
64
|
my $r4 = $r & 3; |
|
1323
|
2
|
100
|
|
|
|
478
|
if (!$neg) { |
|
1324
|
1
|
0
|
|
|
|
4
|
return (($r == 4) ? 0 : is_square_free($n >> 2)) if $r4 == 0; |
|
|
|
50
|
|
|
|
|
|
|
1325
|
1
|
50
|
|
|
|
172
|
return is_square_free($n) if $r4 == 1; |
|
1326
|
|
|
|
|
|
|
} else { |
|
1327
|
1
|
50
|
|
|
|
5
|
return (($r == 12) ? 0 : is_square_free($n >> 2)) if $r4 == 0; |
|
|
|
50
|
|
|
|
|
|
|
1328
|
0
|
0
|
|
|
|
0
|
return is_square_free($n) if $r4 == 3; |
|
1329
|
|
|
|
|
|
|
} |
|
1330
|
|
|
|
|
|
|
} |
|
1331
|
0
|
|
|
|
|
0
|
0; |
|
1332
|
|
|
|
|
|
|
} |
|
1333
|
|
|
|
|
|
|
|
|
1334
|
|
|
|
|
|
|
my @_ds_overflow = # We'll use BigInt math if the input is larger than this. |
|
1335
|
|
|
|
|
|
|
(~0 > 4294967295) |
|
1336
|
|
|
|
|
|
|
? (124, 3000000000000000000, 3000000000, 2487240, 64260, 7026) |
|
1337
|
|
|
|
|
|
|
: ( 50, 845404560, 52560, 1548, 252, 84); |
|
1338
|
|
|
|
|
|
|
sub divisor_sum { |
|
1339
|
920
|
|
|
920
|
0
|
66985
|
my($n, $k) = @_; |
|
1340
|
920
|
0
|
0
|
|
|
2109
|
return ((defined $k && $k==0) ? 2 : 1) if $n == 0; |
|
|
|
50
|
|
|
|
|
|
|
1341
|
920
|
100
|
|
|
|
3253
|
return 1 if $n == 1; |
|
1342
|
|
|
|
|
|
|
|
|
1343
|
836
|
100
|
100
|
|
|
3923
|
if (defined $k && ref($k) eq 'CODE') { |
|
1344
|
831
|
|
|
|
|
1275
|
my $sum = $n-$n; |
|
1345
|
831
|
|
|
|
|
1481
|
my $refn = ref($n); |
|
1346
|
831
|
|
|
|
|
3712
|
foreach my $d (Math::Prime::Util::divisors($n)) { |
|
1347
|
3486
|
100
|
|
|
|
20699
|
$sum += $k->( $refn ? $refn->new("$d") : $d ); |
|
1348
|
|
|
|
|
|
|
} |
|
1349
|
831
|
|
|
|
|
7205
|
return $sum; |
|
1350
|
|
|
|
|
|
|
} |
|
1351
|
|
|
|
|
|
|
|
|
1352
|
5
|
50
|
100
|
|
|
28
|
croak "Second argument must be a code ref or number" |
|
|
|
|
66
|
|
|
|
|
|
1353
|
|
|
|
|
|
|
unless !defined $k || _validate_num($k) || _validate_positive_integer($k); |
|
1354
|
5
|
100
|
|
|
|
16
|
$k = 1 if !defined $k; |
|
1355
|
|
|
|
|
|
|
|
|
1356
|
|
|
|
|
|
|
return Math::Prime::Util::_reftyped($_[0], Math::Prime::Util::GMP::sigma($n, $k)) |
|
1357
|
5
|
50
|
|
|
|
18
|
if $Math::Prime::Util::_GMPfunc{"sigma"}; |
|
1358
|
|
|
|
|
|
|
|
|
1359
|
5
|
50
|
|
|
|
36
|
my $will_overflow = ($k == 0) ? (length($n) >= $_ds_overflow[0]) |
|
|
|
100
|
|
|
|
|
|
|
1360
|
|
|
|
|
|
|
: ($k <= 5) ? ($n >= $_ds_overflow[$k]) |
|
1361
|
|
|
|
|
|
|
: 1; |
|
1362
|
|
|
|
|
|
|
|
|
1363
|
|
|
|
|
|
|
# The standard way is: |
|
1364
|
|
|
|
|
|
|
# my $pk = $f ** $k; $product *= ($pk ** ($e+1) - 1) / ($pk - 1); |
|
1365
|
|
|
|
|
|
|
# But we get less overflow using: |
|
1366
|
|
|
|
|
|
|
# my $pk = $f ** $k; $product *= $pk**E for E in 0 .. e |
|
1367
|
|
|
|
|
|
|
# Also separate BigInt and do fiddly bits for better performance. |
|
1368
|
|
|
|
|
|
|
|
|
1369
|
5
|
|
|
|
|
504
|
my @factors = Math::Prime::Util::factor_exp($n); |
|
1370
|
5
|
|
|
|
|
13
|
my $product = 1; |
|
1371
|
5
|
|
|
|
|
10
|
my @fm; |
|
1372
|
5
|
100
|
33
|
|
|
48
|
if ($k == 0) { |
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
1373
|
2
|
|
|
|
|
9
|
$product = Math::Prime::Util::vecprod(map { $_->[1]+1 } @factors); |
|
|
98
|
|
|
|
|
304
|
|
|
1374
|
|
|
|
|
|
|
} elsif (!$will_overflow) { |
|
1375
|
0
|
|
|
|
|
0
|
foreach my $f (@factors) { |
|
1376
|
0
|
|
|
|
|
0
|
my ($p, $e) = @$f; |
|
1377
|
0
|
|
|
|
|
0
|
my $pk = $p ** $k; |
|
1378
|
0
|
|
|
|
|
0
|
my $fmult = $pk + 1; |
|
1379
|
0
|
|
|
|
|
0
|
foreach my $E (2 .. $e) { $fmult += $pk**$E } |
|
|
0
|
|
|
|
|
0
|
|
|
1380
|
0
|
|
|
|
|
0
|
$product *= $fmult; |
|
1381
|
|
|
|
|
|
|
} |
|
1382
|
|
|
|
|
|
|
} elsif (ref($n) && ref($n) ne 'Math::BigInt') { |
|
1383
|
|
|
|
|
|
|
# This can help a lot for Math::GMP, etc. |
|
1384
|
0
|
|
|
|
|
0
|
$product = ref($n)->new(1); |
|
1385
|
0
|
|
|
|
|
0
|
foreach my $f (@factors) { |
|
1386
|
0
|
|
|
|
|
0
|
my ($p, $e) = @$f; |
|
1387
|
0
|
|
|
|
|
0
|
my $pk = ref($n)->new($p) ** $k; |
|
1388
|
0
|
|
|
|
|
0
|
my $fmult = $pk; $fmult++; |
|
|
0
|
|
|
|
|
0
|
|
|
1389
|
0
|
0
|
|
|
|
0
|
if ($e >= 2) { |
|
1390
|
0
|
|
|
|
|
0
|
my $pke = $pk; |
|
1391
|
0
|
|
|
|
|
0
|
for (2 .. $e) { $pke *= $pk; $fmult += $pke; } |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
1392
|
|
|
|
|
|
|
} |
|
1393
|
0
|
|
|
|
|
0
|
$product *= $fmult; |
|
1394
|
|
|
|
|
|
|
} |
|
1395
|
|
|
|
|
|
|
} elsif ($k == 1) { |
|
1396
|
2
|
|
|
|
|
8
|
foreach my $f (@factors) { |
|
1397
|
52
|
|
|
|
|
100
|
my ($p, $e) = @$f; |
|
1398
|
52
|
|
|
|
|
140
|
my $pk = Math::BigInt->new("$p"); |
|
1399
|
52
|
100
|
|
|
|
1979
|
if ($e == 1) { push @fm, $pk->binc; next; } |
|
|
37
|
|
|
|
|
84
|
|
|
|
37
|
|
|
|
|
1367
|
|
|
1400
|
15
|
|
|
|
|
35
|
my $fmult = $pk->copy->binc; |
|
1401
|
15
|
|
|
|
|
839
|
my $pke = $pk->copy; |
|
1402
|
15
|
|
|
|
|
331
|
for my $E (2 .. $e) { |
|
1403
|
214
|
|
|
|
|
11401
|
$pke->bmul($pk); |
|
1404
|
214
|
|
|
|
|
12183
|
$fmult->badd($pke); |
|
1405
|
|
|
|
|
|
|
} |
|
1406
|
15
|
|
|
|
|
889
|
push @fm, $fmult; |
|
1407
|
|
|
|
|
|
|
} |
|
1408
|
2
|
|
|
|
|
23
|
$product = Math::Prime::Util::vecprod(@fm); |
|
1409
|
|
|
|
|
|
|
} else { |
|
1410
|
1
|
|
|
|
|
6
|
my $bik = Math::BigInt->new("$k"); |
|
1411
|
1
|
|
|
|
|
48
|
foreach my $f (@factors) { |
|
1412
|
27
|
|
|
|
|
53
|
my ($p, $e) = @$f; |
|
1413
|
27
|
|
|
|
|
79
|
my $pk = Math::BigInt->new("$p")->bpow($bik); |
|
1414
|
27
|
50
|
|
|
|
6027
|
if ($e == 1) { push @fm, $pk->binc; next; } |
|
|
27
|
|
|
|
|
67
|
|
|
|
27
|
|
|
|
|
983
|
|
|
1415
|
0
|
|
|
|
|
0
|
my $fmult = $pk->copy->binc; |
|
1416
|
0
|
|
|
|
|
0
|
my $pke = $pk->copy; |
|
1417
|
0
|
|
|
|
|
0
|
for my $E (2 .. $e) { |
|
1418
|
0
|
|
|
|
|
0
|
$pke->bmul($pk); |
|
1419
|
0
|
|
|
|
|
0
|
$fmult->badd($pke); |
|
1420
|
|
|
|
|
|
|
} |
|
1421
|
0
|
|
|
|
|
0
|
push @fm, $fmult; |
|
1422
|
|
|
|
|
|
|
} |
|
1423
|
1
|
|
|
|
|
7
|
$product = Math::Prime::Util::vecprod(@fm); |
|
1424
|
|
|
|
|
|
|
} |
|
1425
|
5
|
|
|
|
|
103
|
$product; |
|
1426
|
|
|
|
|
|
|
} |
|
1427
|
|
|
|
|
|
|
|
|
1428
|
|
|
|
|
|
|
############################################################################# |
|
1429
|
|
|
|
|
|
|
# Lehmer prime count |
|
1430
|
|
|
|
|
|
|
# |
|
1431
|
|
|
|
|
|
|
#my @_s0 = (0); |
|
1432
|
|
|
|
|
|
|
#my @_s1 = (0,1); |
|
1433
|
|
|
|
|
|
|
#my @_s2 = (0,1,1,1,1,2); |
|
1434
|
|
|
|
|
|
|
my @_s3 = (0,1,1,1,1,1,1,2,2,2,2,3,3,4,4,4,4,5,5,6,6,6,6,7,7,7,7,7,7,8); |
|
1435
|
|
|
|
|
|
|
my @_s4 = (0,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,4,4,5,5,5,5,6,6,6,6,6,6,7,7,8,8,8,8,8,8,9,9,9,9,10,10,11,11,11,11,12,12,12,12,12,12,13,13,13,13,13,13,14,14,15,15,15,15,15,15,16,16,16,16,17,17,18,18,18,18,18,18,19,19,19,19,20,20,20,20,20,20,21,21,21,21,21,21,21,21,22,22,22,22,23,23,24,24,24,24,25,25,26,26,26,26,27,27,27,27,27,27,27,27,28,28,28,28,28,28,29,29,29,29,30,30,30,30,30,30,31,31,32,32,32,32,33,33,33,33,33,33,34,34,35,35,35,35,35,35,36,36,36,36,36,36,37,37,37,37,38,38,39,39,39,39,40,40,40,40,40,40,41,41,42,42,42,42,42,42,43,43,43,43,44,44,45,45,45,45,46,46,47,47,47,47,47,47,47,47,47,47,48); |
|
1436
|
|
|
|
|
|
|
sub _tablephi { |
|
1437
|
1089
|
|
|
1089
|
|
1528
|
my($x, $a) = @_; |
|
1438
|
1089
|
50
|
|
|
|
2932
|
if ($a == 0) { return $x; } |
|
|
0
|
50
|
|
|
|
0
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
1439
|
0
|
|
|
|
|
0
|
elsif ($a == 1) { return $x-int($x/2); } |
|
1440
|
0
|
|
|
|
|
0
|
elsif ($a == 2) { return $x-int($x/2) - int($x/3) + int($x/6); } |
|
1441
|
3
|
|
|
|
|
20
|
elsif ($a == 3) { return 8 * int($x / 30) + $_s3[$x % 30]; } |
|
1442
|
5
|
|
|
|
|
30
|
elsif ($a == 4) { return 48 * int($x / 210) + $_s4[$x % 210]; } |
|
1443
|
0
|
|
|
|
|
0
|
elsif ($a == 5) { my $xp = int($x/11); |
|
1444
|
0
|
|
|
|
|
0
|
return ( (48 * int($x / 210) + $_s4[$x % 210]) - |
|
1445
|
|
|
|
|
|
|
(48 * int($xp / 210) + $_s4[$xp % 210]) ); } |
|
1446
|
1081
|
|
|
|
|
1969
|
else { my ($xp,$x2) = (int($x/11),int($x/13)); |
|
1447
|
1081
|
|
|
|
|
1577
|
my $x2p = int($x2/11); |
|
1448
|
1081
|
|
|
|
|
4144
|
return ( (48 * int($x / 210) + $_s4[$x % 210]) - |
|
1449
|
|
|
|
|
|
|
(48 * int($xp / 210) + $_s4[$xp % 210]) - |
|
1450
|
|
|
|
|
|
|
(48 * int($x2 / 210) + $_s4[$x2 % 210]) + |
|
1451
|
|
|
|
|
|
|
(48 * int($x2p / 210) + $_s4[$x2p % 210]) ); } |
|
1452
|
|
|
|
|
|
|
} |
|
1453
|
|
|
|
|
|
|
|
|
1454
|
|
|
|
|
|
|
sub legendre_phi { |
|
1455
|
21
|
|
|
21
|
0
|
70
|
my ($x, $a, $primes) = @_; |
|
1456
|
21
|
100
|
|
|
|
86
|
return _tablephi($x,$a) if $a <= 6; |
|
1457
|
10
|
50
|
|
|
|
42
|
$primes = primes(Math::Prime::Util::nth_prime_upper($a+1)) unless defined $primes; |
|
1458
|
10
|
0
|
|
|
|
44
|
return ($x > 0 ? 1 : 0) if $x < $primes->[$a]; |
|
|
|
50
|
|
|
|
|
|
|
1459
|
|
|
|
|
|
|
|
|
1460
|
10
|
|
|
|
|
19
|
my $sum = 0; |
|
1461
|
10
|
|
|
|
|
54
|
my %vals = ( $x => 1 ); |
|
1462
|
10
|
|
|
|
|
38
|
while ($a > 6) { |
|
1463
|
71
|
|
|
|
|
146
|
my $primea = $primes->[$a-1]; |
|
1464
|
71
|
|
|
|
|
99
|
my %newvals; |
|
1465
|
71
|
|
|
|
|
189
|
while (my($v,$c) = each %vals) { |
|
1466
|
2212
|
|
|
|
|
3722
|
my $sval = int($v / $primea); |
|
1467
|
2212
|
100
|
|
|
|
3192
|
if ($sval < $primea) { |
|
1468
|
1011
|
|
|
|
|
2191
|
$sum -= $c; |
|
1469
|
|
|
|
|
|
|
} else { |
|
1470
|
1201
|
|
|
|
|
3722
|
$newvals{$sval} -= $c; |
|
1471
|
|
|
|
|
|
|
} |
|
1472
|
|
|
|
|
|
|
} |
|
1473
|
|
|
|
|
|
|
# merge newvals into vals |
|
1474
|
71
|
|
|
|
|
181
|
while (my($v,$c) = each %newvals) { |
|
1475
|
1114
|
|
|
|
|
1638
|
$vals{$v} += $c; |
|
1476
|
1114
|
50
|
|
|
|
2693
|
delete $vals{$v} if $vals{$v} == 0; |
|
1477
|
|
|
|
|
|
|
} |
|
1478
|
71
|
|
|
|
|
213
|
$a--; |
|
1479
|
|
|
|
|
|
|
} |
|
1480
|
10
|
|
|
|
|
43
|
while (my($v,$c) = each %vals) { |
|
1481
|
1078
|
|
|
|
|
1727
|
$sum += $c * _tablephi($v, $a); |
|
1482
|
|
|
|
|
|
|
} |
|
1483
|
10
|
|
|
|
|
120
|
return $sum; |
|
1484
|
|
|
|
|
|
|
} |
|
1485
|
|
|
|
|
|
|
|
|
1486
|
|
|
|
|
|
|
sub _sieve_prime_count { |
|
1487
|
61
|
|
|
61
|
|
99
|
my $high = shift; |
|
1488
|
61
|
100
|
|
|
|
138
|
return (0,0,1,2,2,3,3)[$high] if $high < 7; |
|
1489
|
58
|
100
|
|
|
|
142
|
$high-- unless ($high & 1); |
|
1490
|
58
|
|
|
|
|
81
|
return 1 + ${_sieve_erat($high)} =~ tr/0//; |
|
|
58
|
|
|
|
|
120
|
|
|
1491
|
|
|
|
|
|
|
} |
|
1492
|
|
|
|
|
|
|
|
|
1493
|
|
|
|
|
|
|
sub _count_with_sieve { |
|
1494
|
8427
|
|
|
8427
|
|
13259
|
my ($sref, $low, $high) = @_; |
|
1495
|
8427
|
100
|
|
|
|
15198
|
($low, $high) = (2, $low) if !defined $high; |
|
1496
|
8427
|
|
|
|
|
10432
|
my $count = 0; |
|
1497
|
8427
|
100
|
|
|
|
12499
|
if ($low < 3) { $low = 3; $count++; } |
|
|
5458
|
|
|
|
|
6597
|
|
|
|
5458
|
|
|
|
|
6513
|
|
|
1498
|
2969
|
|
|
|
|
3748
|
else { $low |= 1; } |
|
1499
|
8427
|
100
|
|
|
|
13697
|
$high-- unless ($high & 1); |
|
1500
|
8427
|
50
|
|
|
|
13052
|
return $count if $low > $high; |
|
1501
|
8427
|
|
|
|
|
11230
|
my $sbeg = $low >> 1; |
|
1502
|
8427
|
|
|
|
|
10267
|
my $send = $high >> 1; |
|
1503
|
|
|
|
|
|
|
|
|
1504
|
8427
|
100
|
66
|
|
|
22390
|
if ( !defined $sref || $send >= length($$sref) ) { |
|
1505
|
|
|
|
|
|
|
# outside our range, so call the segment siever. |
|
1506
|
498
|
|
|
|
|
914
|
my $seg_ref = _sieve_segment($low, $high); |
|
1507
|
498
|
|
|
|
|
2053
|
return $count + $$seg_ref =~ tr/0//; |
|
1508
|
|
|
|
|
|
|
} |
|
1509
|
7929
|
|
|
|
|
20134
|
return $count + substr($$sref, $sbeg, $send-$sbeg+1) =~ tr/0//; |
|
1510
|
|
|
|
|
|
|
} |
|
1511
|
|
|
|
|
|
|
|
|
1512
|
|
|
|
|
|
|
sub _lehmer_pi { |
|
1513
|
76
|
|
|
76
|
|
897
|
my $x = shift; |
|
1514
|
76
|
100
|
|
|
|
212
|
return _sieve_prime_count($x) if $x < 1_000; |
|
1515
|
21
|
50
|
|
|
|
67
|
do { require Math::BigFloat; Math::BigFloat->import(); } |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
1516
|
|
|
|
|
|
|
if ref($x) eq 'Math::BigInt'; |
|
1517
|
21
|
50
|
|
|
|
89
|
my $z = (ref($x) ne 'Math::BigInt') |
|
1518
|
|
|
|
|
|
|
? int(sqrt($x+0.5)) |
|
1519
|
|
|
|
|
|
|
: int(Math::BigFloat->new($x)->badd(0.5)->bsqrt->bfloor->bstr); |
|
1520
|
21
|
|
|
|
|
102
|
my $a = _lehmer_pi(int(sqrt($z)+0.5)); |
|
1521
|
21
|
|
|
|
|
48
|
my $b = _lehmer_pi($z); |
|
1522
|
21
|
50
|
|
|
|
148
|
my $c = _lehmer_pi(int( (ref($x) ne 'Math::BigInt') |
|
1523
|
|
|
|
|
|
|
? $x**(1/3)+0.5 |
|
1524
|
|
|
|
|
|
|
: Math::BigFloat->new($x)->broot(3)->badd(0.5)->bfloor |
|
1525
|
|
|
|
|
|
|
)); |
|
1526
|
21
|
50
|
|
|
|
61
|
($z, $a, $b, $c) = map { (ref($_) =~ /^Math::Big/) ? _bigint_to_int($_) : $_ } |
|
|
84
|
|
|
|
|
211
|
|
|
1527
|
|
|
|
|
|
|
($z, $a, $b, $c); |
|
1528
|
|
|
|
|
|
|
|
|
1529
|
|
|
|
|
|
|
# Generate at least b primes. |
|
1530
|
21
|
50
|
|
|
|
120
|
my $bth_prime_upper = ($b <= 10) ? 29 : int($b*(log($b) + log(log($b)))) + 1; |
|
1531
|
21
|
|
|
|
|
83
|
my $primes = primes( $bth_prime_upper ); |
|
1532
|
|
|
|
|
|
|
|
|
1533
|
21
|
|
|
|
|
92
|
my $sum = int(($b + $a - 2) * ($b - $a + 1) / 2); |
|
1534
|
21
|
|
|
|
|
90
|
$sum += legendre_phi($x, $a, $primes); |
|
1535
|
|
|
|
|
|
|
|
|
1536
|
|
|
|
|
|
|
# Get a big sieve for our primecounts. The C code compromises with either |
|
1537
|
|
|
|
|
|
|
# b*10 or x^3/5, as that cuts out all the inner loop sieves and about half |
|
1538
|
|
|
|
|
|
|
# of the big outer loop counts. |
|
1539
|
|
|
|
|
|
|
# Our sieve count isn't nearly as optimized here, so error on the side of |
|
1540
|
|
|
|
|
|
|
# more primes. This uses a lot more memory but saves a lot of time. |
|
1541
|
21
|
|
|
|
|
102
|
my $sref = _sieve_erat( int($x / $primes->[$a] / 5) ); |
|
1542
|
|
|
|
|
|
|
|
|
1543
|
21
|
|
|
|
|
68
|
my ($lastw, $lastwpc) = (0,0); |
|
1544
|
21
|
|
|
|
|
242
|
foreach my $i (reverse $a+1 .. $b) { |
|
1545
|
2990
|
|
|
|
|
5427
|
my $w = int($x / $primes->[$i-1]); |
|
1546
|
2990
|
|
|
|
|
4805
|
$lastwpc += _count_with_sieve($sref,$lastw+1, $w); |
|
1547
|
2990
|
|
|
|
|
4111
|
$lastw = $w; |
|
1548
|
2990
|
|
|
|
|
3584
|
$sum -= $lastwpc; |
|
1549
|
|
|
|
|
|
|
#$sum -= _count_with_sieve($sref,$w); |
|
1550
|
2990
|
100
|
|
|
|
5279
|
if ($i <= $c) { |
|
1551
|
252
|
|
|
|
|
703
|
my $bi = _count_with_sieve($sref,int(sqrt($w)+0.5)); |
|
1552
|
252
|
|
|
|
|
673
|
foreach my $j ($i .. $bi) { |
|
1553
|
5185
|
|
|
|
|
10305
|
$sum = $sum - _count_with_sieve($sref,int($w / $primes->[$j-1])) + $j - 1; |
|
1554
|
|
|
|
|
|
|
} |
|
1555
|
|
|
|
|
|
|
} |
|
1556
|
|
|
|
|
|
|
} |
|
1557
|
21
|
|
|
|
|
274
|
$sum; |
|
1558
|
|
|
|
|
|
|
} |
|
1559
|
|
|
|
|
|
|
############################################################################# |
|
1560
|
|
|
|
|
|
|
|
|
1561
|
|
|
|
|
|
|
|
|
1562
|
|
|
|
|
|
|
sub prime_count { |
|
1563
|
20
|
|
|
20
|
0
|
13117
|
my($low,$high) = @_; |
|
1564
|
20
|
100
|
|
|
|
80
|
if (!defined $high) { |
|
1565
|
7
|
|
|
|
|
15
|
$high = $low; |
|
1566
|
7
|
|
|
|
|
13
|
$low = 2; |
|
1567
|
|
|
|
|
|
|
} |
|
1568
|
20
|
|
|
|
|
77
|
_validate_positive_integer($low); |
|
1569
|
20
|
|
|
|
|
50
|
_validate_positive_integer($high); |
|
1570
|
|
|
|
|
|
|
|
|
1571
|
20
|
|
|
|
|
45
|
my $count = 0; |
|
1572
|
|
|
|
|
|
|
|
|
1573
|
20
|
100
|
100
|
|
|
89
|
$count++ if ($low <= 2) && ($high >= 2); # Count 2 |
|
1574
|
20
|
100
|
|
|
|
172
|
$low = 3 if $low < 3; |
|
1575
|
|
|
|
|
|
|
|
|
1576
|
20
|
100
|
|
|
|
176
|
$low++ if ($low % 2) == 0; # Make low go to odd number. |
|
1577
|
20
|
100
|
|
|
|
602
|
$high-- if ($high % 2) == 0; # Make high go to odd number. |
|
1578
|
20
|
100
|
|
|
|
492
|
return $count if $low > $high; |
|
1579
|
|
|
|
|
|
|
|
|
1580
|
18
|
100
|
66
|
|
|
273
|
if ( ref($low) eq 'Math::BigInt' || ref($high) eq 'Math::BigInt' |
|
|
|
|
100
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
1581
|
|
|
|
|
|
|
|| ($high-$low) < 10 |
|
1582
|
|
|
|
|
|
|
|| ($high-$low) < int($low/100_000_000_000) ) { |
|
1583
|
|
|
|
|
|
|
# Trial primes seems best. Needs some tuning. |
|
1584
|
2
|
|
|
|
|
11
|
my $curprime = next_prime($low-1); |
|
1585
|
2
|
|
|
|
|
13
|
while ($curprime <= $high) { |
|
1586
|
5
|
|
|
|
|
113
|
$count++; |
|
1587
|
5
|
|
|
|
|
18
|
$curprime = next_prime($curprime); |
|
1588
|
|
|
|
|
|
|
} |
|
1589
|
2
|
|
|
|
|
73
|
return $count; |
|
1590
|
|
|
|
|
|
|
} |
|
1591
|
|
|
|
|
|
|
|
|
1592
|
|
|
|
|
|
|
# TODO: Needs tuning |
|
1593
|
16
|
100
|
|
|
|
51
|
if ($high > 50_000) { |
|
1594
|
10
|
100
|
|
|
|
49
|
if ( ($high / ($high-$low+1)) < 100 ) { |
|
1595
|
5
|
|
|
|
|
20
|
$count += _lehmer_pi($high); |
|
1596
|
5
|
100
|
|
|
|
27
|
$count -= ($low == 3) ? 1 : _lehmer_pi($low-1); |
|
1597
|
5
|
|
|
|
|
56
|
return $count; |
|
1598
|
|
|
|
|
|
|
} |
|
1599
|
|
|
|
|
|
|
} |
|
1600
|
|
|
|
|
|
|
|
|
1601
|
11
|
100
|
|
|
|
42
|
return (_sieve_prime_count($high) - 1 + $count) if $low == 3; |
|
1602
|
|
|
|
|
|
|
|
|
1603
|
7
|
|
|
|
|
22
|
my $sieveref = _sieve_segment($low,$high); |
|
1604
|
7
|
|
|
|
|
35
|
$count += $$sieveref =~ tr/0//; |
|
1605
|
7
|
|
|
|
|
93
|
return $count; |
|
1606
|
|
|
|
|
|
|
} |
|
1607
|
|
|
|
|
|
|
|
|
1608
|
|
|
|
|
|
|
|
|
1609
|
|
|
|
|
|
|
sub nth_prime { |
|
1610
|
20
|
|
|
20
|
0
|
7881
|
my($n) = @_; |
|
1611
|
20
|
|
|
|
|
86
|
_validate_positive_integer($n); |
|
1612
|
|
|
|
|
|
|
|
|
1613
|
20
|
50
|
|
|
|
55
|
return undef if $n <= 0; ## no critic qw(ProhibitExplicitReturnUndef) |
|
1614
|
20
|
100
|
|
|
|
104
|
return $_primes_small[$n] if $n <= $#_primes_small; |
|
1615
|
|
|
|
|
|
|
|
|
1616
|
10
|
50
|
33
|
|
|
42
|
if ($n > MPU_MAXPRIMEIDX && ref($n) ne 'Math::BigFloat') { |
|
1617
|
0
|
0
|
|
|
|
0
|
do { require Math::BigFloat; Math::BigFloat->import(); } |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
1618
|
|
|
|
|
|
|
if !defined $Math::BigFloat::VERSION; |
|
1619
|
0
|
|
|
|
|
0
|
$n = Math::BigFloat->new("$n") |
|
1620
|
|
|
|
|
|
|
} |
|
1621
|
|
|
|
|
|
|
|
|
1622
|
10
|
|
|
|
|
21
|
my $prime = 0; |
|
1623
|
10
|
|
|
|
|
19
|
my $count = 1; |
|
1624
|
10
|
|
|
|
|
20
|
my $start = 3; |
|
1625
|
|
|
|
|
|
|
|
|
1626
|
10
|
|
|
|
|
56
|
my $logn = log($n); |
|
1627
|
10
|
|
|
|
|
25
|
my $loglogn = log($logn); |
|
1628
|
10
|
50
|
|
|
|
54
|
my $nth_prime_upper = ($n <= 10) ? 29 : int($n*($logn + $loglogn)) + 1; |
|
1629
|
10
|
100
|
|
|
|
66
|
if ($nth_prime_upper > 100000) { |
|
1630
|
|
|
|
|
|
|
# Use fast Lehmer prime count combined with lower bound to get close. |
|
1631
|
3
|
|
|
|
|
14
|
my $nth_prime_lower = int($n * ($logn + $loglogn - 1.0 + (($loglogn-2.10)/$logn))); |
|
1632
|
3
|
100
|
|
|
|
14
|
$nth_prime_lower-- unless $nth_prime_lower % 2; |
|
1633
|
3
|
|
|
|
|
13
|
$count = _lehmer_pi($nth_prime_lower); |
|
1634
|
3
|
|
|
|
|
13
|
$start = $nth_prime_lower + 2; |
|
1635
|
|
|
|
|
|
|
} |
|
1636
|
|
|
|
|
|
|
|
|
1637
|
|
|
|
|
|
|
{ |
|
1638
|
|
|
|
|
|
|
# Make sure incr is an even number. |
|
1639
|
10
|
100
|
|
|
|
25
|
my $incr = ($n < 1000) ? 1000 : ($n < 10000) ? 10000 : 100000; |
|
|
10
|
50
|
|
|
|
46
|
|
|
1640
|
10
|
|
|
|
|
16
|
my $sieveref; |
|
1641
|
10
|
|
|
|
|
15
|
while (1) { |
|
1642
|
35
|
|
|
|
|
104
|
$sieveref = _sieve_segment($start, $start+$incr); |
|
1643
|
35
|
|
|
|
|
409
|
my $segcount = $$sieveref =~ tr/0//; |
|
1644
|
35
|
100
|
|
|
|
117
|
last if ($count + $segcount) >= $n; |
|
1645
|
25
|
|
|
|
|
43
|
$count += $segcount; |
|
1646
|
25
|
|
|
|
|
53
|
$start += $incr+2; |
|
1647
|
|
|
|
|
|
|
} |
|
1648
|
|
|
|
|
|
|
# Our count is somewhere in this segment. Need to look for it. |
|
1649
|
10
|
|
|
|
|
24
|
$prime = $start - 2; |
|
1650
|
10
|
|
|
|
|
60
|
while ($count < $n) { |
|
1651
|
18451
|
|
|
|
|
22137
|
$prime += 2; |
|
1652
|
18451
|
100
|
|
|
|
37056
|
$count++ if !substr($$sieveref, ($prime-$start)>>1, 1); |
|
1653
|
|
|
|
|
|
|
} |
|
1654
|
|
|
|
|
|
|
} |
|
1655
|
10
|
|
|
|
|
511
|
$prime; |
|
1656
|
|
|
|
|
|
|
} |
|
1657
|
|
|
|
|
|
|
|
|
1658
|
|
|
|
|
|
|
# The nth prime will be less or equal to this number |
|
1659
|
|
|
|
|
|
|
sub nth_prime_upper { |
|
1660
|
1
|
|
|
1
|
0
|
1790
|
my($n) = @_; |
|
1661
|
1
|
|
|
|
|
7
|
_validate_positive_integer($n); |
|
1662
|
|
|
|
|
|
|
|
|
1663
|
1
|
50
|
|
|
|
4
|
return undef if $n <= 0; ## no critic qw(ProhibitExplicitReturnUndef) |
|
1664
|
1
|
50
|
|
|
|
5
|
return $_primes_small[$n] if $n <= $#_primes_small; |
|
1665
|
|
|
|
|
|
|
|
|
1666
|
1
|
50
|
33
|
|
|
10
|
$n = _upgrade_to_float($n) if $n > MPU_MAXPRIMEIDX || $n > 2**45; |
|
1667
|
|
|
|
|
|
|
|
|
1668
|
1
|
|
|
|
|
82
|
my $flogn = log($n); |
|
1669
|
1
|
|
|
|
|
48628
|
my $flog2n = log($flogn); # Note distinction between log_2(n) and log^2(n) |
|
1670
|
|
|
|
|
|
|
|
|
1671
|
1
|
|
|
|
|
36483
|
my $upper; |
|
1672
|
1
|
50
|
|
|
|
4
|
if ($n >= 46254381) { # Axler 2017 Corollary 1.2 |
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
1673
|
1
|
|
|
|
|
262
|
$upper = $n * ( $flogn + $flog2n-1.0 + (($flog2n-2.00)/$flogn) - (($flog2n*$flog2n - 6*$flog2n + 10.667)/(2*$flogn*$flogn)) ); |
|
1674
|
|
|
|
|
|
|
} elsif ($n >= 8009824) { # Axler 2013 page viii Korollar G |
|
1675
|
0
|
|
|
|
|
0
|
$upper = $n * ( $flogn + $flog2n-1.0 + (($flog2n-2.00)/$flogn) - (($flog2n*$flog2n - 6*$flog2n + 10.273)/(2*$flogn*$flogn)) ); |
|
1676
|
|
|
|
|
|
|
} elsif ($n >= 688383) { # Dusart 2010 page 2 |
|
1677
|
0
|
|
|
|
|
0
|
$upper = $n * ( $flogn + $flog2n - 1.0 + (($flog2n-2.00)/$flogn) ); |
|
1678
|
|
|
|
|
|
|
} elsif ($n >= 178974) { # Dusart 2010 page 7 |
|
1679
|
0
|
|
|
|
|
0
|
$upper = $n * ( $flogn + $flog2n - 1.0 + (($flog2n-1.95)/$flogn) ); |
|
1680
|
|
|
|
|
|
|
} elsif ($n >= 39017) { # Dusart 1999 page 14 |
|
1681
|
0
|
|
|
|
|
0
|
$upper = $n * ( $flogn + $flog2n - 0.9484 ); |
|
1682
|
|
|
|
|
|
|
} elsif ($n >= 6) { # Modified Robin 1983, for 6-39016 only |
|
1683
|
0
|
|
|
|
|
0
|
$upper = $n * ( $flogn + 0.6000 * $flog2n ); |
|
1684
|
|
|
|
|
|
|
} else { |
|
1685
|
0
|
|
|
|
|
0
|
$upper = $n * ( $flogn + $flog2n ); |
|
1686
|
|
|
|
|
|
|
} |
|
1687
|
|
|
|
|
|
|
|
|
1688
|
1
|
|
|
|
|
5951
|
return int($upper + 1.0); |
|
1689
|
|
|
|
|
|
|
} |
|
1690
|
|
|
|
|
|
|
|
|
1691
|
|
|
|
|
|
|
# The nth prime will be greater than or equal to this number |
|
1692
|
|
|
|
|
|
|
sub nth_prime_lower { |
|
1693
|
3
|
|
|
3
|
0
|
2301
|
my($n) = @_; |
|
1694
|
3
|
50
|
|
|
|
15
|
_validate_num($n) || _validate_positive_integer($n); |
|
1695
|
|
|
|
|
|
|
|
|
1696
|
3
|
50
|
|
|
|
10
|
return undef if $n <= 0; ## no critic qw(ProhibitExplicitReturnUndef) |
|
1697
|
3
|
50
|
|
|
|
12
|
return $_primes_small[$n] if $n <= $#_primes_small; |
|
1698
|
|
|
|
|
|
|
|
|
1699
|
3
|
50
|
66
|
|
|
24
|
$n = _upgrade_to_float($n) if $n > MPU_MAXPRIMEIDX || $n > 2**45; |
|
1700
|
|
|
|
|
|
|
|
|
1701
|
3
|
|
|
|
|
324
|
my $flogn = log($n); |
|
1702
|
3
|
|
|
|
|
145899
|
my $flog2n = log($flogn); # Note distinction between log_2(n) and log^2(n) |
|
1703
|
|
|
|
|
|
|
|
|
1704
|
|
|
|
|
|
|
# Dusart 1999 page 14, for all n >= 2 |
|
1705
|
|
|
|
|
|
|
#my $lower = $n * ($flogn + $flog2n - 1.0 + (($flog2n-2.25)/$flogn)); |
|
1706
|
|
|
|
|
|
|
# Dusart 2010 page 2, for all n >= 3 |
|
1707
|
|
|
|
|
|
|
#my $lower = $n * ($flogn + $flog2n - 1.0 + (($flog2n-2.10)/$flogn)); |
|
1708
|
|
|
|
|
|
|
# Axler 2013 page viii Korollar I, for all n >= 2 |
|
1709
|
|
|
|
|
|
|
#my $lower = $n * ($flogn + $flog2n-1.0 + (($flog2n-2.00)/$flogn) - (($flog2n*$flog2n - 6*$flog2n + 11.847)/(2*$flogn*$flogn)) ); |
|
1710
|
|
|
|
|
|
|
# Axler 2017 Corollary 1.4 |
|
1711
|
3
|
|
|
|
|
110463
|
my $lower = $n * ($flogn + $flog2n-1.0 + (($flog2n-2.00)/$flogn) - (($flog2n*$flog2n - 6*$flog2n + 11.508)/(2*$flogn*$flogn)) ); |
|
1712
|
|
|
|
|
|
|
|
|
1713
|
3
|
|
|
|
|
17110
|
return int($lower + 0.999999999); |
|
1714
|
|
|
|
|
|
|
} |
|
1715
|
|
|
|
|
|
|
|
|
1716
|
|
|
|
|
|
|
sub inverse_li { |
|
1717
|
0
|
|
|
0
|
0
|
0
|
my($n) = @_; |
|
1718
|
0
|
0
|
|
|
|
0
|
_validate_num($n) || _validate_positive_integer($n); |
|
1719
|
|
|
|
|
|
|
|
|
1720
|
0
|
0
|
|
|
|
0
|
return (0,2,3,5,6,8)[$n] if $n <= 5; |
|
1721
|
0
|
0
|
0
|
|
|
0
|
$n = _upgrade_to_float($n) if $n > MPU_MAXPRIMEIDX || $n > 2**45; |
|
1722
|
0
|
|
|
|
|
0
|
my $t = $n * log($n); |
|
1723
|
|
|
|
|
|
|
|
|
1724
|
|
|
|
|
|
|
# Iterator Halley's method until error term grows |
|
1725
|
0
|
|
|
|
|
0
|
my $old_term = MPU_INFINITY; |
|
1726
|
0
|
|
|
|
|
0
|
for my $iter (1 .. 10000) { |
|
1727
|
0
|
|
|
|
|
0
|
my $dn = Math::Prime::Util::LogarithmicIntegral($t) - $n; |
|
1728
|
0
|
|
|
|
|
0
|
my $term = $dn * log($t) / (1.0 + $dn/(2*$t)); |
|
1729
|
0
|
0
|
|
|
|
0
|
last if abs($term) >= abs($old_term); |
|
1730
|
0
|
|
|
|
|
0
|
$old_term = $term; |
|
1731
|
0
|
|
|
|
|
0
|
$t -= $term; |
|
1732
|
0
|
0
|
|
|
|
0
|
last if abs($term) < 1e-6; |
|
1733
|
|
|
|
|
|
|
} |
|
1734
|
0
|
0
|
|
|
|
0
|
if (ref($t)) { |
|
1735
|
0
|
|
|
|
|
0
|
$t = Math::BigInt->new($t->bceil->bstr); |
|
1736
|
0
|
0
|
|
|
|
0
|
$t = _bigint_to_int($t) if $t->bacmp(BMAX) <= 0; |
|
1737
|
|
|
|
|
|
|
} else { |
|
1738
|
0
|
|
|
|
|
0
|
$t = int($t+0.999999); |
|
1739
|
|
|
|
|
|
|
} |
|
1740
|
0
|
|
|
|
|
0
|
$t; |
|
1741
|
|
|
|
|
|
|
} |
|
1742
|
|
|
|
|
|
|
sub _inverse_R { |
|
1743
|
0
|
|
|
0
|
|
0
|
my($n) = @_; |
|
1744
|
0
|
0
|
|
|
|
0
|
_validate_num($n) || _validate_positive_integer($n); |
|
1745
|
|
|
|
|
|
|
|
|
1746
|
0
|
0
|
|
|
|
0
|
return (0,2,3,5,6,8)[$n] if $n <= 5; |
|
1747
|
0
|
0
|
0
|
|
|
0
|
$n = _upgrade_to_float($n) if $n > MPU_MAXPRIMEIDX || $n > 2**45; |
|
1748
|
0
|
|
|
|
|
0
|
my $t = $n * log($n); |
|
1749
|
|
|
|
|
|
|
|
|
1750
|
|
|
|
|
|
|
# Iterator Halley's method until error term grows |
|
1751
|
0
|
|
|
|
|
0
|
my $old_term = MPU_INFINITY; |
|
1752
|
0
|
|
|
|
|
0
|
for my $iter (1 .. 10000) { |
|
1753
|
0
|
|
|
|
|
0
|
my $dn = Math::Prime::Util::RiemannR($t) - $n; |
|
1754
|
0
|
|
|
|
|
0
|
my $term = $dn * log($t) / (1.0 + $dn/(2*$t)); |
|
1755
|
0
|
0
|
|
|
|
0
|
last if abs($term) >= abs($old_term); |
|
1756
|
0
|
|
|
|
|
0
|
$old_term = $term; |
|
1757
|
0
|
|
|
|
|
0
|
$t -= $term; |
|
1758
|
0
|
0
|
|
|
|
0
|
last if abs($term) < 1e-6; |
|
1759
|
|
|
|
|
|
|
} |
|
1760
|
0
|
0
|
|
|
|
0
|
if (ref($t)) { |
|
1761
|
0
|
|
|
|
|
0
|
$t = Math::BigInt->new($t->bceil->bstr); |
|
1762
|
0
|
0
|
|
|
|
0
|
$t = _bigint_to_int($t) if $t->bacmp(BMAX) <= 0; |
|
1763
|
|
|
|
|
|
|
} else { |
|
1764
|
0
|
|
|
|
|
0
|
$t = int($t+0.999999); |
|
1765
|
|
|
|
|
|
|
} |
|
1766
|
0
|
|
|
|
|
0
|
$t; |
|
1767
|
|
|
|
|
|
|
} |
|
1768
|
|
|
|
|
|
|
|
|
1769
|
|
|
|
|
|
|
sub nth_prime_approx { |
|
1770
|
1
|
|
|
1
|
0
|
777
|
my($n) = @_; |
|
1771
|
1
|
50
|
|
|
|
5
|
_validate_num($n) || _validate_positive_integer($n); |
|
1772
|
|
|
|
|
|
|
|
|
1773
|
1
|
50
|
|
|
|
5
|
return undef if $n <= 0; ## no critic qw(ProhibitExplicitReturnUndef) |
|
1774
|
1
|
50
|
|
|
|
5
|
return $_primes_small[$n] if $n <= $#_primes_small; |
|
1775
|
|
|
|
|
|
|
|
|
1776
|
|
|
|
|
|
|
# Once past 10^12 or so, inverse_li gives better results. |
|
1777
|
1
|
50
|
|
|
|
4
|
return Math::Prime::Util::inverse_li($n) if $n > 1e12; |
|
1778
|
|
|
|
|
|
|
|
|
1779
|
1
|
50
|
33
|
|
|
8
|
$n = _upgrade_to_float($n) |
|
1780
|
|
|
|
|
|
|
if ref($n) eq 'Math::BigInt' || $n >= MPU_MAXPRIMEIDX; |
|
1781
|
|
|
|
|
|
|
|
|
1782
|
1
|
|
|
|
|
4
|
my $flogn = log($n); |
|
1783
|
1
|
|
|
|
|
2
|
my $flog2n = log($flogn); |
|
1784
|
|
|
|
|
|
|
|
|
1785
|
|
|
|
|
|
|
# Cipolla 1902: |
|
1786
|
|
|
|
|
|
|
# m=0 fn * ( flogn + flog2n - 1 ); |
|
1787
|
|
|
|
|
|
|
# m=1 + ((flog2n - 2)/flogn) ); |
|
1788
|
|
|
|
|
|
|
# m=2 - (((flog2n*flog2n) - 6*flog2n + 11) / (2*flogn*flogn)) |
|
1789
|
|
|
|
|
|
|
# + O((flog2n/flogn)^3) |
|
1790
|
|
|
|
|
|
|
# |
|
1791
|
|
|
|
|
|
|
# Shown in Dusart 1999 page 12, as well as other sources such as: |
|
1792
|
|
|
|
|
|
|
# http://www.emis.de/journals/JIPAM/images/153_02_JIPAM/153_02.pdf |
|
1793
|
|
|
|
|
|
|
# where the main issue you run into is that you're doing polynomial |
|
1794
|
|
|
|
|
|
|
# interpolation, so it oscillates like crazy with many high-order terms. |
|
1795
|
|
|
|
|
|
|
# Hence I'm leaving it at m=2. |
|
1796
|
|
|
|
|
|
|
|
|
1797
|
1
|
|
|
|
|
8
|
my $approx = $n * ( $flogn + $flog2n - 1 |
|
1798
|
|
|
|
|
|
|
+ (($flog2n - 2)/$flogn) |
|
1799
|
|
|
|
|
|
|
- ((($flog2n*$flog2n) - 6*$flog2n + 11) / (2*$flogn*$flogn)) |
|
1800
|
|
|
|
|
|
|
); |
|
1801
|
|
|
|
|
|
|
|
|
1802
|
|
|
|
|
|
|
# Apply a correction to help keep values close. |
|
1803
|
1
|
|
|
|
|
3
|
my $order = $flog2n/$flogn; |
|
1804
|
1
|
|
|
|
|
2
|
$order = $order*$order*$order * $n; |
|
1805
|
|
|
|
|
|
|
|
|
1806
|
1
|
50
|
|
|
|
13
|
if ($n < 259) { $approx += 10.4 * $order; } |
|
|
0
|
50
|
|
|
|
0
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
1807
|
0
|
|
|
|
|
0
|
elsif ($n < 775) { $approx += 6.3 * $order; } |
|
1808
|
0
|
|
|
|
|
0
|
elsif ($n < 1271) { $approx += 5.3 * $order; } |
|
1809
|
0
|
|
|
|
|
0
|
elsif ($n < 2000) { $approx += 4.7 * $order; } |
|
1810
|
0
|
|
|
|
|
0
|
elsif ($n < 4000) { $approx += 3.9 * $order; } |
|
1811
|
0
|
|
|
|
|
0
|
elsif ($n < 12000) { $approx += 2.8 * $order; } |
|
1812
|
0
|
|
|
|
|
0
|
elsif ($n < 150000) { $approx += 1.2 * $order; } |
|
1813
|
1
|
|
|
|
|
3
|
elsif ($n < 20000000) { $approx += 0.11 * $order; } |
|
1814
|
0
|
|
|
|
|
0
|
elsif ($n < 100000000) { $approx += 0.008 * $order; } |
|
1815
|
0
|
|
|
|
|
0
|
elsif ($n < 500000000) { $approx += -0.038 * $order; } |
|
1816
|
0
|
|
|
|
|
0
|
elsif ($n < 2000000000) { $approx += -0.054 * $order; } |
|
1817
|
0
|
|
|
|
|
0
|
else { $approx += -0.058 * $order; } |
|
1818
|
|
|
|
|
|
|
# If we want the asymptotic approximation to be >= actual, use -0.010. |
|
1819
|
|
|
|
|
|
|
|
|
1820
|
1
|
|
|
|
|
4
|
return int($approx + 0.5); |
|
1821
|
|
|
|
|
|
|
} |
|
1822
|
|
|
|
|
|
|
|
|
1823
|
|
|
|
|
|
|
############################################################################# |
|
1824
|
|
|
|
|
|
|
|
|
1825
|
|
|
|
|
|
|
sub prime_count_approx { |
|
1826
|
5
|
|
|
5
|
0
|
31250
|
my($x) = @_; |
|
1827
|
5
|
100
|
|
|
|
28
|
_validate_num($x) || _validate_positive_integer($x); |
|
1828
|
|
|
|
|
|
|
|
|
1829
|
|
|
|
|
|
|
# Turn on high precision FP if they gave us a big number. |
|
1830
|
5
|
100
|
66
|
|
|
37
|
$x = _upgrade_to_float($x) if ref($_[0]) eq 'Math::BigInt' && $x > 1e16; |
|
1831
|
|
|
|
|
|
|
# Method 10^10 %error 10^19 %error |
|
1832
|
|
|
|
|
|
|
# ----------------- ------------ ------------ |
|
1833
|
|
|
|
|
|
|
# n/(log(n)-1) .22% .058% |
|
1834
|
|
|
|
|
|
|
# n/(ln(n)-1-1/ln(n)) .032% .0041% |
|
1835
|
|
|
|
|
|
|
# average bounds .0005% .0000002% |
|
1836
|
|
|
|
|
|
|
# asymp .0006% .00000004% |
|
1837
|
|
|
|
|
|
|
# li(n) .0007% .00000004% |
|
1838
|
|
|
|
|
|
|
# li(n)-li(n^.5)/2 .0004% .00000001% |
|
1839
|
|
|
|
|
|
|
# R(n) .0004% .00000001% |
|
1840
|
|
|
|
|
|
|
# |
|
1841
|
|
|
|
|
|
|
# Also consider: http://trac.sagemath.org/sage_trac/ticket/8135 |
|
1842
|
|
|
|
|
|
|
|
|
1843
|
|
|
|
|
|
|
# Asymp: |
|
1844
|
|
|
|
|
|
|
# my $l1 = log($x); my $l2 = $l1*$l1; my $l4 = $l2*$l2; |
|
1845
|
|
|
|
|
|
|
# my $result = int( $x/$l1 + $x/$l2 + 2*$x/($l2*$l1) + 6*$x/($l4) + 24*$x/($l4*$l1) + 120*$x/($l4*$l2) + 720*$x/($l4*$l2*$l1) + 5040*$x/($l4*$l4) + 40320*$x/($l4*$l4*$l1) + 0.5 ); |
|
1846
|
|
|
|
|
|
|
# my $result = int( (prime_count_upper($x) + prime_count_lower($x)) / 2); |
|
1847
|
|
|
|
|
|
|
# my $result = int( LogarithmicIntegral($x) ); |
|
1848
|
|
|
|
|
|
|
# my $result = int(LogarithmicIntegral($x) - LogarithmicIntegral(sqrt($x))/2); |
|
1849
|
|
|
|
|
|
|
# my $result = RiemannR($x) + 0.5; |
|
1850
|
|
|
|
|
|
|
|
|
1851
|
|
|
|
|
|
|
# Make sure we get enough accuracy, and also not too much more than needed |
|
1852
|
5
|
100
|
|
|
|
485
|
$x->accuracy(length($x->copy->as_int->bstr())+2) if ref($x) =~ /^Math::Big/; |
|
1853
|
|
|
|
|
|
|
|
|
1854
|
5
|
|
|
|
|
1107
|
my $result; |
|
1855
|
5
|
100
|
66
|
|
|
50
|
if ($Math::Prime::Util::_GMPfunc{"riemannr"} || !ref($x)) { |
|
1856
|
|
|
|
|
|
|
# Fast if we have our GMP backend, and ok for native. |
|
1857
|
1
|
|
|
|
|
5
|
$result = Math::Prime::Util::PP::RiemannR($x); |
|
1858
|
|
|
|
|
|
|
} else { |
|
1859
|
4
|
50
|
|
|
|
16
|
$x = _upgrade_to_float($x) unless ref($x) eq 'Math::BigFloat'; |
|
1860
|
4
|
|
|
|
|
17
|
$result = Math::BigFloat->new(0); |
|
1861
|
4
|
50
|
33
|
|
|
577
|
$result->accuracy($x->accuracy) if ref($x) && $x->accuracy; |
|
1862
|
4
|
|
|
|
|
350
|
$result += Math::BigFloat->new(LogarithmicIntegral($x)); |
|
1863
|
4
|
|
|
|
|
1544
|
$result -= Math::BigFloat->new(LogarithmicIntegral(sqrt($x))/2); |
|
1864
|
4
|
50
|
|
|
|
3260
|
my $intx = ref($x) ? Math::BigInt->new($x->bfround(0)) : $x; |
|
1865
|
4
|
|
|
|
|
2024
|
for my $k (3 .. 1000) { |
|
1866
|
88
|
|
|
|
|
44746
|
my $m = moebius($k); |
|
1867
|
88
|
100
|
|
|
|
200
|
next unless $m != 0; |
|
1868
|
|
|
|
|
|
|
# With Math::BigFloat and the Calc backend, FP root is ungodly slow. |
|
1869
|
|
|
|
|
|
|
# Use integer root instead. For more accuracy (not useful here): |
|
1870
|
|
|
|
|
|
|
# my $v = Math::BigFloat->new( "" . rootint($x->as_int,$k) ); |
|
1871
|
|
|
|
|
|
|
# $v->accuracy(length($v)+5); |
|
1872
|
|
|
|
|
|
|
# $v = $v - Math::BigFloat->new(($v**$k - $x))->bdiv($k * $v**($k-1)); |
|
1873
|
|
|
|
|
|
|
# my $term = LogarithmicIntegral($v)/$k; |
|
1874
|
56
|
|
|
|
|
125
|
my $term = LogarithmicIntegral(rootint($intx,$k)) / $k; |
|
1875
|
56
|
100
|
|
|
|
241
|
last if $term < .25; |
|
1876
|
52
|
100
|
|
|
|
121
|
if ($m == 1) { $result->badd(Math::BigFloat->new($term)) } |
|
|
22
|
|
|
|
|
92
|
|
|
1877
|
30
|
|
|
|
|
111
|
else { $result->bsub(Math::BigFloat->new($term)) } |
|
1878
|
|
|
|
|
|
|
} |
|
1879
|
|
|
|
|
|
|
} |
|
1880
|
|
|
|
|
|
|
|
|
1881
|
5
|
100
|
|
|
|
30
|
if (ref($result)) { |
|
1882
|
4
|
50
|
|
|
|
16
|
return $result unless ref($result) eq 'Math::BigFloat'; |
|
1883
|
|
|
|
|
|
|
# Math::BigInt::FastCalc 0.19 implements as_int incorrectly. |
|
1884
|
4
|
|
|
|
|
22
|
return Math::BigInt->new($result->bfround(0)->bstr); |
|
1885
|
|
|
|
|
|
|
} |
|
1886
|
1
|
|
|
|
|
5
|
int($result+0.5); |
|
1887
|
|
|
|
|
|
|
} |
|
1888
|
|
|
|
|
|
|
|
|
1889
|
|
|
|
|
|
|
sub prime_count_lower { |
|
1890
|
11
|
|
|
11
|
0
|
9462
|
my($x) = @_; |
|
1891
|
11
|
100
|
|
|
|
55
|
_validate_num($x) || _validate_positive_integer($x); |
|
1892
|
|
|
|
|
|
|
|
|
1893
|
11
|
100
|
|
|
|
53
|
return _tiny_prime_count($x) if $x < $_primes_small[-1]; |
|
1894
|
|
|
|
|
|
|
|
|
1895
|
|
|
|
|
|
|
return Math::Prime::Util::_reftyped($_[0], Math::Prime::Util::GMP::prime_count_lower($x)) |
|
1896
|
10
|
50
|
|
|
|
1029
|
if $Math::Prime::Util::_GMPfunc{"prime_count_lower"}; |
|
1897
|
|
|
|
|
|
|
|
|
1898
|
10
|
100
|
66
|
|
|
80
|
$x = _upgrade_to_float($x) |
|
1899
|
|
|
|
|
|
|
if ref($x) eq 'Math::BigInt' || ref($_[0]) eq 'Math::BigInt'; |
|
1900
|
|
|
|
|
|
|
|
|
1901
|
10
|
|
|
|
|
938
|
my($result,$a); |
|
1902
|
10
|
|
|
|
|
45
|
my $fl1 = log($x); |
|
1903
|
10
|
|
|
|
|
757923
|
my $fl2 = $fl1*$fl1; |
|
1904
|
10
|
100
|
|
|
|
2374
|
my $one = (ref($x) eq 'Math::BigFloat') ? $x->copy->bone : $x-$x+1.0; |
|
1905
|
|
|
|
|
|
|
|
|
1906
|
|
|
|
|
|
|
# Chebyshev 1*x/logx x >= 17 |
|
1907
|
|
|
|
|
|
|
# Rosser & Schoenfeld x/(logx-1/2) x >= 67 |
|
1908
|
|
|
|
|
|
|
# Dusart 1999 x/logx*(1+1/logx+1.8/logxlogx) x >= 32299 |
|
1909
|
|
|
|
|
|
|
# Dusart 2010 x/logx*(1+1/logx+2.0/logxlogx) x >= 88783 |
|
1910
|
|
|
|
|
|
|
# Axler 2014 (1.2) ""+... x >= 1332450001 |
|
1911
|
|
|
|
|
|
|
# Axler 2014 (1.2) x/(logx-1-1/logx-...) x >= 1332479531 |
|
1912
|
|
|
|
|
|
|
# Büthe 2015 (1.9) li(x)-(sqrtx/logx)*(...) x <= 10^19 |
|
1913
|
|
|
|
|
|
|
# Büthe 2014 Th 2 li(x)-logx*sqrtx/8Pi x > 2657, x <= 1.4*10^25 |
|
1914
|
|
|
|
|
|
|
|
|
1915
|
10
|
50
|
66
|
|
|
1565
|
if ($x < 599) { # Decent for small numbers |
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
1916
|
0
|
|
|
|
|
0
|
$result = $x / ($fl1 - 0.7); |
|
1917
|
|
|
|
|
|
|
} elsif ($x < 52600000) { # Dusart 2010 tweaked |
|
1918
|
1
|
50
|
|
|
|
15
|
if ($x < 2700) { $a = 0.30; } |
|
|
0
|
50
|
|
|
|
0
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
1919
|
0
|
|
|
|
|
0
|
elsif ($x < 5500) { $a = 0.90; } |
|
1920
|
0
|
|
|
|
|
0
|
elsif ($x < 19400) { $a = 1.30; } |
|
1921
|
0
|
|
|
|
|
0
|
elsif ($x < 32299) { $a = 1.60; } |
|
1922
|
0
|
|
|
|
|
0
|
elsif ($x < 88783) { $a = 1.83; } |
|
1923
|
0
|
|
|
|
|
0
|
elsif ($x < 176000) { $a = 1.99; } |
|
1924
|
0
|
|
|
|
|
0
|
elsif ($x < 315000) { $a = 2.11; } |
|
1925
|
0
|
|
|
|
|
0
|
elsif ($x < 1100000) { $a = 2.19; } |
|
1926
|
1
|
|
|
|
|
3
|
elsif ($x < 4500000) { $a = 2.31; } |
|
1927
|
0
|
|
|
|
|
0
|
else { $a = 2.35; } |
|
1928
|
1
|
|
|
|
|
4
|
$result = ($x/$fl1) * ($one + $one/$fl1 + $a/$fl2); |
|
1929
|
|
|
|
|
|
|
} elsif ($x < 1.4e25 || Math::Prime::Util::prime_get_config()->{'assume_rh'}){ |
|
1930
|
|
|
|
|
|
|
# Büthe 2014/2015 |
|
1931
|
8
|
|
|
|
|
6608
|
my $lix = LogarithmicIntegral($x); |
|
1932
|
8
|
|
|
|
|
41
|
my $sqx = sqrt($x); |
|
1933
|
8
|
100
|
|
|
|
32750
|
if ($x < 1e19) { |
|
1934
|
1
|
|
|
|
|
5
|
$result = $lix - ($sqx/$fl1) * (1.94 + 3.88/$fl1 + 27.57/$fl2); |
|
1935
|
|
|
|
|
|
|
} else { |
|
1936
|
7
|
50
|
|
|
|
2891
|
if (ref($x) eq 'Math::BigFloat') { |
|
1937
|
7
|
|
|
|
|
35
|
my $xdigits = _find_big_acc($x); |
|
1938
|
7
|
|
|
|
|
31
|
$result = $lix - ($fl1*$sqx / (Math::BigFloat->bpi($xdigits)*8)); |
|
1939
|
|
|
|
|
|
|
} else { |
|
1940
|
0
|
|
|
|
|
0
|
$result = $lix - ($fl1*$sqx / PI_TIMES_8); |
|
1941
|
|
|
|
|
|
|
} |
|
1942
|
|
|
|
|
|
|
} |
|
1943
|
|
|
|
|
|
|
} else { # Axler 2014 1.4 |
|
1944
|
1
|
|
|
|
|
5
|
my($fl3,$fl4) = ($fl2*$fl1,$fl2*$fl2); |
|
1945
|
1
|
|
|
|
|
826
|
my($fl5,$fl6) = ($fl4*$fl1,$fl4*$fl2); |
|
1946
|
1
|
|
|
|
|
1174
|
$result = $x / ($fl1 - $one - $one/$fl1 - 2.65/$fl2 - 13.35/$fl3 - 70.3/$fl4 - 455.6275/$fl5 - 3404.4225/$fl6); |
|
1947
|
|
|
|
|
|
|
} |
|
1948
|
|
|
|
|
|
|
|
|
1949
|
10
|
100
|
|
|
|
43147
|
return Math::BigInt->new($result->bfloor->bstr()) if ref($result) eq 'Math::BigFloat'; |
|
1950
|
2
|
|
|
|
|
11
|
return int($result); |
|
1951
|
|
|
|
|
|
|
} |
|
1952
|
|
|
|
|
|
|
|
|
1953
|
|
|
|
|
|
|
sub prime_count_upper { |
|
1954
|
11
|
|
|
11
|
0
|
4317
|
my($x) = @_; |
|
1955
|
11
|
100
|
|
|
|
61
|
_validate_num($x) || _validate_positive_integer($x); |
|
1956
|
|
|
|
|
|
|
|
|
1957
|
|
|
|
|
|
|
# Give an exact answer for what we have in our little table. |
|
1958
|
11
|
100
|
|
|
|
50
|
return _tiny_prime_count($x) if $x < $_primes_small[-1]; |
|
1959
|
|
|
|
|
|
|
|
|
1960
|
|
|
|
|
|
|
return Math::Prime::Util::_reftyped($_[0], Math::Prime::Util::GMP::prime_count_upper($x)) |
|
1961
|
10
|
50
|
|
|
|
1062
|
if $Math::Prime::Util::_GMPfunc{"prime_count_upper"}; |
|
1962
|
|
|
|
|
|
|
|
|
1963
|
10
|
100
|
66
|
|
|
91
|
$x = _upgrade_to_float($x) |
|
1964
|
|
|
|
|
|
|
if ref($x) eq 'Math::BigInt' || ref($_[0]) eq 'Math::BigInt'; |
|
1965
|
|
|
|
|
|
|
|
|
1966
|
|
|
|
|
|
|
# Chebyshev: 1.25506*x/logx x >= 17 |
|
1967
|
|
|
|
|
|
|
# Rosser & Schoenfeld: x/(logx-3/2) x >= 67 |
|
1968
|
|
|
|
|
|
|
# Panaitopol 1999: x/(logx-1.112) x >= 4 |
|
1969
|
|
|
|
|
|
|
# Dusart 1999: x/logx*(1+1/logx+2.51/logxlogx) x >= 355991 |
|
1970
|
|
|
|
|
|
|
# Dusart 2010: x/logx*(1+1/logx+2.334/logxlogx) x >= 2_953_652_287 |
|
1971
|
|
|
|
|
|
|
# Axler 2014: x/(logx-1-1/logx-3.35/logxlogx...) x >= e^3.804 |
|
1972
|
|
|
|
|
|
|
# Büthe 2014 7.4 Schoenfeld bounds hold to x <= 1.4e25 |
|
1973
|
|
|
|
|
|
|
# Axler 2017 Prop 2.2 Schoenfeld bounds hold to x <= 5.5e25 |
|
1974
|
|
|
|
|
|
|
# Skewes li(x) x < 1e14 |
|
1975
|
|
|
|
|
|
|
|
|
1976
|
10
|
|
|
|
|
942
|
my($result,$a); |
|
1977
|
10
|
|
|
|
|
42
|
my $fl1 = log($x); |
|
1978
|
10
|
|
|
|
|
755905
|
my $fl2 = $fl1 * $fl1; |
|
1979
|
10
|
100
|
|
|
|
2360
|
my $one = (ref($x) eq 'Math::BigFloat') ? $x->copy->bone : $x-$x+1.0; |
|
1980
|
|
|
|
|
|
|
|
|
1981
|
10
|
50
|
33
|
|
|
1589
|
if ($x < 15900) { # Tweaked Rosser-type |
|
|
|
100
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
1982
|
0
|
0
|
|
|
|
0
|
$a = ($x < 1621) ? 1.048 : ($x < 5000) ? 1.071 : 1.098; |
|
|
|
0
|
|
|
|
|
|
|
1983
|
0
|
|
|
|
|
0
|
$result = ($x / ($fl1 - $a)) + 1.0; |
|
1984
|
|
|
|
|
|
|
} elsif ($x < 821800000) { # Tweaked Dusart 2010 |
|
1985
|
2
|
50
|
|
|
|
32
|
if ($x < 24000) { $a = 2.30; } |
|
|
0
|
50
|
|
|
|
0
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
1986
|
0
|
|
|
|
|
0
|
elsif ($x < 59000) { $a = 2.48; } |
|
1987
|
0
|
|
|
|
|
0
|
elsif ($x < 350000) { $a = 2.52; } |
|
1988
|
0
|
|
|
|
|
0
|
elsif ($x < 355991) { $a = 2.54; } |
|
1989
|
0
|
|
|
|
|
0
|
elsif ($x < 356000) { $a = 2.51; } |
|
1990
|
1
|
|
|
|
|
3
|
elsif ($x < 3550000) { $a = 2.50; } |
|
1991
|
0
|
|
|
|
|
0
|
elsif ($x < 3560000) { $a = 2.49; } |
|
1992
|
0
|
|
|
|
|
0
|
elsif ($x < 5000000) { $a = 2.48; } |
|
1993
|
0
|
|
|
|
|
0
|
elsif ($x < 8000000) { $a = 2.47; } |
|
1994
|
0
|
|
|
|
|
0
|
elsif ($x < 13000000) { $a = 2.46; } |
|
1995
|
0
|
|
|
|
|
0
|
elsif ($x < 18000000) { $a = 2.45; } |
|
1996
|
0
|
|
|
|
|
0
|
elsif ($x < 31000000) { $a = 2.44; } |
|
1997
|
0
|
|
|
|
|
0
|
elsif ($x < 41000000) { $a = 2.43; } |
|
1998
|
0
|
|
|
|
|
0
|
elsif ($x < 48000000) { $a = 2.42; } |
|
1999
|
0
|
|
|
|
|
0
|
elsif ($x < 119000000) { $a = 2.41; } |
|
2000
|
0
|
|
|
|
|
0
|
elsif ($x < 182000000) { $a = 2.40; } |
|
2001
|
0
|
|
|
|
|
0
|
elsif ($x < 192000000) { $a = 2.395; } |
|
2002
|
0
|
|
|
|
|
0
|
elsif ($x < 213000000) { $a = 2.390; } |
|
2003
|
0
|
|
|
|
|
0
|
elsif ($x < 271000000) { $a = 2.385; } |
|
2004
|
0
|
|
|
|
|
0
|
elsif ($x < 322000000) { $a = 2.380; } |
|
2005
|
0
|
|
|
|
|
0
|
elsif ($x < 400000000) { $a = 2.375; } |
|
2006
|
1
|
|
|
|
|
2
|
elsif ($x < 510000000) { $a = 2.370; } |
|
2007
|
0
|
|
|
|
|
0
|
elsif ($x < 682000000) { $a = 2.367; } |
|
2008
|
0
|
|
|
|
|
0
|
elsif ($x < 2953652287) { $a = 2.362; } |
|
2009
|
0
|
|
|
|
|
0
|
else { $a = 2.334; } # Dusart 2010, page 2 |
|
2010
|
2
|
|
|
|
|
7
|
$result = ($x/$fl1) * ($one + $one/$fl1 + $a/$fl2) + $one; |
|
2011
|
|
|
|
|
|
|
} elsif ($x < 1e19) { # Skewes number lower limit |
|
2012
|
0
|
0
|
|
|
|
0
|
$a = ($x < 110e7) ? 0.032 : ($x < 1001e7) ? 0.027 : ($x < 10126e7) ? 0.021 : 0.0; |
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
2013
|
0
|
|
|
|
|
0
|
$result = LogarithmicIntegral($x) - $a * $fl1*sqrt($x)/PI_TIMES_8; |
|
2014
|
|
|
|
|
|
|
} elsif ($x < 5.5e25 || Math::Prime::Util::prime_get_config()->{'assume_rh'}) { |
|
2015
|
|
|
|
|
|
|
# Schoenfeld / Büthe 2014 Th 7.4 |
|
2016
|
8
|
|
|
|
|
12812
|
my $lix = LogarithmicIntegral($x); |
|
2017
|
8
|
|
|
|
|
49
|
my $sqx = sqrt($x); |
|
2018
|
8
|
50
|
|
|
|
37251
|
if (ref($x) eq 'Math::BigFloat') { |
|
2019
|
8
|
|
|
|
|
40
|
my $xdigits = _find_big_acc($x); |
|
2020
|
8
|
|
|
|
|
40
|
$result = $lix + ($fl1*$sqx / (Math::BigFloat->bpi($xdigits)*8)); |
|
2021
|
|
|
|
|
|
|
} else { |
|
2022
|
0
|
|
|
|
|
0
|
$result = $lix + ($fl1*$sqx / PI_TIMES_8); |
|
2023
|
|
|
|
|
|
|
} |
|
2024
|
|
|
|
|
|
|
} else { # Axler 2014 1.3 |
|
2025
|
0
|
|
|
|
|
0
|
my($fl3,$fl4) = ($fl2*$fl1,$fl2*$fl2); |
|
2026
|
0
|
|
|
|
|
0
|
my($fl5,$fl6) = ($fl4*$fl1,$fl4*$fl2); |
|
2027
|
0
|
|
|
|
|
0
|
$result = $x / ($fl1 - $one - $one/$fl1 - 3.35/$fl2 - 12.65/$fl3 - 71.7/$fl4 - 466.1275/$fl5 - 3489.8225/$fl6); |
|
2028
|
|
|
|
|
|
|
} |
|
2029
|
|
|
|
|
|
|
|
|
2030
|
10
|
100
|
|
|
|
27636
|
return Math::BigInt->new($result->bfloor->bstr()) if ref($result) eq 'Math::BigFloat'; |
|
2031
|
2
|
|
|
|
|
10
|
return int($result); |
|
2032
|
|
|
|
|
|
|
} |
|
2033
|
|
|
|
|
|
|
|
|
2034
|
|
|
|
|
|
|
sub twin_prime_count { |
|
2035
|
1
|
|
|
1
|
0
|
4
|
my($low,$high) = @_; |
|
2036
|
1
|
50
|
|
|
|
4
|
if (defined $high) { _validate_positive_integer($low); } |
|
|
0
|
|
|
|
|
0
|
|
|
2037
|
1
|
|
|
|
|
3
|
else { ($low,$high) = (2, $low); } |
|
2038
|
1
|
|
|
|
|
5
|
_validate_positive_integer($high); |
|
2039
|
1
|
|
|
|
|
1
|
my $sum = 0; |
|
2040
|
1
|
|
|
|
|
5
|
while ($low <= $high) { |
|
2041
|
1
|
|
|
|
|
3
|
my $seghigh = ($high-$high) + $low + 1e7 - 1; |
|
2042
|
1
|
50
|
|
|
|
4
|
$seghigh = $high if $seghigh > $high; |
|
2043
|
1
|
|
|
|
|
3
|
$sum += scalar(@{Math::Prime::Util::twin_primes($low,$seghigh)}); |
|
|
1
|
|
|
|
|
6
|
|
|
2044
|
1
|
|
|
|
|
8
|
$low = $seghigh + 1; |
|
2045
|
|
|
|
|
|
|
} |
|
2046
|
1
|
|
|
|
|
9
|
$sum; |
|
2047
|
|
|
|
|
|
|
} |
|
2048
|
|
|
|
|
|
|
sub _semiprime_count { |
|
2049
|
0
|
|
|
0
|
|
0
|
my $n = shift; |
|
2050
|
0
|
|
|
|
|
0
|
my($sum,$pc) = (0,0); |
|
2051
|
|
|
|
|
|
|
Math::Prime::Util::forprimes( sub { |
|
2052
|
0
|
|
|
0
|
|
0
|
$sum += Math::Prime::Util::prime_count(int($n/$_))-$pc++; |
|
2053
|
0
|
|
|
|
|
0
|
}, sqrtint($n)); |
|
2054
|
0
|
|
|
|
|
0
|
$sum; |
|
2055
|
|
|
|
|
|
|
} |
|
2056
|
|
|
|
|
|
|
sub semiprime_count { |
|
2057
|
0
|
|
|
0
|
0
|
0
|
my($low,$high) = @_; |
|
2058
|
0
|
0
|
|
|
|
0
|
if (defined $high) { _validate_positive_integer($low); } |
|
|
0
|
|
|
|
|
0
|
|
|
2059
|
0
|
|
|
|
|
0
|
else { ($low,$high) = (2, $low); } |
|
2060
|
0
|
|
|
|
|
0
|
_validate_positive_integer($high); |
|
2061
|
|
|
|
|
|
|
# todo: threshold of fast count vs. walk |
|
2062
|
0
|
0
|
|
|
|
0
|
my $sum = _semiprime_count($high) - (($low < 4) ? 0 : semiprime_count($low-1)); |
|
2063
|
0
|
|
|
|
|
0
|
$sum; |
|
2064
|
|
|
|
|
|
|
} |
|
2065
|
|
|
|
|
|
|
sub ramanujan_prime_count { |
|
2066
|
0
|
|
|
0
|
0
|
0
|
my($low,$high) = @_; |
|
2067
|
0
|
0
|
|
|
|
0
|
if (defined $high) { _validate_positive_integer($low); } |
|
|
0
|
|
|
|
|
0
|
|
|
2068
|
0
|
|
|
|
|
0
|
else { ($low,$high) = (2, $low); } |
|
2069
|
0
|
|
|
|
|
0
|
_validate_positive_integer($high); |
|
2070
|
0
|
|
|
|
|
0
|
my $sum = 0; |
|
2071
|
0
|
|
|
|
|
0
|
while ($low <= $high) { |
|
2072
|
0
|
|
|
|
|
0
|
my $seghigh = ($high-$high) + $low + 1e9 - 1; |
|
2073
|
0
|
0
|
|
|
|
0
|
$seghigh = $high if $seghigh > $high; |
|
2074
|
0
|
|
|
|
|
0
|
$sum += scalar(@{Math::Prime::Util::ramanujan_primes($low,$seghigh)}); |
|
|
0
|
|
|
|
|
0
|
|
|
2075
|
0
|
|
|
|
|
0
|
$low = $seghigh + 1; |
|
2076
|
|
|
|
|
|
|
} |
|
2077
|
0
|
|
|
|
|
0
|
$sum; |
|
2078
|
|
|
|
|
|
|
} |
|
2079
|
|
|
|
|
|
|
|
|
2080
|
|
|
|
|
|
|
sub twin_prime_count_approx { |
|
2081
|
2
|
|
|
2
|
0
|
2875
|
my($n) = @_; |
|
2082
|
2
|
50
|
|
|
|
10
|
return twin_prime_count(3,$n) if $n < 2000; |
|
2083
|
2
|
50
|
|
|
|
293
|
$n = _upgrade_to_float($n) if ref($n); |
|
2084
|
2
|
|
|
|
|
248
|
my $logn = log($n); |
|
2085
|
|
|
|
|
|
|
# The loss of full Ei precision is a few orders of magnitude less than the |
|
2086
|
|
|
|
|
|
|
# accuracy of the estimate, so save huge time and don't bother. |
|
2087
|
2
|
|
|
|
|
97116
|
my $li2 = Math::Prime::Util::ExponentialIntegral("$logn") + 2.8853900817779268147198494 - ($n/$logn); |
|
2088
|
|
|
|
|
|
|
|
|
2089
|
|
|
|
|
|
|
# Empirical correction factor |
|
2090
|
2
|
|
|
|
|
3467
|
my $fm; |
|
2091
|
2
|
50
|
|
|
|
10
|
if ($n < 4000) { $fm = 0.2952; } |
|
|
0
|
50
|
|
|
|
0
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
2092
|
0
|
|
|
|
|
0
|
elsif ($n < 8000) { $fm = 0.3151; } |
|
2093
|
0
|
|
|
|
|
0
|
elsif ($n < 16000) { $fm = 0.3090; } |
|
2094
|
0
|
|
|
|
|
0
|
elsif ($n < 32000) { $fm = 0.3096; } |
|
2095
|
0
|
|
|
|
|
0
|
elsif ($n < 64000) { $fm = 0.3100; } |
|
2096
|
0
|
|
|
|
|
0
|
elsif ($n < 128000) { $fm = 0.3089; } |
|
2097
|
0
|
|
|
|
|
0
|
elsif ($n < 256000) { $fm = 0.3099; } |
|
2098
|
0
|
|
|
|
|
0
|
elsif ($n < 600000) { my($x0, $x1, $y0, $y1) = (1e6, 6e5, .3091, .3059); |
|
2099
|
0
|
|
|
|
|
0
|
$fm = $y0 + ($n - $x0) * ($y1-$y0) / ($x1 - $x0); } |
|
2100
|
0
|
|
|
|
|
0
|
elsif ($n < 1000000) { my($x0, $x1, $y0, $y1) = (6e5, 1e6, .3062, .3042); |
|
2101
|
0
|
|
|
|
|
0
|
$fm = $y0 + ($n - $x0) * ($y1-$y0) / ($x1 - $x0); } |
|
2102
|
0
|
|
|
|
|
0
|
elsif ($n < 4000000) { my($x0, $x1, $y0, $y1) = (1e6, 4e6, .3067, .3041); |
|
2103
|
0
|
|
|
|
|
0
|
$fm = $y0 + ($n - $x0) * ($y1-$y0) / ($x1 - $x0); } |
|
2104
|
0
|
|
|
|
|
0
|
elsif ($n < 16000000) { my($x0, $x1, $y0, $y1) = (4e6, 16e6, .3033, .2983); |
|
2105
|
0
|
|
|
|
|
0
|
$fm = $y0 + ($n - $x0) * ($y1-$y0) / ($x1 - $x0); } |
|
2106
|
0
|
|
|
|
|
0
|
elsif ($n < 32000000) { my($x0, $x1, $y0, $y1) = (16e6, 32e6, .2980, .2965); |
|
2107
|
0
|
|
|
|
|
0
|
$fm = $y0 + ($n - $x0) * ($y1-$y0) / ($x1 - $x0); } |
|
2108
|
2
|
50
|
|
|
|
8389
|
$li2 *= $fm * log(12+$logn) if defined $fm; |
|
2109
|
|
|
|
|
|
|
|
|
2110
|
2
|
|
|
|
|
9
|
return int(1.32032363169373914785562422 * $li2 + 0.5); |
|
2111
|
|
|
|
|
|
|
} |
|
2112
|
|
|
|
|
|
|
|
|
2113
|
|
|
|
|
|
|
sub semiprime_count_approx { |
|
2114
|
0
|
|
|
0
|
0
|
0
|
my($n) = @_; |
|
2115
|
0
|
0
|
|
|
|
0
|
return 0 if $n < 4; |
|
2116
|
0
|
|
|
|
|
0
|
_validate_positive_integer($n); |
|
2117
|
0
|
|
|
|
|
0
|
$n = "$n" + 0.00000001; |
|
2118
|
0
|
|
|
|
|
0
|
my $l1 = log($n); |
|
2119
|
0
|
|
|
|
|
0
|
my $l2 = log($l1); |
|
2120
|
|
|
|
|
|
|
#my $est = $n * $l2 / $l1; |
|
2121
|
0
|
|
|
|
|
0
|
my $est = $n * ($l2 + 0.302) / $l1; |
|
2122
|
0
|
|
|
|
|
0
|
int(0.5+$est); |
|
2123
|
|
|
|
|
|
|
} |
|
2124
|
|
|
|
|
|
|
|
|
2125
|
|
|
|
|
|
|
sub nth_twin_prime { |
|
2126
|
1
|
|
|
1
|
0
|
2836
|
my($n) = @_; |
|
2127
|
1
|
50
|
|
|
|
5
|
return undef if $n < 0; ## no critic qw(ProhibitExplicitReturnUndef) |
|
2128
|
1
|
50
|
|
|
|
4
|
return (undef,3,5,11,17,29,41)[$n] if $n <= 6; |
|
2129
|
|
|
|
|
|
|
|
|
2130
|
1
|
|
|
|
|
68
|
my $p = Math::Prime::Util::nth_twin_prime_approx($n+200); |
|
2131
|
1
|
|
|
|
|
7
|
my $tp = Math::Prime::Util::twin_primes($p); |
|
2132
|
1
|
|
|
|
|
9
|
while ($n > scalar(@$tp)) { |
|
2133
|
0
|
|
|
|
|
0
|
$n -= scalar(@$tp); |
|
2134
|
0
|
|
|
|
|
0
|
$tp = Math::Prime::Util::twin_primes($p+1,$p+1e5); |
|
2135
|
0
|
|
|
|
|
0
|
$p += 1e5; |
|
2136
|
|
|
|
|
|
|
} |
|
2137
|
1
|
|
|
|
|
24
|
return $tp->[$n-1]; |
|
2138
|
|
|
|
|
|
|
} |
|
2139
|
|
|
|
|
|
|
|
|
2140
|
|
|
|
|
|
|
sub nth_twin_prime_approx { |
|
2141
|
0
|
|
|
0
|
0
|
0
|
my($n) = @_; |
|
2142
|
0
|
|
|
|
|
0
|
_validate_positive_integer($n); |
|
2143
|
0
|
0
|
|
|
|
0
|
return nth_twin_prime($n) if $n < 6; |
|
2144
|
0
|
0
|
0
|
|
|
0
|
$n = _upgrade_to_float($n) if ref($n) || $n > 127e14; # TODO lower for 32-bit |
|
2145
|
0
|
|
|
|
|
0
|
my $logn = log($n); |
|
2146
|
0
|
|
|
|
|
0
|
my $nlogn2 = $n * $logn * $logn; |
|
2147
|
|
|
|
|
|
|
|
|
2148
|
0
|
0
|
0
|
|
|
0
|
return int(5.158 * $nlogn2/log(9+log($n*$n))) if $n > 59 && $n <= 1092; |
|
2149
|
|
|
|
|
|
|
|
|
2150
|
0
|
|
|
|
|
0
|
my $lo = int(0.7 * $nlogn2); |
|
2151
|
0
|
0
|
|
|
|
0
|
my $hi = int( ($n > 1e16) ? 1.1 * $nlogn2 |
|
|
|
0
|
|
|
|
|
|
|
2152
|
|
|
|
|
|
|
: ($n > 480) ? 1.7 * $nlogn2 |
|
2153
|
|
|
|
|
|
|
: 2.3 * $nlogn2 + 3 ); |
|
2154
|
|
|
|
|
|
|
|
|
2155
|
|
|
|
|
|
|
_binary_search($n, $lo, $hi, |
|
2156
|
0
|
|
|
0
|
|
0
|
sub{Math::Prime::Util::twin_prime_count_approx(shift)}, |
|
2157
|
0
|
|
|
0
|
|
0
|
sub{ ($_[2]-$_[1])/$_[1] < 1e-15 } ); |
|
|
0
|
|
|
|
|
0
|
|
|
2158
|
|
|
|
|
|
|
} |
|
2159
|
|
|
|
|
|
|
|
|
2160
|
|
|
|
|
|
|
sub nth_semiprime { |
|
2161
|
0
|
|
|
0
|
0
|
0
|
my $n = shift; |
|
2162
|
0
|
0
|
|
|
|
0
|
return undef if $n < 0; ## no critic qw(ProhibitExplicitReturnUndef) |
|
2163
|
0
|
0
|
|
|
|
0
|
return (undef,4,6,9,10,14,15,21,22)[$n] if $n <= 8; |
|
2164
|
0
|
|
|
|
|
0
|
my $logn = log($n); |
|
2165
|
0
|
|
|
|
|
0
|
my $est = 0.966 * $n * $logn / log($logn); |
|
2166
|
|
|
|
|
|
|
1+_binary_search($n, int(0.9*$est)-1, int(1.15*$est)+1, |
|
2167
|
0
|
|
|
0
|
|
0
|
sub{Math::Prime::Util::semiprime_count(shift)}); |
|
|
0
|
|
|
|
|
0
|
|
|
2168
|
|
|
|
|
|
|
} |
|
2169
|
|
|
|
|
|
|
|
|
2170
|
|
|
|
|
|
|
sub nth_semiprime_approx { |
|
2171
|
0
|
|
|
0
|
0
|
0
|
my $n = shift; |
|
2172
|
0
|
0
|
|
|
|
0
|
return undef if $n < 0; ## no critic qw(ProhibitExplicitReturnUndef) |
|
2173
|
0
|
|
|
|
|
0
|
_validate_positive_integer($n); |
|
2174
|
0
|
0
|
|
|
|
0
|
return (undef,4,6,9,10,14,15,21,22)[$n] if $n <= 8; |
|
2175
|
0
|
|
|
|
|
0
|
$n = "$n" + 0.00000001; |
|
2176
|
0
|
|
|
|
|
0
|
my $l1 = log($n); |
|
2177
|
0
|
|
|
|
|
0
|
my $l2 = log($l1); |
|
2178
|
0
|
|
|
|
|
0
|
my $est = 0.966 * $n * $l1 / $l2; |
|
2179
|
0
|
|
|
|
|
0
|
int(0.5+$est); |
|
2180
|
|
|
|
|
|
|
} |
|
2181
|
|
|
|
|
|
|
|
|
2182
|
|
|
|
|
|
|
sub nth_ramanujan_prime_upper { |
|
2183
|
0
|
|
|
0
|
0
|
0
|
my $n = shift; |
|
2184
|
0
|
0
|
|
|
|
0
|
return (0,2,11)[$n] if $n <= 2; |
|
2185
|
0
|
0
|
|
|
|
0
|
$n = Math::BigInt->new("$n") if $n > (~0/3); |
|
2186
|
0
|
|
|
|
|
0
|
my $nth = nth_prime_upper(3*$n); |
|
2187
|
0
|
0
|
|
|
|
0
|
return $nth if $n < 10000; |
|
2188
|
0
|
0
|
|
|
|
0
|
$nth = Math::BigInt->new("$nth") if $nth > (~0/177); |
|
2189
|
0
|
0
|
|
|
|
0
|
if ($n < 1000000) { $nth = (177 * $nth) >> 8; } |
|
|
0
|
0
|
|
|
|
0
|
|
|
2190
|
0
|
|
|
|
|
0
|
elsif ($n < 1e10) { $nth = (175 * $nth) >> 8; } |
|
2191
|
0
|
|
|
|
|
0
|
else { $nth = (133 * $nth) >> 8; } |
|
2192
|
0
|
0
|
0
|
|
|
0
|
$nth = _bigint_to_int($nth) if ref($nth) && $nth->bacmp(BMAX) <= 0; |
|
2193
|
0
|
|
|
|
|
0
|
$nth; |
|
2194
|
|
|
|
|
|
|
} |
|
2195
|
|
|
|
|
|
|
sub nth_ramanujan_prime_lower { |
|
2196
|
0
|
|
|
0
|
0
|
0
|
my $n = shift; |
|
2197
|
0
|
0
|
|
|
|
0
|
return (0,2,11)[$n] if $n <= 2; |
|
2198
|
0
|
0
|
|
|
|
0
|
$n = Math::BigInt->new("$n") if $n > (~0/2); |
|
2199
|
0
|
|
|
|
|
0
|
my $nth = nth_prime_lower(2*$n); |
|
2200
|
0
|
0
|
|
|
|
0
|
$nth = Math::BigInt->new("$nth") if $nth > (~0/275); |
|
2201
|
0
|
0
|
|
|
|
0
|
if ($n < 10000) { $nth = (275 * $nth) >> 8; } |
|
|
0
|
0
|
|
|
|
0
|
|
|
2202
|
0
|
|
|
|
|
0
|
elsif ($n < 1e10) { $nth = (262 * $nth) >> 8; } |
|
2203
|
0
|
0
|
0
|
|
|
0
|
$nth = _bigint_to_int($nth) if ref($nth) && $nth->bacmp(BMAX) <= 0; |
|
2204
|
0
|
|
|
|
|
0
|
$nth; |
|
2205
|
|
|
|
|
|
|
} |
|
2206
|
|
|
|
|
|
|
sub nth_ramanujan_prime_approx { |
|
2207
|
0
|
|
|
0
|
0
|
0
|
my $n = shift; |
|
2208
|
0
|
0
|
|
|
|
0
|
return (0,2,11)[$n] if $n <= 2; |
|
2209
|
0
|
|
|
|
|
0
|
my($lo,$hi) = (nth_ramanujan_prime_lower($n),nth_ramanujan_prime_upper($n)); |
|
2210
|
0
|
|
|
|
|
0
|
$lo + (($hi-$lo)>>1); |
|
2211
|
|
|
|
|
|
|
} |
|
2212
|
|
|
|
|
|
|
sub ramanujan_prime_count_upper { |
|
2213
|
0
|
|
|
0
|
0
|
0
|
my $n = shift; |
|
2214
|
0
|
0
|
|
|
|
0
|
return (($n < 2) ? 0 : 1) if $n < 11; |
|
|
|
0
|
|
|
|
|
|
|
2215
|
0
|
|
|
|
|
0
|
my $lo = int(prime_count_lower($n) / 3); |
|
2216
|
0
|
|
|
|
|
0
|
my $hi = prime_count_upper($n) >> 1; |
|
2217
|
|
|
|
|
|
|
1+_binary_search($n, $lo, $hi, |
|
2218
|
0
|
|
|
0
|
|
0
|
sub{Math::Prime::Util::nth_ramanujan_prime_lower(shift)}); |
|
|
0
|
|
|
|
|
0
|
|
|
2219
|
|
|
|
|
|
|
} |
|
2220
|
|
|
|
|
|
|
sub ramanujan_prime_count_lower { |
|
2221
|
0
|
|
|
0
|
0
|
0
|
my $n = shift; |
|
2222
|
0
|
0
|
|
|
|
0
|
return (($n < 2) ? 0 : 1) if $n < 11; |
|
|
|
0
|
|
|
|
|
|
|
2223
|
0
|
|
|
|
|
0
|
my $lo = int(prime_count_lower($n) / 3); |
|
2224
|
0
|
|
|
|
|
0
|
my $hi = prime_count_upper($n) >> 1; |
|
2225
|
|
|
|
|
|
|
_binary_search($n, $lo, $hi, |
|
2226
|
0
|
|
|
0
|
|
0
|
sub{Math::Prime::Util::nth_ramanujan_prime_upper(shift)}); |
|
|
0
|
|
|
|
|
0
|
|
|
2227
|
|
|
|
|
|
|
} |
|
2228
|
|
|
|
|
|
|
sub ramanujan_prime_count_approx { |
|
2229
|
0
|
|
|
0
|
0
|
0
|
my $n = shift; |
|
2230
|
0
|
0
|
|
|
|
0
|
return (($n < 2) ? 0 : 1) if $n < 11; |
|
|
|
0
|
|
|
|
|
|
|
2231
|
|
|
|
|
|
|
#$n = _upgrade_to_float($n) if ref($n) || $n > 2e16; |
|
2232
|
0
|
|
|
|
|
0
|
my $lo = ramanujan_prime_count_lower($n); |
|
2233
|
0
|
|
|
|
|
0
|
my $hi = ramanujan_prime_count_upper($n); |
|
2234
|
|
|
|
|
|
|
_binary_search($n, $lo, $hi, |
|
2235
|
0
|
|
|
0
|
|
0
|
sub{Math::Prime::Util::nth_ramanujan_prime_approx(shift)}, |
|
2236
|
0
|
|
|
0
|
|
0
|
sub{ ($_[2]-$_[1])/$_[1] < 1e-15 } ); |
|
|
0
|
|
|
|
|
0
|
|
|
2237
|
|
|
|
|
|
|
} |
|
2238
|
|
|
|
|
|
|
|
|
2239
|
|
|
|
|
|
|
sub _sum_primes_n { |
|
2240
|
0
|
|
|
0
|
|
0
|
my $n = shift; |
|
2241
|
0
|
0
|
|
|
|
0
|
return (0,0,2,5,5)[$n] if $n < 5; |
|
2242
|
0
|
|
|
|
|
0
|
my $r = Math::Prime::Util::sqrtint($n); |
|
2243
|
0
|
|
|
|
|
0
|
my $r2 = $r + int($n/($r+1)); |
|
2244
|
0
|
|
|
|
|
0
|
my(@V,@S); |
|
2245
|
0
|
|
|
|
|
0
|
for my $k (0 .. $r2) { |
|
2246
|
0
|
0
|
|
|
|
0
|
my $v = ($k <= $r) ? $k : int($n/($r2-$k+1)); |
|
2247
|
0
|
|
|
|
|
0
|
$V[$k] = $v; |
|
2248
|
0
|
|
|
|
|
0
|
$S[$k] = (($v*($v+1)) >> 1) - 1; |
|
2249
|
|
|
|
|
|
|
} |
|
2250
|
0
|
|
|
0
|
|
0
|
Math::Prime::Util::forprimes( sub { my $p = $_; |
|
2251
|
0
|
|
|
|
|
0
|
my $sp = $S[$p-1]; |
|
2252
|
0
|
|
|
|
|
0
|
my $p2 = $p*$p; |
|
2253
|
0
|
|
|
|
|
0
|
for my $v (reverse @V) { |
|
2254
|
0
|
0
|
|
|
|
0
|
last if $v < $p2; |
|
2255
|
0
|
|
|
|
|
0
|
my($a,$b) = ($v,int($v/$p)); |
|
2256
|
0
|
0
|
|
|
|
0
|
$a = $r2 - int($n/$a) + 1 if $a > $r; |
|
2257
|
0
|
0
|
|
|
|
0
|
$b = $r2 - int($n/$b) + 1 if $b > $r; |
|
2258
|
0
|
|
|
|
|
0
|
$S[$a] -= $p * ($S[$b] - $sp); |
|
2259
|
|
|
|
|
|
|
} |
|
2260
|
0
|
|
|
|
|
0
|
}, 2, $r); |
|
2261
|
0
|
|
|
|
|
0
|
$S[$r2]; |
|
2262
|
|
|
|
|
|
|
} |
|
2263
|
|
|
|
|
|
|
|
|
2264
|
|
|
|
|
|
|
sub sum_primes { |
|
2265
|
0
|
|
|
0
|
0
|
0
|
my($low,$high) = @_; |
|
2266
|
0
|
0
|
|
|
|
0
|
if (defined $high) { _validate_positive_integer($low); } |
|
|
0
|
|
|
|
|
0
|
|
|
2267
|
0
|
|
|
|
|
0
|
else { ($low,$high) = (2, $low); } |
|
2268
|
0
|
|
|
|
|
0
|
_validate_positive_integer($high); |
|
2269
|
0
|
|
|
|
|
0
|
my $sum = 0; |
|
2270
|
0
|
0
|
|
|
|
0
|
$sum = BZERO->copy if ( (MPU_32BIT && $high > 323_380) || |
|
2271
|
|
|
|
|
|
|
(MPU_64BIT && $high > 29_505_444_490) ); |
|
2272
|
|
|
|
|
|
|
|
|
2273
|
|
|
|
|
|
|
# It's very possible we're here because they've counted too high. Skip fwd. |
|
2274
|
0
|
0
|
0
|
|
|
0
|
if ($low <= 2 && $high >= 29505444491) { |
|
2275
|
0
|
|
|
|
|
0
|
$low = 29505444503; |
|
2276
|
0
|
|
|
|
|
0
|
$sum = Math::BigInt->new("18446744087046669523"); |
|
2277
|
|
|
|
|
|
|
} |
|
2278
|
|
|
|
|
|
|
|
|
2279
|
0
|
0
|
|
|
|
0
|
return $sum if $low > $high; |
|
2280
|
|
|
|
|
|
|
|
|
2281
|
|
|
|
|
|
|
# We have to make some decision about whether to use our PP prime sum or loop |
|
2282
|
|
|
|
|
|
|
# doing the XS sieve. TODO: Be smarter here? |
|
2283
|
0
|
0
|
0
|
|
|
0
|
if (!Math::Prime::Util::prime_get_config()->{'xs'} && !ref($sum) && !MPU_32BIT && ($high-$low) > 1000000) { |
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
2284
|
|
|
|
|
|
|
# Unfortunately with bigints this is horrifically slow, but we have to do it. |
|
2285
|
0
|
0
|
|
|
|
0
|
$high = BZERO->copy + $high if $high >= (1 << (MPU_MAXBITS/2))-1; |
|
2286
|
0
|
|
|
|
|
0
|
$sum = _sum_primes_n($high); |
|
2287
|
0
|
0
|
|
|
|
0
|
$sum -= _sum_primes_n($low-1) if $low > 2; |
|
2288
|
0
|
|
|
|
|
0
|
return $sum; |
|
2289
|
|
|
|
|
|
|
} |
|
2290
|
|
|
|
|
|
|
|
|
2291
|
0
|
|
0
|
|
|
0
|
my $xssum = (MPU_64BIT && $high < 6e14 && Math::Prime::Util::prime_get_config()->{'xs'}); |
|
2292
|
0
|
0
|
0
|
|
|
0
|
my $step = ($xssum && $high > 5e13) ? 1_000_000 : 11_000_000; |
|
2293
|
0
|
|
|
|
|
0
|
Math::Prime::Util::prime_precalc(sqrtint($high)); |
|
2294
|
0
|
|
|
|
|
0
|
while ($low <= $high) { |
|
2295
|
0
|
|
|
|
|
0
|
my $next = $low + $step - 1; |
|
2296
|
0
|
0
|
|
|
|
0
|
$next = $high if $next > $high; |
|
2297
|
|
|
|
|
|
|
$sum += ($xssum) ? Math::Prime::Util::sum_primes($low,$next) |
|
2298
|
0
|
0
|
|
|
|
0
|
: Math::Prime::Util::vecsum( @{Math::Prime::Util::primes($low,$next)} ); |
|
|
0
|
|
|
|
|
0
|
|
|
2299
|
0
|
0
|
|
|
|
0
|
last if $next == $high; |
|
2300
|
0
|
|
|
|
|
0
|
$low = $next+1; |
|
2301
|
|
|
|
|
|
|
} |
|
2302
|
0
|
|
|
|
|
0
|
$sum; |
|
2303
|
|
|
|
|
|
|
} |
|
2304
|
|
|
|
|
|
|
sub print_primes { |
|
2305
|
0
|
|
|
0
|
0
|
0
|
my($low,$high,$fd) = @_; |
|
2306
|
0
|
0
|
|
|
|
0
|
if (defined $high) { _validate_positive_integer($low); } |
|
|
0
|
|
|
|
|
0
|
|
|
2307
|
0
|
|
|
|
|
0
|
else { ($low,$high) = (2, $low); } |
|
2308
|
0
|
|
|
|
|
0
|
_validate_positive_integer($high); |
|
2309
|
|
|
|
|
|
|
|
|
2310
|
0
|
0
|
|
|
|
0
|
$fd = fileno(STDOUT) unless defined $fd; |
|
2311
|
0
|
|
|
|
|
0
|
open(my $fh, ">>&=", $fd); # TODO .... or die |
|
2312
|
|
|
|
|
|
|
|
|
2313
|
0
|
0
|
|
|
|
0
|
if ($high >= $low) { |
|
2314
|
0
|
|
|
|
|
0
|
my $p1 = $low; |
|
2315
|
0
|
|
|
|
|
0
|
while ($p1 <= $high) { |
|
2316
|
0
|
|
|
|
|
0
|
my $p2 = $p1 + 15_000_000 - 1; |
|
2317
|
0
|
0
|
|
|
|
0
|
$p2 = $high if $p2 > $high; |
|
2318
|
0
|
0
|
|
|
|
0
|
if ($Math::Prime::Util::_GMPfunc{"sieve_primes"}) { |
|
2319
|
0
|
|
|
|
|
0
|
print $fh "$_\n" for Math::Prime::Util::GMP::sieve_primes($p1,$p2,0); |
|
2320
|
|
|
|
|
|
|
} else { |
|
2321
|
0
|
|
|
|
|
0
|
print $fh "$_\n" for @{primes($p1,$p2)}; |
|
|
0
|
|
|
|
|
0
|
|
|
2322
|
|
|
|
|
|
|
} |
|
2323
|
0
|
|
|
|
|
0
|
$p1 = $p2+1; |
|
2324
|
|
|
|
|
|
|
} |
|
2325
|
|
|
|
|
|
|
} |
|
2326
|
0
|
|
|
|
|
0
|
close($fh); |
|
2327
|
|
|
|
|
|
|
} |
|
2328
|
|
|
|
|
|
|
|
|
2329
|
|
|
|
|
|
|
|
|
2330
|
|
|
|
|
|
|
############################################################################# |
|
2331
|
|
|
|
|
|
|
|
|
2332
|
|
|
|
|
|
|
sub _mulmod { |
|
2333
|
43023
|
|
|
43023
|
|
65989
|
my($x, $y, $n) = @_; |
|
2334
|
43023
|
100
|
|
|
|
86564
|
return (($x * $y) % $n) if ($x|$y) < MPU_HALFWORD; |
|
2335
|
|
|
|
|
|
|
#return (($x * $y) % $n) if ($x|$y) < MPU_HALFWORD || $y == 0 || $x < int(~0/$y); |
|
2336
|
43023
|
|
|
|
|
52475
|
my $r = 0; |
|
2337
|
43023
|
50
|
|
|
|
67979
|
$x %= $n if $x >= $n; |
|
2338
|
43023
|
50
|
|
|
|
65510
|
$y %= $n if $y >= $n; |
|
2339
|
43023
|
100
|
|
|
|
65313
|
($x,$y) = ($y,$x) if $x < $y; |
|
2340
|
43023
|
100
|
|
|
|
60795
|
if ($n <= (~0 >> 1)) { |
|
2341
|
40495
|
|
|
|
|
66555
|
while ($y > 1) { |
|
2342
|
1902318
|
100
|
|
|
|
2998351
|
if ($y & 1) { $r += $x; $r -= $n if $r >= $n; } |
|
|
929259
|
100
|
|
|
|
1126446
|
|
|
|
929259
|
|
|
|
|
1480297
|
|
|
2343
|
1902318
|
|
|
|
|
2283159
|
$y >>= 1; |
|
2344
|
1902318
|
100
|
|
|
|
2301183
|
$x += $x; $x -= $n if $x >= $n; |
|
|
1902318
|
|
|
|
|
3650964
|
|
|
2345
|
|
|
|
|
|
|
} |
|
2346
|
40495
|
100
|
|
|
|
68167
|
if ($y & 1) { $r += $x; $r -= $n if $r >= $n; } |
|
|
40495
|
50
|
|
|
|
49103
|
|
|
|
40495
|
|
|
|
|
67950
|
|
|
2347
|
|
|
|
|
|
|
} else { |
|
2348
|
2528
|
|
|
|
|
695
|
while ($y > 1) { |
|
2349
|
26018
|
100
|
|
|
|
41151
|
if ($y & 1) { $r = $n-$r; $r = ($x >= $r) ? $x-$r : $n-$r+$x; } |
|
|
12752
|
100
|
|
|
|
15823
|
|
|
|
12752
|
|
|
|
|
19815
|
|
|
2350
|
26018
|
|
|
|
|
31051
|
$y >>= 1; |
|
2351
|
26018
|
100
|
|
|
|
50847
|
$x = ($x > ($n - $x)) ? ($x - $n) + $x : $x + $x; |
|
2352
|
|
|
|
|
|
|
} |
|
2353
|
2528
|
100
|
|
|
|
717
|
if ($y & 1) { $r = $n-$r; $r = ($x >= $r) ? $x-$r : $n-$r+$x; } |
|
|
424
|
50
|
|
|
|
532
|
|
|
|
424
|
|
|
|
|
719
|
|
|
2354
|
|
|
|
|
|
|
} |
|
2355
|
43023
|
|
|
|
|
71429
|
$r; |
|
2356
|
|
|
|
|
|
|
} |
|
2357
|
|
|
|
|
|
|
sub _addmod { |
|
2358
|
33314
|
|
|
33314
|
|
297978
|
my($x, $y, $n) = @_; |
|
2359
|
33314
|
50
|
|
|
|
56125
|
$x %= $n if $x >= $n; |
|
2360
|
33314
|
100
|
|
|
|
73576
|
$y %= $n if $y >= $n; |
|
2361
|
33314
|
100
|
|
|
|
68227
|
if (($n-$x) <= $y) { |
|
2362
|
215
|
100
|
|
|
|
39068
|
($x,$y) = ($y,$x) if $y > $x; |
|
2363
|
215
|
|
|
|
|
12884
|
$x -= $n; |
|
2364
|
|
|
|
|
|
|
} |
|
2365
|
33314
|
|
|
|
|
114045
|
$x + $y; |
|
2366
|
|
|
|
|
|
|
} |
|
2367
|
|
|
|
|
|
|
|
|
2368
|
|
|
|
|
|
|
# Note that Perl 5.6.2 with largish 64-bit numbers will break. As usual. |
|
2369
|
|
|
|
|
|
|
sub _native_powmod { |
|
2370
|
3602
|
|
|
3602
|
|
5853
|
my($n, $power, $m) = @_; |
|
2371
|
3602
|
|
|
|
|
4669
|
my $t = 1; |
|
2372
|
3602
|
|
|
|
|
4892
|
$n = $n % $m; |
|
2373
|
3602
|
|
|
|
|
5858
|
while ($power) { |
|
2374
|
66865
|
100
|
|
|
|
109097
|
$t = ($t * $n) % $m if ($power & 1); |
|
2375
|
66865
|
|
|
|
|
79417
|
$power >>= 1; |
|
2376
|
66865
|
100
|
|
|
|
127844
|
$n = ($n * $n) % $m if $power; |
|
2377
|
|
|
|
|
|
|
} |
|
2378
|
3602
|
|
|
|
|
5554
|
$t; |
|
2379
|
|
|
|
|
|
|
} |
|
2380
|
|
|
|
|
|
|
|
|
2381
|
|
|
|
|
|
|
sub _powmod { |
|
2382
|
186
|
|
|
186
|
|
449
|
my($n, $power, $m) = @_; |
|
2383
|
186
|
|
|
|
|
300
|
my $t = 1; |
|
2384
|
|
|
|
|
|
|
|
|
2385
|
186
|
50
|
|
|
|
441
|
$n %= $m if $n >= $m; |
|
2386
|
186
|
100
|
|
|
|
421
|
if ($m < MPU_HALFWORD) { |
|
2387
|
12
|
|
|
|
|
46
|
while ($power) { |
|
2388
|
219
|
100
|
|
|
|
336
|
$t = ($t * $n) % $m if ($power & 1); |
|
2389
|
219
|
|
|
|
|
240
|
$power >>= 1; |
|
2390
|
219
|
100
|
|
|
|
540
|
$n = ($n * $n) % $m if $power; |
|
2391
|
|
|
|
|
|
|
} |
|
2392
|
|
|
|
|
|
|
} else { |
|
2393
|
174
|
|
|
|
|
455
|
while ($power) { |
|
2394
|
7013
|
100
|
|
|
|
12963
|
$t = _mulmod($t, $n, $m) if ($power & 1); |
|
2395
|
7013
|
|
|
|
|
9400
|
$power >>= 1; |
|
2396
|
7013
|
100
|
|
|
|
13467
|
$n = _mulmod($n, $n, $m) if $power; |
|
2397
|
|
|
|
|
|
|
} |
|
2398
|
|
|
|
|
|
|
} |
|
2399
|
186
|
|
|
|
|
482
|
$t; |
|
2400
|
|
|
|
|
|
|
} |
|
2401
|
|
|
|
|
|
|
|
|
2402
|
|
|
|
|
|
|
# Make sure to work around RT71548, Math::BigInt::Lite, |
|
2403
|
|
|
|
|
|
|
# and use correct lcm semantics. |
|
2404
|
|
|
|
|
|
|
sub gcd { |
|
2405
|
|
|
|
|
|
|
# First see if all inputs are non-bigints 5-10x faster if so. |
|
2406
|
7
|
100
|
|
7
|
0
|
417
|
if (0 == scalar(grep { ref($_) } @_)) { |
|
|
16
|
|
|
|
|
54
|
|
|
2407
|
1
|
|
50
|
|
|
7
|
my($x,$y) = (shift || 0, 0); |
|
2408
|
1
|
|
|
|
|
4
|
while (@_) { |
|
2409
|
2
|
|
|
|
|
5
|
$y = shift; |
|
2410
|
2
|
|
|
|
|
5
|
while ($y) { ($x,$y) = ($y, $x % $y); } |
|
|
4
|
|
|
|
|
10
|
|
|
2411
|
2
|
100
|
|
|
|
8
|
$x = -$x if $x < 0; |
|
2412
|
|
|
|
|
|
|
} |
|
2413
|
1
|
|
|
|
|
6
|
return $x; |
|
2414
|
|
|
|
|
|
|
} |
|
2415
|
|
|
|
|
|
|
my $gcd = Math::BigInt::bgcd( map { |
|
2416
|
6
|
50
|
66
|
|
|
18
|
my $v = (($_ < 2147483647 && !ref($_)) || ref($_) eq 'Math::BigInt') ? $_ : "$_"; |
|
|
13
|
|
|
|
|
54
|
|
|
2417
|
13
|
|
|
|
|
1692
|
$v; |
|
2418
|
|
|
|
|
|
|
} @_ ); |
|
2419
|
6
|
50
|
|
|
|
24513
|
$gcd = _bigint_to_int($gcd) if $gcd->bacmp(BMAX) <= 0; |
|
2420
|
6
|
|
|
|
|
177
|
return $gcd; |
|
2421
|
|
|
|
|
|
|
} |
|
2422
|
|
|
|
|
|
|
sub lcm { |
|
2423
|
4
|
50
|
|
4
|
0
|
528
|
return 0 unless @_; |
|
2424
|
|
|
|
|
|
|
my $lcm = Math::BigInt::blcm( map { |
|
2425
|
4
|
50
|
66
|
|
|
13
|
my $v = (($_ < 2147483647 && !ref($_)) || ref($_) eq 'Math::BigInt') ? $_ : "$_"; |
|
|
12
|
|
|
|
|
44
|
|
|
2426
|
12
|
50
|
|
|
|
1199
|
return 0 if $v == 0; |
|
2427
|
12
|
50
|
|
|
|
1505
|
$v = -$v if $v < 0; |
|
2428
|
12
|
|
|
|
|
1506
|
$v; |
|
2429
|
|
|
|
|
|
|
} @_ ); |
|
2430
|
4
|
100
|
|
|
|
5900
|
$lcm = _bigint_to_int($lcm) if $lcm->bacmp(BMAX) <= 0; |
|
2431
|
4
|
|
|
|
|
137
|
return $lcm; |
|
2432
|
|
|
|
|
|
|
} |
|
2433
|
|
|
|
|
|
|
sub gcdext { |
|
2434
|
3
|
|
|
3
|
0
|
145
|
my($x,$y) = @_; |
|
2435
|
3
|
50
|
|
|
|
16
|
if ($x == 0) { return (0, (-1,0,1)[($y>=0)+($y>0)], abs($y)); } |
|
|
0
|
|
|
|
|
0
|
|
|
2436
|
3
|
50
|
|
|
|
222
|
if ($y == 0) { return ((-1,0,1)[($x>=0)+($x>0)], 0, abs($x)); } |
|
|
0
|
|
|
|
|
0
|
|
|
2437
|
|
|
|
|
|
|
|
|
2438
|
3
|
50
|
|
|
|
182
|
if ($Math::Prime::Util::_GMPfunc{"gcdext"}) { |
|
2439
|
0
|
|
|
|
|
0
|
my($a,$b,$g) = Math::Prime::Util::GMP::gcdext($x,$y); |
|
2440
|
0
|
|
|
|
|
0
|
$a = Math::Prime::Util::_reftyped($_[0], $a); |
|
2441
|
0
|
|
|
|
|
0
|
$b = Math::Prime::Util::_reftyped($_[0], $b); |
|
2442
|
0
|
|
|
|
|
0
|
$g = Math::Prime::Util::_reftyped($_[0], $g); |
|
2443
|
0
|
|
|
|
|
0
|
return ($a,$b,$g); |
|
2444
|
|
|
|
|
|
|
} |
|
2445
|
|
|
|
|
|
|
|
|
2446
|
3
|
|
|
|
|
12
|
my($a,$b,$g,$u,$v,$w); |
|
2447
|
3
|
100
|
66
|
|
|
20
|
if (abs($x) < (~0>>1) && abs($y) < (~0>>1)) { |
|
2448
|
1
|
50
|
|
|
|
6
|
$x = _bigint_to_int($x) if ref($x) eq 'Math::BigInt'; |
|
2449
|
1
|
50
|
|
|
|
3
|
$y = _bigint_to_int($y) if ref($y) eq 'Math::BigInt'; |
|
2450
|
1
|
|
|
|
|
4
|
($a,$b,$g,$u,$v,$w) = (1,0,$x,0,1,$y); |
|
2451
|
1
|
|
|
|
|
5
|
while ($w != 0) { |
|
2452
|
10
|
|
|
|
|
14
|
my $r = $g % $w; |
|
2453
|
10
|
|
|
|
|
17
|
my $q = int(($g-$r)/$w); |
|
2454
|
10
|
|
|
|
|
27
|
($a,$b,$g,$u,$v,$w) = ($u,$v,$w,$a-$q*$u,$b-$q*$v,$r); |
|
2455
|
|
|
|
|
|
|
} |
|
2456
|
|
|
|
|
|
|
} else { |
|
2457
|
2
|
|
|
|
|
196
|
($a,$b,$g,$u,$v,$w) = (BONE->copy,BZERO->copy,Math::BigInt->new("$x"), |
|
2458
|
|
|
|
|
|
|
BZERO->copy,BONE->copy,Math::BigInt->new("$y")); |
|
2459
|
2
|
|
|
|
|
520
|
while ($w != 0) { |
|
2460
|
|
|
|
|
|
|
# Using the array bdiv is logical, but is the wrong sign. |
|
2461
|
109
|
|
|
|
|
62138
|
my $r = $g->copy->bmod($w); |
|
2462
|
109
|
|
|
|
|
21227
|
my $q = $g->copy->bsub($r)->bdiv($w); |
|
2463
|
109
|
|
|
|
|
35198
|
($a,$b,$g,$u,$v,$w) = ($u,$v,$w,$a-$q*$u,$b-$q*$v,$r); |
|
2464
|
|
|
|
|
|
|
} |
|
2465
|
2
|
100
|
|
|
|
1263
|
$a = _bigint_to_int($a) if $a->bacmp(BMAX) <= 0; |
|
2466
|
2
|
100
|
|
|
|
105
|
$b = _bigint_to_int($b) if $b->bacmp(BMAX) <= 0; |
|
2467
|
2
|
50
|
|
|
|
62
|
$g = _bigint_to_int($g) if $g->bacmp(BMAX) <= 0; |
|
2468
|
|
|
|
|
|
|
} |
|
2469
|
3
|
50
|
|
|
|
92
|
if ($g < 0) { ($a,$b,$g) = (-$a,-$b,-$g); } |
|
|
0
|
|
|
|
|
0
|
|
|
2470
|
3
|
|
|
|
|
57
|
return ($a,$b,$g); |
|
2471
|
|
|
|
|
|
|
} |
|
2472
|
|
|
|
|
|
|
|
|
2473
|
|
|
|
|
|
|
sub chinese { |
|
2474
|
7
|
50
|
|
7
|
0
|
4953
|
return 0 unless scalar @_; |
|
2475
|
7
|
50
|
|
|
|
23
|
return $_[0]->[0] % $_[0]->[1] if scalar @_ == 1; |
|
2476
|
7
|
|
|
|
|
16
|
my($lcm, $sum); |
|
2477
|
|
|
|
|
|
|
|
|
2478
|
7
|
50
|
33
|
|
|
26
|
if ($Math::Prime::Util::_GMPfunc{"chinese"} && $Math::Prime::Util::GMP::VERSION >= 0.42) { |
|
2479
|
0
|
|
|
|
|
0
|
$sum = Math::Prime::Util::GMP::chinese(@_); |
|
2480
|
0
|
0
|
|
|
|
0
|
if (defined $sum) { |
|
2481
|
0
|
|
|
|
|
0
|
$sum = Math::BigInt->new("$sum"); |
|
2482
|
0
|
0
|
0
|
|
|
0
|
$sum = _bigint_to_int($sum) if ref($sum) && $sum->bacmp(BMAX) <= 0; |
|
2483
|
|
|
|
|
|
|
} |
|
2484
|
0
|
|
|
|
|
0
|
return $sum; |
|
2485
|
|
|
|
|
|
|
} |
|
2486
|
7
|
|
|
|
|
32
|
foreach my $aref (sort { $b->[1] <=> $a->[1] } @_) { |
|
|
7
|
|
|
|
|
37
|
|
|
2487
|
14
|
|
|
|
|
81
|
my($ai, $ni) = @$aref; |
|
2488
|
14
|
50
|
50
|
|
|
73
|
$ai = Math::BigInt->new("$ai") if !ref($ai) && (abs($ai) > (~0>>1) || OLD_PERL_VERSION); |
|
|
|
|
66
|
|
|
|
|
|
2489
|
14
|
100
|
100
|
|
|
56
|
$ni = Math::BigInt->new("$ni") if !ref($ni) && (abs($ni) > (~0>>1) || OLD_PERL_VERSION); |
|
|
|
|
66
|
|
|
|
|
|
2490
|
14
|
100
|
|
|
|
140
|
if (!defined $lcm) { |
|
2491
|
7
|
|
|
|
|
25
|
($sum,$lcm) = ($ai % $ni, $ni); |
|
2492
|
7
|
|
|
|
|
312
|
next; |
|
2493
|
|
|
|
|
|
|
} |
|
2494
|
|
|
|
|
|
|
# gcdext |
|
2495
|
7
|
|
|
|
|
24
|
my($u,$v,$g,$s,$t,$w) = (1,0,$lcm,0,1,$ni); |
|
2496
|
7
|
|
|
|
|
22
|
while ($w != 0) { |
|
2497
|
166
|
|
|
|
|
19361
|
my $r = $g % $w; |
|
2498
|
166
|
100
|
|
|
|
6101
|
my $q = ref($g) ? $g->copy->bsub($r)->bdiv($w) : int(($g-$r)/$w); |
|
2499
|
166
|
|
|
|
|
10782
|
($u,$v,$g,$s,$t,$w) = ($s,$t,$w,$u-$q*$s,$v-$q*$t,$r); |
|
2500
|
|
|
|
|
|
|
} |
|
2501
|
7
|
50
|
|
|
|
1517
|
($u,$v,$g) = (-$u,-$v,-$g) if $g < 0; |
|
2502
|
7
|
50
|
66
|
|
|
359
|
return if $g != 1 && ($sum % $g) != ($ai % $g); # Not co-prime |
|
2503
|
7
|
100
|
|
|
|
543
|
$s = -$s if $s < 0; |
|
2504
|
7
|
100
|
|
|
|
366
|
$t = -$t if $t < 0; |
|
2505
|
|
|
|
|
|
|
# Convert to bigint if necessary. Performance goes to hell. |
|
2506
|
7
|
100
|
100
|
|
|
362
|
if (!ref($lcm) && ($lcm*$s) > ~0) { $lcm = Math::BigInt->new("$lcm"); } |
|
|
4
|
|
|
|
|
20
|
|
|
2507
|
7
|
100
|
|
|
|
275
|
if (ref($lcm)) { |
|
2508
|
6
|
|
|
|
|
27
|
$lcm->bmul("$s"); |
|
2509
|
6
|
|
|
|
|
1373
|
my $m1 = Math::BigInt->new("$v")->bmul("$s")->bmod($lcm); |
|
2510
|
6
|
|
|
|
|
2444
|
my $m2 = Math::BigInt->new("$u")->bmul("$t")->bmod($lcm); |
|
2511
|
6
|
|
|
|
|
2246
|
$m1->bmul("$sum")->bmod($lcm); |
|
2512
|
6
|
|
|
|
|
2882
|
$m2->bmul("$ai")->bmod($lcm); |
|
2513
|
6
|
|
|
|
|
2937
|
$sum = $m1->badd($m2)->bmod($lcm); |
|
2514
|
|
|
|
|
|
|
} else { |
|
2515
|
1
|
|
|
|
|
3
|
$lcm *= $s; |
|
2516
|
1
|
50
|
|
|
|
4
|
$u += $lcm if $u < 0; |
|
2517
|
1
|
50
|
|
|
|
4
|
$v += $lcm if $v < 0; |
|
2518
|
1
|
|
|
|
|
4
|
my $vs = _mulmod($v,$s,$lcm); |
|
2519
|
1
|
|
|
|
|
4
|
my $ut = _mulmod($u,$t,$lcm); |
|
2520
|
1
|
|
|
|
|
3
|
my $m1 = _mulmod($sum,$vs,$lcm); |
|
2521
|
1
|
|
|
|
|
3
|
my $m2 = _mulmod($ut,$ai % $lcm,$lcm); |
|
2522
|
1
|
|
|
|
|
3
|
$sum = _addmod($m1, $m2, $lcm); |
|
2523
|
|
|
|
|
|
|
} |
|
2524
|
|
|
|
|
|
|
} |
|
2525
|
7
|
100
|
100
|
|
|
1496
|
$sum = _bigint_to_int($sum) if ref($sum) && $sum->bacmp(BMAX) <= 0; |
|
2526
|
7
|
|
|
|
|
178
|
$sum; |
|
2527
|
|
|
|
|
|
|
} |
|
2528
|
|
|
|
|
|
|
|
|
2529
|
|
|
|
|
|
|
sub _from_128 { |
|
2530
|
0
|
|
|
0
|
|
0
|
my($hi, $lo) = @_; |
|
2531
|
0
|
0
|
0
|
|
|
0
|
return 0 unless defined $hi && defined $lo; |
|
2532
|
|
|
|
|
|
|
#print "hi $hi lo $lo\n"; |
|
2533
|
0
|
|
|
|
|
0
|
(Math::BigInt->new("$hi") << MPU_MAXBITS) + $lo; |
|
2534
|
|
|
|
|
|
|
} |
|
2535
|
|
|
|
|
|
|
|
|
2536
|
|
|
|
|
|
|
sub vecsum { |
|
2537
|
528
|
0
|
|
528
|
0
|
3752
|
return Math::Prime::Util::_reftyped($_[0], @_ ? $_[0] : 0) if @_ <= 1; |
|
|
|
50
|
|
|
|
|
|
|
2538
|
|
|
|
|
|
|
|
|
2539
|
|
|
|
|
|
|
return Math::Prime::Util::_reftyped($_[0], Math::Prime::Util::GMP::vecsum(@_)) |
|
2540
|
528
|
50
|
|
|
|
1527
|
if $Math::Prime::Util::_GMPfunc{"vecsum"}; |
|
2541
|
528
|
|
|
|
|
1064
|
my $sum = 0; |
|
2542
|
528
|
|
|
|
|
964
|
my $neglim = -(INTMAX >> 1) - 1; |
|
2543
|
528
|
|
|
|
|
1401
|
foreach my $v (@_) { |
|
2544
|
2072
|
|
|
|
|
5939
|
$sum += $v; |
|
2545
|
2072
|
100
|
100
|
|
|
63787
|
if ($sum > (INTMAX-250) || $sum < $neglim) { |
|
2546
|
514
|
|
|
|
|
35437
|
$sum = BZERO->copy; |
|
2547
|
514
|
|
|
|
|
14030
|
$sum->badd("$_") for @_; |
|
2548
|
514
|
|
|
|
|
5038601
|
return $sum; |
|
2549
|
|
|
|
|
|
|
} |
|
2550
|
|
|
|
|
|
|
} |
|
2551
|
14
|
|
|
|
|
75
|
$sum; |
|
2552
|
|
|
|
|
|
|
} |
|
2553
|
|
|
|
|
|
|
|
|
2554
|
|
|
|
|
|
|
sub vecprod { |
|
2555
|
14078
|
50
|
|
14078
|
0
|
65511
|
return 1 unless @_; |
|
2556
|
|
|
|
|
|
|
return Math::Prime::Util::_reftyped($_[0], Math::Prime::Util::GMP::vecprod(@_)) |
|
2557
|
14078
|
50
|
|
|
|
36715
|
if $Math::Prime::Util::_GMPfunc{"vecprod"}; |
|
2558
|
|
|
|
|
|
|
# Product tree: |
|
2559
|
14078
|
|
|
|
|
37262
|
my $prod = _product(0, $#_, [map { Math::BigInt->new("$_") } @_]); |
|
|
29884
|
|
|
|
|
2542544
|
|
|
2560
|
|
|
|
|
|
|
# Linear: |
|
2561
|
|
|
|
|
|
|
# my $prod = BONE->copy; $prod *= "$_" for @_; |
|
2562
|
14078
|
100
|
66
|
|
|
6654014
|
$prod = _bigint_to_int($prod) if $prod->bacmp(BMAX) <= 0 && $prod->bcmp(-(BMAX>>1)) > 0; |
|
2563
|
14078
|
|
|
|
|
324183
|
$prod; |
|
2564
|
|
|
|
|
|
|
} |
|
2565
|
|
|
|
|
|
|
|
|
2566
|
|
|
|
|
|
|
sub vecmin { |
|
2567
|
1
|
50
|
|
1
|
0
|
5
|
return unless @_; |
|
2568
|
1
|
|
|
|
|
2
|
my $min = shift; |
|
2569
|
1
|
50
|
|
|
|
3
|
for (@_) { $min = $_ if $_ < $min; } |
|
|
2
|
|
|
|
|
8
|
|
|
2570
|
1
|
|
|
|
|
4
|
$min; |
|
2571
|
|
|
|
|
|
|
} |
|
2572
|
|
|
|
|
|
|
sub vecmax { |
|
2573
|
1
|
50
|
|
1
|
0
|
5
|
return unless @_; |
|
2574
|
1
|
|
|
|
|
3
|
my $max = shift; |
|
2575
|
1
|
50
|
|
|
|
3
|
for (@_) { $max = $_ if $_ > $max; } |
|
|
2
|
|
|
|
|
7
|
|
|
2576
|
1
|
|
|
|
|
5
|
$max; |
|
2577
|
|
|
|
|
|
|
} |
|
2578
|
|
|
|
|
|
|
|
|
2579
|
|
|
|
|
|
|
sub vecextract { |
|
2580
|
0
|
|
|
0
|
0
|
0
|
my($aref, $mask) = @_; |
|
2581
|
|
|
|
|
|
|
|
|
2582
|
0
|
0
|
|
|
|
0
|
return @$aref[@$mask] if ref($mask) eq 'ARRAY'; |
|
2583
|
|
|
|
|
|
|
|
|
2584
|
|
|
|
|
|
|
# This is concise but very slow. |
|
2585
|
|
|
|
|
|
|
# map { $aref->[$_] } grep { $mask & (1 << $_) } 0 .. $#$aref; |
|
2586
|
|
|
|
|
|
|
|
|
2587
|
0
|
|
|
|
|
0
|
my($i, @v) = (0); |
|
2588
|
0
|
|
|
|
|
0
|
while ($mask) { |
|
2589
|
0
|
0
|
|
|
|
0
|
push @v, $i if $mask & 1; |
|
2590
|
0
|
|
|
|
|
0
|
$mask >>= 1; |
|
2591
|
0
|
|
|
|
|
0
|
$i++; |
|
2592
|
|
|
|
|
|
|
} |
|
2593
|
0
|
|
|
|
|
0
|
@$aref[@v]; |
|
2594
|
|
|
|
|
|
|
} |
|
2595
|
|
|
|
|
|
|
|
|
2596
|
|
|
|
|
|
|
sub sumdigits { |
|
2597
|
0
|
|
|
0
|
0
|
0
|
my($n,$base) = @_; |
|
2598
|
0
|
|
|
|
|
0
|
my $sum = 0; |
|
2599
|
0
|
0
|
0
|
|
|
0
|
$base = 2 if !defined $base && $n =~ s/^0b//; |
|
2600
|
0
|
0
|
0
|
|
|
0
|
$base = 16 if !defined $base && $n =~ s/^0x//; |
|
2601
|
0
|
0
|
0
|
|
|
0
|
if (!defined $base || $base == 10) { |
|
2602
|
0
|
|
|
|
|
0
|
$n =~ tr/0123456789//cd; |
|
2603
|
0
|
|
|
|
|
0
|
$sum += $_ for (split(//,$n)); |
|
2604
|
|
|
|
|
|
|
} else { |
|
2605
|
0
|
0
|
|
|
|
0
|
croak "sumdigits: invalid base $base" if $base < 2; |
|
2606
|
0
|
|
|
|
|
0
|
my $cmap = substr("0123456789abcdefghijklmnopqrstuvwxyz",0,$base); |
|
2607
|
0
|
|
|
|
|
0
|
for my $c (split(//,lc($n))) { |
|
2608
|
0
|
|
|
|
|
0
|
my $p = index($cmap,$c); |
|
2609
|
0
|
0
|
|
|
|
0
|
$sum += $p if $p > 0; |
|
2610
|
|
|
|
|
|
|
} |
|
2611
|
|
|
|
|
|
|
} |
|
2612
|
0
|
|
|
|
|
0
|
$sum; |
|
2613
|
|
|
|
|
|
|
} |
|
2614
|
|
|
|
|
|
|
|
|
2615
|
|
|
|
|
|
|
sub invmod { |
|
2616
|
4
|
|
|
4
|
0
|
13
|
my($a,$n) = @_; |
|
2617
|
4
|
50
|
33
|
|
|
17
|
return if $n == 0 || $a == 0; |
|
2618
|
4
|
50
|
|
|
|
346
|
return 0 if $n == 1; |
|
2619
|
4
|
100
|
|
|
|
127
|
$n = -$n if $n < 0; # Pari semantics |
|
2620
|
4
|
50
|
|
|
|
176
|
if ($n > ~0) { |
|
2621
|
0
|
|
|
|
|
0
|
my $invmod = Math::BigInt->new("$a")->bmodinv("$n"); |
|
2622
|
0
|
0
|
0
|
|
|
0
|
return if !defined $invmod || $invmod->is_nan; |
|
2623
|
0
|
0
|
|
|
|
0
|
$invmod = _bigint_to_int($invmod) if $invmod->bacmp(BMAX) <= 0; |
|
2624
|
0
|
|
|
|
|
0
|
return $invmod; |
|
2625
|
|
|
|
|
|
|
} |
|
2626
|
4
|
|
|
|
|
171
|
my($t,$nt,$r,$nr) = (0, 1, $n, $a % $n); |
|
2627
|
4
|
|
|
|
|
186
|
while ($nr != 0) { |
|
2628
|
|
|
|
|
|
|
# Use mod before divide to force correct behavior with high bit set |
|
2629
|
13
|
|
|
|
|
929
|
my $quot = int( ($r-($r % $nr))/$nr ); |
|
2630
|
13
|
|
|
|
|
1452
|
($nt,$t) = ($t-$quot*$nt,$nt); |
|
2631
|
13
|
|
|
|
|
869
|
($nr,$r) = ($r-$quot*$nr,$nr); |
|
2632
|
|
|
|
|
|
|
} |
|
2633
|
4
|
100
|
|
|
|
360
|
return if $r > 1; |
|
2634
|
3
|
100
|
|
|
|
121
|
$t += $n if $t < 0; |
|
2635
|
3
|
|
|
|
|
171
|
$t; |
|
2636
|
|
|
|
|
|
|
} |
|
2637
|
|
|
|
|
|
|
|
|
2638
|
|
|
|
|
|
|
sub _verify_sqrtmod { |
|
2639
|
1
|
|
|
1
|
|
4
|
my($r,$a,$n) = @_; |
|
2640
|
1
|
50
|
|
|
|
5
|
if (ref($r)) { |
|
2641
|
1
|
50
|
|
|
|
6
|
return if $r->copy->bmul($r)->bmod($n)->bcmp($a); |
|
2642
|
1
|
50
|
|
|
|
668
|
$r = _bigint_to_int($r) if $r->bacmp(BMAX) <= 0; |
|
2643
|
|
|
|
|
|
|
} else { |
|
2644
|
0
|
0
|
|
|
|
0
|
return unless (($r*$r) % $n) == $a; |
|
2645
|
|
|
|
|
|
|
} |
|
2646
|
1
|
50
|
|
|
|
29
|
$r = $n-$r if $n-$r < $r; |
|
2647
|
1
|
|
|
|
|
217
|
$r; |
|
2648
|
|
|
|
|
|
|
} |
|
2649
|
|
|
|
|
|
|
|
|
2650
|
|
|
|
|
|
|
sub sqrtmod { |
|
2651
|
1
|
|
|
1
|
0
|
5
|
my($a,$n) = @_; |
|
2652
|
1
|
50
|
|
|
|
7
|
return if $n == 0; |
|
2653
|
1
|
50
|
33
|
|
|
9
|
if ($n <= 2 || $a <= 1) { |
|
2654
|
0
|
|
|
|
|
0
|
$a %= $n; |
|
2655
|
0
|
0
|
|
|
|
0
|
return ((($a*$a) % $n) == $a) ? $a : undef; |
|
2656
|
|
|
|
|
|
|
} |
|
2657
|
|
|
|
|
|
|
|
|
2658
|
1
|
50
|
|
|
|
5
|
if ($n < 10000000) { |
|
2659
|
|
|
|
|
|
|
# Horrible trial search |
|
2660
|
0
|
|
|
|
|
0
|
$a = _bigint_to_int($a); |
|
2661
|
0
|
|
|
|
|
0
|
$n = _bigint_to_int($n); |
|
2662
|
0
|
|
|
|
|
0
|
$a %= $n; |
|
2663
|
0
|
0
|
|
|
|
0
|
return 1 if $a == 1; |
|
2664
|
0
|
|
|
|
|
0
|
my $lim = ($n+1) >> 1; |
|
2665
|
0
|
|
|
|
|
0
|
for my $r (2 .. $lim) { |
|
2666
|
0
|
0
|
|
|
|
0
|
return $r if (($r*$r) % $n) == $a; |
|
2667
|
|
|
|
|
|
|
} |
|
2668
|
0
|
|
|
|
|
0
|
undef; |
|
2669
|
|
|
|
|
|
|
} |
|
2670
|
|
|
|
|
|
|
|
|
2671
|
1
|
50
|
|
|
|
9
|
$a = Math::BigInt->new("$a") unless ref($a) eq 'Math::BigInt'; |
|
2672
|
1
|
50
|
|
|
|
99
|
$n = Math::BigInt->new("$n") unless ref($n) eq 'Math::BigInt'; |
|
2673
|
1
|
|
|
|
|
57
|
$a->bmod($n); |
|
2674
|
1
|
|
|
|
|
145
|
my $r; |
|
2675
|
|
|
|
|
|
|
|
|
2676
|
1
|
50
|
|
|
|
6
|
if (($n % 4) == 3) { |
|
2677
|
1
|
|
|
|
|
341
|
$r = $a->copy->bmodpow(($n+1)>>2, $n); |
|
2678
|
1
|
|
|
|
|
54893
|
return _verify_sqrtmod($r, $a, $n); |
|
2679
|
|
|
|
|
|
|
} |
|
2680
|
0
|
0
|
|
|
|
0
|
if (($n % 8) == 5) { |
|
2681
|
0
|
|
|
|
|
0
|
my $q = $a->copy->bmodpow(($n-1)>>2, $n); |
|
2682
|
0
|
0
|
|
|
|
0
|
if ($q->is_one) { |
|
2683
|
0
|
|
|
|
|
0
|
$r = $a->copy->bmodpow(($n+3)>>3, $n); |
|
2684
|
|
|
|
|
|
|
} else { |
|
2685
|
0
|
|
|
|
|
0
|
my $v = $a->copy->bmul(4)->bmodpow(($n-5)>>3, $n); |
|
2686
|
0
|
|
|
|
|
0
|
$r = $a->copy->bmul(2)->bmul($v)->bmod($n); |
|
2687
|
|
|
|
|
|
|
} |
|
2688
|
0
|
|
|
|
|
0
|
return _verify_sqrtmod($r, $a, $n); |
|
2689
|
|
|
|
|
|
|
} |
|
2690
|
|
|
|
|
|
|
|
|
2691
|
0
|
0
|
0
|
|
|
0
|
return if $n->is_odd && !$a->copy->bmodpow(($n-1)>>1,$n)->is_one(); |
|
2692
|
|
|
|
|
|
|
|
|
2693
|
|
|
|
|
|
|
# Horrible trial search. Need to use Tonelli-Shanks here. |
|
2694
|
0
|
|
|
|
|
0
|
$r = Math::BigInt->new(2); |
|
2695
|
0
|
|
|
|
|
0
|
my $lim = int( ($n+1) / 2 ); |
|
2696
|
0
|
|
|
|
|
0
|
while ($r < $lim) { |
|
2697
|
0
|
0
|
|
|
|
0
|
return $r if $r->copy->bmul($r)->bmod($n) == $a; |
|
2698
|
0
|
|
|
|
|
0
|
$r++; |
|
2699
|
|
|
|
|
|
|
} |
|
2700
|
0
|
|
|
|
|
0
|
undef; |
|
2701
|
|
|
|
|
|
|
} |
|
2702
|
|
|
|
|
|
|
|
|
2703
|
|
|
|
|
|
|
sub addmod { |
|
2704
|
19419
|
|
|
19419
|
0
|
5205013
|
my($a, $b, $n) = @_; |
|
2705
|
19419
|
50
|
|
|
|
55459
|
return 0 if $n <= 1; |
|
2706
|
19419
|
50
|
66
|
|
|
2243819
|
return _addmod($a,$b,$n) if $n < INTMAX && $a>=0 && $a=0 && $b
|
|
|
|
|
66
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
2707
|
18987
|
|
|
|
|
2313982
|
my $ret = Math::BigInt->new("$a")->badd("$b")->bmod("$n"); |
|
2708
|
18987
|
100
|
|
|
|
22754910
|
$ret = _bigint_to_int($ret) if $ret->bacmp(BMAX) <= 0; |
|
2709
|
18987
|
|
|
|
|
565680
|
$ret; |
|
2710
|
|
|
|
|
|
|
} |
|
2711
|
|
|
|
|
|
|
|
|
2712
|
|
|
|
|
|
|
sub mulmod { |
|
2713
|
7368
|
|
|
7368
|
0
|
25090
|
my($a, $b, $n) = @_; |
|
2714
|
7368
|
50
|
|
|
|
24538
|
return 0 if $n <= 1; |
|
2715
|
7368
|
0
|
33
|
|
|
886947
|
return _mulmod($a,$b,$n) if $n < INTMAX && $a>0 && $a0 && $b
|
|
|
|
|
33
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
2716
|
|
|
|
|
|
|
return Math::Prime::Util::_reftyped($_[0], Math::Prime::Util::GMP::mulmod($a,$b,$n)) |
|
2717
|
7368
|
50
|
|
|
|
902575
|
if $Math::Prime::Util::_GMPfunc{"mulmod"}; |
|
2718
|
7368
|
|
|
|
|
22294
|
my $ret = Math::BigInt->new("$a")->bmod("$n")->bmul("$b")->bmod("$n"); |
|
2719
|
7368
|
100
|
|
|
|
94418968
|
$ret = _bigint_to_int($ret) if $ret->bacmp(BMAX) <= 0; |
|
2720
|
7368
|
|
|
|
|
232687
|
$ret; |
|
2721
|
|
|
|
|
|
|
} |
|
2722
|
|
|
|
|
|
|
sub divmod { |
|
2723
|
0
|
|
|
0
|
0
|
0
|
my($a, $b, $n) = @_; |
|
2724
|
0
|
0
|
|
|
|
0
|
return 0 if $n <= 1; |
|
2725
|
0
|
|
|
|
|
0
|
my $ret = Math::BigInt->new("$b")->bmodinv("$n")->bmul("$a")->bmod("$n"); |
|
2726
|
0
|
0
|
|
|
|
0
|
if ($ret->is_nan) { |
|
2727
|
0
|
|
|
|
|
0
|
$ret = undef; |
|
2728
|
|
|
|
|
|
|
} else { |
|
2729
|
0
|
0
|
|
|
|
0
|
$ret = _bigint_to_int($ret) if $ret->bacmp(BMAX) <= 0; |
|
2730
|
|
|
|
|
|
|
} |
|
2731
|
0
|
|
|
|
|
0
|
$ret; |
|
2732
|
|
|
|
|
|
|
} |
|
2733
|
|
|
|
|
|
|
sub powmod { |
|
2734
|
22
|
|
|
22
|
0
|
83
|
my($a, $b, $n) = @_; |
|
2735
|
22
|
50
|
|
|
|
85
|
return 0 if $n <= 1; |
|
2736
|
22
|
50
|
|
|
|
2716
|
if ($Math::Prime::Util::_GMPfunc{"powmod"}) { |
|
2737
|
0
|
|
|
|
|
0
|
my $r = Math::Prime::Util::GMP::powmod($a,$b,$n); |
|
2738
|
0
|
0
|
|
|
|
0
|
return (defined $r) ? Math::Prime::Util::_reftyped($_[0], $r) : undef; |
|
2739
|
|
|
|
|
|
|
} |
|
2740
|
22
|
|
|
|
|
72
|
my $ret = Math::BigInt->new("$a")->bmod("$n")->bmodpow("$b","$n"); |
|
2741
|
22
|
50
|
|
|
|
493389
|
if ($ret->is_nan) { |
|
2742
|
0
|
|
|
|
|
0
|
$ret = undef; |
|
2743
|
|
|
|
|
|
|
} else { |
|
2744
|
22
|
100
|
|
|
|
215
|
$ret = _bigint_to_int($ret) if $ret->bacmp(BMAX) <= 0; |
|
2745
|
|
|
|
|
|
|
} |
|
2746
|
22
|
|
|
|
|
803
|
$ret; |
|
2747
|
|
|
|
|
|
|
} |
|
2748
|
|
|
|
|
|
|
|
|
2749
|
|
|
|
|
|
|
# no validation, x is allowed to be negative, y must be >= 0 |
|
2750
|
|
|
|
|
|
|
sub _gcd_ui { |
|
2751
|
62278
|
|
|
62278
|
|
99198
|
my($x, $y) = @_; |
|
2752
|
62278
|
100
|
|
|
|
111751
|
if ($y < $x) { ($x, $y) = ($y, $x); } |
|
|
27618
|
100
|
|
|
|
47073
|
|
|
2753
|
3
|
|
|
|
|
5
|
elsif ($x < 0) { $x = -$x; } |
|
2754
|
62278
|
|
|
|
|
107308
|
while ($y > 0) { |
|
2755
|
1136998
|
|
|
|
|
1986085
|
($x, $y) = ($y, $x % $y); |
|
2756
|
|
|
|
|
|
|
} |
|
2757
|
62278
|
|
|
|
|
93900
|
$x; |
|
2758
|
|
|
|
|
|
|
} |
|
2759
|
|
|
|
|
|
|
|
|
2760
|
|
|
|
|
|
|
sub is_power { |
|
2761
|
1194
|
|
|
1194
|
0
|
332170
|
my ($n, $a, $refp) = @_; |
|
2762
|
1194
|
50
|
66
|
|
|
4483
|
croak("is_power third argument not a scalar reference") if defined($refp) && !ref($refp); |
|
2763
|
1194
|
|
|
|
|
3277
|
_validate_integer($n); |
|
2764
|
1194
|
100
|
66
|
|
|
3209
|
return 0 if abs($n) <= 3 && !$a; |
|
2765
|
|
|
|
|
|
|
|
|
2766
|
1190
|
0
|
0
|
|
|
96651
|
if ($Math::Prime::Util::_GMPfunc{"is_power"} && |
|
|
|
|
33
|
|
|
|
|
|
2767
|
|
|
|
|
|
|
($Math::Prime::Util::GMP::VERSION >= 0.42 || |
|
2768
|
|
|
|
|
|
|
($Math::Prime::Util::GMP::VERSION >= 0.28 && $n > 0))) { |
|
2769
|
0
|
0
|
|
|
|
0
|
$a = 0 unless defined $a; |
|
2770
|
0
|
|
|
|
|
0
|
my $k = Math::Prime::Util::GMP::is_power($n,$a); |
|
2771
|
0
|
0
|
|
|
|
0
|
return 0 unless $k > 0; |
|
2772
|
0
|
0
|
|
|
|
0
|
if (defined $refp) { |
|
2773
|
0
|
0
|
|
|
|
0
|
$a = $k unless $a; |
|
2774
|
0
|
|
|
|
|
0
|
my $isneg = ($n < 0); |
|
2775
|
0
|
0
|
|
|
|
0
|
$n =~ s/^-// if $isneg; |
|
2776
|
0
|
|
|
|
|
0
|
$$refp = Math::Prime::Util::rootint($n, $a); |
|
2777
|
0
|
0
|
|
|
|
0
|
$$refp = Math::Prime::Util::_reftyped($_[0], $$refp) if $$refp > INTMAX; |
|
2778
|
0
|
0
|
|
|
|
0
|
$$refp = -$$refp if $isneg; |
|
2779
|
|
|
|
|
|
|
} |
|
2780
|
0
|
|
|
|
|
0
|
return $k; |
|
2781
|
|
|
|
|
|
|
} |
|
2782
|
|
|
|
|
|
|
|
|
2783
|
1190
|
50
|
66
|
|
|
4589
|
if (defined $a && $a != 0) { |
|
2784
|
0
|
0
|
|
|
|
0
|
return 1 if $a == 1; # Everything is a 1st power |
|
2785
|
0
|
0
|
0
|
|
|
0
|
return 0 if $n < 0 && $a % 2 == 0; # Negative n never an even power |
|
2786
|
0
|
0
|
|
|
|
0
|
if ($a == 2) { |
|
2787
|
0
|
0
|
|
|
|
0
|
if (_is_perfect_square($n)) { |
|
2788
|
0
|
0
|
|
|
|
0
|
$$refp = int(sqrt($n)) if defined $refp; |
|
2789
|
0
|
|
|
|
|
0
|
return 1; |
|
2790
|
|
|
|
|
|
|
} |
|
2791
|
|
|
|
|
|
|
} else { |
|
2792
|
0
|
0
|
|
|
|
0
|
$n = Math::BigInt->new("$n") unless ref($n) eq 'Math::BigInt'; |
|
2793
|
0
|
|
|
|
|
0
|
my $root = $n->copy->babs->broot($a)->bfloor; |
|
2794
|
0
|
0
|
|
|
|
0
|
$root->bneg if $n->is_neg; |
|
2795
|
0
|
0
|
|
|
|
0
|
if ($root->copy->bpow($a) == $n) { |
|
2796
|
0
|
0
|
|
|
|
0
|
$$refp = $root if defined $refp; |
|
2797
|
0
|
|
|
|
|
0
|
return 1; |
|
2798
|
|
|
|
|
|
|
} |
|
2799
|
|
|
|
|
|
|
} |
|
2800
|
|
|
|
|
|
|
} else { |
|
2801
|
1190
|
100
|
|
|
|
4040
|
$n = Math::BigInt->new("$n") unless ref($n) eq 'Math::BigInt'; |
|
2802
|
1190
|
100
|
|
|
|
23101
|
if ($n < 0) { |
|
2803
|
256
|
|
|
|
|
39452
|
my $absn = $n->copy->babs; |
|
2804
|
256
|
|
|
|
|
7776
|
my $root = is_power($absn, 0, $refp); |
|
2805
|
256
|
50
|
|
|
|
910
|
return 0 unless $root; |
|
2806
|
256
|
100
|
|
|
|
819
|
if ($root % 2 == 0) { |
|
2807
|
128
|
|
|
|
|
512
|
my $power = valuation($root, 2); |
|
2808
|
128
|
|
|
|
|
281
|
$root >>= $power; |
|
2809
|
128
|
100
|
|
|
|
366
|
return 0 if $root == 1; |
|
2810
|
122
|
|
|
|
|
374
|
$power = BTWO->copy->bpow($power); |
|
2811
|
122
|
100
|
|
|
|
32198
|
$$refp = $$refp ** $power if defined $refp; |
|
2812
|
|
|
|
|
|
|
} |
|
2813
|
250
|
100
|
|
|
|
13836
|
$$refp = -$$refp if defined $refp; |
|
2814
|
250
|
|
|
|
|
6825
|
return $root; |
|
2815
|
|
|
|
|
|
|
} |
|
2816
|
934
|
|
|
|
|
153933
|
my $e = 2; |
|
2817
|
934
|
|
|
|
|
1383
|
while (1) { |
|
2818
|
3768
|
|
|
|
|
10445
|
my $root = $n->copy()->broot($e)->bfloor; |
|
2819
|
3768
|
100
|
|
|
|
6513921
|
last if $root->is_one(); |
|
2820
|
3505
|
100
|
|
|
|
47737
|
if ($root->copy->bpow($e) == $n) { |
|
2821
|
671
|
|
|
|
|
311085
|
my $next = is_power($root, 0, $refp); |
|
2822
|
671
|
100
|
100
|
|
|
2707
|
$$refp = $root if !$next && defined $refp; |
|
2823
|
671
|
100
|
|
|
|
1424
|
$e *= $next if $next != 0; |
|
2824
|
671
|
|
|
|
|
2152
|
return $e; |
|
2825
|
|
|
|
|
|
|
} |
|
2826
|
2834
|
|
|
|
|
1456033
|
$e = next_prime($e); |
|
2827
|
|
|
|
|
|
|
} |
|
2828
|
|
|
|
|
|
|
} |
|
2829
|
263
|
|
|
|
|
3829
|
0; |
|
2830
|
|
|
|
|
|
|
} |
|
2831
|
|
|
|
|
|
|
|
|
2832
|
|
|
|
|
|
|
sub is_square { |
|
2833
|
1
|
|
|
1
|
0
|
6
|
my($n) = @_; |
|
2834
|
1
|
50
|
|
|
|
8
|
return 0 if $n < 0; |
|
2835
|
|
|
|
|
|
|
#is_power($n,2); |
|
2836
|
1
|
|
|
|
|
5
|
_validate_integer($n); |
|
2837
|
1
|
|
|
|
|
4
|
_is_perfect_square($n); |
|
2838
|
|
|
|
|
|
|
} |
|
2839
|
|
|
|
|
|
|
|
|
2840
|
|
|
|
|
|
|
sub is_prime_power { |
|
2841
|
0
|
|
|
0
|
0
|
0
|
my ($n, $refp) = @_; |
|
2842
|
0
|
0
|
0
|
|
|
0
|
croak("is_prime_power second argument not a scalar reference") if defined($refp) && !ref($refp); |
|
2843
|
0
|
0
|
|
|
|
0
|
return 0 if $n <= 1; |
|
2844
|
|
|
|
|
|
|
|
|
2845
|
0
|
0
|
|
|
|
0
|
if (Math::Prime::Util::is_prime($n)) { $$refp = $n if defined $refp; return 1; } |
|
|
0
|
0
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
2846
|
0
|
|
|
|
|
0
|
my $r; |
|
2847
|
0
|
|
|
|
|
0
|
my $k = Math::Prime::Util::is_power($n,0,\$r); |
|
2848
|
0
|
0
|
|
|
|
0
|
if ($k) { |
|
2849
|
0
|
0
|
0
|
|
|
0
|
$r = _bigint_to_int($r) if ref($r) && $r->bacmp(BMAX) <= 0; |
|
2850
|
0
|
0
|
|
|
|
0
|
return 0 unless Math::Prime::Util::is_prime($r); |
|
2851
|
0
|
0
|
|
|
|
0
|
$$refp = $r if defined $refp; |
|
2852
|
|
|
|
|
|
|
} |
|
2853
|
0
|
|
|
|
|
0
|
$k; |
|
2854
|
|
|
|
|
|
|
} |
|
2855
|
|
|
|
|
|
|
|
|
2856
|
|
|
|
|
|
|
sub is_polygonal { |
|
2857
|
2
|
|
|
2
|
0
|
21
|
my ($n, $k, $refp) = @_; |
|
2858
|
2
|
50
|
33
|
|
|
8
|
croak("is_polygonal third argument not a scalar reference") if defined($refp) && !ref($refp); |
|
2859
|
2
|
50
|
|
|
|
6
|
croak("is_polygonal: k must be >= 3") if $k < 3; |
|
2860
|
2
|
50
|
|
|
|
9
|
return 0 if $n <= 0; |
|
2861
|
2
|
0
|
|
|
|
6
|
if ($n == 1) { $$refp = 1 if defined $refp; return 1; } |
|
|
0
|
50
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
2862
|
|
|
|
|
|
|
|
|
2863
|
2
|
50
|
|
|
|
8
|
if ($Math::Prime::Util::_GMPfunc{"polygonal_nth"}) { |
|
2864
|
0
|
|
|
|
|
0
|
my $nth = Math::Prime::Util::GMP::polygonal_nth($n, $k); |
|
2865
|
0
|
0
|
|
|
|
0
|
return 0 unless $nth; |
|
2866
|
0
|
|
|
|
|
0
|
$nth = Math::Prime::Util::_reftyped($_[0], $nth); |
|
2867
|
0
|
0
|
|
|
|
0
|
$$refp = $nth if defined $refp; |
|
2868
|
0
|
|
|
|
|
0
|
return 1; |
|
2869
|
|
|
|
|
|
|
} |
|
2870
|
|
|
|
|
|
|
|
|
2871
|
2
|
|
|
|
|
4
|
my($D,$R); |
|
2872
|
2
|
50
|
|
|
|
5
|
if ($k == 4) { |
|
2873
|
0
|
0
|
|
|
|
0
|
return 0 unless _is_perfect_square($n); |
|
2874
|
0
|
0
|
|
|
|
0
|
$$refp = sqrtint($n) if defined $refp; |
|
2875
|
0
|
|
|
|
|
0
|
return 1; |
|
2876
|
|
|
|
|
|
|
} |
|
2877
|
2
|
50
|
33
|
|
|
8
|
if ($n <= MPU_HALFWORD && $k <= MPU_HALFWORD) { |
|
2878
|
0
|
0
|
|
|
|
0
|
$D = ($k==3) ? 1+($n<<3) : (8*$k-16)*$n + ($k-4)*($k-4); |
|
2879
|
0
|
0
|
|
|
|
0
|
return 0 unless _is_perfect_square($D); |
|
2880
|
0
|
|
|
|
|
0
|
$D = $k-4 + Math::Prime::Util::sqrtint($D); |
|
2881
|
0
|
|
|
|
|
0
|
$R = 2*$k-4; |
|
2882
|
|
|
|
|
|
|
} else { |
|
2883
|
2
|
50
|
|
|
|
4
|
if ($k == 3) { |
|
2884
|
2
|
|
|
|
|
7
|
$D = vecsum(1, vecprod($n, 8)); |
|
2885
|
|
|
|
|
|
|
} else { |
|
2886
|
0
|
|
|
|
|
0
|
$D = vecsum(vecprod($n, vecprod(8, $k) - 16), vecprod($k-4,$k-4));; |
|
2887
|
|
|
|
|
|
|
} |
|
2888
|
2
|
100
|
|
|
|
8
|
return 0 unless _is_perfect_square($D); |
|
2889
|
1
|
|
|
|
|
54
|
$D = vecsum( sqrtint($D), $k-4 ); |
|
2890
|
1
|
|
|
|
|
7
|
$R = vecprod(2, $k) - 4; |
|
2891
|
|
|
|
|
|
|
} |
|
2892
|
1
|
50
|
|
|
|
4
|
return 0 if ($D % $R) != 0; |
|
2893
|
1
|
50
|
|
|
|
365
|
$$refp = $D / $R if defined $refp; |
|
2894
|
1
|
|
|
|
|
6
|
1; |
|
2895
|
|
|
|
|
|
|
} |
|
2896
|
|
|
|
|
|
|
|
|
2897
|
|
|
|
|
|
|
sub valuation { |
|
2898
|
132
|
|
|
132
|
0
|
3198
|
my($n, $k) = @_; |
|
2899
|
132
|
50
|
33
|
|
|
636
|
$n = -$n if defined $n && $n < 0; |
|
2900
|
132
|
100
|
|
|
|
798
|
_validate_num($n) || _validate_positive_integer($n); |
|
2901
|
132
|
50
|
33
|
|
|
571
|
return 0 if $n < 2 || $k < 2; |
|
2902
|
132
|
|
|
|
|
687
|
my $v = 0; |
|
2903
|
132
|
100
|
|
|
|
377
|
if ($k == 2) { # Accelerate power of 2 |
|
2904
|
130
|
100
|
|
|
|
303
|
if (ref($n) eq 'Math::BigInt') { # This can pay off for big inputs |
|
2905
|
1
|
50
|
|
|
|
5
|
return 0 unless $n->is_even; |
|
2906
|
1
|
|
|
|
|
26
|
my $s = $n->as_bin; # We could do same for k=10 |
|
2907
|
1
|
|
|
|
|
1137
|
return length($s) - rindex($s,'1') - 1; |
|
2908
|
|
|
|
|
|
|
} |
|
2909
|
129
|
|
|
|
|
428
|
while (!($n & 0xFFFF) ) { $n >>=16; $v +=16; } |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
3
|
|
|
2910
|
129
|
|
|
|
|
413
|
while (!($n & 0x000F) ) { $n >>= 4; $v += 4; } |
|
|
19
|
|
|
|
|
64
|
|
|
|
19
|
|
|
|
|
58
|
|
|
2911
|
|
|
|
|
|
|
} |
|
2912
|
131
|
|
|
|
|
427
|
while ( !($n % $k) ) { |
|
2913
|
198
|
|
|
|
|
1436
|
$n /= $k; |
|
2914
|
198
|
|
|
|
|
15311
|
$v++; |
|
2915
|
|
|
|
|
|
|
} |
|
2916
|
131
|
|
|
|
|
502
|
$v; |
|
2917
|
|
|
|
|
|
|
} |
|
2918
|
|
|
|
|
|
|
|
|
2919
|
|
|
|
|
|
|
sub hammingweight { |
|
2920
|
0
|
|
|
0
|
0
|
0
|
my $n = shift; |
|
2921
|
0
|
|
|
|
|
0
|
return 0 + (Math::BigInt->new("$n")->as_bin() =~ tr/1//); |
|
2922
|
|
|
|
|
|
|
} |
|
2923
|
|
|
|
|
|
|
|
|
2924
|
|
|
|
|
|
|
my @_digitmap = (0..9, 'a'..'z'); |
|
2925
|
|
|
|
|
|
|
my %_mapdigit = map { $_digitmap[$_] => $_ } 0 .. $#_digitmap; |
|
2926
|
|
|
|
|
|
|
sub _splitdigits { |
|
2927
|
3
|
|
|
3
|
|
12
|
my($n, $base, $len) = @_; # n is num or bigint, base is in range |
|
2928
|
3
|
|
|
|
|
9
|
my @d; |
|
2929
|
3
|
50
|
|
|
|
22
|
if ($base == 10) { |
|
|
|
100
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
2930
|
0
|
|
|
|
|
0
|
@d = split(//,"$n"); |
|
2931
|
|
|
|
|
|
|
} elsif ($base == 2) { |
|
2932
|
2
|
|
|
|
|
7
|
@d = split(//,substr(Math::BigInt->new("$n")->as_bin,2)); |
|
2933
|
|
|
|
|
|
|
} elsif ($base == 16) { |
|
2934
|
0
|
|
|
|
|
0
|
@d = map { $_mapdigit{$_} } split(//,substr(Math::BigInt->new("$n")->as_hex,2)); |
|
|
0
|
|
|
|
|
0
|
|
|
2935
|
|
|
|
|
|
|
} else { |
|
2936
|
1
|
|
|
|
|
4
|
while ($n >= 1) { |
|
2937
|
339
|
|
|
|
|
251561
|
my $rem = $n % $base; |
|
2938
|
339
|
|
|
|
|
97437
|
unshift @d, $rem; |
|
2939
|
339
|
|
|
|
|
958
|
$n = ($n-$rem)/$base; # Always an exact division |
|
2940
|
|
|
|
|
|
|
} |
|
2941
|
|
|
|
|
|
|
} |
|
2942
|
3
|
50
|
33
|
|
|
12684
|
if ($len >= 0 && $len != scalar(@d)) { |
|
2943
|
0
|
|
|
|
|
0
|
while (@d < $len) { unshift @d, 0; } |
|
|
0
|
|
|
|
|
0
|
|
|
2944
|
0
|
|
|
|
|
0
|
while (@d > $len) { shift @d; } |
|
|
0
|
|
|
|
|
0
|
|
|
2945
|
|
|
|
|
|
|
} |
|
2946
|
3
|
|
|
|
|
444
|
@d; |
|
2947
|
|
|
|
|
|
|
} |
|
2948
|
|
|
|
|
|
|
|
|
2949
|
|
|
|
|
|
|
sub todigits { |
|
2950
|
3
|
|
|
3
|
0
|
334
|
my($n,$base,$len) = @_; |
|
2951
|
3
|
50
|
|
|
|
15
|
$base = 10 unless defined $base; |
|
2952
|
3
|
50
|
|
|
|
15
|
$len = -1 unless defined $len; |
|
2953
|
3
|
50
|
|
|
|
11
|
die "Invalid base: $base" if $base < 2; |
|
2954
|
3
|
50
|
|
|
|
14
|
return if $n == 0; |
|
2955
|
3
|
50
|
|
|
|
554
|
$n = -$n if $n < 0; |
|
2956
|
3
|
50
|
|
|
|
506
|
_validate_num($n) || _validate_positive_integer($n); |
|
2957
|
3
|
|
|
|
|
16
|
_splitdigits($n, $base, $len); |
|
2958
|
|
|
|
|
|
|
} |
|
2959
|
|
|
|
|
|
|
|
|
2960
|
|
|
|
|
|
|
sub todigitstring { |
|
2961
|
0
|
|
|
0
|
0
|
0
|
my($n,$base,$len) = @_; |
|
2962
|
0
|
0
|
|
|
|
0
|
$base = 10 unless defined $base; |
|
2963
|
0
|
0
|
|
|
|
0
|
$len = -1 unless defined $len; |
|
2964
|
0
|
|
|
|
|
0
|
$n =~ s/^-//; |
|
2965
|
0
|
0
|
0
|
|
|
0
|
return substr(Math::BigInt->new("$n")->as_bin,2) if $base == 2 && $len < 0; |
|
2966
|
0
|
0
|
0
|
|
|
0
|
return substr(Math::BigInt->new("$n")->as_oct,1) if $base == 8 && $len < 0; |
|
2967
|
0
|
0
|
0
|
|
|
0
|
return substr(Math::BigInt->new("$n")->as_hex,2) if $base == 16 && $len < 0; |
|
2968
|
0
|
0
|
|
|
|
0
|
my @d = ($n == 0) ? () : _splitdigits($n, $base, $len); |
|
2969
|
0
|
0
|
|
|
|
0
|
return join("", @d) if $base <= 10; |
|
2970
|
0
|
0
|
|
|
|
0
|
die "Invalid base for string: $base" if $base > 36; |
|
2971
|
0
|
|
|
|
|
0
|
join("", map { $_digitmap[$_] } @d); |
|
|
0
|
|
|
|
|
0
|
|
|
2972
|
|
|
|
|
|
|
} |
|
2973
|
|
|
|
|
|
|
|
|
2974
|
|
|
|
|
|
|
sub fromdigits { |
|
2975
|
1
|
|
|
1
|
0
|
5
|
my($r, $base) = @_; |
|
2976
|
1
|
50
|
|
|
|
4
|
$base = 10 unless defined $base; |
|
2977
|
1
|
50
|
33
|
|
|
6
|
return $r if $base == 10 && ref($r) =~ /^Math::/; |
|
2978
|
1
|
|
|
|
|
2
|
my $n; |
|
2979
|
1
|
50
|
33
|
|
|
61
|
if (ref($r) && ref($r) !~ /^Math::/) { |
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
2980
|
0
|
0
|
|
|
|
0
|
croak "fromdigits first argument must be a string or array reference" |
|
2981
|
|
|
|
|
|
|
unless ref($r) eq 'ARRAY'; |
|
2982
|
0
|
|
|
|
|
0
|
($n,$base) = (BZERO->copy, BZERO + $base); |
|
2983
|
0
|
|
|
|
|
0
|
for my $d (@$r) { |
|
2984
|
0
|
|
|
|
|
0
|
$n = $n * $base + $d; |
|
2985
|
|
|
|
|
|
|
} |
|
2986
|
|
|
|
|
|
|
} elsif ($base == 2) { |
|
2987
|
0
|
|
|
|
|
0
|
$n = Math::BigInt->from_bin("0b$r"); |
|
2988
|
|
|
|
|
|
|
} elsif ($base == 8) { |
|
2989
|
0
|
|
|
|
|
0
|
$n = Math::BigInt->from_oct("0$r"); |
|
2990
|
|
|
|
|
|
|
} elsif ($base == 16) { |
|
2991
|
0
|
|
|
|
|
0
|
$n = Math::BigInt->from_hex("0x$r"); |
|
2992
|
|
|
|
|
|
|
} else { |
|
2993
|
1
|
|
|
|
|
9
|
$r =~ s/^0*//; |
|
2994
|
1
|
|
|
|
|
6
|
($n,$base) = (BZERO->copy, BZERO + $base); |
|
2995
|
|
|
|
|
|
|
#for my $d (map { $_mapdigit{$_} } split(//,$r)) { |
|
2996
|
|
|
|
|
|
|
# croak "Invalid digit for base $base" unless defined $d && $d < $base; |
|
2997
|
|
|
|
|
|
|
# $n = $n * $base + $d; |
|
2998
|
|
|
|
|
|
|
#} |
|
2999
|
1
|
|
|
|
|
234
|
for my $c (split(//, lc($r))) { |
|
3000
|
16
|
|
|
|
|
1922
|
$n->bmul($base); |
|
3001
|
16
|
50
|
|
|
|
946
|
if ($c ne '0') { |
|
3002
|
16
|
|
|
|
|
32
|
my $d = index("0123456789abcdefghijklmnopqrstuvwxyz", $c); |
|
3003
|
16
|
50
|
|
|
|
30
|
croak "Invalid digit for base $base" unless $d >= 0; |
|
3004
|
16
|
|
|
|
|
32
|
$n->badd($d); |
|
3005
|
|
|
|
|
|
|
} |
|
3006
|
|
|
|
|
|
|
} |
|
3007
|
|
|
|
|
|
|
} |
|
3008
|
1
|
50
|
|
|
|
141
|
$n = _bigint_to_int($n) if $n->bacmp(BMAX) <= 0; |
|
3009
|
1
|
|
|
|
|
53
|
$n; |
|
3010
|
|
|
|
|
|
|
} |
|
3011
|
|
|
|
|
|
|
|
|
3012
|
|
|
|
|
|
|
sub sqrtint { |
|
3013
|
1
|
|
|
1
|
0
|
5
|
my($n) = @_; |
|
3014
|
1
|
|
|
|
|
3
|
my $sqrt = Math::BigInt->new("$n")->bsqrt; |
|
3015
|
1
|
|
|
|
|
1343
|
return Math::Prime::Util::_reftyped($_[0], "$sqrt"); |
|
3016
|
|
|
|
|
|
|
} |
|
3017
|
|
|
|
|
|
|
|
|
3018
|
|
|
|
|
|
|
sub rootint { |
|
3019
|
58
|
|
|
58
|
0
|
133
|
my ($n, $k, $refp) = @_; |
|
3020
|
58
|
50
|
|
|
|
126
|
croak "rootint: k must be > 0" unless $k > 0; |
|
3021
|
|
|
|
|
|
|
# Math::BigInt returns NaN for any root of a negative n. |
|
3022
|
58
|
|
|
|
|
197
|
my $root = Math::BigInt->new("$n")->babs->broot("$k"); |
|
3023
|
58
|
50
|
|
|
|
43317
|
if (defined $refp) { |
|
3024
|
0
|
0
|
|
|
|
0
|
croak("logint third argument not a scalar reference") unless ref($refp); |
|
3025
|
0
|
|
|
|
|
0
|
$$refp = $root->copy->bpow($k); |
|
3026
|
|
|
|
|
|
|
} |
|
3027
|
58
|
|
|
|
|
177
|
return Math::Prime::Util::_reftyped($_[0], "$root"); |
|
3028
|
|
|
|
|
|
|
} |
|
3029
|
|
|
|
|
|
|
|
|
3030
|
|
|
|
|
|
|
sub logint { |
|
3031
|
0
|
|
|
0
|
0
|
0
|
my ($n, $b, $refp) = @_; |
|
3032
|
0
|
0
|
0
|
|
|
0
|
croak("logint third argument not a scalar reference") if defined($refp) && !ref($refp); |
|
3033
|
|
|
|
|
|
|
|
|
3034
|
0
|
0
|
|
|
|
0
|
if ($Math::Prime::Util::_GMPfunc{"logint"}) { |
|
3035
|
0
|
|
|
|
|
0
|
my $e = Math::Prime::Util::GMP::logint($n, $b); |
|
3036
|
0
|
0
|
|
|
|
0
|
if (defined $refp) { |
|
3037
|
0
|
|
|
|
|
0
|
my $r = Math::Prime::Util::GMP::powmod($b, $e, $n); |
|
3038
|
0
|
0
|
|
|
|
0
|
$r = $n if $r == 0; |
|
3039
|
0
|
|
|
|
|
0
|
$$refp = Math::Prime::Util::_reftyped($_[0], $r); |
|
3040
|
|
|
|
|
|
|
} |
|
3041
|
0
|
|
|
|
|
0
|
return Math::Prime::Util::_reftyped($_[0], $e); |
|
3042
|
|
|
|
|
|
|
} |
|
3043
|
|
|
|
|
|
|
|
|
3044
|
0
|
0
|
|
|
|
0
|
croak "logint: n must be > 0" unless $n > 0; |
|
3045
|
0
|
0
|
|
|
|
0
|
croak "logint: missing base" unless defined $b; |
|
3046
|
0
|
0
|
|
|
|
0
|
if ($b == 10) { |
|
3047
|
0
|
|
|
|
|
0
|
my $e = length($n)-1; |
|
3048
|
0
|
0
|
|
|
|
0
|
$$refp = Math::BigInt->new("1" . "0"x$e) if defined $refp; |
|
3049
|
0
|
|
|
|
|
0
|
return $e; |
|
3050
|
|
|
|
|
|
|
} |
|
3051
|
0
|
0
|
|
|
|
0
|
if ($b == 2) { |
|
3052
|
0
|
|
|
|
|
0
|
my $e = length(Math::BigInt->new("$n")->as_bin)-2-1; |
|
3053
|
0
|
0
|
|
|
|
0
|
$$refp = Math::BigInt->from_bin("1" . "0"x$e) if defined $refp; |
|
3054
|
0
|
|
|
|
|
0
|
return $e; |
|
3055
|
|
|
|
|
|
|
} |
|
3056
|
0
|
0
|
|
|
|
0
|
croak "logint: base must be > 1" unless $b > 1; |
|
3057
|
|
|
|
|
|
|
|
|
3058
|
0
|
|
|
|
|
0
|
my $e = Math::BigInt->new("$n")->blog("$b"); |
|
3059
|
0
|
0
|
|
|
|
0
|
$$refp = Math::BigInt->new("$b")->bpow($e) if defined $refp; |
|
3060
|
0
|
|
|
|
|
0
|
return Math::Prime::Util::_reftyped($_[0], "$e"); |
|
3061
|
|
|
|
|
|
|
} |
|
3062
|
|
|
|
|
|
|
|
|
3063
|
|
|
|
|
|
|
# Seidel (Luschny), core using Trizen's simplications from Math::BigNum. |
|
3064
|
|
|
|
|
|
|
# http://oeis.org/wiki/User:Peter_Luschny/ComputationAndAsymptoticsOfBernoulliNumbers#Bernoulli_numbers__after_Seidel |
|
3065
|
|
|
|
|
|
|
sub _bernoulli_seidel { |
|
3066
|
103
|
|
|
103
|
|
199
|
my($n) = @_; |
|
3067
|
103
|
50
|
|
|
|
230
|
return (1,1) if $n == 0; |
|
3068
|
103
|
50
|
33
|
|
|
393
|
return (0,1) if $n > 1 && $n % 2; |
|
3069
|
|
|
|
|
|
|
|
|
3070
|
103
|
|
|
|
|
300
|
my $oacc = Math::BigInt->accuracy(); Math::BigInt->accuracy(undef); |
|
|
103
|
|
|
|
|
1317
|
|
|
3071
|
103
|
|
|
|
|
1756
|
my @D = (BZERO->copy, BONE->copy, map { BZERO->copy } 1 .. ($n>>1)-1); |
|
|
2374
|
|
|
|
|
46196
|
|
|
3072
|
103
|
|
|
|
|
2296
|
my ($h, $w) = (1, 1); |
|
3073
|
|
|
|
|
|
|
|
|
3074
|
103
|
|
|
|
|
266
|
foreach my $i (0 .. $n-1) { |
|
3075
|
4954
|
100
|
|
|
|
17472198
|
if ($w ^= 1) { |
|
3076
|
2477
|
|
|
|
|
8407
|
$D[$_]->badd($D[$_-1]) for 1 .. $h-1; |
|
3077
|
|
|
|
|
|
|
} else { |
|
3078
|
2477
|
|
|
|
|
4066
|
$w = $h++; |
|
3079
|
2477
|
|
|
|
|
7401
|
$D[$w]->badd($D[$w+1]) while --$w; |
|
3080
|
|
|
|
|
|
|
} |
|
3081
|
|
|
|
|
|
|
} |
|
3082
|
103
|
|
|
|
|
227122
|
my $num = $D[$h-1]; |
|
3083
|
103
|
|
|
|
|
406
|
my $den = BONE->copy->blsft($n+1)->bsub(BTWO); |
|
3084
|
103
|
|
|
|
|
53825
|
my $gcd = Math::BigInt::bgcd($num, $den); |
|
3085
|
103
|
|
|
|
|
78626
|
$num /= $gcd; |
|
3086
|
103
|
|
|
|
|
39588
|
$den /= $gcd; |
|
3087
|
103
|
100
|
|
|
|
20936
|
$num->bneg() if ($n % 4) == 0; |
|
3088
|
103
|
|
|
|
|
1028
|
Math::BigInt->accuracy($oacc); |
|
3089
|
103
|
|
|
|
|
4277
|
($num,$den); |
|
3090
|
|
|
|
|
|
|
} |
|
3091
|
|
|
|
|
|
|
|
|
3092
|
|
|
|
|
|
|
sub bernfrac { |
|
3093
|
111
|
|
|
111
|
0
|
223
|
my $n = shift; |
|
3094
|
111
|
100
|
|
|
|
301
|
return (BONE,BONE) if $n == 0; |
|
3095
|
107
|
100
|
|
|
|
294
|
return (BONE,BTWO) if $n == 1; # We're choosing 1/2 instead of -1/2 |
|
3096
|
105
|
100
|
66
|
|
|
490
|
return (BZERO,BONE) if $n < 0 || $n & 1; |
|
3097
|
|
|
|
|
|
|
|
|
3098
|
|
|
|
|
|
|
# We should have used one of the GMP functions before coming here. |
|
3099
|
|
|
|
|
|
|
|
|
3100
|
103
|
|
|
|
|
243
|
_bernoulli_seidel($n); |
|
3101
|
|
|
|
|
|
|
} |
|
3102
|
|
|
|
|
|
|
|
|
3103
|
|
|
|
|
|
|
sub stirling { |
|
3104
|
518
|
|
|
518
|
0
|
89268
|
my($n, $m, $type) = @_; |
|
3105
|
518
|
50
|
|
|
|
1806
|
return 1 if $m == $n; |
|
3106
|
518
|
50
|
33
|
|
|
3928
|
return 0 if $n == 0 || $m == 0 || $m > $n; |
|
|
|
|
33
|
|
|
|
|
|
3107
|
518
|
100
|
|
|
|
1472
|
$type = 1 unless defined $type; |
|
3108
|
518
|
50
|
100
|
|
|
2653
|
croak "stirling type must be 1, 2, or 3" unless $type == 1 || $type == 2 || $type == 3; |
|
|
|
|
66
|
|
|
|
|
|
3109
|
518
|
50
|
|
|
|
1304
|
if ($m == 1) { |
|
3110
|
0
|
0
|
|
|
|
0
|
return 1 if $type == 2; |
|
3111
|
0
|
0
|
|
|
|
0
|
return factorial($n) if $type == 3; |
|
3112
|
0
|
0
|
|
|
|
0
|
return factorial($n-1) if $n&1; |
|
3113
|
0
|
|
|
|
|
0
|
return vecprod(-1, factorial($n-1)); |
|
3114
|
|
|
|
|
|
|
} |
|
3115
|
|
|
|
|
|
|
return Math::Prime::Util::_reftyped($_[0], Math::Prime::Util::GMP::stirling($n,$m,$type)) |
|
3116
|
518
|
50
|
|
|
|
1494
|
if $Math::Prime::Util::_GMPfunc{"stirling"}; |
|
3117
|
|
|
|
|
|
|
# Go through vecsum with quoted negatives to make sure we don't overflow. |
|
3118
|
518
|
|
|
|
|
910
|
my $s; |
|
3119
|
518
|
100
|
|
|
|
1632
|
if ($type == 3) { |
|
|
|
100
|
|
|
|
|
|
|
3120
|
5
|
|
|
|
|
377
|
$s = Math::Prime::Util::vecprod( Math::Prime::Util::binomial($n,$m), Math::Prime::Util::binomial($n-1,$m-1), Math::Prime::Util::factorial($n-$m) ); |
|
3121
|
|
|
|
|
|
|
} elsif ($type == 2) { |
|
3122
|
465
|
|
|
|
|
923
|
my @terms; |
|
3123
|
465
|
|
|
|
|
1340
|
for my $j (1 .. $m) { |
|
3124
|
14941
|
|
|
|
|
561031
|
my $t = Math::Prime::Util::vecprod( |
|
3125
|
|
|
|
|
|
|
Math::BigInt->new($j) ** $n, |
|
3126
|
|
|
|
|
|
|
Math::Prime::Util::binomial($m,$j) |
|
3127
|
|
|
|
|
|
|
); |
|
3128
|
14941
|
100
|
|
|
|
726407
|
push @terms, (($m-$j) & 1) ? "-$t" : $t; |
|
3129
|
|
|
|
|
|
|
} |
|
3130
|
465
|
|
|
|
|
18796
|
$s = Math::Prime::Util::vecsum(@terms) / factorial($m); |
|
3131
|
|
|
|
|
|
|
} else { |
|
3132
|
48
|
|
|
|
|
93
|
my @terms; |
|
3133
|
48
|
|
|
|
|
154
|
for my $k (1 .. $n-$m) { |
|
3134
|
782
|
|
|
|
|
51488
|
my $t = Math::Prime::Util::vecprod( |
|
3135
|
|
|
|
|
|
|
Math::Prime::Util::binomial($k + $n - 1, $k + $n - $m), |
|
3136
|
|
|
|
|
|
|
Math::Prime::Util::binomial(2 * $n - $m, $n - $k - $m), |
|
3137
|
|
|
|
|
|
|
Math::Prime::Util::stirling($k - $m + $n, $k, 2), |
|
3138
|
|
|
|
|
|
|
); |
|
3139
|
782
|
100
|
|
|
|
7023
|
push @terms, ($k & 1) ? "-$t" : $t; |
|
3140
|
|
|
|
|
|
|
} |
|
3141
|
48
|
|
|
|
|
2372
|
$s = Math::Prime::Util::vecsum(@terms); |
|
3142
|
|
|
|
|
|
|
} |
|
3143
|
518
|
|
|
|
|
496267
|
$s; |
|
3144
|
|
|
|
|
|
|
} |
|
3145
|
|
|
|
|
|
|
|
|
3146
|
|
|
|
|
|
|
sub _harmonic_split { # From Fredrik Johansson |
|
3147
|
1259
|
|
|
1259
|
|
34837
|
my($a,$b) = @_; |
|
3148
|
1259
|
100
|
|
|
|
2814
|
return (BONE, $a) if $b - $a == BONE; |
|
3149
|
1047
|
100
|
|
|
|
150502
|
return ($a+$a+BONE, $a*$a+$a) if $b - $a == BTWO; # Cut down recursion |
|
3150
|
590
|
|
|
|
|
83339
|
my $m = $a->copy->badd($b)->brsft(BONE); |
|
3151
|
590
|
|
|
|
|
96301
|
my ($p,$q) = _harmonic_split($a, $m); |
|
3152
|
590
|
|
|
|
|
164028
|
my ($r,$s) = _harmonic_split($m, $b); |
|
3153
|
590
|
|
|
|
|
217148
|
($p*$s+$q*$r, $q*$s); |
|
3154
|
|
|
|
|
|
|
} |
|
3155
|
|
|
|
|
|
|
|
|
3156
|
|
|
|
|
|
|
sub harmfrac { |
|
3157
|
79
|
|
|
79
|
0
|
160
|
my($n) = @_; |
|
3158
|
79
|
50
|
|
|
|
156
|
return (BZERO,BONE) if $n <= 0; |
|
3159
|
79
|
50
|
|
|
|
372
|
$n = Math::BigInt->new("$n") unless ref($n) eq 'Math::BigInt'; |
|
3160
|
79
|
|
|
|
|
3778
|
my($p,$q) = _harmonic_split($n-$n+1, $n+1); |
|
3161
|
79
|
|
|
|
|
27594
|
my $gcd = Math::BigInt::bgcd($p,$q); |
|
3162
|
79
|
|
|
|
|
97203
|
( scalar $p->bdiv($gcd), scalar $q->bdiv($gcd) ); |
|
3163
|
|
|
|
|
|
|
} |
|
3164
|
|
|
|
|
|
|
|
|
3165
|
|
|
|
|
|
|
sub harmreal { |
|
3166
|
21
|
|
|
21
|
0
|
48
|
my($n, $precision) = @_; |
|
3167
|
|
|
|
|
|
|
|
|
3168
|
21
|
50
|
|
|
|
44
|
do { require Math::BigFloat; Math::BigFloat->import(); } unless defined $Math::BigFloat::VERSION; |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
3169
|
21
|
50
|
|
|
|
48
|
return Math::BigFloat->bzero if $n <= 0; |
|
3170
|
|
|
|
|
|
|
|
|
3171
|
|
|
|
|
|
|
# Use asymptotic formula for larger $n if possible. Saves lots of time if |
|
3172
|
|
|
|
|
|
|
# the default Calc backend is being used. |
|
3173
|
|
|
|
|
|
|
{ |
|
3174
|
21
|
|
|
|
|
33
|
my $sprec = $precision; |
|
|
21
|
|
|
|
|
33
|
|
|
3175
|
21
|
50
|
|
|
|
89
|
$sprec = Math::BigFloat->precision unless defined $sprec; |
|
3176
|
21
|
50
|
|
|
|
286
|
$sprec = 40 unless defined $sprec; |
|
3177
|
21
|
50
|
33
|
|
|
248
|
if ( ($sprec <= 23 && $n > 54) || |
|
|
|
|
33
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
3178
|
|
|
|
|
|
|
($sprec <= 30 && $n > 348) || |
|
3179
|
|
|
|
|
|
|
($sprec <= 40 && $n > 2002) || |
|
3180
|
|
|
|
|
|
|
($sprec <= 50 && $n > 12644) ) { |
|
3181
|
0
|
|
|
|
|
0
|
$n = Math::BigFloat->new($n, $sprec+5); |
|
3182
|
0
|
|
|
|
|
0
|
my($n2, $one, $h) = ($n*$n, Math::BigFloat->bone, Math::BigFloat->bzero); |
|
3183
|
0
|
|
|
|
|
0
|
my $nt = $n2; |
|
3184
|
0
|
|
|
|
|
0
|
my $eps = Math::BigFloat->new(10)->bpow(-$sprec-4); |
|
3185
|
0
|
|
|
|
|
0
|
foreach my $d (-12, 120, -252, 240, -132, 32760, -12, 8160, -14364, 6600, -276, 65520, -12) { # OEIS A006593 |
|
3186
|
0
|
|
|
|
|
0
|
my $term = $one/($d * $nt); |
|
3187
|
0
|
0
|
|
|
|
0
|
last if $term->bacmp($eps) < 0; |
|
3188
|
0
|
|
|
|
|
0
|
$h += $term; |
|
3189
|
0
|
|
|
|
|
0
|
$nt *= $n2; |
|
3190
|
|
|
|
|
|
|
} |
|
3191
|
0
|
|
|
|
|
0
|
$h->badd(scalar $one->copy->bdiv(2*$n)); |
|
3192
|
0
|
|
|
|
|
0
|
$h->badd(_Euler($sprec)); |
|
3193
|
0
|
|
|
|
|
0
|
$h->badd($n->copy->blog); |
|
3194
|
0
|
|
|
|
|
0
|
$h->round($sprec); |
|
3195
|
0
|
|
|
|
|
0
|
return $h; |
|
3196
|
|
|
|
|
|
|
} |
|
3197
|
|
|
|
|
|
|
} |
|
3198
|
|
|
|
|
|
|
|
|
3199
|
21
|
|
|
|
|
59
|
my($num,$den) = Math::Prime::Util::harmfrac($n); |
|
3200
|
|
|
|
|
|
|
# Note, with Calc backend this can be very, very slow |
|
3201
|
21
|
|
|
|
|
7406
|
scalar Math::BigFloat->new($num)->bdiv($den, $precision); |
|
3202
|
|
|
|
|
|
|
} |
|
3203
|
|
|
|
|
|
|
|
|
3204
|
|
|
|
|
|
|
sub is_pseudoprime { |
|
3205
|
10
|
|
|
10
|
0
|
1331
|
my($n, @bases) = @_; |
|
3206
|
10
|
50
|
|
|
|
27
|
return 0 if int($n) < 0; |
|
3207
|
10
|
|
|
|
|
28
|
_validate_positive_integer($n); |
|
3208
|
10
|
50
|
|
|
|
20
|
croak("No bases given to is_pseudoprime") unless scalar(@bases) > 0; |
|
3209
|
10
|
50
|
|
|
|
17
|
return 0+($n >= 2) if $n < 4; |
|
3210
|
|
|
|
|
|
|
|
|
3211
|
10
|
|
|
|
|
22
|
foreach my $base (@bases) { |
|
3212
|
10
|
50
|
|
|
|
20
|
croak "Base $base is invalid" if $base < 2; |
|
3213
|
10
|
50
|
|
|
|
19
|
$base = $base % $n if $base >= $n; |
|
3214
|
10
|
50
|
33
|
|
|
37
|
if ($base > 1 && $base != $n-1) { |
|
3215
|
10
|
50
|
|
|
|
29
|
my $x = (ref($n) eq 'Math::BigInt') |
|
3216
|
|
|
|
|
|
|
? $n->copy->bzero->badd($base)->bmodpow($n-1,$n)->is_one |
|
3217
|
|
|
|
|
|
|
: _powmod($base, $n-1, $n); |
|
3218
|
10
|
50
|
|
|
|
23
|
return 0 unless $x == 1; |
|
3219
|
|
|
|
|
|
|
} |
|
3220
|
|
|
|
|
|
|
} |
|
3221
|
10
|
|
|
|
|
27
|
1; |
|
3222
|
|
|
|
|
|
|
} |
|
3223
|
|
|
|
|
|
|
|
|
3224
|
|
|
|
|
|
|
sub is_euler_pseudoprime { |
|
3225
|
0
|
|
|
0
|
0
|
0
|
my($n, @bases) = @_; |
|
3226
|
0
|
0
|
|
|
|
0
|
return 0 if int($n) < 0; |
|
3227
|
0
|
|
|
|
|
0
|
_validate_positive_integer($n); |
|
3228
|
0
|
0
|
|
|
|
0
|
croak("No bases given to is_euler_pseudoprime") unless scalar(@bases) > 0; |
|
3229
|
0
|
0
|
|
|
|
0
|
return 0+($n >= 2) if $n < 4; |
|
3230
|
|
|
|
|
|
|
|
|
3231
|
0
|
|
|
|
|
0
|
foreach my $base (@bases) { |
|
3232
|
0
|
0
|
|
|
|
0
|
croak "Base $base is invalid" if $base < 2; |
|
3233
|
0
|
0
|
|
|
|
0
|
$base = $base % $n if $base >= $n; |
|
3234
|
0
|
0
|
0
|
|
|
0
|
if ($base > 1 && $base != $n-1) { |
|
3235
|
0
|
|
|
|
|
0
|
my $j = kronecker($base, $n); |
|
3236
|
0
|
0
|
|
|
|
0
|
return 0 if $j == 0; |
|
3237
|
0
|
0
|
|
|
|
0
|
$j = ($j > 0) ? 1 : $n-1; |
|
3238
|
0
|
0
|
|
|
|
0
|
my $x = (ref($n) eq 'Math::BigInt') |
|
3239
|
|
|
|
|
|
|
? $n->copy->bzero->badd($base)->bmodpow(($n-1)/2,$n) |
|
3240
|
|
|
|
|
|
|
: _powmod($base, ($n-1)>>1, $n); |
|
3241
|
0
|
0
|
|
|
|
0
|
return 0 unless $x == $j; |
|
3242
|
|
|
|
|
|
|
} |
|
3243
|
|
|
|
|
|
|
} |
|
3244
|
0
|
|
|
|
|
0
|
1; |
|
3245
|
|
|
|
|
|
|
} |
|
3246
|
|
|
|
|
|
|
|
|
3247
|
|
|
|
|
|
|
sub is_euler_plumb_pseudoprime { |
|
3248
|
0
|
|
|
0
|
0
|
0
|
my($n) = @_; |
|
3249
|
0
|
0
|
|
|
|
0
|
return 0 if int($n) < 0; |
|
3250
|
0
|
|
|
|
|
0
|
_validate_positive_integer($n); |
|
3251
|
0
|
0
|
|
|
|
0
|
return 0+($n >= 2) if $n < 4; |
|
3252
|
0
|
0
|
|
|
|
0
|
return 0 if ($n % 2) == 0; |
|
3253
|
0
|
|
|
|
|
0
|
my $nmod8 = $n % 8; |
|
3254
|
0
|
|
|
|
|
0
|
my $exp = 1 + ($nmod8 == 1); |
|
3255
|
0
|
|
|
|
|
0
|
my $ap = Math::Prime::Util::powmod(2, ($n-1) >> $exp, $n); |
|
3256
|
0
|
0
|
0
|
|
|
0
|
if ($ap == 1) { return ($nmod8 == 1 || $nmod8 == 7); } |
|
|
0
|
|
|
|
|
0
|
|
|
3257
|
0
|
0
|
0
|
|
|
0
|
if ($ap == $n-1) { return ($nmod8 == 1 || $nmod8 == 3 || $nmod8 == 5); } |
|
|
0
|
|
|
|
|
0
|
|
|
3258
|
0
|
|
|
|
|
0
|
0; |
|
3259
|
|
|
|
|
|
|
} |
|
3260
|
|
|
|
|
|
|
|
|
3261
|
|
|
|
|
|
|
sub _miller_rabin_2 { |
|
3262
|
3739
|
|
|
3739
|
|
266677
|
my($n, $nm1, $s, $d) = @_; |
|
3263
|
|
|
|
|
|
|
|
|
3264
|
3739
|
100
|
|
|
|
7477
|
if ( ref($n) eq 'Math::BigInt' ) { |
|
3265
|
|
|
|
|
|
|
|
|
3266
|
476
|
50
|
|
|
|
1534
|
if (!defined $nm1) { |
|
3267
|
476
|
|
|
|
|
1536
|
$nm1 = $n->copy->bdec(); |
|
3268
|
476
|
|
|
|
|
36992
|
$s = 0; |
|
3269
|
476
|
|
|
|
|
1404
|
$d = $nm1->copy; |
|
3270
|
476
|
|
|
|
|
9409
|
do { |
|
3271
|
976
|
|
|
|
|
62218
|
$s++; |
|
3272
|
976
|
|
|
|
|
3123
|
$d->brsft(BONE); |
|
3273
|
|
|
|
|
|
|
} while $d->is_even; |
|
3274
|
|
|
|
|
|
|
} |
|
3275
|
476
|
|
|
|
|
59458
|
my $x = BTWO->copy->bmodpow($d,$n); |
|
3276
|
476
|
100
|
100
|
|
|
43238431
|
return 1 if $x->is_one || $x->bcmp($nm1) == 0; |
|
3277
|
365
|
|
|
|
|
22929
|
foreach my $r (1 .. $s-1) { |
|
3278
|
356
|
|
|
|
|
5271
|
$x->bmul($x)->bmod($n); |
|
3279
|
356
|
50
|
|
|
|
160980
|
last if $x->is_one; |
|
3280
|
356
|
100
|
|
|
|
4879
|
return 1 if $x->bcmp($nm1) == 0; |
|
3281
|
|
|
|
|
|
|
} |
|
3282
|
|
|
|
|
|
|
|
|
3283
|
|
|
|
|
|
|
} else { |
|
3284
|
|
|
|
|
|
|
|
|
3285
|
3263
|
50
|
|
|
|
5490
|
if (!defined $nm1) { |
|
3286
|
3263
|
|
|
|
|
4250
|
$nm1 = $n-1; |
|
3287
|
3263
|
|
|
|
|
4259
|
$s = 0; |
|
3288
|
3263
|
|
|
|
|
4426
|
$d = $nm1; |
|
3289
|
3263
|
|
|
|
|
6243
|
while ( ($d & 1) == 0 ) { |
|
3290
|
7574
|
|
|
|
|
9208
|
$s++; |
|
3291
|
7574
|
|
|
|
|
12994
|
$d >>= 1; |
|
3292
|
|
|
|
|
|
|
} |
|
3293
|
|
|
|
|
|
|
} |
|
3294
|
|
|
|
|
|
|
|
|
3295
|
3263
|
100
|
|
|
|
5226
|
if ($n < MPU_HALFWORD) { |
|
3296
|
3206
|
|
|
|
|
6030
|
my $x = _native_powmod(2, $d, $n); |
|
3297
|
3206
|
100
|
100
|
|
|
9571
|
return 1 if $x == 1 || $x == $nm1; |
|
3298
|
3196
|
|
|
|
|
6334
|
foreach my $r (1 .. $s-1) { |
|
3299
|
3807
|
|
|
|
|
4988
|
$x = ($x*$x) % $n; |
|
3300
|
3807
|
100
|
|
|
|
6024
|
last if $x == 1; |
|
3301
|
3804
|
100
|
|
|
|
7287
|
return 1 if $x == $n-1; |
|
3302
|
|
|
|
|
|
|
} |
|
3303
|
|
|
|
|
|
|
} else { |
|
3304
|
57
|
|
|
|
|
270
|
my $x = _powmod(2, $d, $n); |
|
3305
|
57
|
100
|
66
|
|
|
478
|
return 1 if $x == 1 || $x == $nm1; |
|
3306
|
19
|
|
|
|
|
194
|
foreach my $r (1 .. $s-1) { |
|
3307
|
31
|
50
|
|
|
|
100
|
$x = ($x < MPU_HALFWORD) ? ($x*$x) % $n : _mulmod($x, $x, $n); |
|
3308
|
31
|
50
|
|
|
|
112
|
last if $x == 1; |
|
3309
|
31
|
100
|
|
|
|
118
|
return 1 if $x == $n-1; |
|
3310
|
|
|
|
|
|
|
} |
|
3311
|
|
|
|
|
|
|
} |
|
3312
|
|
|
|
|
|
|
} |
|
3313
|
3194
|
|
|
|
|
18853
|
0; |
|
3314
|
|
|
|
|
|
|
} |
|
3315
|
|
|
|
|
|
|
|
|
3316
|
|
|
|
|
|
|
sub is_strong_pseudoprime { |
|
3317
|
3619
|
|
|
3619
|
0
|
33084
|
my($n, @bases) = @_; |
|
3318
|
3619
|
50
|
|
|
|
7700
|
return 0 if int($n) < 0; |
|
3319
|
3619
|
|
|
|
|
57384
|
_validate_positive_integer($n); |
|
3320
|
3619
|
50
|
|
|
|
7193
|
croak("No bases given to is_strong_pseudoprime") unless scalar(@bases) > 0; |
|
3321
|
|
|
|
|
|
|
|
|
3322
|
3619
|
100
|
|
|
|
6700
|
return 0+($n >= 2) if $n < 4; |
|
3323
|
3615
|
50
|
|
|
|
38544
|
return 0 if ($n % 2) == 0; |
|
3324
|
|
|
|
|
|
|
|
|
3325
|
3615
|
100
|
|
|
|
106955
|
if ($bases[0] == 2) { |
|
3326
|
3365
|
100
|
|
|
|
5420
|
return 0 unless _miller_rabin_2($n); |
|
3327
|
375
|
|
|
|
|
3184
|
shift @bases; |
|
3328
|
375
|
100
|
|
|
|
1043
|
return 1 unless @bases; |
|
3329
|
|
|
|
|
|
|
} |
|
3330
|
|
|
|
|
|
|
|
|
3331
|
575
|
|
|
|
|
1306
|
my @newbases; |
|
3332
|
575
|
|
|
|
|
1169
|
for my $base (@bases) { |
|
3333
|
718
|
50
|
|
|
|
1497
|
croak "Base $base is invalid" if $base < 2; |
|
3334
|
718
|
100
|
|
|
|
3806
|
$base %= $n if $base >= $n; |
|
3335
|
718
|
50
|
66
|
|
|
16501
|
return 0 if $base == 0 || ($base == $n-1 && ($base % 2) == 1); |
|
|
|
|
33
|
|
|
|
|
|
3336
|
718
|
|
|
|
|
66873
|
push @newbases, $base; |
|
3337
|
|
|
|
|
|
|
} |
|
3338
|
575
|
|
|
|
|
1271
|
@bases = @newbases; |
|
3339
|
|
|
|
|
|
|
|
|
3340
|
575
|
100
|
|
|
|
1489
|
if ( ref($n) eq 'Math::BigInt' ) { |
|
3341
|
|
|
|
|
|
|
|
|
3342
|
152
|
|
|
|
|
440
|
my $nminus1 = $n->copy->bdec(); |
|
3343
|
152
|
|
|
|
|
11433
|
my $s = 0; |
|
3344
|
152
|
|
|
|
|
412
|
my $d = $nminus1->copy; |
|
3345
|
152
|
|
|
|
|
3105
|
do { # n is > 3 and odd, so n-1 must be even |
|
3346
|
285
|
|
|
|
|
17942
|
$s++; |
|
3347
|
285
|
|
|
|
|
921
|
$d->brsft(BONE); |
|
3348
|
|
|
|
|
|
|
} while $d->is_even; |
|
3349
|
|
|
|
|
|
|
# Different way of doing the above. Fewer function calls, slower on ave. |
|
3350
|
|
|
|
|
|
|
#my $dbin = $nminus1->as_bin; |
|
3351
|
|
|
|
|
|
|
#my $last1 = rindex($dbin, '1'); |
|
3352
|
|
|
|
|
|
|
#my $s = length($dbin)-2-$last1+1; |
|
3353
|
|
|
|
|
|
|
#my $d = $nminus1->copy->brsft($s); |
|
3354
|
|
|
|
|
|
|
|
|
3355
|
152
|
|
|
|
|
18419
|
foreach my $ma (@bases) { |
|
3356
|
194
|
|
|
|
|
2178
|
my $x = $n->copy->bzero->badd($ma)->bmodpow($d,$n); |
|
3357
|
194
|
100
|
100
|
|
|
6808023
|
next if $x->is_one || $x->bcmp($nminus1) == 0; |
|
3358
|
104
|
|
|
|
|
6418
|
foreach my $r (1 .. $s-1) { |
|
3359
|
100
|
|
|
|
|
1273
|
$x->bmul($x); $x->bmod($n); |
|
|
100
|
|
|
|
|
16076
|
|
|
3360
|
100
|
50
|
|
|
|
28206
|
return 0 if $x->is_one; |
|
3361
|
100
|
100
|
|
|
|
1454
|
do { $ma = 0; last; } if $x->bcmp($nminus1) == 0; |
|
|
41
|
|
|
|
|
1504
|
|
|
|
41
|
|
|
|
|
104
|
|
|
3362
|
|
|
|
|
|
|
} |
|
3363
|
104
|
100
|
|
|
|
2195
|
return 0 if $ma != 0; |
|
3364
|
|
|
|
|
|
|
} |
|
3365
|
|
|
|
|
|
|
|
|
3366
|
|
|
|
|
|
|
} else { |
|
3367
|
|
|
|
|
|
|
|
|
3368
|
423
|
|
|
|
|
639
|
my $s = 0; |
|
3369
|
423
|
|
|
|
|
612
|
my $d = $n - 1; |
|
3370
|
423
|
|
|
|
|
964
|
while ( ($d & 1) == 0 ) { |
|
3371
|
1744
|
|
|
|
|
2102
|
$s++; |
|
3372
|
1744
|
|
|
|
|
2910
|
$d >>= 1; |
|
3373
|
|
|
|
|
|
|
} |
|
3374
|
|
|
|
|
|
|
|
|
3375
|
423
|
100
|
|
|
|
809
|
if ($n < MPU_HALFWORD) { |
|
3376
|
382
|
|
|
|
|
593
|
foreach my $ma (@bases) { |
|
3377
|
396
|
|
|
|
|
658
|
my $x = _native_powmod($ma, $d, $n); |
|
3378
|
396
|
100
|
100
|
|
|
1372
|
next if ($x == 1) || ($x == ($n-1)); |
|
3379
|
330
|
|
|
|
|
632
|
foreach my $r (1 .. $s-1) { |
|
3380
|
954
|
|
|
|
|
1304
|
$x = ($x*$x) % $n; |
|
3381
|
954
|
100
|
|
|
|
1606
|
return 0 if $x == 1; |
|
3382
|
953
|
100
|
|
|
|
1768
|
last if $x == $n-1; |
|
3383
|
|
|
|
|
|
|
} |
|
3384
|
329
|
100
|
|
|
|
763
|
return 0 if $x != $n-1; |
|
3385
|
|
|
|
|
|
|
} |
|
3386
|
|
|
|
|
|
|
} else { |
|
3387
|
41
|
|
|
|
|
109
|
foreach my $ma (@bases) { |
|
3388
|
117
|
|
|
|
|
322
|
my $x = _powmod($ma, $d, $n); |
|
3389
|
117
|
100
|
100
|
|
|
782
|
next if ($x == 1) || ($x == ($n-1)); |
|
3390
|
|
|
|
|
|
|
|
|
3391
|
6
|
|
|
|
|
20
|
foreach my $r (1 .. $s-1) { |
|
3392
|
7
|
100
|
|
|
|
27
|
$x = ($x < MPU_HALFWORD) ? ($x*$x) % $n : _mulmod($x, $x, $n); |
|
3393
|
7
|
50
|
|
|
|
17
|
return 0 if $x == 1; |
|
3394
|
7
|
100
|
|
|
|
23
|
last if $x == $n-1; |
|
3395
|
|
|
|
|
|
|
} |
|
3396
|
6
|
100
|
|
|
|
39
|
return 0 if $x != $n-1; |
|
3397
|
|
|
|
|
|
|
} |
|
3398
|
|
|
|
|
|
|
} |
|
3399
|
|
|
|
|
|
|
|
|
3400
|
|
|
|
|
|
|
} |
|
3401
|
502
|
|
|
|
|
4818
|
1; |
|
3402
|
|
|
|
|
|
|
} |
|
3403
|
|
|
|
|
|
|
|
|
3404
|
|
|
|
|
|
|
|
|
3405
|
|
|
|
|
|
|
# Calculate Kronecker symbol (a|b). Cohen Algorithm 1.4.10. |
|
3406
|
|
|
|
|
|
|
# Extension of the Jacobi symbol, itself an extension of the Legendre symbol. |
|
3407
|
|
|
|
|
|
|
sub kronecker { |
|
3408
|
665
|
|
|
665
|
0
|
9388
|
my($a, $b) = @_; |
|
3409
|
665
|
0
|
|
|
|
1667
|
return (abs($a) == 1) ? 1 : 0 if $b == 0; |
|
|
|
50
|
|
|
|
|
|
|
3410
|
665
|
|
|
|
|
46655
|
my $k = 1; |
|
3411
|
665
|
50
|
|
|
|
1793
|
if ($b % 2 == 0) { |
|
3412
|
0
|
0
|
|
|
|
0
|
return 0 if $a % 2 == 0; |
|
3413
|
0
|
|
|
|
|
0
|
my $v = 0; |
|
3414
|
0
|
|
|
|
|
0
|
do { $v++; $b /= 2; } while $b % 2 == 0; |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
3415
|
0
|
0
|
0
|
|
|
0
|
$k = -$k if $v % 2 == 1 && ($a % 8 == 3 || $a % 8 == 5); |
|
|
|
|
0
|
|
|
|
|
|
3416
|
|
|
|
|
|
|
} |
|
3417
|
665
|
100
|
|
|
|
95949
|
if ($b < 0) { |
|
3418
|
1
|
|
|
|
|
3
|
$b = -$b; |
|
3419
|
1
|
50
|
|
|
|
5
|
$k = -$k if $a < 0; |
|
3420
|
|
|
|
|
|
|
} |
|
3421
|
665
|
100
|
|
|
|
45645
|
if ($a < 0) { $a = -$a; $k = -$k if $b % 4 == 3; } |
|
|
16
|
100
|
|
|
|
42
|
|
|
|
16
|
|
|
|
|
44
|
|
|
3422
|
665
|
100
|
100
|
|
|
3773
|
$b = _bigint_to_int($b) if ref($b) eq 'Math::BigInt' && $b <= BMAX; |
|
3423
|
665
|
50
|
66
|
|
|
11730
|
$a = _bigint_to_int($a) if ref($a) eq 'Math::BigInt' && $a <= BMAX; |
|
3424
|
|
|
|
|
|
|
# Now: b > 0, b odd, a >= 0 |
|
3425
|
665
|
|
|
|
|
1945
|
while ($a != 0) { |
|
3426
|
936
|
100
|
|
|
|
55681
|
if ($a % 2 == 0) { |
|
3427
|
402
|
|
|
|
|
40026
|
my $v = 0; |
|
3428
|
402
|
|
|
|
|
728
|
do { $v++; $a /= 2; } while $a % 2 == 0; |
|
|
672
|
|
|
|
|
24520
|
|
|
|
672
|
|
|
|
|
2053
|
|
|
3429
|
402
|
100
|
100
|
|
|
72396
|
$k = -$k if $v % 2 == 1 && ($b % 8 == 3 || $b % 8 == 5); |
|
|
|
|
100
|
|
|
|
|
|
3430
|
|
|
|
|
|
|
} |
|
3431
|
936
|
100
|
100
|
|
|
61163
|
$k = -$k if $a % 4 == 3 && $b % 4 == 3; |
|
3432
|
936
|
|
|
|
|
100865
|
($a, $b) = ($b % $a, $a); |
|
3433
|
|
|
|
|
|
|
# If a,b are bigints and now small enough, finish as native. |
|
3434
|
936
|
100
|
100
|
|
|
89649
|
if ( ref($a) eq 'Math::BigInt' && $a <= BMAX |
|
|
|
|
100
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
3435
|
|
|
|
|
|
|
&& ref($b) eq 'Math::BigInt' && $b <= BMAX) { |
|
3436
|
267
|
|
|
|
|
18128
|
return $k * kronecker(_bigint_to_int($a),_bigint_to_int($b)); |
|
3437
|
|
|
|
|
|
|
} |
|
3438
|
|
|
|
|
|
|
} |
|
3439
|
398
|
50
|
|
|
|
5050
|
return ($b == 1) ? $k : 0; |
|
3440
|
|
|
|
|
|
|
} |
|
3441
|
|
|
|
|
|
|
|
|
3442
|
|
|
|
|
|
|
sub _binomialu { |
|
3443
|
5235
|
|
|
5235
|
|
13350
|
my($r, $n, $k) = (1, @_); |
|
3444
|
5235
|
0
|
|
|
|
10784
|
return ($k == $n) ? 1 : 0 if $k >= $n; |
|
|
|
50
|
|
|
|
|
|
|
3445
|
5235
|
100
|
|
|
|
12196
|
$k = $n - $k if $k > ($n >> 1); |
|
3446
|
5235
|
|
|
|
|
12756
|
foreach my $d (1 .. $k) { |
|
3447
|
89359
|
100
|
|
|
|
151169
|
if ($r >= int(~0/$n)) { |
|
3448
|
13809
|
|
|
|
|
19962
|
my($g, $nr, $dr); |
|
3449
|
13809
|
|
|
|
|
27172
|
$g = _gcd_ui($n, $d); $nr = int($n/$g); $dr = int($d/$g); |
|
|
13809
|
|
|
|
|
23972
|
|
|
|
13809
|
|
|
|
|
20499
|
|
|
3450
|
13809
|
|
|
|
|
22097
|
$g = _gcd_ui($r, $dr); $r = int($r/$g); $dr = int($dr/$g); |
|
|
13809
|
|
|
|
|
20380
|
|
|
|
13809
|
|
|
|
|
19872
|
|
|
3451
|
13809
|
100
|
|
|
|
32035
|
return 0 if $r >= int(~0/$nr); |
|
3452
|
8576
|
|
|
|
|
12128
|
$r *= $nr; |
|
3453
|
8576
|
|
|
|
|
13110
|
$r = int($r/$dr); |
|
3454
|
|
|
|
|
|
|
} else { |
|
3455
|
75550
|
|
|
|
|
98518
|
$r *= $n; |
|
3456
|
75550
|
|
|
|
|
102649
|
$r = int($r/$d); |
|
3457
|
|
|
|
|
|
|
} |
|
3458
|
84126
|
|
|
|
|
115348
|
$n--; |
|
3459
|
|
|
|
|
|
|
} |
|
3460
|
2
|
|
|
|
|
5
|
$r; |
|
3461
|
|
|
|
|
|
|
} |
|
3462
|
|
|
|
|
|
|
|
|
3463
|
|
|
|
|
|
|
sub binomial { |
|
3464
|
5235
|
|
|
5235
|
0
|
111599
|
my($n, $k) = @_; |
|
3465
|
|
|
|
|
|
|
|
|
3466
|
|
|
|
|
|
|
# 1. Try GMP |
|
3467
|
|
|
|
|
|
|
return Math::Prime::Util::_reftyped($_[0], Math::Prime::Util::GMP::binomial($n,$k)) |
|
3468
|
5235
|
50
|
|
|
|
17069
|
if $Math::Prime::Util::_GMPfunc{"binomial"}; |
|
3469
|
|
|
|
|
|
|
|
|
3470
|
|
|
|
|
|
|
# 2. Exit early for known 0 cases, and adjust k to be positive. |
|
3471
|
5235
|
50
|
33
|
|
|
14851
|
if ($n >= 0) { return 0 if $k < 0 || $k > $n; } |
|
|
5234
|
100
|
|
|
|
24669
|
|
|
3472
|
1
|
50
|
33
|
|
|
8
|
else { return 0 if $k < 0 && $k > $n; } |
|
3473
|
5235
|
100
|
|
|
|
11981
|
$k = $n - $k if $k < 0; |
|
3474
|
|
|
|
|
|
|
|
|
3475
|
|
|
|
|
|
|
# 3. Try to do in integer Perl |
|
3476
|
5235
|
|
|
|
|
9810
|
my $r; |
|
3477
|
5235
|
100
|
|
|
|
12755
|
if ($n >= 0) { |
|
3478
|
5234
|
|
|
|
|
13577
|
$r = _binomialu($n, $k); |
|
3479
|
5234
|
100
|
|
|
|
13768
|
return $r if $r > 0; |
|
3480
|
|
|
|
|
|
|
} else { |
|
3481
|
1
|
|
|
|
|
4
|
$r = _binomialu(-$n+$k-1, $k); |
|
3482
|
1
|
50
|
33
|
|
|
8
|
return $r if $r > 0 && !($k & 1); |
|
3483
|
1
|
50
|
33
|
|
|
10
|
return -$r if $r > 0 && $r <= (~0>>1); |
|
3484
|
|
|
|
|
|
|
} |
|
3485
|
|
|
|
|
|
|
|
|
3486
|
|
|
|
|
|
|
# 4. Overflow. Solve using Math::BigInt |
|
3487
|
5233
|
50
|
|
|
|
11303
|
return 1 if $k == 0; # Work around bug in old |
|
3488
|
5233
|
50
|
|
|
|
12556
|
return $n if $k == $n-1; # Math::BigInt (fixed in 1.90) |
|
3489
|
5233
|
50
|
|
|
|
10275
|
if ($n >= 0) { |
|
3490
|
5233
|
|
|
|
|
26044
|
$r = Math::BigInt->new(''.$n)->bnok($k); |
|
3491
|
5233
|
50
|
|
|
|
14384868
|
$r = _bigint_to_int($r) if $r->bacmp(BMAX) <= 0; |
|
3492
|
|
|
|
|
|
|
} else { # Math::BigInt is incorrect for negative n |
|
3493
|
0
|
|
|
|
|
0
|
$r = Math::BigInt->new(''.(-$n+$k-1))->bnok($k); |
|
3494
|
0
|
0
|
|
|
|
0
|
if ($k & 1) { |
|
3495
|
0
|
|
|
|
|
0
|
$r->bneg; |
|
3496
|
0
|
0
|
|
|
|
0
|
$r = _bigint_to_int($r) if $r->bacmp(''.(~0>>1)) <= 0; |
|
3497
|
|
|
|
|
|
|
} else { |
|
3498
|
0
|
0
|
|
|
|
0
|
$r = _bigint_to_int($r) if $r->bacmp(BMAX) <= 0; |
|
3499
|
|
|
|
|
|
|
} |
|
3500
|
|
|
|
|
|
|
} |
|
3501
|
5233
|
|
|
|
|
164706
|
$r; |
|
3502
|
|
|
|
|
|
|
} |
|
3503
|
|
|
|
|
|
|
|
|
3504
|
|
|
|
|
|
|
sub _product { |
|
3505
|
14994
|
|
|
14994
|
|
845613
|
my($a, $b, $r) = @_; |
|
3506
|
14994
|
100
|
|
|
|
54493
|
if ($b <= $a) { |
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
3507
|
2
|
|
|
|
|
6
|
$r->[$a]; |
|
3508
|
|
|
|
|
|
|
} elsif ($b == $a+1) { |
|
3509
|
13720
|
|
|
|
|
45554
|
$r->[$a] -> bmul( $r->[$b] ); |
|
3510
|
|
|
|
|
|
|
} elsif ($b == $a+2) { |
|
3511
|
814
|
|
|
|
|
2984
|
$r->[$a] -> bmul( $r->[$a+1] ) -> bmul( $r->[$a+2] ); |
|
3512
|
|
|
|
|
|
|
} else { |
|
3513
|
458
|
|
|
|
|
719
|
my $c = $a + (($b-$a+1)>>1); |
|
3514
|
458
|
|
|
|
|
980
|
_product($a, $c-1, $r); |
|
3515
|
458
|
|
|
|
|
30817
|
_product($c, $b, $r); |
|
3516
|
458
|
|
|
|
|
33216
|
$r->[$a] -> bmul( $r->[$c] ); |
|
3517
|
|
|
|
|
|
|
} |
|
3518
|
|
|
|
|
|
|
} |
|
3519
|
|
|
|
|
|
|
|
|
3520
|
|
|
|
|
|
|
sub factorial { |
|
3521
|
768
|
|
|
768
|
0
|
154051
|
my($n) = @_; |
|
3522
|
768
|
100
|
|
|
|
2934
|
return (1,1,2,6,24,120,720,5040,40320,362880,3628800,39916800,479001600)[$n] if $n <= 12; |
|
3523
|
564
|
50
|
|
|
|
1764
|
return Math::GMP::bfac($n) if ref($n) eq 'Math::GMP'; |
|
3524
|
564
|
50
|
|
|
|
1523
|
do { my $r = Math::GMPz->new(); Math::GMPz::Rmpz_fac_ui($r,$n); return $r; } |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
3525
|
|
|
|
|
|
|
if ref($n) eq 'Math::GMPz'; |
|
3526
|
564
|
50
|
|
|
|
2066
|
if (Math::BigInt->config()->{lib} !~ /GMP|Pari/) { |
|
3527
|
|
|
|
|
|
|
# It's not a GMP or GMPz object, and we have a slow bigint library. |
|
3528
|
564
|
|
|
|
|
28781
|
my $r; |
|
3529
|
564
|
50
|
33
|
|
|
2933
|
if (defined $Math::GMPz::VERSION) { |
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
3530
|
0
|
|
|
|
|
0
|
$r = Math::GMPz->new(); Math::GMPz::Rmpz_fac_ui($r,$n); |
|
|
0
|
|
|
|
|
0
|
|
|
3531
|
|
|
|
|
|
|
} elsif (defined $Math::GMP::VERSION) { |
|
3532
|
0
|
|
|
|
|
0
|
$r = Math::GMP::bfac($n); |
|
3533
|
|
|
|
|
|
|
} elsif (defined &Math::Prime::Util::GMP::factorial && Math::Prime::Util::prime_get_config()->{'gmp'}) { |
|
3534
|
0
|
|
|
|
|
0
|
$r = Math::Prime::Util::GMP::factorial($n); |
|
3535
|
|
|
|
|
|
|
} |
|
3536
|
564
|
50
|
|
|
|
1463
|
return Math::Prime::Util::_reftyped($_[0], $r) if defined $r; |
|
3537
|
|
|
|
|
|
|
} |
|
3538
|
564
|
|
|
|
|
3033
|
my $r = Math::BigInt->new($n)->bfac(); |
|
3539
|
564
|
100
|
|
|
|
18782733
|
$r = _bigint_to_int($r) if $r->bacmp(BMAX) <= 0; |
|
3540
|
564
|
|
|
|
|
14630
|
$r; |
|
3541
|
|
|
|
|
|
|
} |
|
3542
|
|
|
|
|
|
|
|
|
3543
|
|
|
|
|
|
|
sub factorialmod { |
|
3544
|
0
|
|
|
0
|
0
|
0
|
my($n,$m) = @_; |
|
3545
|
|
|
|
|
|
|
|
|
3546
|
|
|
|
|
|
|
return Math::Prime::Util::GMP::factorialmod($n,$m) |
|
3547
|
0
|
0
|
|
|
|
0
|
if $Math::Prime::Util::_GMPfunc{"factorialmod"}; |
|
3548
|
|
|
|
|
|
|
|
|
3549
|
0
|
0
|
0
|
|
|
0
|
return 0 if $n >= $m || $m == 1; |
|
3550
|
|
|
|
|
|
|
|
|
3551
|
0
|
0
|
|
|
|
0
|
if ($n > 10) { |
|
3552
|
0
|
|
|
|
|
0
|
my($s,$t,$e) = (1); |
|
3553
|
|
|
|
|
|
|
Math::Prime::Util::forprimes( sub { |
|
3554
|
0
|
|
|
0
|
|
0
|
($t,$e) = ($n,0); |
|
3555
|
0
|
|
|
|
|
0
|
while ($t > 0) { |
|
3556
|
0
|
|
|
|
|
0
|
$t = int($t/$_); |
|
3557
|
0
|
|
|
|
|
0
|
$e += $t; |
|
3558
|
|
|
|
|
|
|
} |
|
3559
|
0
|
|
|
|
|
0
|
$s = Math::Prime::Util::mulmod($s, Math::Prime::Util::powmod($_,$e,$m), $m); |
|
3560
|
0
|
|
|
|
|
0
|
}, 2, $n >> 1); |
|
3561
|
|
|
|
|
|
|
Math::Prime::Util::forprimes( sub { |
|
3562
|
0
|
|
|
0
|
|
0
|
$s = Math::Prime::Util::mulmod($s, $_, $m); |
|
3563
|
0
|
|
|
|
|
0
|
}, ($n >> 1)+1, $n); |
|
3564
|
0
|
|
|
|
|
0
|
return $s; |
|
3565
|
|
|
|
|
|
|
} |
|
3566
|
|
|
|
|
|
|
|
|
3567
|
0
|
|
|
|
|
0
|
return factorial($n) % $m; |
|
3568
|
|
|
|
|
|
|
} |
|
3569
|
|
|
|
|
|
|
|
|
3570
|
|
|
|
|
|
|
sub _is_perfect_square { |
|
3571
|
212
|
|
|
212
|
|
56335
|
my($n) = @_; |
|
3572
|
212
|
50
|
|
|
|
1011
|
return (1,1,0,0,1)[$n] if $n <= 4; |
|
3573
|
|
|
|
|
|
|
|
|
3574
|
212
|
100
|
|
|
|
16227
|
if (ref($n) eq 'Math::BigInt') { |
|
3575
|
140
|
|
|
|
|
677
|
my $mc = _bigint_to_int($n & 31); |
|
3576
|
140
|
100
|
66
|
|
|
6850
|
if ($mc==0||$mc==1||$mc==4||$mc==9||$mc==16||$mc==17||$mc==25) { |
|
|
|
|
66
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
3577
|
48
|
|
|
|
|
191
|
my $sq = $n->copy->bsqrt->bfloor; |
|
3578
|
48
|
|
|
|
|
48831
|
$sq->bmul($sq); |
|
3579
|
48
|
100
|
|
|
|
5926
|
return 1 if $sq == $n; |
|
3580
|
|
|
|
|
|
|
} |
|
3581
|
|
|
|
|
|
|
} else { |
|
3582
|
72
|
|
|
|
|
166
|
my $mc = $n & 31; |
|
3583
|
72
|
100
|
33
|
|
|
870
|
if ($mc==0||$mc==1||$mc==4||$mc==9||$mc==16||$mc==17||$mc==25) { |
|
|
|
|
33
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
3584
|
8
|
|
|
|
|
31
|
my $sq = int(sqrt($n)); |
|
3585
|
8
|
50
|
|
|
|
36
|
return 1 if ($sq*$sq) == $n; |
|
3586
|
|
|
|
|
|
|
} |
|
3587
|
|
|
|
|
|
|
} |
|
3588
|
210
|
|
|
|
|
3096
|
0; |
|
3589
|
|
|
|
|
|
|
} |
|
3590
|
|
|
|
|
|
|
|
|
3591
|
|
|
|
|
|
|
sub is_primitive_root { |
|
3592
|
0
|
|
|
0
|
0
|
0
|
my($a, $n) = @_; |
|
3593
|
0
|
0
|
|
|
|
0
|
$n = -$n if $n < 0; # Ignore sign of n |
|
3594
|
0
|
0
|
|
|
|
0
|
return ($n==1) ? 1 : 0 if $n <= 1; |
|
|
|
0
|
|
|
|
|
|
|
3595
|
0
|
0
|
0
|
|
|
0
|
$a %= $n if $a < 0 || $a >= $n; |
|
3596
|
|
|
|
|
|
|
|
|
3597
|
|
|
|
|
|
|
return Math::Prime::Util::GMP::is_primitive_root($a,$n) |
|
3598
|
0
|
0
|
|
|
|
0
|
if $Math::Prime::Util::_GMPfunc{"is_primitive_root"}; |
|
3599
|
|
|
|
|
|
|
|
|
3600
|
0
|
0
|
0
|
|
|
0
|
if ($Math::Prime::Util::_GMPfunc{"znorder"} && $Math::Prime::Util::_GMPfunc{"totient"}) { |
|
3601
|
0
|
|
|
|
|
0
|
my $order = Math::Prime::Util::GMP::znorder($a,$n); |
|
3602
|
0
|
0
|
|
|
|
0
|
return 0 unless defined $order; |
|
3603
|
0
|
|
|
|
|
0
|
my $totient = Math::Prime::Util::GMP::totient($n); |
|
3604
|
0
|
0
|
|
|
|
0
|
return ($order eq $totient) ? 1 : 0; |
|
3605
|
|
|
|
|
|
|
} |
|
3606
|
|
|
|
|
|
|
|
|
3607
|
0
|
0
|
|
|
|
0
|
return 0 if Math::Prime::Util::gcd($a, $n) != 1; |
|
3608
|
0
|
|
|
|
|
0
|
my $s = Math::Prime::Util::euler_phi($n); |
|
3609
|
0
|
0
|
0
|
|
|
0
|
return 0 if ($s % 2) == 0 && Math::Prime::Util::powmod($a, $s/2, $n) == 1; |
|
3610
|
0
|
0
|
0
|
|
|
0
|
return 0 if ($s % 3) == 0 && Math::Prime::Util::powmod($a, $s/3, $n) == 1; |
|
3611
|
0
|
0
|
0
|
|
|
0
|
return 0 if ($s % 5) == 0 && Math::Prime::Util::powmod($a, $s/5, $n) == 1; |
|
3612
|
0
|
|
|
|
|
0
|
foreach my $f (Math::Prime::Util::factor_exp($s)) { |
|
3613
|
0
|
|
|
|
|
0
|
my $fp = $f->[0]; |
|
3614
|
0
|
0
|
0
|
|
|
0
|
return 0 if $fp > 5 && Math::Prime::Util::powmod($a, $s/$fp, $n) == 1; |
|
3615
|
|
|
|
|
|
|
} |
|
3616
|
0
|
|
|
|
|
0
|
1; |
|
3617
|
|
|
|
|
|
|
} |
|
3618
|
|
|
|
|
|
|
|
|
3619
|
|
|
|
|
|
|
sub znorder { |
|
3620
|
10
|
|
|
10
|
0
|
1602
|
my($a, $n) = @_; |
|
3621
|
10
|
50
|
|
|
|
34
|
return if $n <= 0; |
|
3622
|
10
|
50
|
|
|
|
728
|
return 1 if $n == 1; |
|
3623
|
10
|
50
|
|
|
|
793
|
return if $a <= 0; |
|
3624
|
10
|
50
|
|
|
|
555
|
return 1 if $a == 1; |
|
3625
|
|
|
|
|
|
|
|
|
3626
|
|
|
|
|
|
|
return Math::Prime::Util::_reftyped($_[0], Math::Prime::Util::GMP::znorder($a,$n)) |
|
3627
|
10
|
50
|
|
|
|
341
|
if $Math::Prime::Util::_GMPfunc{"znorder"}; |
|
3628
|
|
|
|
|
|
|
|
|
3629
|
|
|
|
|
|
|
# Sadly, Calc/FastCalc are horrendously slow for this function. |
|
3630
|
10
|
100
|
|
|
|
99
|
return if Math::Prime::Util::gcd($a, $n) > 1; |
|
3631
|
|
|
|
|
|
|
|
|
3632
|
|
|
|
|
|
|
# The answer is one of the divisors of phi(n) and lambda(n). |
|
3633
|
8
|
|
|
|
|
201
|
my $lambda = Math::Prime::Util::carmichael_lambda($n); |
|
3634
|
8
|
100
|
|
|
|
103
|
$a = Math::BigInt->new("$a") unless ref($a) eq 'Math::BigInt'; |
|
3635
|
|
|
|
|
|
|
|
|
3636
|
|
|
|
|
|
|
# This is easy and usually fast, but can bog down with too many divisors. |
|
3637
|
8
|
100
|
|
|
|
362
|
if ($lambda <= 2**64) { |
|
3638
|
7
|
|
|
|
|
90
|
foreach my $k (Math::Prime::Util::divisors($lambda)) { |
|
3639
|
54
|
100
|
|
|
|
2074
|
return $k if Math::Prime::Util::powmod($a,$k,$n) == 1; |
|
3640
|
|
|
|
|
|
|
} |
|
3641
|
0
|
|
|
|
|
0
|
return; |
|
3642
|
|
|
|
|
|
|
} |
|
3643
|
|
|
|
|
|
|
|
|
3644
|
|
|
|
|
|
|
# Algorithm 1.7 from A. Das applied to Carmichael Lambda. |
|
3645
|
1
|
50
|
|
|
|
341
|
$lambda = Math::BigInt->new("$lambda") unless ref($lambda) eq 'Math::BigInt'; |
|
3646
|
1
|
|
|
|
|
7
|
my $k = Math::BigInt->bone; |
|
3647
|
1
|
|
|
|
|
80
|
foreach my $f (Math::Prime::Util::factor_exp($lambda)) { |
|
3648
|
7
|
|
|
|
|
1104
|
my($pi, $ei, $enum) = (Math::BigInt->new("$f->[0]"), $f->[1], 0); |
|
3649
|
7
|
|
|
|
|
364
|
my $phidiv = $lambda / ($pi**$ei); |
|
3650
|
7
|
|
|
|
|
4150
|
my $b = Math::Prime::Util::powmod($a,$phidiv,$n); |
|
3651
|
7
|
|
|
|
|
39
|
while ($b != 1) { |
|
3652
|
10
|
50
|
|
|
|
1649
|
return if $enum++ >= $ei; |
|
3653
|
10
|
|
|
|
|
56
|
$b = Math::Prime::Util::powmod($b,$pi,$n); |
|
3654
|
10
|
|
|
|
|
342
|
$k *= $pi; |
|
3655
|
|
|
|
|
|
|
} |
|
3656
|
|
|
|
|
|
|
} |
|
3657
|
1
|
50
|
|
|
|
230
|
$k = _bigint_to_int($k) if $k->bacmp(BMAX) <= 0; |
|
3658
|
1
|
|
|
|
|
36
|
return $k; |
|
3659
|
|
|
|
|
|
|
} |
|
3660
|
|
|
|
|
|
|
|
|
3661
|
|
|
|
|
|
|
sub _dlp_trial { |
|
3662
|
2
|
|
|
2
|
|
10
|
my ($a,$g,$p,$limit) = @_; |
|
3663
|
2
|
50
|
33
|
|
|
16
|
$limit = $p if !defined $limit || $limit > $p; |
|
3664
|
2
|
|
|
|
|
179
|
my $t = $g->copy; |
|
3665
|
|
|
|
|
|
|
|
|
3666
|
2
|
50
|
|
|
|
57
|
if ($limit < 1_000_000_000) { |
|
3667
|
2
|
|
|
|
|
11
|
for my $k (1 .. $limit) { |
|
3668
|
213
|
100
|
|
|
|
15061
|
return $k if $t == $a; |
|
3669
|
212
|
|
|
|
|
21512
|
$t = Math::Prime::Util::mulmod($t, $g, $p); |
|
3670
|
|
|
|
|
|
|
} |
|
3671
|
1
|
|
|
|
|
91
|
return 0; |
|
3672
|
|
|
|
|
|
|
} |
|
3673
|
|
|
|
|
|
|
|
|
3674
|
0
|
|
|
|
|
0
|
for (my $k = BONE->copy; $k < $limit; $k->binc) { |
|
3675
|
0
|
0
|
|
|
|
0
|
if ($t == $a) { |
|
3676
|
0
|
0
|
|
|
|
0
|
$k = _bigint_to_int($k) if $k->bacmp(BMAX) <= 0; |
|
3677
|
0
|
|
|
|
|
0
|
return $k; |
|
3678
|
|
|
|
|
|
|
} |
|
3679
|
0
|
|
|
|
|
0
|
$t->bmul($g)->bmod($p); |
|
3680
|
|
|
|
|
|
|
} |
|
3681
|
0
|
|
|
|
|
0
|
0; |
|
3682
|
|
|
|
|
|
|
} |
|
3683
|
|
|
|
|
|
|
sub _dlp_bsgs { |
|
3684
|
1
|
|
|
1
|
|
4
|
my ($a,$g,$p,$n,$_verbose) = @_; |
|
3685
|
1
|
|
|
|
|
7
|
my $invg = invmod($g, $p); |
|
3686
|
1
|
50
|
|
|
|
4
|
return unless defined $invg; |
|
3687
|
1
|
|
|
|
|
6
|
my $maxm = Math::Prime::Util::sqrtint($n)+1; |
|
3688
|
1
|
|
|
|
|
61
|
my $b = ($p + $maxm - 1) / $maxm; |
|
3689
|
|
|
|
|
|
|
# Limit for time and space. |
|
3690
|
1
|
50
|
|
|
|
658
|
$b = ($b > 4_000_000) ? 4_000_000 : int("$b"); |
|
3691
|
1
|
50
|
|
|
|
143
|
$maxm = ($maxm > $b) ? $b : int("$maxm"); |
|
3692
|
|
|
|
|
|
|
|
|
3693
|
1
|
|
|
|
|
4
|
my %hash; |
|
3694
|
1
|
|
|
|
|
4
|
my $am = BONE->copy; |
|
3695
|
1
|
|
|
|
|
28
|
my $gm = Math::Prime::Util::powmod($invg, $maxm, $p); |
|
3696
|
1
|
|
|
|
|
82
|
my $key = $a->copy; |
|
3697
|
1
|
|
|
|
|
24
|
my $r; |
|
3698
|
|
|
|
|
|
|
|
|
3699
|
1
|
|
|
|
|
5
|
foreach my $m (0 .. $b) { |
|
3700
|
|
|
|
|
|
|
# Baby Step |
|
3701
|
87
|
50
|
|
|
|
3655
|
if ($m <= $maxm) { |
|
3702
|
87
|
|
|
|
|
146
|
$r = $hash{"$am"}; |
|
3703
|
87
|
50
|
|
|
|
202
|
if (defined $r) { |
|
3704
|
0
|
0
|
|
|
|
0
|
print " bsgs found in stage 1 after $m tries\n" if $_verbose; |
|
3705
|
0
|
|
|
|
|
0
|
$r = Math::Prime::Util::addmod($m, Math::Prime::Util::mulmod($r,$maxm,$p), $p); |
|
3706
|
0
|
|
|
|
|
0
|
return $r; |
|
3707
|
|
|
|
|
|
|
} |
|
3708
|
87
|
|
|
|
|
276
|
$hash{"$am"} = $m; |
|
3709
|
87
|
|
|
|
|
234
|
$am = Math::Prime::Util::mulmod($am,$g,$p); |
|
3710
|
87
|
50
|
|
|
|
6275
|
if ($am == $a) { |
|
3711
|
0
|
0
|
|
|
|
0
|
print " bsgs found during bs\n" if $_verbose; |
|
3712
|
0
|
|
|
|
|
0
|
return $m+1; |
|
3713
|
|
|
|
|
|
|
} |
|
3714
|
|
|
|
|
|
|
} |
|
3715
|
|
|
|
|
|
|
|
|
3716
|
|
|
|
|
|
|
# Giant Step |
|
3717
|
87
|
|
|
|
|
9255
|
$r = $hash{"$key"}; |
|
3718
|
87
|
100
|
|
|
|
202
|
if (defined $r) { |
|
3719
|
1
|
50
|
|
|
|
5
|
print " bsgs found in stage 2 after $m tries\n" if $_verbose; |
|
3720
|
1
|
|
|
|
|
5
|
$r = Math::Prime::Util::addmod($r, Math::Prime::Util::mulmod($m,$maxm,$p), $p); |
|
3721
|
1
|
|
|
|
|
100
|
return $r; |
|
3722
|
|
|
|
|
|
|
} |
|
3723
|
86
|
50
|
|
|
|
351
|
$hash{"$key"} = $m if $m <= $maxm; |
|
3724
|
86
|
|
|
|
|
305
|
$key = Math::Prime::Util::mulmod($key,$gm,$p); |
|
3725
|
|
|
|
|
|
|
} |
|
3726
|
0
|
|
|
|
|
0
|
0; |
|
3727
|
|
|
|
|
|
|
} |
|
3728
|
|
|
|
|
|
|
|
|
3729
|
|
|
|
|
|
|
sub znlog { |
|
3730
|
|
|
|
|
|
|
my ($a,$g,$p) = |
|
3731
|
2
|
100
|
|
2
|
0
|
156
|
map { ref($_) eq 'Math::BigInt' ? $_ : Math::BigInt->new("$_") } @_; |
|
|
6
|
|
|
|
|
109
|
|
|
3732
|
2
|
|
|
|
|
47
|
$a->bmod($p); |
|
3733
|
2
|
|
|
|
|
281
|
$g->bmod($p); |
|
3734
|
2
|
50
|
33
|
|
|
322
|
return 0 if $a == 1 || $g == 0 || $p < 2; |
|
|
|
|
33
|
|
|
|
|
|
3735
|
2
|
|
|
|
|
952
|
my $_verbose = Math::Prime::Util::prime_get_config()->{'verbose'}; |
|
3736
|
|
|
|
|
|
|
|
|
3737
|
|
|
|
|
|
|
# For large p, znorder can be very slow. Do trial test first. |
|
3738
|
2
|
|
|
|
|
12
|
my $x = _dlp_trial($a, $g, $p, 200); |
|
3739
|
2
|
100
|
|
|
|
56
|
if ($x == 0) { |
|
3740
|
1
|
|
|
|
|
5
|
my $n = znorder($g, $p); |
|
3741
|
1
|
50
|
33
|
|
|
104
|
if (defined $n && $n > 1000) { |
|
3742
|
1
|
50
|
|
|
|
10
|
$n = Math::BigInt->new("$n") unless ref($n) eq 'Math::BigInt'; |
|
3743
|
1
|
|
|
|
|
51
|
$x = _dlp_bsgs($a, $g, $p, $n, $_verbose); |
|
3744
|
1
|
50
|
33
|
|
|
8
|
$x = _bigint_to_int($x) if ref($x) && $x->bacmp(BMAX) <= 0; |
|
3745
|
1
|
50
|
33
|
|
|
18
|
return $x if $x > 0 && $g->copy->bmodpow($x, $p) == $a; |
|
3746
|
0
|
0
|
0
|
|
|
0
|
print " BSGS giving up\n" if $x == 0 && $_verbose; |
|
3747
|
0
|
0
|
0
|
|
|
0
|
print " BSGS incorrect answer $x\n" if $x > 0 && $_verbose > 1; |
|
3748
|
|
|
|
|
|
|
} |
|
3749
|
0
|
|
|
|
|
0
|
$x = _dlp_trial($a,$g,$p); |
|
3750
|
|
|
|
|
|
|
} |
|
3751
|
1
|
50
|
33
|
|
|
7
|
$x = _bigint_to_int($x) if ref($x) && $x->bacmp(BMAX) <= 0; |
|
3752
|
1
|
50
|
|
|
|
7
|
return ($x == 0) ? undef : $x; |
|
3753
|
|
|
|
|
|
|
} |
|
3754
|
|
|
|
|
|
|
|
|
3755
|
|
|
|
|
|
|
sub znprimroot { |
|
3756
|
8
|
|
|
8
|
0
|
125
|
my($n) = @_; |
|
3757
|
8
|
100
|
|
|
|
22
|
$n = -$n if $n < 0; |
|
3758
|
8
|
100
|
|
|
|
203
|
if ($n <= 4) { |
|
3759
|
2
|
100
|
|
|
|
6
|
return if $n == 0; |
|
3760
|
1
|
|
|
|
|
4
|
return $n-1; |
|
3761
|
|
|
|
|
|
|
} |
|
3762
|
6
|
100
|
|
|
|
128
|
return if $n % 4 == 0; |
|
3763
|
5
|
|
|
|
|
354
|
my $a = 1; |
|
3764
|
5
|
|
|
|
|
10
|
my $phi = $n-1; |
|
3765
|
5
|
100
|
|
|
|
272
|
if (!is_prob_prime($n)) { |
|
3766
|
2
|
|
|
|
|
6
|
$phi = euler_phi($n); |
|
3767
|
|
|
|
|
|
|
# Check that a primitive root exists. |
|
3768
|
2
|
100
|
|
|
|
18
|
return if $phi != Math::Prime::Util::carmichael_lambda($n); |
|
3769
|
|
|
|
|
|
|
} |
|
3770
|
12
|
|
|
|
|
775
|
my @exp = map { Math::BigInt->new("$_") } |
|
3771
|
4
|
|
|
|
|
198
|
map { int($phi/$_->[0]) } |
|
|
12
|
|
|
|
|
816
|
|
|
3772
|
|
|
|
|
|
|
Math::Prime::Util::factor_exp($phi); |
|
3773
|
|
|
|
|
|
|
#print "phi: $phi factors: ", join(",",factor($phi)), "\n"; |
|
3774
|
|
|
|
|
|
|
#print " exponents: ", join(",", @exp), "\n"; |
|
3775
|
4
|
|
|
|
|
184
|
while (1) { |
|
3776
|
97
|
|
|
|
|
136
|
my $fail = 0; |
|
3777
|
97
|
|
|
|
|
125
|
do { $a++ } while Math::Prime::Util::kronecker($a,$n) == 0; |
|
|
98
|
|
|
|
|
273
|
|
|
3778
|
97
|
50
|
|
|
|
180
|
return if $a >= $n; |
|
3779
|
97
|
|
|
|
|
327
|
foreach my $f (@exp) { |
|
3780
|
137
|
100
|
|
|
|
2118
|
if (Math::Prime::Util::powmod($a,$f,$n) == 1) { |
|
3781
|
93
|
|
|
|
|
3744
|
$fail = 1; |
|
3782
|
93
|
|
|
|
|
136
|
last; |
|
3783
|
|
|
|
|
|
|
} |
|
3784
|
|
|
|
|
|
|
} |
|
3785
|
97
|
100
|
|
|
|
487
|
return $a if !$fail; |
|
3786
|
|
|
|
|
|
|
} |
|
3787
|
|
|
|
|
|
|
} |
|
3788
|
|
|
|
|
|
|
|
|
3789
|
|
|
|
|
|
|
|
|
3790
|
|
|
|
|
|
|
# Find first D in sequence (5,-7,9,-11,13,-15,...) where (D|N) == -1 |
|
3791
|
|
|
|
|
|
|
sub _lucas_selfridge_params { |
|
3792
|
11
|
|
|
11
|
|
22
|
my($n) = @_; |
|
3793
|
|
|
|
|
|
|
|
|
3794
|
|
|
|
|
|
|
# D is typically quite small: 67 max for N < 10^19. However, it is |
|
3795
|
|
|
|
|
|
|
# theoretically possible D could grow unreasonably. I'm giving up at 4000M. |
|
3796
|
11
|
|
|
|
|
18
|
my $d = 5; |
|
3797
|
11
|
|
|
|
|
20
|
my $sign = 1; |
|
3798
|
11
|
|
|
|
|
18
|
while (1) { |
|
3799
|
32
|
100
|
|
|
|
88
|
my $gcd = (ref($n) eq 'Math::BigInt') ? Math::BigInt::bgcd($d, $n) |
|
3800
|
|
|
|
|
|
|
: _gcd_ui($d, $n); |
|
3801
|
32
|
50
|
33
|
|
|
1740
|
return (0,0,0) if $gcd > 1 && $gcd != $n; # Found divisor $d |
|
3802
|
32
|
|
|
|
|
832
|
my $j = kronecker($d * $sign, $n); |
|
3803
|
32
|
100
|
|
|
|
68
|
last if $j == -1; |
|
3804
|
21
|
|
|
|
|
31
|
$d += 2; |
|
3805
|
21
|
50
|
|
|
|
42
|
croak "Could not find Jacobi sequence for $n" if $d > 4_000_000_000; |
|
3806
|
21
|
|
|
|
|
40
|
$sign = -$sign; |
|
3807
|
|
|
|
|
|
|
} |
|
3808
|
11
|
|
|
|
|
22
|
my $D = $sign * $d; |
|
3809
|
11
|
|
|
|
|
16
|
my $P = 1; |
|
3810
|
11
|
|
|
|
|
26
|
my $Q = int( (1 - $D) / 4 ); |
|
3811
|
11
|
|
|
|
|
32
|
($P, $Q, $D) |
|
3812
|
|
|
|
|
|
|
} |
|
3813
|
|
|
|
|
|
|
|
|
3814
|
|
|
|
|
|
|
sub _lucas_extrastrong_params { |
|
3815
|
198
|
|
|
198
|
|
619
|
my($n, $increment) = @_; |
|
3816
|
198
|
100
|
|
|
|
878
|
$increment = 1 unless defined $increment; |
|
3817
|
|
|
|
|
|
|
|
|
3818
|
198
|
|
|
|
|
591
|
my ($P, $Q, $D) = (3, 1, 5); |
|
3819
|
198
|
|
|
|
|
431
|
while (1) { |
|
3820
|
360
|
100
|
|
|
|
1684
|
my $gcd = (ref($n) eq 'Math::BigInt') ? Math::BigInt::bgcd($D, $n) |
|
3821
|
|
|
|
|
|
|
: _gcd_ui($D, $n); |
|
3822
|
360
|
50
|
33
|
|
|
67567
|
return (0,0,0) if $gcd > 1 && $gcd != $n; # Found divisor $d |
|
3823
|
360
|
100
|
|
|
|
30229
|
last if kronecker($D, $n) == -1; |
|
3824
|
162
|
|
|
|
|
353
|
$P += $increment; |
|
3825
|
162
|
50
|
|
|
|
405
|
croak "Could not find Jacobi sequence for $n" if $P > 65535; |
|
3826
|
162
|
|
|
|
|
418
|
$D = $P*$P - 4; |
|
3827
|
|
|
|
|
|
|
} |
|
3828
|
198
|
|
|
|
|
929
|
($P, $Q, $D); |
|
3829
|
|
|
|
|
|
|
} |
|
3830
|
|
|
|
|
|
|
|
|
3831
|
|
|
|
|
|
|
# returns U_k, V_k, Q_k all mod n |
|
3832
|
|
|
|
|
|
|
sub lucas_sequence { |
|
3833
|
156
|
|
|
156
|
0
|
743
|
my($n, $P, $Q, $k) = @_; |
|
3834
|
|
|
|
|
|
|
|
|
3835
|
156
|
50
|
|
|
|
549
|
croak "lucas_sequence: n must be >= 2" if $n < 2; |
|
3836
|
156
|
50
|
|
|
|
16820
|
croak "lucas_sequence: k must be >= 0" if $k < 0; |
|
3837
|
156
|
50
|
|
|
|
23933
|
croak "lucas_sequence: P out of range" if abs($P) >= $n; |
|
3838
|
156
|
50
|
|
|
|
12257
|
croak "lucas_sequence: Q out of range" if abs($Q) >= $n; |
|
3839
|
|
|
|
|
|
|
|
|
3840
|
156
|
50
|
33
|
|
|
10342
|
if ($Math::Prime::Util::_GMPfunc{"lucas_sequence"} && $Math::Prime::Util::GMP::VERSION >= 0.30) { |
|
3841
|
0
|
0
|
|
|
|
0
|
return map { ($_ > ''.~0) ? Math::BigInt->new(''.$_) : $_ } |
|
|
0
|
|
|
|
|
0
|
|
|
3842
|
|
|
|
|
|
|
Math::Prime::Util::GMP::lucas_sequence($n, $P, $Q, $k); |
|
3843
|
|
|
|
|
|
|
} |
|
3844
|
|
|
|
|
|
|
|
|
3845
|
156
|
100
|
|
|
|
658
|
$n = Math::BigInt->new("$n") unless ref($n) eq 'Math::BigInt'; |
|
3846
|
|
|
|
|
|
|
|
|
3847
|
156
|
|
|
|
|
1083
|
my $ZERO = $n->copy->bzero; |
|
3848
|
156
|
100
|
|
|
|
7795
|
$P = $ZERO+$P unless ref($P) eq 'Math::BigInt'; |
|
3849
|
156
|
100
|
|
|
|
25274
|
$Q = $ZERO+$Q unless ref($Q) eq 'Math::BigInt'; |
|
3850
|
156
|
|
|
|
|
22504
|
my $D = $P*$P - BTWO*BTWO*$Q; |
|
3851
|
156
|
50
|
|
|
|
45740
|
if ($D->is_zero) { |
|
3852
|
0
|
|
|
|
|
0
|
my $S = ($ZERO+$P) >> 1; |
|
3853
|
0
|
|
|
|
|
0
|
my $U = $S->copy->bmodpow($k-1,$n)->bmul($k)->bmod($n); |
|
3854
|
0
|
|
|
|
|
0
|
my $V = $S->copy->bmodpow($k,$n)->bmul(BTWO)->bmod($n); |
|
3855
|
0
|
|
|
|
|
0
|
my $Qk = ($ZERO+$Q)->bmodpow($k, $n); |
|
3856
|
0
|
|
|
|
|
0
|
return ($U, $V, $Qk); |
|
3857
|
|
|
|
|
|
|
} |
|
3858
|
156
|
|
|
|
|
2357
|
my $U = BONE->copy; |
|
3859
|
156
|
|
|
|
|
3694
|
my $V = $P->copy; |
|
3860
|
156
|
|
|
|
|
3230
|
my $Qk = $Q->copy; |
|
3861
|
|
|
|
|
|
|
|
|
3862
|
156
|
50
|
|
|
|
3298
|
return (BZERO->copy, BTWO->copy, $Qk) if $k == 0; |
|
3863
|
156
|
100
|
|
|
|
24849
|
$k = Math::BigInt->new("$k") unless ref($k) eq 'Math::BigInt'; |
|
3864
|
156
|
|
|
|
|
1153
|
my $kstr = substr($k->as_bin, 2); |
|
3865
|
156
|
|
|
|
|
51796
|
my $bpos = 0; |
|
3866
|
|
|
|
|
|
|
|
|
3867
|
156
|
50
|
|
|
|
531
|
if (($n % 2)==0) { |
|
|
|
100
|
|
|
|
|
|
|
3868
|
0
|
|
|
|
|
0
|
$P->bmod($n); |
|
3869
|
0
|
|
|
|
|
0
|
$Q->bmod($n); |
|
3870
|
0
|
|
|
|
|
0
|
my($Uh,$Vl, $Vh, $Ql, $Qh) = (BONE->copy, BTWO->copy, $P->copy, BONE->copy, BONE->copy); |
|
3871
|
0
|
|
|
|
|
0
|
my ($b,$s) = (length($kstr)-1, 0); |
|
3872
|
0
|
0
|
|
|
|
0
|
if ($kstr =~ /(0+)$/) { $s = length($1); } |
|
|
0
|
|
|
|
|
0
|
|
|
3873
|
0
|
|
|
|
|
0
|
for my $bpos (0 .. $b-$s-1) { |
|
3874
|
0
|
|
|
|
|
0
|
$Ql->bmul($Qh)->bmod($n); |
|
3875
|
0
|
0
|
|
|
|
0
|
if (substr($kstr,$bpos,1)) { |
|
3876
|
0
|
|
|
|
|
0
|
$Qh = $Ql * $Q; |
|
3877
|
0
|
|
|
|
|
0
|
$Uh->bmul($Vh)->bmod($n); |
|
3878
|
0
|
|
|
|
|
0
|
$Vl->bmul($Vh)->bsub($P * $Ql)->bmod($n); |
|
3879
|
0
|
|
|
|
|
0
|
$Vh->bmul($Vh)->bsub(BTWO * $Qh)->bmod($n); |
|
3880
|
|
|
|
|
|
|
} else { |
|
3881
|
0
|
|
|
|
|
0
|
$Qh = $Ql->copy; |
|
3882
|
0
|
|
|
|
|
0
|
$Uh->bmul($Vl)->bsub($Ql)->bmod($n); |
|
3883
|
0
|
|
|
|
|
0
|
$Vh->bmul($Vl)->bsub($P * $Ql)->bmod($n); |
|
3884
|
0
|
|
|
|
|
0
|
$Vl->bmul($Vl)->bsub(BTWO * $Ql)->bmod($n); |
|
3885
|
|
|
|
|
|
|
} |
|
3886
|
|
|
|
|
|
|
} |
|
3887
|
0
|
|
|
|
|
0
|
$Ql->bmul($Qh); |
|
3888
|
0
|
|
|
|
|
0
|
$Qh = $Ql * $Q; |
|
3889
|
0
|
|
|
|
|
0
|
$Uh->bmul($Vl)->bsub($Ql)->bmod($n); |
|
3890
|
0
|
|
|
|
|
0
|
$Vl->bmul($Vh)->bsub($P * $Ql)->bmod($n); |
|
3891
|
0
|
|
|
|
|
0
|
$Ql->bmul($Qh)->bmod($n); |
|
3892
|
0
|
|
|
|
|
0
|
for (1 .. $s) { |
|
3893
|
0
|
|
|
|
|
0
|
$Uh->bmul($Vl)->bmod($n); |
|
3894
|
0
|
|
|
|
|
0
|
$Vl->bmul($Vl)->bsub(BTWO * $Ql)->bmod($n); |
|
3895
|
0
|
|
|
|
|
0
|
$Ql->bmul($Ql)->bmod($n); |
|
3896
|
|
|
|
|
|
|
} |
|
3897
|
0
|
|
|
|
|
0
|
($U, $V, $Qk) = ($Uh, $Vl, $Ql); |
|
3898
|
|
|
|
|
|
|
} elsif ($Q->is_one) { |
|
3899
|
142
|
|
|
|
|
51250
|
my $Dinverse = $D->copy->bmodinv($n); |
|
3900
|
142
|
50
|
33
|
|
|
82927
|
if ($P > BTWO && !$Dinverse->is_nan) { |
|
3901
|
|
|
|
|
|
|
# Calculate V_k with U=V_{k+1} |
|
3902
|
142
|
|
|
|
|
6510
|
$U = $P->copy->bmul($P)->bsub(BTWO)->bmod($n); |
|
3903
|
142
|
|
|
|
|
38363
|
while (++$bpos < length($kstr)) { |
|
3904
|
11913
|
100
|
|
|
|
20264283
|
if (substr($kstr,$bpos,1)) { |
|
3905
|
5892
|
|
|
|
|
15971
|
$V->bmul($U)->bsub($P )->bmod($n); |
|
3906
|
5892
|
|
|
|
|
10226855
|
$U->bmul($U)->bsub(BTWO)->bmod($n); |
|
3907
|
|
|
|
|
|
|
} else { |
|
3908
|
6021
|
|
|
|
|
15821
|
$U->bmul($V)->bsub($P )->bmod($n); |
|
3909
|
6021
|
|
|
|
|
9913670
|
$V->bmul($V)->bsub(BTWO)->bmod($n); |
|
3910
|
|
|
|
|
|
|
} |
|
3911
|
|
|
|
|
|
|
} |
|
3912
|
|
|
|
|
|
|
# Crandall and Pomerance eq 3.13: U_n = D^-1 (2V_{n+1} - PV_n) |
|
3913
|
142
|
|
|
|
|
80786
|
$U = $Dinverse * (BTWO*$U - $P*$V); |
|
3914
|
|
|
|
|
|
|
} else { |
|
3915
|
0
|
|
|
|
|
0
|
while (++$bpos < length($kstr)) { |
|
3916
|
0
|
|
|
|
|
0
|
$U->bmul($V)->bmod($n); |
|
3917
|
0
|
|
|
|
|
0
|
$V->bmul($V)->bsub(BTWO)->bmod($n); |
|
3918
|
0
|
0
|
|
|
|
0
|
if (substr($kstr,$bpos,1)) { |
|
3919
|
0
|
|
|
|
|
0
|
my $T1 = $U->copy->bmul($D); |
|
3920
|
0
|
|
|
|
|
0
|
$U->bmul($P)->badd( $V); |
|
3921
|
0
|
0
|
|
|
|
0
|
$U->badd($n) if $U->is_odd; |
|
3922
|
0
|
|
|
|
|
0
|
$U->brsft(BONE); |
|
3923
|
0
|
|
|
|
|
0
|
$V->bmul($P)->badd($T1); |
|
3924
|
0
|
0
|
|
|
|
0
|
$V->badd($n) if $V->is_odd; |
|
3925
|
0
|
|
|
|
|
0
|
$V->brsft(BONE); |
|
3926
|
|
|
|
|
|
|
} |
|
3927
|
|
|
|
|
|
|
} |
|
3928
|
|
|
|
|
|
|
} |
|
3929
|
|
|
|
|
|
|
} else { |
|
3930
|
14
|
100
|
|
|
|
5063
|
my $qsign = ($Q == -1) ? -1 : 0; |
|
3931
|
14
|
|
|
|
|
1398
|
while (++$bpos < length($kstr)) { |
|
3932
|
427
|
|
|
|
|
139126
|
$U->bmul($V)->bmod($n); |
|
3933
|
427
|
100
|
|
|
|
134922
|
if ($qsign == 1) { $V->bmul($V)->bsub(BTWO)->bmod($n); } |
|
|
19
|
100
|
|
|
|
41
|
|
|
3934
|
20
|
|
|
|
|
77
|
elsif ($qsign == -1) { $V->bmul($V)->badd(BTWO)->bmod($n); } |
|
3935
|
388
|
|
|
|
|
891
|
else { $V->bmul($V)->bsub($Qk->copy->blsft(BONE))->bmod($n); } |
|
3936
|
427
|
100
|
|
|
|
226178
|
if (substr($kstr,$bpos,1)) { |
|
3937
|
197
|
|
|
|
|
522
|
my $T1 = $U->copy->bmul($D); |
|
3938
|
197
|
|
|
|
|
16110
|
$U->bmul($P)->badd( $V); |
|
3939
|
197
|
100
|
|
|
|
23572
|
$U->badd($n) if $U->is_odd; |
|
3940
|
197
|
|
|
|
|
8464
|
$U->brsft(BONE); |
|
3941
|
|
|
|
|
|
|
|
|
3942
|
197
|
|
|
|
|
20541
|
$V->bmul($P)->badd($T1); |
|
3943
|
197
|
100
|
|
|
|
26899
|
$V->badd($n) if $V->is_odd; |
|
3944
|
197
|
|
|
|
|
6618
|
$V->brsft(BONE); |
|
3945
|
|
|
|
|
|
|
|
|
3946
|
197
|
100
|
|
|
|
25761
|
if ($qsign != 0) { $qsign = -1; } |
|
|
19
|
|
|
|
|
64
|
|
|
3947
|
178
|
|
|
|
|
492
|
else { $Qk->bmul($Qk)->bmul($Q)->bmod($n); } |
|
3948
|
|
|
|
|
|
|
} else { |
|
3949
|
230
|
100
|
|
|
|
495
|
if ($qsign != 0) { $qsign = 1; } |
|
|
20
|
|
|
|
|
50
|
|
|
3950
|
210
|
|
|
|
|
498
|
else { $Qk->bmul($Qk)->bmod($n); } |
|
3951
|
|
|
|
|
|
|
} |
|
3952
|
|
|
|
|
|
|
} |
|
3953
|
14
|
100
|
|
|
|
3213
|
if ($qsign == 1) { $Qk->bneg; } |
|
|
1
|
100
|
|
|
|
7
|
|
|
3954
|
2
|
|
|
|
|
8
|
elsif ($qsign == -1) { $Qk = $n->copy->bdec; } |
|
3955
|
|
|
|
|
|
|
} |
|
3956
|
156
|
|
|
|
|
77502
|
$U->bmod($n); |
|
3957
|
156
|
|
|
|
|
45895
|
$V->bmod($n); |
|
3958
|
156
|
|
|
|
|
18886
|
return ($U, $V, $Qk); |
|
3959
|
|
|
|
|
|
|
} |
|
3960
|
|
|
|
|
|
|
sub _lucasuv { |
|
3961
|
0
|
|
|
0
|
|
0
|
my($P, $Q, $k) = @_; |
|
3962
|
|
|
|
|
|
|
|
|
3963
|
0
|
0
|
|
|
|
0
|
croak "lucas_sequence: k must be >= 0" if $k < 0; |
|
3964
|
0
|
0
|
|
|
|
0
|
return (0,2) if $k == 0; |
|
3965
|
|
|
|
|
|
|
|
|
3966
|
0
|
0
|
|
|
|
0
|
$P = Math::BigInt->new("$P") unless ref($P) eq 'Math::BigInt'; |
|
3967
|
0
|
0
|
|
|
|
0
|
$Q = Math::BigInt->new("$Q") unless ref($Q) eq 'Math::BigInt'; |
|
3968
|
|
|
|
|
|
|
|
|
3969
|
|
|
|
|
|
|
# Simple way, very slow as k increases: |
|
3970
|
|
|
|
|
|
|
#my($U0, $U1) = (BZERO->copy, BONE->copy); |
|
3971
|
|
|
|
|
|
|
#my($V0, $V1) = (BTWO->copy, Math::BigInt->new("$P")); |
|
3972
|
|
|
|
|
|
|
#for (2 .. $k) { |
|
3973
|
|
|
|
|
|
|
# ($U0,$U1) = ($U1, $P*$U1 - $Q*$U0); |
|
3974
|
|
|
|
|
|
|
# ($V0,$V1) = ($V1, $P*$V1 - $Q*$V0); |
|
3975
|
|
|
|
|
|
|
#} |
|
3976
|
|
|
|
|
|
|
#return ($U1, $V1); |
|
3977
|
|
|
|
|
|
|
|
|
3978
|
0
|
|
|
|
|
0
|
my($Uh,$Vl, $Vh, $Ql, $Qh) = (BONE->copy, BTWO->copy, $P->copy, BONE->copy, BONE->copy); |
|
3979
|
0
|
0
|
|
|
|
0
|
$k = Math::BigInt->new("$k") unless ref($k) eq 'Math::BigInt'; |
|
3980
|
0
|
|
|
|
|
0
|
my $kstr = substr($k->as_bin, 2); |
|
3981
|
0
|
|
|
|
|
0
|
my ($n,$s) = (length($kstr)-1, 0); |
|
3982
|
0
|
0
|
|
|
|
0
|
if ($kstr =~ /(0+)$/) { $s = length($1); } |
|
|
0
|
|
|
|
|
0
|
|
|
3983
|
|
|
|
|
|
|
|
|
3984
|
0
|
0
|
|
|
|
0
|
if ($Q == -1) { |
|
3985
|
|
|
|
|
|
|
# This could be simplified, and it's running 10x slower than it should. |
|
3986
|
0
|
|
|
|
|
0
|
my ($ql,$qh) = (1,1); |
|
3987
|
0
|
|
|
|
|
0
|
for my $bpos (0 .. $n-$s-1) { |
|
3988
|
0
|
|
|
|
|
0
|
$ql *= $qh; |
|
3989
|
0
|
0
|
|
|
|
0
|
if (substr($kstr,$bpos,1)) { |
|
3990
|
0
|
|
|
|
|
0
|
$qh = -$ql; |
|
3991
|
0
|
|
|
|
|
0
|
$Uh->bmul($Vh); |
|
3992
|
0
|
0
|
|
|
|
0
|
if ($ql == 1) { |
|
3993
|
0
|
|
|
|
|
0
|
$Vl->bmul($Vh)->bsub( $P ); |
|
3994
|
0
|
|
|
|
|
0
|
$Vh->bmul($Vh)->badd( BTWO ); |
|
3995
|
|
|
|
|
|
|
} else { |
|
3996
|
0
|
|
|
|
|
0
|
$Vl->bmul($Vh)->badd( $P ); |
|
3997
|
0
|
|
|
|
|
0
|
$Vh->bmul($Vh)->bsub( BTWO ); |
|
3998
|
|
|
|
|
|
|
} |
|
3999
|
|
|
|
|
|
|
} else { |
|
4000
|
0
|
|
|
|
|
0
|
$qh = $ql; |
|
4001
|
0
|
0
|
|
|
|
0
|
if ($ql == 1) { |
|
4002
|
0
|
|
|
|
|
0
|
$Uh->bmul($Vl)->bdec; |
|
4003
|
0
|
|
|
|
|
0
|
$Vh->bmul($Vl)->bsub($P); |
|
4004
|
0
|
|
|
|
|
0
|
$Vl->bmul($Vl)->bsub(BTWO); |
|
4005
|
|
|
|
|
|
|
} else { |
|
4006
|
0
|
|
|
|
|
0
|
$Uh->bmul($Vl)->binc; |
|
4007
|
0
|
|
|
|
|
0
|
$Vh->bmul($Vl)->badd($P); |
|
4008
|
0
|
|
|
|
|
0
|
$Vl->bmul($Vl)->badd(BTWO); |
|
4009
|
|
|
|
|
|
|
} |
|
4010
|
|
|
|
|
|
|
} |
|
4011
|
|
|
|
|
|
|
} |
|
4012
|
0
|
|
|
|
|
0
|
$ql *= $qh; |
|
4013
|
0
|
|
|
|
|
0
|
$qh = -$ql; |
|
4014
|
0
|
0
|
|
|
|
0
|
if ($ql == 1) { |
|
4015
|
0
|
|
|
|
|
0
|
$Uh->bmul($Vl)->bdec; |
|
4016
|
0
|
|
|
|
|
0
|
$Vl->bmul($Vh)->bsub($P); |
|
4017
|
|
|
|
|
|
|
} else { |
|
4018
|
0
|
|
|
|
|
0
|
$Uh->bmul($Vl)->binc; |
|
4019
|
0
|
|
|
|
|
0
|
$Vl->bmul($Vh)->badd($P); |
|
4020
|
|
|
|
|
|
|
} |
|
4021
|
0
|
|
|
|
|
0
|
$ql *= $qh; |
|
4022
|
0
|
|
|
|
|
0
|
for (1 .. $s) { |
|
4023
|
0
|
|
|
|
|
0
|
$Uh->bmul($Vl); |
|
4024
|
0
|
0
|
|
|
|
0
|
if ($ql == 1) { $Vl->bmul($Vl)->bsub(BTWO); $ql *= $ql; } |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
4025
|
0
|
|
|
|
|
0
|
else { $Vl->bmul($Vl)->badd(BTWO); $ql *= $ql; } |
|
|
0
|
|
|
|
|
0
|
|
|
4026
|
|
|
|
|
|
|
} |
|
4027
|
0
|
0
|
|
|
|
0
|
return map { ($_ > ''.~0) ? Math::BigInt->new(''.$_) : $_ } ($Uh, $Vl); |
|
|
0
|
|
|
|
|
0
|
|
|
4028
|
|
|
|
|
|
|
} |
|
4029
|
|
|
|
|
|
|
|
|
4030
|
0
|
|
|
|
|
0
|
for my $bpos (0 .. $n-$s-1) { |
|
4031
|
0
|
|
|
|
|
0
|
$Ql->bmul($Qh); |
|
4032
|
0
|
0
|
|
|
|
0
|
if (substr($kstr,$bpos,1)) { |
|
4033
|
0
|
|
|
|
|
0
|
$Qh = $Ql * $Q; |
|
4034
|
|
|
|
|
|
|
#$Uh = $Uh * $Vh; |
|
4035
|
|
|
|
|
|
|
#$Vl = $Vh * $Vl - $P * $Ql; |
|
4036
|
|
|
|
|
|
|
#$Vh = $Vh * $Vh - BTWO * $Qh; |
|
4037
|
0
|
|
|
|
|
0
|
$Uh->bmul($Vh); |
|
4038
|
0
|
|
|
|
|
0
|
$Vl->bmul($Vh)->bsub($P * $Ql); |
|
4039
|
0
|
|
|
|
|
0
|
$Vh->bmul($Vh)->bsub(BTWO * $Qh); |
|
4040
|
|
|
|
|
|
|
} else { |
|
4041
|
0
|
|
|
|
|
0
|
$Qh = $Ql->copy; |
|
4042
|
|
|
|
|
|
|
#$Uh = $Uh * $Vl - $Ql; |
|
4043
|
|
|
|
|
|
|
#$Vh = $Vh * $Vl - $P * $Ql; |
|
4044
|
|
|
|
|
|
|
#$Vl = $Vl * $Vl - BTWO * $Ql; |
|
4045
|
0
|
|
|
|
|
0
|
$Uh->bmul($Vl)->bsub($Ql); |
|
4046
|
0
|
|
|
|
|
0
|
$Vh->bmul($Vl)->bsub($P * $Ql); |
|
4047
|
0
|
|
|
|
|
0
|
$Vl->bmul($Vl)->bsub(BTWO * $Ql); |
|
4048
|
|
|
|
|
|
|
} |
|
4049
|
|
|
|
|
|
|
} |
|
4050
|
0
|
|
|
|
|
0
|
$Ql->bmul($Qh); |
|
4051
|
0
|
|
|
|
|
0
|
$Qh = $Ql * $Q; |
|
4052
|
0
|
|
|
|
|
0
|
$Uh->bmul($Vl)->bsub($Ql); |
|
4053
|
0
|
|
|
|
|
0
|
$Vl->bmul($Vh)->bsub($P * $Ql); |
|
4054
|
0
|
|
|
|
|
0
|
$Ql->bmul($Qh); |
|
4055
|
0
|
|
|
|
|
0
|
for (1 .. $s) { |
|
4056
|
0
|
|
|
|
|
0
|
$Uh->bmul($Vl); |
|
4057
|
0
|
|
|
|
|
0
|
$Vl->bmul($Vl)->bsub(BTWO * $Ql); |
|
4058
|
0
|
|
|
|
|
0
|
$Ql->bmul($Ql); |
|
4059
|
|
|
|
|
|
|
} |
|
4060
|
0
|
0
|
|
|
|
0
|
return map { ($_ > ''.~0) ? Math::BigInt->new(''.$_) : $_ } ($Uh, $Vl, $Ql); |
|
|
0
|
|
|
|
|
0
|
|
|
4061
|
|
|
|
|
|
|
} |
|
4062
|
0
|
|
|
0
|
0
|
0
|
sub lucasu { (_lucasuv(@_))[0] } |
|
4063
|
0
|
|
|
0
|
0
|
0
|
sub lucasv { (_lucasuv(@_))[1] } |
|
4064
|
|
|
|
|
|
|
|
|
4065
|
|
|
|
|
|
|
sub is_lucas_pseudoprime { |
|
4066
|
5
|
|
|
5
|
0
|
1665
|
my($n) = @_; |
|
4067
|
|
|
|
|
|
|
|
|
4068
|
5
|
50
|
|
|
|
22
|
return 0+($n >= 2) if $n < 4; |
|
4069
|
5
|
50
|
33
|
|
|
50
|
return 0 if ($n % 2) == 0 || _is_perfect_square($n); |
|
4070
|
|
|
|
|
|
|
|
|
4071
|
5
|
|
|
|
|
13
|
my ($P, $Q, $D) = _lucas_selfridge_params($n); |
|
4072
|
5
|
50
|
|
|
|
13
|
return 0 if $D == 0; # We found a divisor in the sequence |
|
4073
|
5
|
50
|
|
|
|
14
|
die "Lucas parameter error: $D, $P, $Q\n" if ($D != $P*$P - 4*$Q); |
|
4074
|
|
|
|
|
|
|
|
|
4075
|
5
|
|
|
|
|
15
|
my($U, $V, $Qk) = lucas_sequence($n, $P, $Q, $n+1); |
|
4076
|
5
|
50
|
|
|
|
21
|
return ($U == 0) ? 1 : 0; |
|
4077
|
|
|
|
|
|
|
} |
|
4078
|
|
|
|
|
|
|
|
|
4079
|
|
|
|
|
|
|
sub is_strong_lucas_pseudoprime { |
|
4080
|
6
|
|
|
6
|
0
|
999
|
my($n) = @_; |
|
4081
|
|
|
|
|
|
|
|
|
4082
|
6
|
50
|
|
|
|
23
|
return 0+($n >= 2) if $n < 4; |
|
4083
|
6
|
50
|
33
|
|
|
158
|
return 0 if ($n % 2) == 0 || _is_perfect_square($n); |
|
4084
|
|
|
|
|
|
|
|
|
4085
|
6
|
|
|
|
|
23
|
my ($P, $Q, $D) = _lucas_selfridge_params($n); |
|
4086
|
6
|
50
|
|
|
|
16
|
return 0 if $D == 0; # We found a divisor in the sequence |
|
4087
|
6
|
50
|
|
|
|
17
|
die "Lucas parameter error: $D, $P, $Q\n" if ($D != $P*$P - 4*$Q); |
|
4088
|
|
|
|
|
|
|
|
|
4089
|
6
|
|
|
|
|
14
|
my $m = $n+1; |
|
4090
|
6
|
|
|
|
|
185
|
my($s, $k) = (0, $m); |
|
4091
|
6
|
|
66
|
|
|
26
|
while ( $k > 0 && !($k % 2) ) { |
|
4092
|
19
|
|
|
|
|
975
|
$s++; |
|
4093
|
19
|
|
|
|
|
55
|
$k >>= 1; |
|
4094
|
|
|
|
|
|
|
} |
|
4095
|
6
|
|
|
|
|
599
|
my($U, $V, $Qk) = lucas_sequence($n, $P, $Q, $k); |
|
4096
|
|
|
|
|
|
|
|
|
4097
|
6
|
100
|
|
|
|
24
|
return 1 if $U == 0; |
|
4098
|
4
|
50
|
|
|
|
835
|
$V = Math::BigInt->new("$V") unless ref($V) eq 'Math::BigInt'; |
|
4099
|
4
|
50
|
|
|
|
16
|
$Qk = Math::BigInt->new("$Qk") unless ref($Qk) eq 'Math::BigInt'; |
|
4100
|
4
|
|
|
|
|
15
|
foreach my $r (0 .. $s-1) { |
|
4101
|
11
|
100
|
|
|
|
1590
|
return 1 if $V->is_zero; |
|
4102
|
8
|
100
|
|
|
|
112
|
if ($r < ($s-1)) { |
|
4103
|
7
|
|
|
|
|
21
|
$V->bmul($V)->bsub(BTWO*$Qk)->bmod($n); |
|
4104
|
7
|
|
|
|
|
3210
|
$Qk->bmul($Qk)->bmod($n); |
|
4105
|
|
|
|
|
|
|
} |
|
4106
|
|
|
|
|
|
|
} |
|
4107
|
1
|
|
|
|
|
15
|
return 0; |
|
4108
|
|
|
|
|
|
|
} |
|
4109
|
|
|
|
|
|
|
|
|
4110
|
|
|
|
|
|
|
sub is_extra_strong_lucas_pseudoprime { |
|
4111
|
142
|
|
|
142
|
0
|
2940
|
my($n) = @_; |
|
4112
|
|
|
|
|
|
|
|
|
4113
|
142
|
50
|
|
|
|
647
|
return 0+($n >= 2) if $n < 4; |
|
4114
|
142
|
50
|
33
|
|
|
21468
|
return 0 if ($n % 2) == 0 || _is_perfect_square($n); |
|
4115
|
|
|
|
|
|
|
|
|
4116
|
142
|
|
|
|
|
864
|
my ($P, $Q, $D) = _lucas_extrastrong_params($n); |
|
4117
|
142
|
50
|
|
|
|
575
|
return 0 if $D == 0; # We found a divisor in the sequence |
|
4118
|
142
|
50
|
|
|
|
579
|
die "Lucas parameter error: $D, $P, $Q\n" if ($D != $P*$P - 4*$Q); |
|
4119
|
|
|
|
|
|
|
|
|
4120
|
|
|
|
|
|
|
# We have to convert n to a bigint or Math::BigInt::GMP's stupid set_si bug |
|
4121
|
|
|
|
|
|
|
# (RT 71548) will hit us and make the test $V == $n-2 always return false. |
|
4122
|
142
|
100
|
|
|
|
632
|
$n = Math::BigInt->new("$n") unless ref($n) eq 'Math::BigInt'; |
|
4123
|
|
|
|
|
|
|
|
|
4124
|
142
|
|
|
|
|
841
|
my($s, $k) = (0, $n->copy->binc); |
|
4125
|
142
|
|
66
|
|
|
10643
|
while ($k->is_even && !$k->is_zero) { |
|
4126
|
2772
|
|
|
|
|
366968
|
$s++; |
|
4127
|
2772
|
|
|
|
|
5779
|
$k->brsft(BONE); |
|
4128
|
|
|
|
|
|
|
} |
|
4129
|
|
|
|
|
|
|
|
|
4130
|
142
|
|
|
|
|
17789
|
my($U, $V, $Qk) = lucas_sequence($n, $P, $Q, $k); |
|
4131
|
|
|
|
|
|
|
|
|
4132
|
142
|
50
|
|
|
|
718
|
$V = Math::BigInt->new("$V") unless ref($V) eq 'Math::BigInt'; |
|
4133
|
142
|
50
|
66
|
|
|
661
|
return 1 if $U == 0 && ($V == BTWO || $V == ($n - BTWO)); |
|
|
|
|
100
|
|
|
|
|
|
4134
|
74
|
|
|
|
|
18462
|
foreach my $r (0 .. $s-2) { |
|
4135
|
2628
|
100
|
|
|
|
8271756
|
return 1 if $V->is_zero; |
|
4136
|
2570
|
|
|
|
|
35173
|
$V->bmul($V)->bsub(BTWO)->bmod($n); |
|
4137
|
|
|
|
|
|
|
} |
|
4138
|
16
|
|
|
|
|
144
|
return 0; |
|
4139
|
|
|
|
|
|
|
} |
|
4140
|
|
|
|
|
|
|
|
|
4141
|
|
|
|
|
|
|
sub is_almost_extra_strong_lucas_pseudoprime { |
|
4142
|
56
|
|
|
56
|
0
|
2284
|
my($n, $increment) = @_; |
|
4143
|
56
|
100
|
|
|
|
182
|
$increment = 1 unless defined $increment; |
|
4144
|
|
|
|
|
|
|
|
|
4145
|
56
|
50
|
|
|
|
215
|
return 0+($n >= 2) if $n < 4; |
|
4146
|
56
|
50
|
33
|
|
|
347
|
return 0 if ($n % 2) == 0 || _is_perfect_square($n); |
|
4147
|
|
|
|
|
|
|
|
|
4148
|
56
|
|
|
|
|
271
|
my ($P, $Q, $D) = _lucas_extrastrong_params($n, $increment); |
|
4149
|
56
|
50
|
|
|
|
148
|
return 0 if $D == 0; # We found a divisor in the sequence |
|
4150
|
56
|
50
|
|
|
|
218
|
die "Lucas parameter error: $D, $P, $Q\n" if ($D != $P*$P - 4*$Q); |
|
4151
|
|
|
|
|
|
|
|
|
4152
|
56
|
50
|
|
|
|
617
|
$n = Math::BigInt->new("$n") unless ref($n) eq 'Math::BigInt'; |
|
4153
|
|
|
|
|
|
|
|
|
4154
|
56
|
|
|
|
|
5010
|
my $ZERO = $n->copy->bzero; |
|
4155
|
56
|
|
|
|
|
3048
|
my $TWO = $ZERO->copy->binc->binc; |
|
4156
|
56
|
|
|
|
|
6207
|
my $V = $ZERO + $P; # V_{k} |
|
4157
|
56
|
|
|
|
|
10093
|
my $W = $ZERO + $P*$P-$TWO; # V_{k+1} |
|
4158
|
56
|
|
|
|
|
16454
|
my $kstr = substr($n->copy->binc()->as_bin, 2); |
|
4159
|
56
|
|
|
|
|
14076
|
$kstr =~ s/(0*)$//; |
|
4160
|
56
|
|
|
|
|
210
|
my $s = length($1); |
|
4161
|
56
|
|
|
|
|
130
|
my $bpos = 0; |
|
4162
|
56
|
|
|
|
|
230
|
while (++$bpos < length($kstr)) { |
|
4163
|
2468
|
100
|
|
|
|
985992
|
if (substr($kstr,$bpos,1)) { |
|
4164
|
1240
|
|
|
|
|
3142
|
$V->bmul($W)->bsub($P )->bmod($n); |
|
4165
|
1240
|
|
|
|
|
596823
|
$W->bmul($W)->bsub($TWO)->bmod($n); |
|
4166
|
|
|
|
|
|
|
} else { |
|
4167
|
1228
|
|
|
|
|
3119
|
$W->bmul($V)->bsub($P )->bmod($n); |
|
4168
|
1228
|
|
|
|
|
592465
|
$V->bmul($V)->bsub($TWO)->bmod($n); |
|
4169
|
|
|
|
|
|
|
} |
|
4170
|
|
|
|
|
|
|
} |
|
4171
|
|
|
|
|
|
|
|
|
4172
|
56
|
100
|
100
|
|
|
22757
|
return 1 if $V == 2 || $V == ($n-$TWO); |
|
4173
|
36
|
|
|
|
|
10937
|
foreach my $r (0 .. $s-2) { |
|
4174
|
39
|
100
|
|
|
|
1106
|
return 1 if $V->is_zero; |
|
4175
|
36
|
|
|
|
|
618
|
$V->bmul($V)->bsub($TWO)->bmod($n); |
|
4176
|
|
|
|
|
|
|
} |
|
4177
|
33
|
|
|
|
|
14821
|
return 0; |
|
4178
|
|
|
|
|
|
|
} |
|
4179
|
|
|
|
|
|
|
|
|
4180
|
|
|
|
|
|
|
sub is_frobenius_khashin_pseudoprime { |
|
4181
|
0
|
|
|
0
|
0
|
0
|
my($n) = @_; |
|
4182
|
0
|
0
|
|
|
|
0
|
return 0+($n >= 2) if $n < 4; |
|
4183
|
0
|
0
|
|
|
|
0
|
return 0 unless $n % 2; |
|
4184
|
0
|
0
|
|
|
|
0
|
return 0 if _is_perfect_square($n); |
|
4185
|
|
|
|
|
|
|
|
|
4186
|
0
|
0
|
|
|
|
0
|
$n = Math::BigInt->new("$n") unless ref($n) eq 'Math::BigInt'; |
|
4187
|
|
|
|
|
|
|
|
|
4188
|
0
|
|
|
|
|
0
|
my($k,$c) = (2,1); |
|
4189
|
0
|
0
|
|
|
|
0
|
if ($n % 4 == 3) { $c = $n-1; } |
|
|
0
|
0
|
|
|
|
0
|
|
|
4190
|
0
|
|
|
|
|
0
|
elsif ($n % 8 == 5) { $c = 2; } |
|
4191
|
|
|
|
|
|
|
else { |
|
4192
|
0
|
|
|
|
|
0
|
do { |
|
4193
|
0
|
|
|
|
|
0
|
$c += 2; |
|
4194
|
0
|
|
|
|
|
0
|
$k = kronecker($c, $n); |
|
4195
|
|
|
|
|
|
|
} while $k == 1; |
|
4196
|
|
|
|
|
|
|
} |
|
4197
|
0
|
0
|
0
|
|
|
0
|
return 0 if $k == 0 || ($k == 2 && !($n % 3));; |
|
|
|
|
0
|
|
|
|
|
|
4198
|
|
|
|
|
|
|
|
|
4199
|
0
|
0
|
|
|
|
0
|
my $ea = ($k == 2) ? 2 : 1; |
|
4200
|
0
|
|
|
|
|
0
|
my($ra,$rb,$a,$b,$d) = ($ea,1,$ea,1,$n-1); |
|
4201
|
0
|
|
|
|
|
0
|
while (!$d->is_zero) { |
|
4202
|
0
|
0
|
|
|
|
0
|
if ($d->is_odd()) { |
|
4203
|
0
|
|
|
|
|
0
|
($ra, $rb) = ( (($ra*$a)%$n + ((($rb*$b)%$n)*$c)%$n) % $n, |
|
4204
|
|
|
|
|
|
|
(($rb*$a)%$n + ($ra*$b)%$n) % $n ); |
|
4205
|
|
|
|
|
|
|
} |
|
4206
|
0
|
|
|
|
|
0
|
$d >>= 1; |
|
4207
|
0
|
0
|
|
|
|
0
|
if (!$d->is_zero) { |
|
4208
|
0
|
|
|
|
|
0
|
($a, $b) = ( (($a*$a)%$n + ((($b*$b)%$n)*$c)%$n) % $n, |
|
4209
|
|
|
|
|
|
|
(($b*$a)%$n + ($a*$b)%$n) % $n ); |
|
4210
|
|
|
|
|
|
|
} |
|
4211
|
|
|
|
|
|
|
} |
|
4212
|
0
|
0
|
0
|
|
|
0
|
return ($ra == $ea && $rb == $n-1) ? 1 : 0; |
|
4213
|
|
|
|
|
|
|
} |
|
4214
|
|
|
|
|
|
|
|
|
4215
|
|
|
|
|
|
|
sub is_frobenius_underwood_pseudoprime { |
|
4216
|
1
|
|
|
1
|
0
|
4
|
my($n) = @_; |
|
4217
|
1
|
50
|
|
|
|
5
|
return 0+($n >= 2) if $n < 4; |
|
4218
|
1
|
50
|
|
|
|
135
|
return 0 unless $n % 2; |
|
4219
|
|
|
|
|
|
|
|
|
4220
|
1
|
|
|
|
|
246
|
my($a, $temp1, $temp2); |
|
4221
|
1
|
50
|
|
|
|
4
|
if ($n % 4 == 3) { |
|
4222
|
1
|
|
|
|
|
288
|
$a = 0; |
|
4223
|
|
|
|
|
|
|
} else { |
|
4224
|
0
|
|
|
|
|
0
|
for ($a = 1; $a < 1000000; $a++) { |
|
4225
|
0
|
0
|
0
|
|
|
0
|
next if $a==2 || $a==4 || $a==7 || $a==8 || $a==10 || $a==14 || $a==16 || $a==18; |
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
4226
|
0
|
|
|
|
|
0
|
my $j = kronecker($a*$a - 4, $n); |
|
4227
|
0
|
0
|
|
|
|
0
|
last if $j == -1; |
|
4228
|
0
|
0
|
0
|
|
|
0
|
return 0 if $j == 0 || ($a == 20 && _is_perfect_square($n)); |
|
|
|
|
0
|
|
|
|
|
|
4229
|
|
|
|
|
|
|
} |
|
4230
|
|
|
|
|
|
|
} |
|
4231
|
1
|
|
|
|
|
16
|
$temp1 = Math::Prime::Util::gcd(($a+4)*(2*$a+5), $n); |
|
4232
|
1
|
50
|
33
|
|
|
7
|
return 0 if $temp1 != 1 && $temp1 != $n; |
|
4233
|
|
|
|
|
|
|
|
|
4234
|
1
|
50
|
|
|
|
4
|
$n = Math::BigInt->new("$n") unless ref($n) eq 'Math::BigInt'; |
|
4235
|
1
|
|
|
|
|
4
|
my $ZERO = $n->copy->bzero; |
|
4236
|
1
|
|
|
|
|
58
|
my $ONE = $ZERO->copy->binc; |
|
4237
|
1
|
|
|
|
|
80
|
my $TWO = $ONE->copy->binc; |
|
4238
|
1
|
|
|
|
|
61
|
my($s, $t) = ($ONE->copy, $TWO->copy); |
|
4239
|
|
|
|
|
|
|
|
|
4240
|
1
|
|
|
|
|
39
|
my $ap2 = $TWO + $a; |
|
4241
|
1
|
|
|
|
|
268
|
my $np1string = substr( $n->copy->binc->as_bin, 2); |
|
4242
|
1
|
|
|
|
|
480
|
my $np1len = length($np1string); |
|
4243
|
|
|
|
|
|
|
|
|
4244
|
1
|
|
|
|
|
4
|
foreach my $bit (1 .. $np1len-1) { |
|
4245
|
107
|
|
|
|
|
276
|
$temp2 = $t+$t; |
|
4246
|
107
|
50
|
|
|
|
9214
|
$temp2 += ($s * $a) if $a != 0; |
|
4247
|
107
|
|
|
|
|
260
|
$temp1 = $temp2 * $s; |
|
4248
|
107
|
|
|
|
|
18567
|
$temp2 = $t - $s; |
|
4249
|
107
|
|
|
|
|
14514
|
$s += $t; |
|
4250
|
107
|
|
|
|
|
7431
|
$t = ($s * $temp2) % $n; |
|
4251
|
107
|
|
|
|
|
55123
|
$s = $temp1 % $n; |
|
4252
|
107
|
100
|
|
|
|
35063
|
if ( substr( $np1string, $bit, 1 ) ) { |
|
4253
|
51
|
50
|
|
|
|
121
|
if ($a == 0) { $temp1 = $s + $s; } |
|
|
51
|
|
|
|
|
129
|
|
|
4254
|
0
|
|
|
|
|
0
|
else { $temp1 = $s * $ap2; } |
|
4255
|
51
|
|
|
|
|
4833
|
$temp1 += $t; |
|
4256
|
51
|
|
|
|
|
3275
|
$t->badd($t)->bsub($s); # $t = ($t+$t) - $s; |
|
4257
|
51
|
|
|
|
|
9092
|
$s = $temp1; |
|
4258
|
|
|
|
|
|
|
} |
|
4259
|
|
|
|
|
|
|
} |
|
4260
|
1
|
|
|
|
|
11
|
$temp1 = (2*$a+5) % $n; |
|
4261
|
1
|
50
|
33
|
|
|
192
|
return ($s == 0 && $t == $temp1) ? 1 : 0; |
|
4262
|
|
|
|
|
|
|
} |
|
4263
|
|
|
|
|
|
|
|
|
4264
|
|
|
|
|
|
|
sub _perrin_signature { |
|
4265
|
2
|
|
|
2
|
|
7
|
my($n) = @_; |
|
4266
|
2
|
|
|
|
|
9
|
my @S = (1,$n-1,3, 3,0,2); |
|
4267
|
2
|
50
|
|
|
|
526
|
return @S if $n <= 1; |
|
4268
|
|
|
|
|
|
|
|
|
4269
|
2
|
|
|
|
|
244
|
my @nbin = todigits($n,2); |
|
4270
|
2
|
|
|
|
|
13
|
shift @nbin; |
|
4271
|
|
|
|
|
|
|
|
|
4272
|
2
|
|
|
|
|
11
|
while (@nbin) { |
|
4273
|
1254
|
|
|
|
|
5918
|
my @T = map { addmod(addmod(Math::Prime::Util::mulmod($S[$_],$S[$_],$n), $n-$S[5-$_],$n), $n-$S[5-$_],$n); } 0..5; |
|
|
7524
|
|
|
|
|
58724
|
|
|
4274
|
1254
|
|
|
|
|
9483
|
my $T01 = addmod($T[2], $n-$T[1], $n); |
|
4275
|
1254
|
|
|
|
|
13290
|
my $T34 = addmod($T[5], $n-$T[4], $n); |
|
4276
|
1254
|
|
|
|
|
12461
|
my $T45 = addmod($T34, $T[3], $n); |
|
4277
|
1254
|
100
|
|
|
|
12942
|
if (shift @nbin) { |
|
4278
|
645
|
|
|
|
|
31101
|
@S = ($T[0], $T01, $T[1], $T[4], $T45, $T[5]); |
|
4279
|
|
|
|
|
|
|
} else { |
|
4280
|
609
|
|
|
|
|
2945
|
@S = ($T01, $T[1], addmod($T01,$T[0],$n), $T34, $T[4], $T45); |
|
4281
|
|
|
|
|
|
|
} |
|
4282
|
|
|
|
|
|
|
} |
|
4283
|
2
|
|
|
|
|
16
|
@S; |
|
4284
|
|
|
|
|
|
|
} |
|
4285
|
|
|
|
|
|
|
|
|
4286
|
|
|
|
|
|
|
sub is_perrin_pseudoprime { |
|
4287
|
2
|
|
|
2
|
0
|
5148
|
my($n, $restrict) = @_; |
|
4288
|
2
|
50
|
|
|
|
12
|
$restrict = 0 unless defined $restrict; |
|
4289
|
2
|
50
|
|
|
|
14
|
return 0+($n >= 2) if $n < 4; |
|
4290
|
2
|
50
|
33
|
|
|
12
|
return 0 if $restrict > 2 && ($n % 2) == 0; |
|
4291
|
|
|
|
|
|
|
|
|
4292
|
2
|
50
|
|
|
|
18
|
$n = Math::BigInt->new("$n") unless ref($n) eq 'Math::BigInt'; |
|
4293
|
|
|
|
|
|
|
|
|
4294
|
2
|
|
|
|
|
209
|
my @S = _perrin_signature($n); |
|
4295
|
2
|
50
|
|
|
|
11
|
return 0 unless $S[4] == 0; |
|
4296
|
2
|
50
|
|
|
|
197
|
return 1 if $restrict == 0; |
|
4297
|
0
|
0
|
|
|
|
0
|
return 0 unless $S[1] == $n-1; |
|
4298
|
0
|
0
|
|
|
|
0
|
return 1 if $restrict == 1; |
|
4299
|
0
|
|
|
|
|
0
|
my $j = kronecker(-23,$n); |
|
4300
|
0
|
0
|
|
|
|
0
|
if ($j == -1) { |
|
4301
|
0
|
|
|
|
|
0
|
my $B = $S[2]; |
|
4302
|
0
|
|
|
|
|
0
|
my $B2 = mulmod($B,$B,$n); |
|
4303
|
0
|
|
|
|
|
0
|
my $A = addmod(addmod(1,mulmod(3,$B,$n),$n),$n-$B2,$n); |
|
4304
|
0
|
|
|
|
|
0
|
my $C = addmod(mulmod(3,$B2,$n),$n-2,$n); |
|
4305
|
0
|
0
|
0
|
|
|
0
|
return 1 if $S[0] == $A && $S[2] == $B && $S[3] == $B && $S[5] == $C && $B != 3 && addmod(mulmod($B2,$B,$n),$n-$B,$n) == 1; |
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
4306
|
|
|
|
|
|
|
} else { |
|
4307
|
0
|
0
|
0
|
|
|
0
|
return 0 if $j == 0 && $n != 23 && $restrict > 2; |
|
|
|
|
0
|
|
|
|
|
|
4308
|
0
|
0
|
0
|
|
|
0
|
return 1 if $S[0] == 1 && $S[2] == 3 && $S[3] == 3 && $S[5] == 2; |
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
4309
|
0
|
0
|
0
|
|
|
0
|
return 1 if $S[0] == 0 && $S[5] == $n-1 && $S[2] != $S[3] && addmod($S[2],$S[3],$n) == $n-3 && mulmod(addmod($S[2],$n-$S[3],$n),addmod($S[2],$n-$S[3],$n),$n) == $n-(23%$n); |
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
4310
|
|
|
|
|
|
|
} |
|
4311
|
0
|
|
|
|
|
0
|
0; |
|
4312
|
|
|
|
|
|
|
} |
|
4313
|
|
|
|
|
|
|
|
|
4314
|
|
|
|
|
|
|
sub is_catalan_pseudoprime { |
|
4315
|
0
|
|
|
0
|
0
|
0
|
my($n) = @_; |
|
4316
|
0
|
0
|
|
|
|
0
|
return 0+($n >= 2) if $n < 4; |
|
4317
|
0
|
|
|
|
|
0
|
my $m = ($n-1)>>1; |
|
4318
|
0
|
0
|
|
|
|
0
|
return (binomial($m<<1,$m) % $n) == (($m&1) ? $n-1 : 1) ? 1 : 0; |
|
|
|
0
|
|
|
|
|
|
|
4319
|
|
|
|
|
|
|
} |
|
4320
|
|
|
|
|
|
|
|
|
4321
|
|
|
|
|
|
|
sub is_frobenius_pseudoprime { |
|
4322
|
1
|
|
|
1
|
0
|
3
|
my($n, $P, $Q) = @_; |
|
4323
|
1
|
50
|
33
|
|
|
7
|
($P,$Q) = (0,0) unless defined $P && defined $Q; |
|
4324
|
1
|
50
|
|
|
|
5
|
return 0+($n >= 2) if $n < 4; |
|
4325
|
|
|
|
|
|
|
|
|
4326
|
1
|
50
|
|
|
|
9
|
$n = Math::BigInt->new("$n") unless ref($n) eq 'Math::BigInt'; |
|
4327
|
1
|
50
|
|
|
|
48
|
return 0 if $n->is_even; |
|
4328
|
|
|
|
|
|
|
|
|
4329
|
1
|
|
|
|
|
20
|
my($k, $Vcomp, $D, $Du) = (0, 4); |
|
4330
|
1
|
50
|
33
|
|
|
6
|
if ($P == 0 && $Q == 0) { |
|
4331
|
1
|
|
|
|
|
2
|
($P,$Q) = (-1,2); |
|
4332
|
1
|
|
|
|
|
4
|
while ($k != -1) { |
|
4333
|
1
|
|
|
|
|
3
|
$P += 2; |
|
4334
|
1
|
50
|
|
|
|
3
|
$P = 5 if $P == 3; # Skip 3 |
|
4335
|
1
|
|
|
|
|
3
|
$D = $P*$P-4*$Q; |
|
4336
|
1
|
50
|
|
|
|
5
|
$Du = ($D >= 0) ? $D : -$D; |
|
4337
|
1
|
50
|
33
|
|
|
4
|
last if $P >= $n || $Du >= $n; # TODO: remove? |
|
4338
|
1
|
|
|
|
|
142
|
$k = kronecker($D, $n); |
|
4339
|
1
|
50
|
|
|
|
5
|
return 0 if $k == 0; |
|
4340
|
1
|
50
|
33
|
|
|
8
|
return 0 if $P == 10001 && _is_perfect_square($n); |
|
4341
|
|
|
|
|
|
|
} |
|
4342
|
|
|
|
|
|
|
} else { |
|
4343
|
0
|
|
|
|
|
0
|
$D = $P*$P-4*$Q; |
|
4344
|
0
|
0
|
|
|
|
0
|
$Du = ($D >= 0) ? $D : -$D; |
|
4345
|
0
|
0
|
|
|
|
0
|
croak "Frobenius invalid P,Q: ($P,$Q)" if _is_perfect_square($Du); |
|
4346
|
|
|
|
|
|
|
} |
|
4347
|
1
|
0
|
33
|
|
|
3
|
return (is_prime($n) ? 1 : 0) if $n <= $Du || $n <= abs($Q) || $n <= abs($P); |
|
|
|
50
|
33
|
|
|
|
|
|
4348
|
1
|
50
|
|
|
|
338
|
return 0 if Math::Prime::Util::gcd(abs($P*$Q*$D), $n) > 1; |
|
4349
|
|
|
|
|
|
|
|
|
4350
|
1
|
50
|
|
|
|
59
|
if ($k == 0) { |
|
4351
|
0
|
|
|
|
|
0
|
$k = kronecker($D, $n); |
|
4352
|
0
|
0
|
|
|
|
0
|
return 0 if $k == 0; |
|
4353
|
0
|
|
|
|
|
0
|
my $Q2 = (2*abs($Q)) % $n; |
|
4354
|
0
|
0
|
|
|
|
0
|
$Vcomp = ($k == 1) ? 2 : ($Q >= 0) ? $Q2 : $n-$Q2; |
|
|
|
0
|
|
|
|
|
|
|
4355
|
|
|
|
|
|
|
} |
|
4356
|
|
|
|
|
|
|
|
|
4357
|
1
|
|
|
|
|
7
|
my($U, $V, $Qk) = lucas_sequence($n, $P, $Q, $n-$k); |
|
4358
|
1
|
50
|
33
|
|
|
6
|
return 1 if $U == 0 && $V == $Vcomp; |
|
4359
|
1
|
|
|
|
|
270
|
0; |
|
4360
|
|
|
|
|
|
|
} |
|
4361
|
|
|
|
|
|
|
|
|
4362
|
|
|
|
|
|
|
# Since people have graciously donated millions of CPU years to doing these |
|
4363
|
|
|
|
|
|
|
# tests, it would be rude of us not to use the results. This means we don't |
|
4364
|
|
|
|
|
|
|
# actually use the pretest and Lucas-Lehmer test coded below for any reasonable |
|
4365
|
|
|
|
|
|
|
# size number. |
|
4366
|
|
|
|
|
|
|
# See: http://www.mersenne.org/report_milestones/ |
|
4367
|
|
|
|
|
|
|
my %_mersenne_primes; |
|
4368
|
|
|
|
|
|
|
undef @_mersenne_primes{2,3,5,7,13,17,19,31,61,89,107,127,521,607,1279,2203,2281,3217,4253,4423,9689,9941,11213,19937,21701,23209,44497,86243,110503,132049,216091,756839,859433,1257787,1398269,2976221,3021377,6972593,13466917,20996011,24036583,25964951,30402457,32582657,37156667,42643801,43112609,57885161,74207281}; |
|
4369
|
|
|
|
|
|
|
|
|
4370
|
|
|
|
|
|
|
sub is_mersenne_prime { |
|
4371
|
0
|
|
|
0
|
0
|
0
|
my $p = shift; |
|
4372
|
|
|
|
|
|
|
|
|
4373
|
|
|
|
|
|
|
# Use the known Mersenne primes |
|
4374
|
0
|
0
|
|
|
|
0
|
return 1 if exists $_mersenne_primes{$p}; |
|
4375
|
0
|
0
|
|
|
|
0
|
return 0 if $p < 34007399; # GIMPS has checked all below |
|
4376
|
|
|
|
|
|
|
# Past this we do a generic Mersenne prime test |
|
4377
|
|
|
|
|
|
|
|
|
4378
|
0
|
0
|
|
|
|
0
|
return 1 if $p == 2; |
|
4379
|
0
|
0
|
|
|
|
0
|
return 0 unless is_prob_prime($p); |
|
4380
|
0
|
0
|
0
|
|
|
0
|
return 0 if $p > 3 && $p % 4 == 3 && $p < ((~0)>>1) && is_prob_prime($p*2+1); |
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
4381
|
0
|
|
|
|
|
0
|
my $mp = BONE->copy->blsft($p)->bdec; |
|
4382
|
|
|
|
|
|
|
|
|
4383
|
|
|
|
|
|
|
# Definitely faster than using Math::BigInt that doesn't have GMP. |
|
4384
|
|
|
|
|
|
|
return (0 == (Math::Prime::Util::GMP::lucas_sequence($mp, 4, 1, $mp+1))[0]) |
|
4385
|
0
|
0
|
|
|
|
0
|
if $Math::Prime::Util::_GMPfunc{"lucas_sequence"}; |
|
4386
|
|
|
|
|
|
|
|
|
4387
|
0
|
|
|
|
|
0
|
my $V = Math::BigInt->new(4); |
|
4388
|
0
|
|
|
|
|
0
|
for my $k (3 .. $p) { |
|
4389
|
0
|
|
|
|
|
0
|
$V->bmul($V)->bsub(BTWO)->bmod($mp); |
|
4390
|
|
|
|
|
|
|
} |
|
4391
|
0
|
|
|
|
|
0
|
return $V->is_zero; |
|
4392
|
|
|
|
|
|
|
} |
|
4393
|
|
|
|
|
|
|
|
|
4394
|
|
|
|
|
|
|
|
|
4395
|
|
|
|
|
|
|
my $_poly_bignum; |
|
4396
|
|
|
|
|
|
|
sub _poly_new { |
|
4397
|
206
|
|
|
206
|
|
562
|
my @poly = @_; |
|
4398
|
206
|
50
|
|
|
|
529
|
push @poly, 0 unless scalar @poly; |
|
4399
|
206
|
50
|
|
|
|
516
|
if ($_poly_bignum) { |
|
4400
|
0
|
0
|
|
|
|
0
|
@poly = map { (ref $_ eq 'Math::BigInt') |
|
|
0
|
|
|
|
|
0
|
|
|
4401
|
|
|
|
|
|
|
? $_->copy |
|
4402
|
|
|
|
|
|
|
: Math::BigInt->new("$_"); } @poly; |
|
4403
|
|
|
|
|
|
|
} |
|
4404
|
206
|
|
|
|
|
521
|
return \@poly; |
|
4405
|
|
|
|
|
|
|
} |
|
4406
|
|
|
|
|
|
|
|
|
4407
|
|
|
|
|
|
|
#sub _poly_print { |
|
4408
|
|
|
|
|
|
|
# my($poly) = @_; |
|
4409
|
|
|
|
|
|
|
# carp "poly has null top degree" if $#$poly > 0 && !$poly->[-1]; |
|
4410
|
|
|
|
|
|
|
# foreach my $d (reverse 1 .. $#$poly) { |
|
4411
|
|
|
|
|
|
|
# my $coef = $poly->[$d]; |
|
4412
|
|
|
|
|
|
|
# print "", ($coef != 1) ? $coef : "", ($d > 1) ? "x^$d" : "x", " + " |
|
4413
|
|
|
|
|
|
|
# if $coef; |
|
4414
|
|
|
|
|
|
|
# } |
|
4415
|
|
|
|
|
|
|
# my $p0 = $poly->[0] || 0; |
|
4416
|
|
|
|
|
|
|
# print "$p0\n"; |
|
4417
|
|
|
|
|
|
|
#} |
|
4418
|
|
|
|
|
|
|
|
|
4419
|
|
|
|
|
|
|
sub _poly_mod_mul { |
|
4420
|
1654
|
|
|
1654
|
|
3730
|
my($px, $py, $r, $n) = @_; |
|
4421
|
|
|
|
|
|
|
|
|
4422
|
1654
|
|
|
|
|
3005
|
my $px_degree = $#$px; |
|
4423
|
1654
|
|
|
|
|
2570
|
my $py_degree = $#$py; |
|
4424
|
1654
|
50
|
|
|
|
6224
|
my @res = map { $_poly_bignum ? Math::BigInt->bzero : 0 } 0 .. $r-1; |
|
|
180410
|
|
|
|
|
266589
|
|
|
4425
|
|
|
|
|
|
|
|
|
4426
|
|
|
|
|
|
|
# convolve(px, py) mod (X^r-1,n) |
|
4427
|
1654
|
|
|
|
|
7175
|
my @indices_y = grep { $py->[$_] } (0 .. $py_degree); |
|
|
83490
|
|
|
|
|
107651
|
|
|
4428
|
1654
|
|
|
|
|
5429
|
foreach my $ix (0 .. $px_degree) { |
|
4429
|
78553
|
|
|
|
|
104461
|
my $px_at_ix = $px->[$ix]; |
|
4430
|
78553
|
100
|
|
|
|
124878
|
next unless $px_at_ix; |
|
4431
|
78516
|
50
|
|
|
|
112927
|
if ($_poly_bignum) { |
|
4432
|
0
|
|
|
|
|
0
|
foreach my $iy (@indices_y) { |
|
4433
|
0
|
|
|
|
|
0
|
my $rindex = ($ix + $iy) % $r; # reduce mod X^r-1 |
|
4434
|
0
|
|
|
|
|
0
|
$res[$rindex]->badd($px_at_ix->copy->bmul($py->[$iy]))->bmod($n); |
|
4435
|
|
|
|
|
|
|
} |
|
4436
|
|
|
|
|
|
|
} else { |
|
4437
|
78516
|
|
|
|
|
104167
|
foreach my $iy (@indices_y) { |
|
4438
|
7543424
|
|
|
|
|
10045123
|
my $rindex = ($ix + $iy) % $r; # reduce mod X^r-1 |
|
4439
|
7543424
|
|
|
|
|
11452477
|
$res[$rindex] = ($res[$rindex] + $px_at_ix * $py->[$iy]) % $n; |
|
4440
|
|
|
|
|
|
|
} |
|
4441
|
|
|
|
|
|
|
} |
|
4442
|
|
|
|
|
|
|
} |
|
4443
|
|
|
|
|
|
|
# In case we had upper terms go to zero after modulo, reduce the degree. |
|
4444
|
1654
|
|
|
|
|
37048
|
pop @res while !$res[-1]; |
|
4445
|
1654
|
|
|
|
|
9270
|
return \@res; |
|
4446
|
|
|
|
|
|
|
} |
|
4447
|
|
|
|
|
|
|
|
|
4448
|
|
|
|
|
|
|
sub _poly_mod_pow { |
|
4449
|
103
|
|
|
103
|
|
387
|
my($pn, $power, $r, $mod) = @_; |
|
4450
|
103
|
|
|
|
|
338
|
my $res = _poly_new(1); |
|
4451
|
103
|
|
|
|
|
696
|
my $p = $power; |
|
4452
|
|
|
|
|
|
|
|
|
4453
|
103
|
|
|
|
|
264
|
while ($p) { |
|
4454
|
1037
|
100
|
|
|
|
3298
|
$res = _poly_mod_mul($res, $pn, $r, $mod) if ($p & 1); |
|
4455
|
1037
|
|
|
|
|
1961
|
$p >>= 1; |
|
4456
|
1037
|
100
|
|
|
|
3247
|
$pn = _poly_mod_mul($pn, $pn, $r, $mod) if $p; |
|
4457
|
|
|
|
|
|
|
} |
|
4458
|
103
|
|
|
|
|
509
|
return $res; |
|
4459
|
|
|
|
|
|
|
} |
|
4460
|
|
|
|
|
|
|
|
|
4461
|
|
|
|
|
|
|
sub _test_anr { |
|
4462
|
103
|
|
|
103
|
|
371
|
my($a, $n, $r) = @_; |
|
4463
|
103
|
|
|
|
|
479
|
my $pp = _poly_mod_pow(_poly_new($a, 1), $n, $r, $n); |
|
4464
|
103
|
|
50
|
|
|
729
|
$pp->[$n % $r] = (($pp->[$n % $r] || 0) - 1) % $n; # subtract X^(n%r) |
|
4465
|
103
|
|
50
|
|
|
442
|
$pp->[ 0] = (($pp->[ 0] || 0) - $a) % $n; # subtract a |
|
4466
|
103
|
100
|
|
|
|
393
|
return 0 if scalar grep { $_ } @$pp; |
|
|
5057
|
|
|
|
|
6721
|
|
|
4467
|
102
|
|
|
|
|
549
|
1; |
|
4468
|
|
|
|
|
|
|
} |
|
4469
|
|
|
|
|
|
|
|
|
4470
|
|
|
|
|
|
|
sub is_aks_prime { |
|
4471
|
10
|
|
|
10
|
0
|
1384
|
my $n = shift; |
|
4472
|
10
|
100
|
100
|
|
|
56
|
return 0 if $n < 2 || is_power($n); |
|
4473
|
|
|
|
|
|
|
|
|
4474
|
7
|
|
|
|
|
16
|
my($log2n, $limit); |
|
4475
|
7
|
50
|
|
|
|
21
|
if ($n > 2**48) { |
|
4476
|
0
|
0
|
|
|
|
0
|
do { require Math::BigFloat; Math::BigFloat->import(); } |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
4477
|
|
|
|
|
|
|
if !defined $Math::BigFloat::VERSION; |
|
4478
|
|
|
|
|
|
|
# limit = floor( log2(n) * log2(n) ). o_r(n) must be larger than this |
|
4479
|
0
|
|
|
|
|
0
|
my $floatn = Math::BigFloat->new("$n"); |
|
4480
|
|
|
|
|
|
|
#my $sqrtn = _bigint_to_int($floatn->copy->bsqrt->bfloor); |
|
4481
|
|
|
|
|
|
|
# The following line seems to trigger a memory leak in Math::BigFloat::blog |
|
4482
|
|
|
|
|
|
|
# (the part where $MBI is copied to $int) if $n is a Math::BigInt::GMP. |
|
4483
|
0
|
|
|
|
|
0
|
$log2n = $floatn->copy->blog(2); |
|
4484
|
0
|
|
|
|
|
0
|
$limit = _bigint_to_int( ($log2n * $log2n)->bfloor ); |
|
4485
|
|
|
|
|
|
|
} else { |
|
4486
|
7
|
|
|
|
|
34
|
$log2n = log($n)/log(2) + 0.0001; # Error on large side. |
|
4487
|
7
|
|
|
|
|
16
|
$limit = int( $log2n*$log2n + 0.0001 ); |
|
4488
|
|
|
|
|
|
|
} |
|
4489
|
|
|
|
|
|
|
|
|
4490
|
7
|
|
|
|
|
22
|
my $r = next_prime($limit); |
|
4491
|
7
|
|
|
|
|
15
|
foreach my $f (@{primes(0,$r-1)}) { |
|
|
7
|
|
|
|
|
25
|
|
|
4492
|
147
|
50
|
|
|
|
253
|
return 1 if $f == $n; |
|
4493
|
147
|
100
|
|
|
|
278
|
return 0 if !($n % $f); |
|
4494
|
|
|
|
|
|
|
} |
|
4495
|
|
|
|
|
|
|
|
|
4496
|
6
|
|
|
|
|
33
|
while ($r < $n) { |
|
4497
|
5
|
100
|
|
|
|
19
|
return 0 if !($n % $r); |
|
4498
|
|
|
|
|
|
|
#return 1 if $r >= $sqrtn; |
|
4499
|
4
|
100
|
|
|
|
18
|
last if znorder($n, $r) > $limit; # Note the arguments! |
|
4500
|
2
|
|
|
|
|
92
|
$r = next_prime($r); |
|
4501
|
|
|
|
|
|
|
} |
|
4502
|
|
|
|
|
|
|
|
|
4503
|
5
|
100
|
|
|
|
108
|
return 1 if $r >= $n; |
|
4504
|
|
|
|
|
|
|
|
|
4505
|
|
|
|
|
|
|
# Since r is a prime, phi(r) = r-1 |
|
4506
|
2
|
50
|
|
|
|
19
|
my $rlimit = (ref($log2n) eq 'Math::BigFloat') |
|
4507
|
|
|
|
|
|
|
? _bigint_to_int( Math::BigFloat->new("$r")->bdec() |
|
4508
|
|
|
|
|
|
|
->bsqrt->bmul($log2n)->bfloor) |
|
4509
|
|
|
|
|
|
|
: int( (sqrt(($r-1)) * $log2n) + 0.001 ); |
|
4510
|
|
|
|
|
|
|
|
|
4511
|
2
|
|
|
|
|
7
|
$_poly_bignum = 1; |
|
4512
|
2
|
50
|
|
|
|
9
|
if ( $n < (MPU_HALFWORD-1) ) { |
|
4513
|
2
|
|
|
|
|
5
|
$_poly_bignum = 0; |
|
4514
|
|
|
|
|
|
|
#$n = _bigint_to_int($n) if ref($n) eq 'Math::BigInt'; |
|
4515
|
|
|
|
|
|
|
} else { |
|
4516
|
0
|
0
|
|
|
|
0
|
$n = Math::BigInt->new("$n") unless ref($n) eq 'Math::BigInt'; |
|
4517
|
|
|
|
|
|
|
} |
|
4518
|
|
|
|
|
|
|
|
|
4519
|
2
|
|
|
|
|
17
|
my $_verbose = Math::Prime::Util::prime_get_config()->{'verbose'}; |
|
4520
|
2
|
50
|
|
|
|
11
|
print "# aks r = $r s = $rlimit\n" if $_verbose; |
|
4521
|
2
|
50
|
|
|
|
9
|
local $| = 1 if $_verbose > 1; |
|
4522
|
2
|
|
|
|
|
9
|
for (my $a = 1; $a <= $rlimit; $a++) { |
|
4523
|
103
|
100
|
|
|
|
501
|
return 0 unless _test_anr($a, $n, $r); |
|
4524
|
102
|
50
|
|
|
|
615
|
print "." if $_verbose > 1; |
|
4525
|
|
|
|
|
|
|
} |
|
4526
|
1
|
50
|
|
|
|
8
|
print "\n" if $_verbose > 1; |
|
4527
|
|
|
|
|
|
|
|
|
4528
|
1
|
|
|
|
|
13
|
return 1; |
|
4529
|
|
|
|
|
|
|
} |
|
4530
|
|
|
|
|
|
|
|
|
4531
|
|
|
|
|
|
|
|
|
4532
|
|
|
|
|
|
|
sub _basic_factor { |
|
4533
|
|
|
|
|
|
|
# MODIFIES INPUT SCALAR |
|
4534
|
39
|
0
|
|
39
|
|
163
|
return ($_[0] == 1) ? () : ($_[0]) if $_[0] < 4; |
|
|
|
50
|
|
|
|
|
|
|
4535
|
|
|
|
|
|
|
|
|
4536
|
39
|
|
|
|
|
2734
|
my @factors; |
|
4537
|
39
|
100
|
|
|
|
164
|
if (ref($_[0]) ne 'Math::BigInt') { |
|
4538
|
17
|
|
|
|
|
56
|
while ( !($_[0] % 2) ) { push @factors, 2; $_[0] = int($_[0] / 2); } |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
4539
|
17
|
|
|
|
|
53
|
while ( !($_[0] % 3) ) { push @factors, 3; $_[0] = int($_[0] / 3); } |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
4540
|
17
|
|
|
|
|
43
|
while ( !($_[0] % 5) ) { push @factors, 5; $_[0] = int($_[0] / 5); } |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
4541
|
|
|
|
|
|
|
} else { |
|
4542
|
|
|
|
|
|
|
# Without this, the bdivs will try to convert the results to BigFloat |
|
4543
|
|
|
|
|
|
|
# and lose precision. |
|
4544
|
22
|
100
|
66
|
|
|
164
|
$_[0]->upgrade(undef) if ref($_[0]) && $_[0]->upgrade(); |
|
4545
|
22
|
100
|
|
|
|
416
|
if (!Math::BigInt::bgcd($_[0], B_PRIM235)->is_one) { |
|
4546
|
1
|
|
|
|
|
182
|
while ( $_[0]->is_even) { push @factors, 2; $_[0]->brsft(BONE); } |
|
|
7
|
|
|
|
|
716
|
|
|
|
7
|
|
|
|
|
14
|
|
|
4547
|
1
|
|
|
|
|
115
|
foreach my $div (3, 5) { |
|
4548
|
2
|
|
|
|
|
285
|
my ($q, $r) = $_[0]->copy->bdiv($div); |
|
4549
|
2
|
|
|
|
|
576
|
while ($r->is_zero) { |
|
4550
|
1
|
|
|
|
|
11
|
push @factors, $div; |
|
4551
|
1
|
|
|
|
|
2
|
$_[0] = $q; |
|
4552
|
1
|
|
|
|
|
2
|
($q, $r) = $_[0]->copy->bdiv($div); |
|
4553
|
|
|
|
|
|
|
} |
|
4554
|
|
|
|
|
|
|
} |
|
4555
|
|
|
|
|
|
|
} |
|
4556
|
22
|
50
|
33
|
|
|
4032
|
$_[0] = _bigint_to_int($_[0]) if $] >= 5.008 && $_[0] <= BMAX; |
|
4557
|
|
|
|
|
|
|
} |
|
4558
|
|
|
|
|
|
|
|
|
4559
|
39
|
50
|
33
|
|
|
1011
|
if ( ($_[0] > 1) && _is_prime7($_[0]) ) { |
|
4560
|
0
|
|
|
|
|
0
|
push @factors, $_[0]; |
|
4561
|
0
|
|
|
|
|
0
|
$_[0] = 1; |
|
4562
|
|
|
|
|
|
|
} |
|
4563
|
39
|
|
|
|
|
3676
|
@factors; |
|
4564
|
|
|
|
|
|
|
} |
|
4565
|
|
|
|
|
|
|
|
|
4566
|
|
|
|
|
|
|
sub trial_factor { |
|
4567
|
251
|
|
|
251
|
0
|
1984
|
my($n, $limit) = @_; |
|
4568
|
|
|
|
|
|
|
|
|
4569
|
|
|
|
|
|
|
# Don't use _basic_factor here -- they want a trial forced. |
|
4570
|
251
|
|
|
|
|
323
|
my @factors; |
|
4571
|
251
|
50
|
|
|
|
463
|
if ($n < 4) { |
|
4572
|
0
|
0
|
|
|
|
0
|
@factors = ($n == 1) ? () : ($n); |
|
4573
|
0
|
|
|
|
|
0
|
return @factors; |
|
4574
|
|
|
|
|
|
|
} |
|
4575
|
|
|
|
|
|
|
|
|
4576
|
251
|
|
|
|
|
8743
|
my $start_idx = 1; |
|
4577
|
|
|
|
|
|
|
# Expand small primes if it would help. |
|
4578
|
251
|
100
|
66
|
|
|
669
|
push @_primes_small, @{primes($_primes_small[-1]+1, 100_003)} |
|
|
1
|
|
66
|
|
|
131
|
|
|
|
|
|
100
|
|
|
|
|
|
4579
|
|
|
|
|
|
|
if $n > 400_000_000 |
|
4580
|
|
|
|
|
|
|
&& $_primes_small[-1] < 99_000 |
|
4581
|
|
|
|
|
|
|
&& (!defined $limit || $limit > $_primes_small[-1]); |
|
4582
|
|
|
|
|
|
|
|
|
4583
|
|
|
|
|
|
|
# Do initial bigint reduction. Hopefully reducing it to native int. |
|
4584
|
251
|
100
|
|
|
|
9511
|
if (ref($n) eq 'Math::BigInt') { |
|
4585
|
77
|
|
|
|
|
296
|
$n = $n->copy; # Don't modify their original input! |
|
4586
|
77
|
|
|
|
|
1834
|
my $newlim = $n->copy->bsqrt; |
|
4587
|
77
|
50
|
33
|
|
|
91151
|
$limit = $newlim if !defined $limit || $limit > $newlim; |
|
4588
|
77
|
|
|
|
|
6584
|
while ($start_idx <= $#_primes_small) { |
|
4589
|
20534
|
|
|
|
|
4051066
|
my $f = $_primes_small[$start_idx++]; |
|
4590
|
20534
|
100
|
|
|
|
39337
|
last if $f > $limit; |
|
4591
|
20514
|
100
|
|
|
|
42609
|
if ($n->copy->bmod($f)->is_zero) { |
|
4592
|
287
|
|
|
|
|
59091
|
do { |
|
4593
|
555
|
|
|
|
|
133926
|
push @factors, $f; |
|
4594
|
555
|
|
|
|
|
1533
|
$n->bdiv($f)->bfloor(); |
|
4595
|
|
|
|
|
|
|
} while $n->copy->bmod($f)->is_zero; |
|
4596
|
287
|
100
|
|
|
|
144005
|
last if $n < BMAX; |
|
4597
|
230
|
|
|
|
|
8998
|
my $newlim = $n->copy->bsqrt; |
|
4598
|
230
|
50
|
|
|
|
333367
|
$limit = $newlim if $limit > $newlim; |
|
4599
|
|
|
|
|
|
|
} |
|
4600
|
|
|
|
|
|
|
} |
|
4601
|
77
|
50
|
|
|
|
2644
|
return @factors if $n->is_one; |
|
4602
|
77
|
100
|
|
|
|
1670
|
$n = _bigint_to_int($n) if $n <= BMAX; |
|
4603
|
77
|
50
|
66
|
|
|
3969
|
return (@factors,$n) if $start_idx <= $#_primes_small && $_primes_small[$start_idx] > $limit; |
|
4604
|
|
|
|
|
|
|
} |
|
4605
|
|
|
|
|
|
|
|
|
4606
|
|
|
|
|
|
|
{ |
|
4607
|
251
|
100
|
|
|
|
374
|
my $newlim = (ref($n) eq 'Math::BigInt') ? $n->copy->bsqrt : int(sqrt($n) + 0.001); |
|
|
251
|
|
|
|
|
750
|
|
|
4608
|
251
|
100
|
66
|
|
|
23401
|
$limit = $newlim if !defined $limit || $limit > $newlim; |
|
4609
|
|
|
|
|
|
|
} |
|
4610
|
|
|
|
|
|
|
|
|
4611
|
251
|
100
|
|
|
|
2437
|
if (ref($n) ne 'Math::BigInt') { |
|
4612
|
231
|
|
|
|
|
500
|
for my $i ($start_idx .. $#_primes_small) { |
|
4613
|
51251
|
|
|
|
|
62253
|
my $p = $_primes_small[$i]; |
|
4614
|
51251
|
100
|
|
|
|
75487
|
last if $p > $limit; |
|
4615
|
51029
|
100
|
|
|
|
81470
|
if (($n % $p) == 0) { |
|
4616
|
308
|
|
|
|
|
383
|
do { push @factors, $p; $n = int($n/$p); } while ($n % $p) == 0; |
|
|
329
|
|
|
|
|
476
|
|
|
|
329
|
|
|
|
|
748
|
|
|
4617
|
308
|
100
|
|
|
|
545
|
last if $n == 1; |
|
4618
|
299
|
|
|
|
|
454
|
my $newlim = int( sqrt($n) + 0.001); |
|
4619
|
299
|
100
|
|
|
|
558
|
$limit = $newlim if $newlim < $limit; |
|
4620
|
|
|
|
|
|
|
} |
|
4621
|
|
|
|
|
|
|
} |
|
4622
|
231
|
50
|
|
|
|
556
|
if ($_primes_small[-1] < $limit) { |
|
4623
|
0
|
0
|
|
|
|
0
|
my $inc = (($_primes_small[-1] % 6) == 1) ? 4 : 2; |
|
4624
|
0
|
|
|
|
|
0
|
my $p = $_primes_small[-1] + $inc; |
|
4625
|
0
|
|
|
|
|
0
|
while ($p <= $limit) { |
|
4626
|
0
|
0
|
|
|
|
0
|
if (($n % $p) == 0) { |
|
4627
|
0
|
|
|
|
|
0
|
do { push @factors, $p; $n = int($n/$p); } while ($n % $p) == 0; |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
4628
|
0
|
0
|
|
|
|
0
|
last if $n == 1; |
|
4629
|
0
|
|
|
|
|
0
|
my $newlim = int( sqrt($n) + 0.001); |
|
4630
|
0
|
0
|
|
|
|
0
|
$limit = $newlim if $newlim < $limit; |
|
4631
|
|
|
|
|
|
|
} |
|
4632
|
0
|
|
|
|
|
0
|
$p += ($inc ^= 6); |
|
4633
|
|
|
|
|
|
|
} |
|
4634
|
|
|
|
|
|
|
} |
|
4635
|
|
|
|
|
|
|
} else { # n is a bigint. Use mod-210 wheel trial division. |
|
4636
|
|
|
|
|
|
|
# Generating a wheel mod $w starting at $s: |
|
4637
|
|
|
|
|
|
|
# mpu 'my($s,$w,$t)=(11,2*3*5); say join ",",map { ($t,$s)=($_-$s,$_); $t; } grep { gcd($_,$w)==1 } $s+1..$s+$w;' |
|
4638
|
|
|
|
|
|
|
# Should start at $_primes_small[$start_idx], do 11 + next multiple of 210. |
|
4639
|
20
|
|
|
|
|
181
|
my @incs = map { Math::BigInt->new($_) } (2,4,2,4,6,2,6,4,2,4,6,6,2,6,4,2,6,4,6,8,4,2,4,2,4,8,6,4,6,2,4,6,2,6,6,4,2,4,6,2,6,4,2,4,2,10,2,10); |
|
|
960
|
|
|
|
|
33739
|
|
|
4640
|
20
|
|
|
|
|
859
|
my $f = 11; while ($f <= $_primes_small[$start_idx-1]-210) { $f += 210; } |
|
|
20
|
|
|
|
|
139
|
|
|
|
460
|
|
|
|
|
841
|
|
|
4641
|
20
|
|
|
|
|
90
|
($f, $limit) = map { Math::BigInt->new("$_") } ($f, $limit); |
|
|
40
|
|
|
|
|
966
|
|
|
4642
|
20
|
|
|
|
|
854
|
SEARCH: while ($f <= $limit) { |
|
4643
|
20
|
|
|
|
|
772
|
foreach my $finc (@incs) { |
|
4644
|
960
|
50
|
33
|
|
|
53350
|
if ($n->copy->bmod($f)->is_zero && $f->bacmp($limit) <= 0) { |
|
4645
|
0
|
0
|
|
|
|
0
|
my $sf = ($f <= BMAX) ? _bigint_to_int($f) : $f->copy; |
|
4646
|
0
|
|
|
|
|
0
|
do { |
|
4647
|
0
|
|
|
|
|
0
|
push @factors, $sf; |
|
4648
|
0
|
|
|
|
|
0
|
$n->bdiv($f)->bfloor(); |
|
4649
|
|
|
|
|
|
|
} while $n->copy->bmod($f)->is_zero; |
|
4650
|
0
|
0
|
|
|
|
0
|
last SEARCH if $n->is_one; |
|
4651
|
0
|
|
|
|
|
0
|
my $newlim = $n->copy->bsqrt; |
|
4652
|
0
|
0
|
|
|
|
0
|
$limit = $newlim if $limit > $newlim; |
|
4653
|
|
|
|
|
|
|
} |
|
4654
|
960
|
|
|
|
|
118353
|
$f->badd($finc); |
|
4655
|
|
|
|
|
|
|
} |
|
4656
|
|
|
|
|
|
|
} |
|
4657
|
|
|
|
|
|
|
} |
|
4658
|
251
|
100
|
|
|
|
2783
|
push @factors, $n if $n > 1; |
|
4659
|
251
|
|
|
|
|
3307
|
@factors; |
|
4660
|
|
|
|
|
|
|
} |
|
4661
|
|
|
|
|
|
|
|
|
4662
|
|
|
|
|
|
|
my $_holf_r; |
|
4663
|
|
|
|
|
|
|
my @_fsublist = ( |
|
4664
|
|
|
|
|
|
|
[ "pbrent 32k", sub { pbrent_factor (shift, 32*1024, 1, 1) } ], |
|
4665
|
|
|
|
|
|
|
[ "p-1 1M", sub { pminus1_factor(shift, 1_000_000, undef, 1); } ], |
|
4666
|
|
|
|
|
|
|
[ "ECM 1k", sub { ecm_factor (shift, 1_000, 5_000, 15) } ], |
|
4667
|
|
|
|
|
|
|
[ "pbrent 512k",sub { pbrent_factor (shift, 512*1024, 7, 1) } ], |
|
4668
|
|
|
|
|
|
|
[ "p-1 4M", sub { pminus1_factor(shift, 4_000_000, undef, 1); } ], |
|
4669
|
|
|
|
|
|
|
[ "ECM 10k", sub { ecm_factor (shift, 10_000, 50_000, 10) } ], |
|
4670
|
|
|
|
|
|
|
[ "pbrent 512k",sub { pbrent_factor (shift, 512*1024, 11, 1) } ], |
|
4671
|
|
|
|
|
|
|
[ "HOLF 256k", sub { holf_factor (shift, 256*1024, $_holf_r); $_holf_r += 256*1024; } ], |
|
4672
|
|
|
|
|
|
|
[ "p-1 20M", sub { pminus1_factor(shift,20_000_000); } ], |
|
4673
|
|
|
|
|
|
|
[ "ECM 100k", sub { ecm_factor (shift, 100_000, 800_000, 10) } ], |
|
4674
|
|
|
|
|
|
|
[ "HOLF 512k", sub { holf_factor (shift, 512*1024, $_holf_r); $_holf_r += 512*1024; } ], |
|
4675
|
|
|
|
|
|
|
[ "pbrent 2M", sub { pbrent_factor (shift, 2048*1024, 13, 1) } ], |
|
4676
|
|
|
|
|
|
|
[ "HOLF 2M", sub { holf_factor (shift, 2048*1024, $_holf_r); $_holf_r += 2048*1024; } ], |
|
4677
|
|
|
|
|
|
|
[ "ECM 1M", sub { ecm_factor (shift, 1_000_000, 1_000_000, 10) } ], |
|
4678
|
|
|
|
|
|
|
[ "p-1 100M", sub { pminus1_factor(shift, 100_000_000, 500_000_000); } ], |
|
4679
|
|
|
|
|
|
|
); |
|
4680
|
|
|
|
|
|
|
|
|
4681
|
|
|
|
|
|
|
sub factor { |
|
4682
|
239
|
|
|
239
|
0
|
3963
|
my($n) = @_; |
|
4683
|
239
|
|
|
|
|
560
|
_validate_positive_integer($n); |
|
4684
|
239
|
|
|
|
|
333
|
my @factors; |
|
4685
|
|
|
|
|
|
|
|
|
4686
|
239
|
100
|
|
|
|
493
|
if ($n < 4) { |
|
4687
|
1
|
50
|
|
|
|
19
|
@factors = ($n == 1) ? () : ($n); |
|
4688
|
1
|
|
|
|
|
6
|
return @factors; |
|
4689
|
|
|
|
|
|
|
} |
|
4690
|
238
|
100
|
|
|
|
7613
|
$n = $n->copy if ref($n) eq 'Math::BigInt'; |
|
4691
|
238
|
|
|
|
|
1660
|
my $lim = 4999; # How much trial factoring to do |
|
4692
|
|
|
|
|
|
|
|
|
4693
|
|
|
|
|
|
|
# For native integers, we could save a little time by doing hardcoded trials |
|
4694
|
|
|
|
|
|
|
# by 2-29 here. Skipping it. |
|
4695
|
|
|
|
|
|
|
|
|
4696
|
238
|
|
|
|
|
626
|
push @factors, trial_factor($n, $lim); |
|
4697
|
238
|
100
|
|
|
|
837
|
return @factors if $factors[-1] < $lim*$lim; |
|
4698
|
71
|
|
|
|
|
1860
|
$n = pop(@factors); |
|
4699
|
|
|
|
|
|
|
|
|
4700
|
71
|
|
|
|
|
355
|
my @nstack = ($n); |
|
4701
|
71
|
|
|
|
|
268
|
while (@nstack) { |
|
4702
|
132
|
|
|
|
|
331
|
$n = pop @nstack; |
|
4703
|
|
|
|
|
|
|
# Don't use bignum on $n if it has gotten small enough. |
|
4704
|
132
|
100
|
100
|
|
|
624
|
$n = _bigint_to_int($n) if ref($n) eq 'Math::BigInt' && $n <= BMAX; |
|
4705
|
|
|
|
|
|
|
#print "Looking at $n with stack ", join(",",@nstack), "\n"; |
|
4706
|
132
|
|
100
|
|
|
1805
|
while ( ($n >= ($lim*$lim)) && !_is_prime7($n) ) { |
|
4707
|
61
|
|
|
|
|
197
|
my @ftry; |
|
4708
|
61
|
|
|
|
|
152
|
$_holf_r = 1; |
|
4709
|
61
|
|
|
|
|
199
|
foreach my $sub (@_fsublist) { |
|
4710
|
126
|
100
|
|
|
|
503
|
last if scalar @ftry >= 2; |
|
4711
|
65
|
50
|
|
|
|
392
|
print " starting $sub->[0]\n" if Math::Prime::Util::prime_get_config()->{'verbose'} > 1; |
|
4712
|
65
|
|
|
|
|
438
|
@ftry = $sub->[1]->($n); |
|
4713
|
|
|
|
|
|
|
} |
|
4714
|
61
|
50
|
|
|
|
241
|
if (scalar @ftry > 1) { |
|
4715
|
|
|
|
|
|
|
#print " split into ", join(",",@ftry), "\n"; |
|
4716
|
61
|
|
|
|
|
168
|
$n = shift @ftry; |
|
4717
|
61
|
100
|
66
|
|
|
386
|
$n = _bigint_to_int($n) if ref($n) eq 'Math::BigInt' && $n <= BMAX; |
|
4718
|
61
|
|
|
|
|
906
|
push @nstack, @ftry; |
|
4719
|
|
|
|
|
|
|
} else { |
|
4720
|
|
|
|
|
|
|
#warn "trial factor $n\n"; |
|
4721
|
0
|
|
|
|
|
0
|
push @factors, trial_factor($n); |
|
4722
|
|
|
|
|
|
|
#print " trial into ", join(",",@factors), "\n"; |
|
4723
|
0
|
|
|
|
|
0
|
$n = 1; |
|
4724
|
0
|
|
|
|
|
0
|
last; |
|
4725
|
|
|
|
|
|
|
} |
|
4726
|
|
|
|
|
|
|
} |
|
4727
|
132
|
50
|
|
|
|
6085
|
push @factors, $n if $n != 1; |
|
4728
|
|
|
|
|
|
|
} |
|
4729
|
71
|
|
|
|
|
1711
|
@factors = sort {$a<=>$b} @factors; |
|
|
514
|
|
|
|
|
1644
|
|
|
4730
|
71
|
|
|
|
|
1021
|
return @factors; |
|
4731
|
|
|
|
|
|
|
} |
|
4732
|
|
|
|
|
|
|
|
|
4733
|
|
|
|
|
|
|
sub _found_factor { |
|
4734
|
96
|
|
|
96
|
|
545
|
my($f, $n, $what, @factors) = @_; |
|
4735
|
96
|
50
|
33
|
|
|
421
|
if ($f == 1 || $f == $n) { |
|
4736
|
0
|
|
|
|
|
0
|
push @factors, $n; |
|
4737
|
|
|
|
|
|
|
} else { |
|
4738
|
|
|
|
|
|
|
# Perl 5.6.2 needs things spelled out for it. |
|
4739
|
96
|
100
|
|
|
|
6550
|
my $f2 = (ref($n) eq 'Math::BigInt') ? $n->copy->bdiv($f)->as_int |
|
4740
|
|
|
|
|
|
|
: int($n/$f); |
|
4741
|
96
|
|
|
|
|
10706
|
push @factors, $f; |
|
4742
|
96
|
|
|
|
|
216
|
push @factors, $f2; |
|
4743
|
96
|
50
|
|
|
|
373
|
croak "internal error in $what" unless $f * $f2 == $n; |
|
4744
|
|
|
|
|
|
|
# MPU::GMP prints this type of message if verbose, so do the same. |
|
4745
|
96
|
50
|
|
|
|
6805
|
print "$what found factor $f\n" if Math::Prime::Util::prime_get_config()->{'verbose'} > 0; |
|
4746
|
|
|
|
|
|
|
} |
|
4747
|
96
|
|
|
|
|
1717
|
@factors; |
|
4748
|
|
|
|
|
|
|
} |
|
4749
|
|
|
|
|
|
|
|
|
4750
|
|
|
|
|
|
|
# TODO: |
|
4751
|
0
|
|
|
0
|
0
|
0
|
sub squfof_factor { trial_factor(@_) } |
|
4752
|
|
|
|
|
|
|
|
|
4753
|
|
|
|
|
|
|
sub prho_factor { |
|
4754
|
5
|
|
|
5
|
0
|
3702
|
my($n, $rounds, $pa, $skipbasic) = @_; |
|
4755
|
5
|
100
|
|
|
|
21
|
$rounds = 4*1024*1024 unless defined $rounds; |
|
4756
|
5
|
50
|
|
|
|
15
|
$pa = 3 unless defined $pa; |
|
4757
|
|
|
|
|
|
|
|
|
4758
|
5
|
|
|
|
|
12
|
my @factors; |
|
4759
|
5
|
50
|
|
|
|
13
|
if (!$skipbasic) { |
|
4760
|
5
|
|
|
|
|
19
|
@factors = _basic_factor($n); |
|
4761
|
5
|
50
|
|
|
|
18
|
return @factors if $n < 4; |
|
4762
|
|
|
|
|
|
|
} |
|
4763
|
|
|
|
|
|
|
|
|
4764
|
5
|
|
|
|
|
224
|
my $inloop = 0; |
|
4765
|
5
|
|
|
|
|
11
|
my $U = 7; |
|
4766
|
5
|
|
|
|
|
10
|
my $V = 7; |
|
4767
|
|
|
|
|
|
|
|
|
4768
|
5
|
100
|
|
|
|
22
|
if ( ref($n) eq 'Math::BigInt' ) { |
|
|
|
100
|
|
|
|
|
|
|
4769
|
|
|
|
|
|
|
|
|
4770
|
2
|
|
|
|
|
6
|
my $zero = $n->copy->bzero; |
|
4771
|
2
|
|
|
|
|
89
|
$pa = $zero->badd("$pa"); |
|
4772
|
2
|
|
|
|
|
248
|
$U = $zero->copy->badd($U); |
|
4773
|
2
|
|
|
|
|
252
|
$V = $zero->copy->badd($V); |
|
4774
|
2
|
|
|
|
|
243
|
for my $i (1 .. $rounds) { |
|
4775
|
|
|
|
|
|
|
# Would use bmuladd here, but old Math::BigInt's barf with scalar $pa. |
|
4776
|
22
|
|
|
|
|
642
|
$U->bmul($U)->badd($pa)->bmod($n); |
|
4777
|
22
|
|
|
|
|
6713
|
$V->bmul($V)->badd($pa); |
|
4778
|
22
|
|
|
|
|
3244
|
$V->bmul($V)->badd($pa)->bmod($n); |
|
4779
|
22
|
|
|
|
|
9396
|
my $f = Math::BigInt::bgcd($U-$V, $n); |
|
4780
|
22
|
50
|
|
|
|
62122
|
if ($f->bacmp($n) == 0) { |
|
|
|
100
|
|
|
|
|
|
|
4781
|
0
|
0
|
|
|
|
0
|
last if $inloop++; # We've been here before |
|
4782
|
|
|
|
|
|
|
} elsif (!$f->is_one) { |
|
4783
|
2
|
|
|
|
|
67
|
return _found_factor($f, $n, "prho", @factors); |
|
4784
|
|
|
|
|
|
|
} |
|
4785
|
|
|
|
|
|
|
} |
|
4786
|
|
|
|
|
|
|
|
|
4787
|
|
|
|
|
|
|
} elsif ($n < MPU_HALFWORD) { |
|
4788
|
|
|
|
|
|
|
|
|
4789
|
2
|
|
|
|
|
5
|
my $inner = 32; |
|
4790
|
2
|
|
|
|
|
7
|
$rounds = int( ($rounds + $inner-1) / $inner ); |
|
4791
|
2
|
|
|
|
|
7
|
while ($rounds-- > 0) { |
|
4792
|
2
|
|
|
|
|
5
|
my($m, $oldU, $oldV, $f) = (1, $U, $V); |
|
4793
|
2
|
|
|
|
|
8
|
for my $i (1 .. $inner) { |
|
4794
|
64
|
|
|
|
|
69
|
$U = ($U * $U + $pa) % $n; |
|
4795
|
64
|
|
|
|
|
68
|
$V = ($V * $V + $pa) % $n; |
|
4796
|
64
|
|
|
|
|
70
|
$V = ($V * $V + $pa) % $n; |
|
4797
|
64
|
100
|
|
|
|
73
|
$f = ($U > $V) ? $U-$V : $V-$U; |
|
4798
|
64
|
|
|
|
|
78
|
$m = ($m * $f) % $n; |
|
4799
|
|
|
|
|
|
|
} |
|
4800
|
2
|
|
|
|
|
6
|
$f = _gcd_ui( $m, $n ); |
|
4801
|
2
|
50
|
|
|
|
6
|
next if $f == 1; |
|
4802
|
2
|
100
|
|
|
|
8
|
if ($f == $n) { |
|
4803
|
1
|
|
|
|
|
3
|
($U, $V) = ($oldU, $oldV); |
|
4804
|
1
|
|
|
|
|
4
|
for my $i (1 .. $inner) { |
|
4805
|
2
|
|
|
|
|
5
|
$U = ($U * $U + $pa) % $n; |
|
4806
|
2
|
|
|
|
|
3
|
$V = ($V * $V + $pa) % $n; |
|
4807
|
2
|
|
|
|
|
4
|
$V = ($V * $V + $pa) % $n; |
|
4808
|
2
|
100
|
|
|
|
4
|
$f = ($U > $V) ? $U-$V : $V-$U; |
|
4809
|
2
|
|
|
|
|
4
|
$f = _gcd_ui( $f, $n); |
|
4810
|
2
|
100
|
|
|
|
5
|
last if $f != 1; |
|
4811
|
|
|
|
|
|
|
} |
|
4812
|
1
|
50
|
33
|
|
|
8
|
last if $f == 1 || $f == $n; |
|
4813
|
|
|
|
|
|
|
} |
|
4814
|
2
|
|
|
|
|
15
|
return _found_factor($f, $n, "prho", @factors); |
|
4815
|
|
|
|
|
|
|
} |
|
4816
|
|
|
|
|
|
|
|
|
4817
|
|
|
|
|
|
|
} else { |
|
4818
|
|
|
|
|
|
|
|
|
4819
|
1
|
|
|
|
|
5
|
for my $i (1 .. $rounds) { |
|
4820
|
5
|
50
|
|
|
|
12
|
if ($n <= (~0 >> 1)) { |
|
4821
|
5
|
50
|
|
|
|
11
|
$U = _mulmod($U, $U, $n); $U += $pa; $U -= $n if $U >= $n; |
|
|
5
|
|
|
|
|
7
|
|
|
|
5
|
|
|
|
|
11
|
|
|
4822
|
5
|
|
|
|
|
8
|
$V = _mulmod($V, $V, $n); $V += $pa; # Let the mulmod handle it |
|
|
5
|
|
|
|
|
7
|
|
|
4823
|
5
|
50
|
|
|
|
7
|
$V = _mulmod($V, $V, $n); $V += $pa; $V -= $n if $V >= $n; |
|
|
5
|
|
|
|
|
7
|
|
|
|
5
|
|
|
|
|
10
|
|
|
4824
|
|
|
|
|
|
|
} else { |
|
4825
|
|
|
|
|
|
|
#$U = _mulmod($U, $U, $n); $U=$n-$U; $U = ($pa>=$U) ? $pa-$U : $n-$U+$pa; |
|
4826
|
|
|
|
|
|
|
#$V = _mulmod($V, $V, $n); $V=$n-$V; $V = ($pa>=$V) ? $pa-$V : $n-$V+$pa; |
|
4827
|
|
|
|
|
|
|
#$V = _mulmod($V, $V, $n); $V=$n-$V; $V = ($pa>=$V) ? $pa-$V : $n-$V+$pa; |
|
4828
|
0
|
|
|
|
|
0
|
$U = _mulmod($U, $U, $n); $U = _addmod($U, $pa, $n); |
|
|
0
|
|
|
|
|
0
|
|
|
4829
|
0
|
|
|
|
|
0
|
$V = _mulmod($V, $V, $n); $V = _addmod($V, $pa, $n); |
|
|
0
|
|
|
|
|
0
|
|
|
4830
|
0
|
|
|
|
|
0
|
$V = _mulmod($V, $V, $n); $V = _addmod($V, $pa, $n); |
|
|
0
|
|
|
|
|
0
|
|
|
4831
|
|
|
|
|
|
|
} |
|
4832
|
5
|
|
|
|
|
11
|
my $f = _gcd_ui( $U-$V, $n ); |
|
4833
|
5
|
50
|
|
|
|
13
|
if ($f == $n) { |
|
|
|
100
|
|
|
|
|
|
|
4834
|
0
|
0
|
|
|
|
0
|
last if $inloop++; # We've been here before |
|
4835
|
|
|
|
|
|
|
} elsif ($f != 1) { |
|
4836
|
1
|
|
|
|
|
3
|
return _found_factor($f, $n, "prho", @factors); |
|
4837
|
|
|
|
|
|
|
} |
|
4838
|
|
|
|
|
|
|
} |
|
4839
|
|
|
|
|
|
|
|
|
4840
|
|
|
|
|
|
|
} |
|
4841
|
0
|
|
|
|
|
0
|
push @factors, $n; |
|
4842
|
0
|
|
|
|
|
0
|
@factors; |
|
4843
|
|
|
|
|
|
|
} |
|
4844
|
|
|
|
|
|
|
|
|
4845
|
|
|
|
|
|
|
sub pbrent_factor { |
|
4846
|
78
|
|
|
78
|
0
|
3506
|
my($n, $rounds, $pa, $skipbasic) = @_; |
|
4847
|
78
|
100
|
|
|
|
243
|
$rounds = 4*1024*1024 unless defined $rounds; |
|
4848
|
78
|
100
|
|
|
|
243
|
$pa = 3 unless defined $pa; |
|
4849
|
|
|
|
|
|
|
|
|
4850
|
78
|
|
|
|
|
186
|
my @factors; |
|
4851
|
78
|
100
|
|
|
|
238
|
if (!$skipbasic) { |
|
4852
|
17
|
|
|
|
|
66
|
@factors = _basic_factor($n); |
|
4853
|
17
|
50
|
|
|
|
68
|
return @factors if $n < 4; |
|
4854
|
|
|
|
|
|
|
} |
|
4855
|
|
|
|
|
|
|
|
|
4856
|
78
|
|
|
|
|
1177
|
my $Xi = 2; |
|
4857
|
78
|
|
|
|
|
157
|
my $Xm = 2; |
|
4858
|
|
|
|
|
|
|
|
|
4859
|
78
|
100
|
|
|
|
365
|
if ( ref($n) eq 'Math::BigInt' ) { |
|
|
|
100
|
|
|
|
|
|
|
4860
|
|
|
|
|
|
|
|
|
4861
|
|
|
|
|
|
|
# Same code as the GMP version, but runs *much* slower. Even with |
|
4862
|
|
|
|
|
|
|
# Math::BigInt::GMP it's >200x slower. With the default Calc backend |
|
4863
|
|
|
|
|
|
|
# it's thousands of times slower. |
|
4864
|
23
|
|
|
|
|
50
|
my $inner = 32; |
|
4865
|
23
|
|
|
|
|
122
|
my $zero = $n->copy->bzero; |
|
4866
|
23
|
|
|
|
|
1330
|
my $saveXi; |
|
4867
|
|
|
|
|
|
|
my $f; |
|
4868
|
23
|
|
|
|
|
85
|
$Xi = $zero->copy->badd($Xi); |
|
4869
|
23
|
|
|
|
|
4215
|
$Xm = $zero->copy->badd($Xm); |
|
4870
|
23
|
|
|
|
|
3341
|
$pa = $zero->copy->badd($pa); |
|
4871
|
23
|
|
|
|
|
3447
|
my $r = 1; |
|
4872
|
23
|
|
|
|
|
120
|
while ($rounds > 0) { |
|
4873
|
206
|
100
|
|
|
|
621
|
my $rleft = ($r > $rounds) ? $rounds : $r; |
|
4874
|
206
|
|
|
|
|
482
|
while ($rleft > 0) { |
|
4875
|
2334
|
100
|
|
|
|
45328
|
my $dorounds = ($rleft > $inner) ? $inner : $rleft; |
|
4876
|
2334
|
|
|
|
|
6853
|
my $m = $zero->copy->bone; |
|
4877
|
2334
|
|
|
|
|
233767
|
$saveXi = $Xi->copy; |
|
4878
|
2334
|
|
|
|
|
50258
|
foreach my $i (1 .. $dorounds) { |
|
4879
|
71659
|
|
|
|
|
58872634
|
$Xi->bmul($Xi)->badd($pa)->bmod($n); |
|
4880
|
71659
|
|
|
|
|
33592495
|
$m->bmul($Xi->copy->bsub($Xm)); |
|
4881
|
|
|
|
|
|
|
} |
|
4882
|
2334
|
|
|
|
|
3434761
|
$rleft -= $dorounds; |
|
4883
|
2334
|
|
|
|
|
5341
|
$rounds -= $dorounds; |
|
4884
|
2334
|
|
|
|
|
8745
|
$m->bmod($n); |
|
4885
|
2334
|
|
|
|
|
5809515
|
$f = Math::BigInt::bgcd($m, $n); |
|
4886
|
2334
|
100
|
|
|
|
9368886
|
last unless $f->is_one; |
|
4887
|
|
|
|
|
|
|
} |
|
4888
|
206
|
100
|
|
|
|
3905
|
if ($f->is_one) { |
|
4889
|
185
|
|
|
|
|
2306
|
$r *= 2; |
|
4890
|
185
|
|
|
|
|
484
|
$Xm = $Xi->copy; |
|
4891
|
185
|
|
|
|
|
4327
|
next; |
|
4892
|
|
|
|
|
|
|
} |
|
4893
|
21
|
50
|
|
|
|
351
|
if ($f == $n) { # back up to determine the factor |
|
4894
|
0
|
|
|
|
|
0
|
$Xi = $saveXi->copy; |
|
4895
|
0
|
|
0
|
|
|
0
|
do { |
|
4896
|
0
|
|
|
|
|
0
|
$Xi->bmul($Xi)->badd($pa)->bmod($n); |
|
4897
|
0
|
|
|
|
|
0
|
$f = Math::BigInt::bgcd($Xm-$Xi, $n); |
|
4898
|
|
|
|
|
|
|
} while ($f != 1 && $r-- != 0); |
|
4899
|
0
|
0
|
0
|
|
|
0
|
last if $f == 1 || $f == $n; |
|
4900
|
|
|
|
|
|
|
} |
|
4901
|
21
|
|
|
|
|
1314
|
return _found_factor($f, $n, "pbrent", @factors); |
|
4902
|
|
|
|
|
|
|
} |
|
4903
|
|
|
|
|
|
|
|
|
4904
|
|
|
|
|
|
|
} elsif ($n < MPU_HALFWORD) { |
|
4905
|
|
|
|
|
|
|
|
|
4906
|
|
|
|
|
|
|
# Doing the gcd batching as above works pretty well here, but it's a lot |
|
4907
|
|
|
|
|
|
|
# of code for not much gain for general users. |
|
4908
|
10
|
|
|
|
|
24
|
for my $i (1 .. $rounds) { |
|
4909
|
1653
|
|
|
|
|
1757
|
$Xi = ($Xi * $Xi + $pa) % $n; |
|
4910
|
1653
|
100
|
|
|
|
2411
|
my $f = _gcd_ui( ($Xi>$Xm) ? $Xi-$Xm : $Xm-$Xi, $n); |
|
4911
|
1653
|
100
|
66
|
|
|
2506
|
return _found_factor($f, $n, "pbrent", @factors) if $f != 1 && $f != $n; |
|
4912
|
1643
|
100
|
|
|
|
2498
|
$Xm = $Xi if ($i & ($i-1)) == 0; # i is a power of 2 |
|
4913
|
|
|
|
|
|
|
} |
|
4914
|
|
|
|
|
|
|
|
|
4915
|
|
|
|
|
|
|
} else { |
|
4916
|
|
|
|
|
|
|
|
|
4917
|
45
|
|
|
|
|
151
|
for my $i (1 .. $rounds) { |
|
4918
|
32881
|
|
|
|
|
52431
|
$Xi = _addmod( _mulmod($Xi, $Xi, $n), $pa, $n); |
|
4919
|
32881
|
100
|
|
|
|
68509
|
my $f = _gcd_ui( ($Xi>$Xm) ? $Xi-$Xm : $Xm-$Xi, $n); |
|
4920
|
32881
|
100
|
66
|
|
|
63180
|
return _found_factor($f, $n, "pbrent", @factors) if $f != 1 && $f != $n; |
|
4921
|
32836
|
100
|
|
|
|
66554
|
$Xm = $Xi if ($i & ($i-1)) == 0; # i is a power of 2 |
|
4922
|
|
|
|
|
|
|
} |
|
4923
|
|
|
|
|
|
|
|
|
4924
|
|
|
|
|
|
|
} |
|
4925
|
2
|
|
|
|
|
8
|
push @factors, $n; |
|
4926
|
2
|
|
|
|
|
23
|
@factors; |
|
4927
|
|
|
|
|
|
|
} |
|
4928
|
|
|
|
|
|
|
|
|
4929
|
|
|
|
|
|
|
sub pminus1_factor { |
|
4930
|
7
|
|
|
7
|
0
|
7104
|
my($n, $B1, $B2, $skipbasic) = @_; |
|
4931
|
|
|
|
|
|
|
|
|
4932
|
7
|
|
|
|
|
18
|
my @factors; |
|
4933
|
7
|
100
|
|
|
|
43
|
if (!$skipbasic) { |
|
4934
|
5
|
|
|
|
|
25
|
@factors = _basic_factor($n); |
|
4935
|
5
|
50
|
|
|
|
25
|
return @factors if $n < 4; |
|
4936
|
|
|
|
|
|
|
} |
|
4937
|
|
|
|
|
|
|
|
|
4938
|
7
|
100
|
|
|
|
647
|
if ( ref($n) ne 'Math::BigInt' ) { |
|
4939
|
|
|
|
|
|
|
# Stage 1 only |
|
4940
|
1
|
50
|
|
|
|
5
|
$B1 = 10_000_000 unless defined $B1; |
|
4941
|
1
|
|
|
|
|
2
|
my $pa = 2; |
|
4942
|
1
|
|
|
|
|
1
|
my $f = 1; |
|
4943
|
1
|
|
|
|
|
2
|
my($pc_beg, $pc_end, @bprimes); |
|
4944
|
1
|
|
|
|
|
2
|
$pc_beg = 2; |
|
4945
|
1
|
|
|
|
|
2
|
$pc_end = $pc_beg + 100_000; |
|
4946
|
1
|
|
|
|
|
3
|
my $sqrtb1 = int(sqrt($B1)); |
|
4947
|
1
|
|
|
|
|
2
|
while (1) { |
|
4948
|
1
|
50
|
|
|
|
3
|
$pc_end = $B1 if $pc_end > $B1; |
|
4949
|
1
|
|
|
|
|
2
|
@bprimes = @{ primes($pc_beg, $pc_end) }; |
|
|
1
|
|
|
|
|
4
|
|
|
4950
|
1
|
|
|
|
|
95
|
foreach my $q (@bprimes) { |
|
4951
|
2
|
|
|
|
|
4
|
my $k = $q; |
|
4952
|
2
|
50
|
|
|
|
8
|
if ($q <= $sqrtb1) { |
|
4953
|
2
|
|
|
|
|
8
|
my $kmin = int($B1 / $q); |
|
4954
|
2
|
|
|
|
|
6
|
while ($k <= $kmin) { $k *= $q; } |
|
|
35
|
|
|
|
|
48
|
|
|
4955
|
|
|
|
|
|
|
} |
|
4956
|
2
|
|
|
|
|
10
|
$pa = _powmod($pa, $k, $n); |
|
4957
|
2
|
50
|
|
|
|
10
|
if ($pa == 0) { push @factors, $n; return @factors; } |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
4958
|
2
|
|
|
|
|
8
|
my $f = _gcd_ui( $pa-1, $n ); |
|
4959
|
2
|
100
|
|
|
|
10
|
return _found_factor($f, $n, "pminus1", @factors) if $f != 1; |
|
4960
|
|
|
|
|
|
|
} |
|
4961
|
0
|
0
|
|
|
|
0
|
last if $pc_end >= $B1; |
|
4962
|
0
|
|
|
|
|
0
|
$pc_beg = $pc_end+1; |
|
4963
|
0
|
|
|
|
|
0
|
$pc_end += 500_000; |
|
4964
|
|
|
|
|
|
|
} |
|
4965
|
0
|
|
|
|
|
0
|
push @factors, $n; |
|
4966
|
0
|
|
|
|
|
0
|
return @factors; |
|
4967
|
|
|
|
|
|
|
} |
|
4968
|
|
|
|
|
|
|
|
|
4969
|
|
|
|
|
|
|
# Stage 2 isn't really any faster than stage 1 for the examples I've tried. |
|
4970
|
|
|
|
|
|
|
# Perl's overhead is greater than the savings of multiply vs. powmod |
|
4971
|
|
|
|
|
|
|
|
|
4972
|
6
|
100
|
|
|
|
29
|
if (!defined $B1) { |
|
4973
|
1
|
|
|
|
|
7
|
for my $mul (1, 100, 1000, 10_000, 100_000, 1_000_000) { |
|
4974
|
1
|
|
|
|
|
4
|
$B1 = 1000 * $mul; |
|
4975
|
1
|
|
|
|
|
3
|
$B2 = 1*$B1; |
|
4976
|
|
|
|
|
|
|
#warn "Trying p-1 with $B1 / $B2\n"; |
|
4977
|
1
|
|
|
|
|
21
|
my @nf = pminus1_factor($n, $B1, $B2); |
|
4978
|
1
|
50
|
|
|
|
5
|
if (scalar @nf > 1) { |
|
4979
|
1
|
|
|
|
|
4
|
push @factors, @nf; |
|
4980
|
1
|
|
|
|
|
11
|
return @factors; |
|
4981
|
|
|
|
|
|
|
} |
|
4982
|
|
|
|
|
|
|
} |
|
4983
|
0
|
|
|
|
|
0
|
push @factors, $n; |
|
4984
|
0
|
|
|
|
|
0
|
return @factors; |
|
4985
|
|
|
|
|
|
|
} |
|
4986
|
5
|
100
|
|
|
|
23
|
$B2 = 1*$B1 unless defined $B2; |
|
4987
|
|
|
|
|
|
|
|
|
4988
|
5
|
|
|
|
|
22
|
my $one = $n->copy->bone; |
|
4989
|
5
|
|
|
|
|
578
|
my ($j, $q, $saveq) = (32, 2, 2); |
|
4990
|
5
|
|
|
|
|
19
|
my $t = $one->copy; |
|
4991
|
5
|
|
|
|
|
117
|
my $pa = $one->copy->binc(); |
|
4992
|
5
|
|
|
|
|
441
|
my $savea = $pa->copy; |
|
4993
|
5
|
|
|
|
|
110
|
my $f = $one->copy; |
|
4994
|
5
|
|
|
|
|
95
|
my($pc_beg, $pc_end, @bprimes); |
|
4995
|
|
|
|
|
|
|
|
|
4996
|
5
|
|
|
|
|
10
|
$pc_beg = 2; |
|
4997
|
5
|
|
|
|
|
17
|
$pc_end = $pc_beg + 100_000; |
|
4998
|
5
|
|
|
|
|
14
|
while (1) { |
|
4999
|
5
|
100
|
|
|
|
22
|
$pc_end = $B1 if $pc_end > $B1; |
|
5000
|
5
|
|
|
|
|
15
|
@bprimes = @{ primes($pc_beg, $pc_end) }; |
|
|
5
|
|
|
|
|
32
|
|
|
5001
|
5
|
|
|
|
|
290
|
foreach my $q (@bprimes) { |
|
5002
|
4252
|
|
|
|
|
13094
|
my($k, $kmin) = ($q, int($B1 / $q)); |
|
5003
|
4252
|
|
|
|
|
8606
|
while ($k <= $kmin) { $k *= $q; } |
|
|
593
|
|
|
|
|
1087
|
|
|
5004
|
4252
|
|
|
|
|
9539
|
$t *= $k; # accumulate powers for a |
|
5005
|
4252
|
100
|
|
|
|
718797
|
if ( ($j++ % 64) == 0) { |
|
5006
|
68
|
50
|
33
|
|
|
522
|
next if $pc_beg > 2 && ($j-1) % 256; |
|
5007
|
68
|
|
|
|
|
353
|
$pa->bmodpow($t, $n); |
|
5008
|
68
|
|
|
|
|
21833104
|
$t = $one->copy; |
|
5009
|
68
|
50
|
|
|
|
2878
|
if ($pa == 0) { push @factors, $n; return @factors; } |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
5010
|
68
|
|
|
|
|
21496
|
$f = Math::BigInt::bgcd( $pa->copy->bdec, $n ); |
|
5011
|
68
|
100
|
|
|
|
225155
|
last if $f == $n; |
|
5012
|
66
|
100
|
|
|
|
2914
|
return _found_factor($f, $n, "pminus1", @factors) unless $f->is_one; |
|
5013
|
65
|
|
|
|
|
1278
|
$saveq = $q; |
|
5014
|
65
|
|
|
|
|
207
|
$savea = $pa->copy; |
|
5015
|
|
|
|
|
|
|
} |
|
5016
|
|
|
|
|
|
|
} |
|
5017
|
4
|
|
|
|
|
120
|
$q = $bprimes[-1]; |
|
5018
|
4
|
50
|
66
|
|
|
24
|
last if !$f->is_one || $pc_end >= $B1; |
|
5019
|
0
|
|
|
|
|
0
|
$pc_beg = $pc_end+1; |
|
5020
|
0
|
|
|
|
|
0
|
$pc_end += 500_000; |
|
5021
|
|
|
|
|
|
|
} |
|
5022
|
4
|
|
|
|
|
718
|
undef @bprimes; |
|
5023
|
4
|
|
|
|
|
29
|
$pa->bmodpow($t, $n); |
|
5024
|
4
|
50
|
|
|
|
306229
|
if ($pa == 0) { push @factors, $n; return @factors; } |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
5025
|
4
|
|
|
|
|
1024
|
$f = Math::BigInt::bgcd( $pa-1, $n ); |
|
5026
|
4
|
100
|
|
|
|
7095
|
if ($f == $n) { |
|
5027
|
2
|
|
|
|
|
100
|
$q = $saveq; |
|
5028
|
2
|
|
|
|
|
7
|
$pa = $savea->copy; |
|
5029
|
2
|
|
|
|
|
50
|
while ($q <= $B1) { |
|
5030
|
114
|
|
|
|
|
328
|
my ($k, $kmin) = ($q, int($B1 / $q)); |
|
5031
|
114
|
|
|
|
|
264
|
while ($k <= $kmin) { $k *= $q; } |
|
|
0
|
|
|
|
|
0
|
|
|
5032
|
114
|
|
|
|
|
420
|
$pa->bmodpow($k, $n); |
|
5033
|
114
|
|
|
|
|
648639
|
my $f = Math::BigInt::bgcd( $pa-1, $n ); |
|
5034
|
114
|
100
|
|
|
|
485241
|
if ($f == $n) { push @factors, $n; return @factors; } |
|
|
2
|
|
|
|
|
96
|
|
|
|
2
|
|
|
|
|
40
|
|
|
5035
|
112
|
50
|
|
|
|
4443
|
last if !$f->is_one; |
|
5036
|
112
|
|
|
|
|
1628
|
$q = next_prime($q); |
|
5037
|
|
|
|
|
|
|
} |
|
5038
|
|
|
|
|
|
|
} |
|
5039
|
|
|
|
|
|
|
# STAGE 2 |
|
5040
|
2
|
50
|
33
|
|
|
92
|
if ($f->is_one && $B2 > $B1) { |
|
5041
|
2
|
|
|
|
|
60
|
my $bm = $pa->copy; |
|
5042
|
2
|
|
|
|
|
52
|
my $b = $one->copy; |
|
5043
|
2
|
|
|
|
|
49
|
my @precomp_bm; |
|
5044
|
2
|
|
|
|
|
9
|
$precomp_bm[0] = ($bm * $bm) % $n; |
|
5045
|
2
|
|
|
|
|
1019
|
foreach my $j (1..19) { |
|
5046
|
38
|
|
|
|
|
23091
|
$precomp_bm[$j] = ($precomp_bm[$j-1] * $bm * $bm) % $n; |
|
5047
|
|
|
|
|
|
|
} |
|
5048
|
2
|
|
|
|
|
1313
|
$pa->bmodpow($q, $n); |
|
5049
|
2
|
|
|
|
|
10213
|
my $j = 1; |
|
5050
|
2
|
|
|
|
|
9
|
$pc_beg = $q+1; |
|
5051
|
2
|
|
|
|
|
4
|
$pc_end = $pc_beg + 100_000; |
|
5052
|
2
|
|
|
|
|
7
|
while (1) { |
|
5053
|
2
|
50
|
|
|
|
9
|
$pc_end = $B2 if $pc_end > $B2; |
|
5054
|
2
|
|
|
|
|
6
|
@bprimes = @{ primes($pc_beg, $pc_end) }; |
|
|
2
|
|
|
|
|
15
|
|
|
5055
|
2
|
|
|
|
|
32
|
foreach my $i (0 .. $#bprimes) { |
|
5056
|
896
|
|
|
|
|
2170
|
my $diff = $bprimes[$i] - $q; |
|
5057
|
896
|
|
|
|
|
1405
|
$q = $bprimes[$i]; |
|
5058
|
896
|
|
|
|
|
1527
|
my $qdiff = ($diff >> 1) - 1; |
|
5059
|
896
|
100
|
|
|
|
2122
|
if (!defined $precomp_bm[$qdiff]) { |
|
5060
|
3
|
|
|
|
|
18
|
$precomp_bm[$qdiff] = $bm->copy->bmodpow($diff, $n); |
|
5061
|
|
|
|
|
|
|
} |
|
5062
|
896
|
|
|
|
|
9104
|
$pa->bmul($precomp_bm[$qdiff])->bmod($n); |
|
5063
|
896
|
50
|
|
|
|
342129
|
if ($pa == 0) { push @factors, $n; return @factors; } |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
5064
|
896
|
|
|
|
|
152753
|
$b->bmul($pa-1); |
|
5065
|
896
|
100
|
|
|
|
2049562
|
if (($j++ % 128) == 0) { |
|
5066
|
7
|
|
|
|
|
44
|
$b->bmod($n); |
|
5067
|
7
|
|
|
|
|
53209
|
$f = Math::BigInt::bgcd( $b, $n ); |
|
5068
|
7
|
100
|
|
|
|
21090
|
last if !$f->is_one; |
|
5069
|
|
|
|
|
|
|
} |
|
5070
|
|
|
|
|
|
|
} |
|
5071
|
2
|
50
|
33
|
|
|
45
|
last if !$f->is_one || $pc_end >= $B2; |
|
5072
|
0
|
|
|
|
|
0
|
$pc_beg = $pc_end+1; |
|
5073
|
0
|
|
|
|
|
0
|
$pc_end += 500_000; |
|
5074
|
|
|
|
|
|
|
} |
|
5075
|
2
|
|
|
|
|
39
|
$f = Math::BigInt::bgcd( $b, $n ); |
|
5076
|
|
|
|
|
|
|
} |
|
5077
|
2
|
|
|
|
|
5045
|
return _found_factor($f, $n, "pminus1", @factors); |
|
5078
|
|
|
|
|
|
|
} |
|
5079
|
|
|
|
|
|
|
|
|
5080
|
|
|
|
|
|
|
sub holf_factor { |
|
5081
|
3
|
|
|
3
|
0
|
6073
|
my($n, $rounds, $startrounds) = @_; |
|
5082
|
3
|
50
|
|
|
|
16
|
$rounds = 64*1024*1024 unless defined $rounds; |
|
5083
|
3
|
50
|
|
|
|
13
|
$startrounds = 1 unless defined $startrounds; |
|
5084
|
3
|
50
|
|
|
|
11
|
$startrounds = 1 if $startrounds < 1; |
|
5085
|
|
|
|
|
|
|
|
|
5086
|
3
|
|
|
|
|
12
|
my @factors = _basic_factor($n); |
|
5087
|
3
|
50
|
|
|
|
13
|
return @factors if $n < 4; |
|
5088
|
|
|
|
|
|
|
|
|
5089
|
3
|
100
|
|
|
|
305
|
if ( ref($n) eq 'Math::BigInt' ) { |
|
5090
|
2
|
|
|
|
|
9
|
for my $i ($startrounds .. $rounds) { |
|
5091
|
2
|
|
|
|
|
10
|
my $ni = $n->copy->bmul($i); |
|
5092
|
2
|
|
|
|
|
383
|
my $s = $ni->copy->bsqrt->bfloor->as_int; |
|
5093
|
2
|
50
|
|
|
|
2495
|
if ($s * $s == $ni) { |
|
5094
|
|
|
|
|
|
|
# s^2 = n*i, so m = s^2 mod n = 0. Hence f = GCD(n, s) = GCD(n, n*i) |
|
5095
|
0
|
|
|
|
|
0
|
my $f = Math::BigInt::bgcd($ni, $n); |
|
5096
|
0
|
|
|
|
|
0
|
return _found_factor($f, $n, "HOLF", @factors); |
|
5097
|
|
|
|
|
|
|
} |
|
5098
|
2
|
|
|
|
|
386
|
$s->binc; |
|
5099
|
2
|
|
|
|
|
91
|
my $m = ($s * $s) - $ni; |
|
5100
|
|
|
|
|
|
|
# Check for perfect square |
|
5101
|
2
|
|
|
|
|
620
|
my $mc = _bigint_to_int($m & 31); |
|
5102
|
2
|
0
|
33
|
|
|
92
|
next unless $mc==0||$mc==1||$mc==4||$mc==9||$mc==16||$mc==17||$mc==25; |
|
|
|
|
66
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
5103
|
2
|
|
|
|
|
10
|
my $f = $m->copy->bsqrt->bfloor->as_int; |
|
5104
|
2
|
50
|
|
|
|
216
|
next unless ($f*$f) == $m; |
|
5105
|
2
|
50
|
|
|
|
218
|
$f = Math::BigInt::bgcd( ($s > $f) ? $s-$f : $f-$s, $n); |
|
5106
|
2
|
|
|
|
|
905
|
return _found_factor($f, $n, "HOLF ($i rounds)", @factors); |
|
5107
|
|
|
|
|
|
|
} |
|
5108
|
|
|
|
|
|
|
} else { |
|
5109
|
1
|
|
|
|
|
5
|
for my $i ($startrounds .. $rounds) { |
|
5110
|
3
|
|
|
|
|
8
|
my $s = int(sqrt($n * $i)); |
|
5111
|
3
|
50
|
|
|
|
7
|
$s++ if ($s * $s) != ($n * $i); |
|
5112
|
3
|
50
|
|
|
|
7
|
my $m = ($s < MPU_HALFWORD) ? ($s*$s) % $n : _mulmod($s, $s, $n); |
|
5113
|
|
|
|
|
|
|
# Check for perfect square |
|
5114
|
3
|
|
|
|
|
4
|
my $mc = $m & 31; |
|
5115
|
3
|
50
|
33
|
|
|
29
|
next unless $mc==0||$mc==1||$mc==4||$mc==9||$mc==16||$mc==17||$mc==25; |
|
|
|
|
33
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
5116
|
1
|
|
|
|
|
2
|
my $f = int(sqrt($m)); |
|
5117
|
1
|
50
|
|
|
|
67
|
next unless $f*$f == $m; |
|
5118
|
1
|
|
|
|
|
6
|
$f = _gcd_ui($s - $f, $n); |
|
5119
|
1
|
|
|
|
|
6
|
return _found_factor($f, $n, "HOLF ($i rounds)", @factors); |
|
5120
|
|
|
|
|
|
|
} |
|
5121
|
|
|
|
|
|
|
} |
|
5122
|
0
|
|
|
|
|
0
|
push @factors, $n; |
|
5123
|
0
|
|
|
|
|
0
|
@factors; |
|
5124
|
|
|
|
|
|
|
} |
|
5125
|
|
|
|
|
|
|
|
|
5126
|
|
|
|
|
|
|
sub fermat_factor { |
|
5127
|
2
|
|
|
2
|
0
|
2780
|
my($n, $rounds) = @_; |
|
5128
|
2
|
50
|
|
|
|
10
|
$rounds = 64*1024*1024 unless defined $rounds; |
|
5129
|
|
|
|
|
|
|
|
|
5130
|
2
|
|
|
|
|
11
|
my @factors = _basic_factor($n); |
|
5131
|
2
|
50
|
|
|
|
8
|
return @factors if $n < 4; |
|
5132
|
|
|
|
|
|
|
|
|
5133
|
2
|
100
|
|
|
|
126
|
if ( ref($n) eq 'Math::BigInt' ) { |
|
5134
|
1
|
|
|
|
|
6
|
my $pa = $n->copy->bsqrt->bfloor->as_int; |
|
5135
|
1
|
50
|
|
|
|
1407
|
return _found_factor($pa, $n, "Fermat", @factors) if $pa*$pa == $n; |
|
5136
|
1
|
|
|
|
|
188
|
$pa++; |
|
5137
|
1
|
|
|
|
|
55
|
my $b2 = $pa*$pa - $n; |
|
5138
|
1
|
|
|
|
|
298
|
my $lasta = $pa + $rounds; |
|
5139
|
1
|
|
|
|
|
177
|
while ($pa <= $lasta) { |
|
5140
|
1
|
|
|
|
|
48
|
my $mc = _bigint_to_int($b2 & 31); |
|
5141
|
1
|
0
|
33
|
|
|
36
|
if ($mc==0||$mc==1||$mc==4||$mc==9||$mc==16||$mc==17||$mc==25) { |
|
|
|
|
33
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
5142
|
1
|
|
|
|
|
4
|
my $s = $b2->copy->bsqrt->bfloor->as_int; |
|
5143
|
1
|
50
|
|
|
|
109
|
if ($s*$s == $b2) { |
|
5144
|
1
|
|
|
|
|
106
|
my $i = $pa-($lasta-$rounds)+1; |
|
5145
|
1
|
|
|
|
|
477
|
return _found_factor($pa - $s, $n, "Fermat ($i rounds)", @factors); |
|
5146
|
|
|
|
|
|
|
} |
|
5147
|
|
|
|
|
|
|
} |
|
5148
|
0
|
|
|
|
|
0
|
$pa++; |
|
5149
|
0
|
|
|
|
|
0
|
$b2 = $pa*$pa-$n; |
|
5150
|
|
|
|
|
|
|
} |
|
5151
|
|
|
|
|
|
|
} else { |
|
5152
|
1
|
|
|
|
|
3
|
my $pa = int(sqrt($n)); |
|
5153
|
1
|
50
|
|
|
|
4
|
return _found_factor($pa, $n, "Fermat", @factors) if $pa*$pa == $n; |
|
5154
|
1
|
|
|
|
|
2
|
$pa++; |
|
5155
|
1
|
|
|
|
|
4
|
my $b2 = $pa*$pa - $n; |
|
5156
|
1
|
|
|
|
|
2
|
my $lasta = $pa + $rounds; |
|
5157
|
1
|
|
|
|
|
3
|
while ($pa <= $lasta) { |
|
5158
|
2
|
|
|
|
|
6
|
my $mc = $b2 & 31; |
|
5159
|
2
|
100
|
33
|
|
|
22
|
if ($mc==0||$mc==1||$mc==4||$mc==9||$mc==16||$mc==17||$mc==25) { |
|
|
|
|
33
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
5160
|
1
|
|
|
|
|
2
|
my $s = int(sqrt($b2)); |
|
5161
|
1
|
50
|
|
|
|
3
|
if ($s*$s == $b2) { |
|
5162
|
1
|
|
|
|
|
3
|
my $i = $pa-($lasta-$rounds)+1; |
|
5163
|
1
|
|
|
|
|
13
|
return _found_factor($pa - $s, $n, "Fermat ($i rounds)", @factors); |
|
5164
|
|
|
|
|
|
|
} |
|
5165
|
|
|
|
|
|
|
} |
|
5166
|
1
|
|
|
|
|
2
|
$pa++; |
|
5167
|
1
|
|
|
|
|
2
|
$b2 = $pa*$pa-$n; |
|
5168
|
|
|
|
|
|
|
} |
|
5169
|
|
|
|
|
|
|
} |
|
5170
|
0
|
|
|
|
|
0
|
push @factors, $n; |
|
5171
|
0
|
|
|
|
|
0
|
@factors; |
|
5172
|
|
|
|
|
|
|
} |
|
5173
|
|
|
|
|
|
|
|
|
5174
|
|
|
|
|
|
|
|
|
5175
|
|
|
|
|
|
|
sub ecm_factor { |
|
5176
|
7
|
|
|
7
|
0
|
4914
|
my($n, $B1, $B2, $ncurves) = @_; |
|
5177
|
7
|
|
|
|
|
37
|
_validate_positive_integer($n); |
|
5178
|
|
|
|
|
|
|
|
|
5179
|
7
|
|
|
|
|
38
|
my @factors = _basic_factor($n); |
|
5180
|
7
|
50
|
|
|
|
34
|
return @factors if $n < 4; |
|
5181
|
|
|
|
|
|
|
|
|
5182
|
7
|
50
|
|
|
|
824
|
if ($Math::Prime::Util::_GMPfunc{"ecm_factor"}) { |
|
5183
|
0
|
0
|
|
|
|
0
|
$B1 = 0 if !defined $B1; |
|
5184
|
0
|
0
|
|
|
|
0
|
$ncurves = 0 if !defined $ncurves; |
|
5185
|
0
|
|
|
|
|
0
|
my @ef = Math::Prime::Util::GMP::ecm_factor($n, $B1, $ncurves); |
|
5186
|
0
|
0
|
|
|
|
0
|
if (@ef > 1) { |
|
5187
|
0
|
|
|
|
|
0
|
my $ecmfac = Math::Prime::Util::_reftyped($n, $ef[-1]); |
|
5188
|
0
|
|
|
|
|
0
|
return _found_factor($ecmfac, $n, "ECM (GMP) B1=$B1 curves $ncurves", @factors); |
|
5189
|
|
|
|
|
|
|
} |
|
5190
|
0
|
|
|
|
|
0
|
push @factors, $n; |
|
5191
|
0
|
|
|
|
|
0
|
return @factors; |
|
5192
|
|
|
|
|
|
|
} |
|
5193
|
|
|
|
|
|
|
|
|
5194
|
7
|
100
|
|
|
|
27
|
$ncurves = 10 unless defined $ncurves; |
|
5195
|
|
|
|
|
|
|
|
|
5196
|
7
|
100
|
|
|
|
26
|
if (!defined $B1) { |
|
5197
|
1
|
|
|
|
|
6
|
for my $mul (1, 10, 100, 1000, 10_000, 100_000, 1_000_000) { |
|
5198
|
1
|
|
|
|
|
4
|
$B1 = 100 * $mul; |
|
5199
|
1
|
|
|
|
|
2
|
$B2 = 10*$B1; |
|
5200
|
|
|
|
|
|
|
#warn "Trying ecm with $B1 / $B2\n"; |
|
5201
|
1
|
|
|
|
|
17
|
my @nf = ecm_factor($n, $B1, $B2, $ncurves); |
|
5202
|
1
|
50
|
|
|
|
5
|
if (scalar @nf > 1) { |
|
5203
|
1
|
|
|
|
|
4
|
push @factors, @nf; |
|
5204
|
1
|
|
|
|
|
10
|
return @factors; |
|
5205
|
|
|
|
|
|
|
} |
|
5206
|
|
|
|
|
|
|
} |
|
5207
|
0
|
|
|
|
|
0
|
push @factors, $n; |
|
5208
|
0
|
|
|
|
|
0
|
return @factors; |
|
5209
|
|
|
|
|
|
|
} |
|
5210
|
|
|
|
|
|
|
|
|
5211
|
6
|
50
|
|
|
|
24
|
$B2 = 10*$B1 unless defined $B2; |
|
5212
|
6
|
|
|
|
|
30
|
my $sqrt_b1 = int(sqrt($B1)+1); |
|
5213
|
|
|
|
|
|
|
|
|
5214
|
|
|
|
|
|
|
# Affine code. About 3x slower than the projective, and no stage 2. |
|
5215
|
|
|
|
|
|
|
# |
|
5216
|
|
|
|
|
|
|
#if (!defined $Math::Prime::Util::ECAffinePoint::VERSION) { |
|
5217
|
|
|
|
|
|
|
# eval { require Math::Prime::Util::ECAffinePoint; 1; } |
|
5218
|
|
|
|
|
|
|
# or do { croak "Cannot load Math::Prime::Util::ECAffinePoint"; }; |
|
5219
|
|
|
|
|
|
|
#} |
|
5220
|
|
|
|
|
|
|
#my @bprimes = @{ primes(2, $B1) }; |
|
5221
|
|
|
|
|
|
|
#my $irandf = Math::Prime::Util::_get_rand_func(); |
|
5222
|
|
|
|
|
|
|
#foreach my $curve (1 .. $ncurves) { |
|
5223
|
|
|
|
|
|
|
# my $a = $irandf->($n-1); |
|
5224
|
|
|
|
|
|
|
# my $b = 1; |
|
5225
|
|
|
|
|
|
|
# my $ECP = Math::Prime::Util::ECAffinePoint->new($a, $b, $n, 0, 1); |
|
5226
|
|
|
|
|
|
|
# foreach my $q (@bprimes) { |
|
5227
|
|
|
|
|
|
|
# my $k = $q; |
|
5228
|
|
|
|
|
|
|
# if ($k < $sqrt_b1) { |
|
5229
|
|
|
|
|
|
|
# my $kmin = int($B1 / $q); |
|
5230
|
|
|
|
|
|
|
# while ($k <= $kmin) { $k *= $q; } |
|
5231
|
|
|
|
|
|
|
# } |
|
5232
|
|
|
|
|
|
|
# $ECP->mul($k); |
|
5233
|
|
|
|
|
|
|
# my $f = $ECP->f; |
|
5234
|
|
|
|
|
|
|
# if ($f != 1) { |
|
5235
|
|
|
|
|
|
|
# last if $f == $n; |
|
5236
|
|
|
|
|
|
|
# warn "ECM found factors with B1 = $B1 in curve $curve\n"; |
|
5237
|
|
|
|
|
|
|
# return _found_factor($f, $n, "ECM B1=$B1 curve $curve", @factors); |
|
5238
|
|
|
|
|
|
|
# } |
|
5239
|
|
|
|
|
|
|
# last if $ECP->is_infinity; |
|
5240
|
|
|
|
|
|
|
# } |
|
5241
|
|
|
|
|
|
|
#} |
|
5242
|
|
|
|
|
|
|
|
|
5243
|
6
|
|
|
|
|
1914
|
require Math::Prime::Util::ECProjectivePoint; |
|
5244
|
6
|
|
|
|
|
1388
|
require Math::Prime::Util::RandomPrimes; |
|
5245
|
|
|
|
|
|
|
|
|
5246
|
|
|
|
|
|
|
# With multiple curves, it's better to get all the primes at once. |
|
5247
|
|
|
|
|
|
|
# The downside is this can kill memory with a very large B1. |
|
5248
|
6
|
|
|
|
|
18
|
my @bprimes = @{ primes(3, $B1) }; |
|
|
6
|
|
|
|
|
32
|
|
|
5249
|
6
|
|
|
|
|
29
|
foreach my $q (@bprimes) { |
|
5250
|
33
|
100
|
|
|
|
71
|
last if $q > $sqrt_b1; |
|
5251
|
27
|
|
|
|
|
71
|
my($k,$kmin) = ($q, int($B1/$q)); |
|
5252
|
27
|
|
|
|
|
58
|
while ($k <= $kmin) { $k *= $q; } |
|
|
40
|
|
|
|
|
76
|
|
|
5253
|
27
|
|
|
|
|
43
|
$q = $k; |
|
5254
|
|
|
|
|
|
|
} |
|
5255
|
6
|
50
|
|
|
|
30
|
my @b2primes = ($B2 > $B1) ? @{primes($B1+1, $B2)} : (); |
|
|
6
|
|
|
|
|
21
|
|
|
5256
|
|
|
|
|
|
|
|
|
5257
|
6
|
|
|
|
|
143
|
foreach my $curve (1 .. $ncurves) { |
|
5258
|
24
|
|
|
|
|
2377
|
my $sigma = Math::Prime::Util::urandomm($n-6) + 6; |
|
5259
|
24
|
|
|
|
|
9028
|
my ($u, $v) = ( ($sigma*$sigma - 5) % $n, (4 * $sigma) % $n ); |
|
5260
|
24
|
|
|
|
|
23723
|
my ($x, $z) = ( ($u*$u*$u) % $n, ($v*$v*$v) % $n ); |
|
5261
|
24
|
|
|
|
|
31034
|
my $cb = (4 * $x * $v) % $n; |
|
5262
|
24
|
|
|
|
|
13880
|
my $ca = ( (($v-$u)**3) * (3*$u + $v) ) % $n; |
|
5263
|
24
|
|
|
|
|
36946
|
my $f = Math::BigInt::bgcd( $cb, $n ); |
|
5264
|
24
|
50
|
|
|
|
80592
|
$f = Math::BigInt::bgcd( $z, $n ) if $f == 1; |
|
5265
|
24
|
50
|
|
|
|
81451
|
next if $f == $n; |
|
5266
|
24
|
50
|
|
|
|
1090
|
return _found_factor($f,$n, "ECM B1=$B1 curve $curve", @factors) if $f != 1; |
|
5267
|
24
|
100
|
|
|
|
2838
|
$cb = Math::BigInt->new("$cb") unless ref($cb) eq 'Math::BigInt'; |
|
5268
|
24
|
|
|
|
|
130
|
$u = $cb->copy->bmodinv($n); |
|
5269
|
24
|
|
|
|
|
116947
|
$ca = (($ca*$u) - 2) % $n; |
|
5270
|
|
|
|
|
|
|
|
|
5271
|
24
|
|
|
|
|
16136
|
my $ECP = Math::Prime::Util::ECProjectivePoint->new($ca, $n, $x, $z); |
|
5272
|
24
|
|
|
|
|
82
|
my $fm = $n-$n+1; |
|
5273
|
24
|
|
|
|
|
6006
|
my $i = 15; |
|
5274
|
|
|
|
|
|
|
|
|
5275
|
24
|
|
|
|
|
123
|
for (my $q = 2; $q < $B1; $q *= 2) { $ECP->double(); } |
|
|
174
|
|
|
|
|
546
|
|
|
5276
|
24
|
|
|
|
|
112
|
foreach my $k (@bprimes) { |
|
5277
|
2857
|
|
|
|
|
29345
|
$ECP->mul($k); |
|
5278
|
2857
|
|
|
|
|
12159
|
$fm = ($fm * $ECP->x() ) % $n; |
|
5279
|
2857
|
100
|
|
|
|
1258380
|
if ($i++ % 32 == 0) { |
|
5280
|
86
|
|
|
|
|
521
|
$f = Math::BigInt::bgcd($fm, $n); |
|
5281
|
86
|
100
|
|
|
|
304486
|
last if $f != 1; |
|
5282
|
|
|
|
|
|
|
} |
|
5283
|
|
|
|
|
|
|
} |
|
5284
|
24
|
|
|
|
|
290
|
$f = Math::BigInt::bgcd($fm, $n); |
|
5285
|
24
|
50
|
|
|
|
81518
|
next if $f == $n; |
|
5286
|
|
|
|
|
|
|
|
|
5287
|
24
|
100
|
66
|
|
|
1421
|
if ($f == 1 && $B2 > $B1) { # BEGIN STAGE 2 |
|
5288
|
22
|
100
|
|
|
|
3388
|
my $D = int(sqrt($B2/2)); $D++ if $D % 2; |
|
|
22
|
|
|
|
|
98
|
|
|
5289
|
22
|
|
|
|
|
71
|
my $one = $n - $n + 1; |
|
5290
|
22
|
|
|
|
|
5986
|
my $g = $one; |
|
5291
|
|
|
|
|
|
|
|
|
5292
|
22
|
|
|
|
|
142
|
my $S2P = $ECP->copy->normalize; |
|
5293
|
22
|
|
|
|
|
112
|
$f = $S2P->f; |
|
5294
|
22
|
50
|
|
|
|
106
|
if ($f != 1) { |
|
5295
|
0
|
0
|
|
|
|
0
|
next if $f == $n; |
|
5296
|
|
|
|
|
|
|
#warn "ECM S2 normalize f=$f\n" if $f != 1; |
|
5297
|
0
|
|
|
|
|
0
|
return _found_factor($f, $n, "ECM S2 B1=$B1 curve $curve"); |
|
5298
|
|
|
|
|
|
|
} |
|
5299
|
22
|
|
|
|
|
2597
|
my $S2x = $S2P->x; |
|
5300
|
22
|
|
|
|
|
90
|
my $S2d = $S2P->d; |
|
5301
|
22
|
|
|
|
|
78
|
my @nqx = ($n-$n, $S2x); |
|
5302
|
|
|
|
|
|
|
|
|
5303
|
22
|
|
|
|
|
2604
|
foreach my $i (2 .. 2*$D) { |
|
5304
|
1838
|
|
|
|
|
798177
|
my($x2, $z2); |
|
5305
|
1838
|
100
|
|
|
|
5133
|
if ($i % 2) { |
|
5306
|
909
|
|
|
|
|
5312
|
($x2, $z2) = Math::Prime::Util::ECProjectivePoint::_addx($nqx[($i-1)/2], $nqx[($i+1)/2], $S2x, $n); |
|
5307
|
|
|
|
|
|
|
} else { |
|
5308
|
929
|
|
|
|
|
4320
|
($x2, $z2) = Math::Prime::Util::ECProjectivePoint::_double($nqx[$i/2], $one, $n, $S2d); |
|
5309
|
|
|
|
|
|
|
} |
|
5310
|
1838
|
|
|
|
|
848511
|
$nqx[$i] = $x2; |
|
5311
|
|
|
|
|
|
|
#($f, $u, undef) = _extended_gcd($z2, $n); |
|
5312
|
1838
|
|
|
|
|
5370
|
$f = Math::BigInt::bgcd( $z2, $n ); |
|
5313
|
1838
|
100
|
|
|
|
6100658
|
last if $f != 1; |
|
5314
|
1836
|
|
|
|
|
221098
|
$u = $z2->copy->bmodinv($n); |
|
5315
|
1836
|
|
|
|
|
8790206
|
$nqx[$i] = ($x2 * $u) % $n; |
|
5316
|
|
|
|
|
|
|
} |
|
5317
|
22
|
100
|
|
|
|
9000
|
if ($f != 1) { |
|
5318
|
2
|
50
|
|
|
|
191
|
next if $f == $n; |
|
5319
|
|
|
|
|
|
|
#warn "ECM S2 1: B1 $B1 B2 $B2 curve $curve f=$f\n"; |
|
5320
|
2
|
|
|
|
|
142
|
return _found_factor($f, $n, "ECM S2 B1=$B1 curve $curve", @factors); |
|
5321
|
|
|
|
|
|
|
} |
|
5322
|
|
|
|
|
|
|
|
|
5323
|
20
|
|
|
|
|
2449
|
$x = $nqx[2*$D-1]; |
|
5324
|
20
|
|
|
|
|
119
|
my $m = 1; |
|
5325
|
20
|
|
|
|
|
110
|
while ($m < ($B2+$D)) { |
|
5326
|
882
|
100
|
|
|
|
2405
|
if ($m != 1) { |
|
5327
|
862
|
|
|
|
|
1611
|
my $oldx = $S2x; |
|
5328
|
862
|
|
|
|
|
3652
|
my ($x1, $z1) = Math::Prime::Util::ECProjectivePoint::_addx($nqx[2*$D], $S2x, $x, $n); |
|
5329
|
862
|
|
|
|
|
804102
|
$f = Math::BigInt::bgcd( $z1, $n ); |
|
5330
|
862
|
50
|
|
|
|
2880549
|
last if $f != 1; |
|
5331
|
862
|
|
|
|
|
101627
|
$u = $z1->copy->bmodinv($n); |
|
5332
|
862
|
|
|
|
|
4167315
|
$S2x = ($x1 * $u) % $n; |
|
5333
|
862
|
|
|
|
|
377818
|
$x = $oldx; |
|
5334
|
862
|
50
|
|
|
|
3394
|
last if $f != 1; |
|
5335
|
|
|
|
|
|
|
} |
|
5336
|
882
|
100
|
|
|
|
101016
|
if ($m+$D > $B1) { |
|
5337
|
722
|
100
|
|
|
|
3142
|
my @p = grep { $_ >= $m-$D && $_ <= $m+$D } @b2primes; |
|
|
337305
|
|
|
|
|
735678
|
|
|
5338
|
722
|
|
|
|
|
1941
|
foreach my $i (@p) { |
|
5339
|
4950
|
100
|
|
|
|
2453819
|
last if $i >= $m; |
|
5340
|
4245
|
|
|
|
|
14708
|
$g = ($g * ($S2x - $nqx[$m+$D-$i])) % $n; |
|
5341
|
|
|
|
|
|
|
} |
|
5342
|
722
|
|
|
|
|
11659
|
foreach my $i (@p) { |
|
5343
|
8736
|
100
|
|
|
|
1628080
|
next unless $i > $m; |
|
5344
|
4281
|
100
|
100
|
|
|
14161
|
next if $i > ($m+$m) || is_prime($m+$m-$i); |
|
5345
|
3324
|
|
|
|
|
11117
|
$g = ($g * ($S2x - $nqx[$i-$m])) % $n; |
|
5346
|
|
|
|
|
|
|
} |
|
5347
|
722
|
|
|
|
|
314340
|
$f = Math::BigInt::bgcd($g, $n); |
|
5348
|
|
|
|
|
|
|
#warn "ECM S2 3: found $f in stage 2\n" if $f != 1; |
|
5349
|
722
|
100
|
|
|
|
2398420
|
last if $f != 1; |
|
5350
|
|
|
|
|
|
|
} |
|
5351
|
880
|
|
|
|
|
90624
|
$m += 2*$D; |
|
5352
|
|
|
|
|
|
|
} |
|
5353
|
|
|
|
|
|
|
} # END STAGE 2 |
|
5354
|
|
|
|
|
|
|
|
|
5355
|
22
|
50
|
|
|
|
863
|
next if $f == $n; |
|
5356
|
22
|
100
|
|
|
|
987
|
if ($f != 1) { |
|
5357
|
|
|
|
|
|
|
#warn "ECM found factors with B1 = $B1 in curve $curve\n"; |
|
5358
|
4
|
|
|
|
|
500
|
return _found_factor($f, $n, "ECM B1=$B1 curve $curve", @factors); |
|
5359
|
|
|
|
|
|
|
} |
|
5360
|
|
|
|
|
|
|
# end of curve loop |
|
5361
|
|
|
|
|
|
|
} |
|
5362
|
0
|
|
|
|
|
0
|
push @factors, $n; |
|
5363
|
0
|
|
|
|
|
0
|
@factors; |
|
5364
|
|
|
|
|
|
|
} |
|
5365
|
|
|
|
|
|
|
|
|
5366
|
|
|
|
|
|
|
sub divisors { |
|
5367
|
38
|
|
|
38
|
0
|
1785
|
my($n) = @_; |
|
5368
|
38
|
|
|
|
|
181
|
_validate_positive_integer($n); |
|
5369
|
38
|
|
|
|
|
92
|
my(@factors, @d, @t); |
|
5370
|
|
|
|
|
|
|
|
|
5371
|
|
|
|
|
|
|
# In scalar context, returns sigma_0(n). Very fast. |
|
5372
|
38
|
50
|
|
|
|
157
|
return Math::Prime::Util::divisor_sum($n,0) unless wantarray; |
|
5373
|
38
|
0
|
|
|
|
119
|
return ($n == 0) ? (0,1) : (1) if $n <= 1; |
|
|
|
50
|
|
|
|
|
|
|
5374
|
|
|
|
|
|
|
|
|
5375
|
38
|
50
|
|
|
|
4385
|
if ($Math::Prime::Util::_GMPfunc{"divisors"}) { |
|
5376
|
|
|
|
|
|
|
# This trips an erroneous compile time error without the eval. |
|
5377
|
0
|
|
|
|
|
0
|
eval ' @d = Math::Prime::Util::GMP::divisors($n); '; ## no critic qw(ProhibitStringyEval) |
|
5378
|
0
|
0
|
|
|
|
0
|
@d = map { $_ <= ~0 ? $_ : ref($n)->new($_) } @d if ref($n); |
|
|
0
|
0
|
|
|
|
0
|
|
|
5379
|
0
|
|
|
|
|
0
|
return @d; |
|
5380
|
|
|
|
|
|
|
} |
|
5381
|
|
|
|
|
|
|
|
|
5382
|
38
|
|
|
|
|
208
|
@factors = Math::Prime::Util::factor($n); |
|
5383
|
38
|
50
|
|
|
|
192
|
return (1,$n) if scalar @factors == 1; |
|
5384
|
|
|
|
|
|
|
|
|
5385
|
38
|
|
|
|
|
175
|
my $bigint = ref($n); |
|
5386
|
38
|
50
|
|
|
|
150
|
@factors = map { $bigint->new("$_") } @factors if $bigint; |
|
|
225
|
|
|
|
|
9694
|
|
|
5387
|
38
|
50
|
|
|
|
2494
|
@d = $bigint ? ($bigint->new(1)) : (1); |
|
5388
|
|
|
|
|
|
|
|
|
5389
|
38
|
|
|
|
|
1681
|
while (my $p = shift @factors) { |
|
5390
|
191
|
|
|
|
|
6737
|
my $e = 1; |
|
5391
|
191
|
|
100
|
|
|
677
|
while (@factors && $p == $factors[0]) { $e++; shift(@factors); } |
|
|
34
|
|
|
|
|
1413
|
|
|
|
34
|
|
|
|
|
157
|
|
|
5392
|
191
|
|
|
|
|
5414
|
push @d, @t = map { $_ * $p } @d; # multiply through once |
|
|
2648
|
|
|
|
|
230570
|
|
|
5393
|
191
|
|
|
|
|
18951
|
push @d, @t = map { $_ * $p } @t for 2 .. $e; # repeat |
|
|
34
|
|
|
|
|
1231
|
|
|
5394
|
|
|
|
|
|
|
} |
|
5395
|
|
|
|
|
|
|
|
|
5396
|
38
|
100
|
|
|
|
266
|
@d = map { $_ <= INTMAX ? _bigint_to_int($_) : $_ } @d if $bigint; |
|
|
2720
|
50
|
|
|
|
86850
|
|
|
5397
|
38
|
|
|
|
|
5481
|
@d = sort { $a <=> $b } @d; |
|
|
9181
|
|
|
|
|
54931
|
|
|
5398
|
38
|
|
|
|
|
1108
|
@d; |
|
5399
|
|
|
|
|
|
|
} |
|
5400
|
|
|
|
|
|
|
|
|
5401
|
|
|
|
|
|
|
|
|
5402
|
|
|
|
|
|
|
sub chebyshev_theta { |
|
5403
|
2
|
|
|
2
|
0
|
8
|
my($n,$low) = @_; |
|
5404
|
2
|
100
|
|
|
|
9
|
$low = 2 unless defined $low; |
|
5405
|
2
|
|
|
|
|
7
|
my($sum,$high) = (0.0, 0); |
|
5406
|
2
|
|
|
|
|
8
|
while ($low <= $n) { |
|
5407
|
2
|
|
|
|
|
6
|
$high = $low + 1e6; |
|
5408
|
2
|
50
|
|
|
|
7
|
$high = $n if $high > $n; |
|
5409
|
2
|
|
|
|
|
5
|
$sum += log($_) for @{primes($low,$high)}; |
|
|
2
|
|
|
|
|
10
|
|
|
5410
|
2
|
|
|
|
|
40
|
$low = $high+1; |
|
5411
|
|
|
|
|
|
|
} |
|
5412
|
2
|
|
|
|
|
10
|
$sum; |
|
5413
|
|
|
|
|
|
|
} |
|
5414
|
|
|
|
|
|
|
|
|
5415
|
|
|
|
|
|
|
sub chebyshev_psi { |
|
5416
|
1
|
|
|
1
|
0
|
4
|
my($n) = @_; |
|
5417
|
1
|
50
|
|
|
|
5
|
return 0 if $n <= 1; |
|
5418
|
1
|
|
|
|
|
6
|
my ($sum, $logn, $sqrtn) = (0.0, log($n), int(sqrt($n))); |
|
5419
|
|
|
|
|
|
|
|
|
5420
|
|
|
|
|
|
|
# Sum the log of prime powers first |
|
5421
|
1
|
|
|
|
|
2
|
for my $p (@{primes($sqrtn)}) { |
|
|
1
|
|
|
|
|
3
|
|
|
5422
|
22
|
|
|
|
|
40
|
my $logp = log($p); |
|
5423
|
22
|
|
|
|
|
37
|
$sum += $logp * int($logn/$logp+1e-15); |
|
5424
|
|
|
|
|
|
|
} |
|
5425
|
|
|
|
|
|
|
# The rest all have exponent 1: add them in using the segmenting theta code |
|
5426
|
1
|
|
|
|
|
9
|
$sum += chebyshev_theta($n, $sqrtn+1); |
|
5427
|
|
|
|
|
|
|
|
|
5428
|
1
|
|
|
|
|
15
|
$sum; |
|
5429
|
|
|
|
|
|
|
} |
|
5430
|
|
|
|
|
|
|
|
|
5431
|
|
|
|
|
|
|
sub hclassno { |
|
5432
|
0
|
|
|
0
|
0
|
0
|
my $n = shift; |
|
5433
|
|
|
|
|
|
|
|
|
5434
|
0
|
0
|
|
|
|
0
|
return -1 if $n == 0; |
|
5435
|
0
|
0
|
0
|
|
|
0
|
return 0 if $n < 0 || ($n % 4) == 1 || ($n % 4) == 2; |
|
|
|
|
0
|
|
|
|
|
|
5436
|
0
|
0
|
|
|
|
0
|
return 2 * (2,3,6,6,6,8,12,9,6,12,18,12,8,12,18,18,12,15,24,12,6,24,30,20,12,12,24,24,18,24)[($n>>1)-1] if $n <= 60; |
|
5437
|
|
|
|
|
|
|
|
|
5438
|
0
|
|
|
|
|
0
|
my ($h, $square, $b, $b2) = (0, 0, $n & 1, ($n+1) >> 2); |
|
5439
|
|
|
|
|
|
|
|
|
5440
|
0
|
0
|
|
|
|
0
|
if ($b == 0) { |
|
5441
|
0
|
|
|
|
|
0
|
my $lim = int(sqrt($b2)); |
|
5442
|
0
|
0
|
|
|
|
0
|
if (_is_perfect_square($b2)) { |
|
5443
|
0
|
|
|
|
|
0
|
$square = 1; |
|
5444
|
0
|
|
|
|
|
0
|
$lim--; |
|
5445
|
|
|
|
|
|
|
} |
|
5446
|
|
|
|
|
|
|
#$h += scalar(grep { $_ <= $lim } divisors($b2)); |
|
5447
|
0
|
0
|
|
|
|
0
|
for my $i (1 .. $lim) { $h++ unless $b2 % $i; } |
|
|
0
|
|
|
|
|
0
|
|
|
5448
|
0
|
|
|
|
|
0
|
($b,$b2) = (2, ($n+4) >> 2); |
|
5449
|
|
|
|
|
|
|
} |
|
5450
|
0
|
|
|
|
|
0
|
while ($b2 * 3 < $n) { |
|
5451
|
0
|
0
|
|
|
|
0
|
$h++ unless $b2 % $b; |
|
5452
|
0
|
|
|
|
|
0
|
my $lim = int(sqrt($b2)); |
|
5453
|
0
|
0
|
|
|
|
0
|
if (_is_perfect_square($b2)) { |
|
5454
|
0
|
|
|
|
|
0
|
$h++; |
|
5455
|
0
|
|
|
|
|
0
|
$lim--; |
|
5456
|
|
|
|
|
|
|
} |
|
5457
|
|
|
|
|
|
|
#$h += 2 * scalar(grep { $_ > $b && $_ <= $lim } divisors($b2)); |
|
5458
|
0
|
0
|
|
|
|
0
|
for my $i ($b+1 .. $lim) { $h += 2 unless $b2 % $i; } |
|
|
0
|
|
|
|
|
0
|
|
|
5459
|
0
|
|
|
|
|
0
|
$b += 2; |
|
5460
|
0
|
|
|
|
|
0
|
$b2 = ($n+$b*$b) >> 2; |
|
5461
|
|
|
|
|
|
|
} |
|
5462
|
0
|
0
|
|
|
|
0
|
return (($b2*3 == $n) ? 2*(3*$h+1) : $square ? 3*(2*$h+1) : 6*$h) << 1; |
|
|
|
0
|
|
|
|
|
|
|
5463
|
|
|
|
|
|
|
} |
|
5464
|
|
|
|
|
|
|
|
|
5465
|
|
|
|
|
|
|
# Sigma method for prime powers |
|
5466
|
|
|
|
|
|
|
sub _taup { |
|
5467
|
0
|
|
|
0
|
|
0
|
my($p, $e, $n) = @_; |
|
5468
|
0
|
|
|
|
|
0
|
my($bp) = Math::BigInt->new("".$p); |
|
5469
|
0
|
0
|
|
|
|
0
|
if ($e == 1) { |
|
5470
|
0
|
0
|
|
|
|
0
|
return (0,1,-24,252,-1472,4830,-6048,-16744,84480)[$p] if $p <= 8; |
|
5471
|
0
|
|
|
|
|
0
|
my $ds5 = $bp->copy->bpow( 5)->binc(); # divisor_sum(p,5) |
|
5472
|
0
|
|
|
|
|
0
|
my $ds11 = $bp->copy->bpow(11)->binc(); # divisor_sum(p,11) |
|
5473
|
0
|
|
|
|
|
0
|
my $s = Math::BigInt->new("".vecsum(map { vecprod(BTWO,Math::Prime::Util::divisor_sum($_,5), Math::Prime::Util::divisor_sum($p-$_,5)) } 1..($p-1)>>1)); |
|
|
0
|
|
|
|
|
0
|
|
|
5474
|
0
|
|
|
|
|
0
|
$n = ( 65*$ds11 + 691*$ds5 - (691*252)*$s ) / 756; |
|
5475
|
|
|
|
|
|
|
} else { |
|
5476
|
0
|
|
|
|
|
0
|
my $t = Math::BigInt->new(""._taup($p,1)); |
|
5477
|
0
|
|
|
|
|
0
|
$n = $t->copy->bpow($e); |
|
5478
|
0
|
0
|
|
|
|
0
|
if ($e == 2) { |
|
|
|
0
|
|
|
|
|
|
|
5479
|
0
|
|
|
|
|
0
|
$n -= $bp->copy->bpow(11); |
|
5480
|
|
|
|
|
|
|
} elsif ($e == 3) { |
|
5481
|
0
|
|
|
|
|
0
|
$n -= BTWO * $t * $bp->copy->bpow(11); |
|
5482
|
|
|
|
|
|
|
} else { |
|
5483
|
0
|
0
|
|
|
|
0
|
$n += vecsum( map { vecprod( ($_&1) ? - BONE : BONE, |
|
|
0
|
|
|
|
|
0
|
|
|
5484
|
|
|
|
|
|
|
$bp->copy->bpow(11*$_), |
|
5485
|
|
|
|
|
|
|
binomial($e-$_, $e-2*$_), |
|
5486
|
|
|
|
|
|
|
$t ** ($e-2*$_) ) } 1 .. ($e>>1) ); |
|
5487
|
|
|
|
|
|
|
} |
|
5488
|
|
|
|
|
|
|
} |
|
5489
|
0
|
0
|
0
|
|
|
0
|
$n = _bigint_to_int($n) if ref($n) && $n->bacmp(BMAX) <= 0; |
|
5490
|
0
|
|
|
|
|
0
|
$n; |
|
5491
|
|
|
|
|
|
|
} |
|
5492
|
|
|
|
|
|
|
|
|
5493
|
|
|
|
|
|
|
# Cohen's method using Hurwitz class numbers |
|
5494
|
|
|
|
|
|
|
# The two hclassno calls could be collapsed with some work |
|
5495
|
|
|
|
|
|
|
sub _tauprime { |
|
5496
|
9
|
|
|
9
|
|
11
|
my $p = shift; |
|
5497
|
9
|
100
|
|
|
|
22
|
return -24 if $p == 2; |
|
5498
|
8
|
|
|
|
|
298
|
my $sum = Math::BigInt->new(0); |
|
5499
|
8
|
50
|
|
|
|
1080
|
if ($p < (MPU_32BIT ? 300 : 1600)) { |
|
5500
|
8
|
|
|
|
|
267
|
my($p9,$pp7) = (9*$p, 7*$p*$p); |
|
5501
|
8
|
|
|
|
|
904
|
for my $t (1 .. Math::Prime::Util::sqrtint($p)) { |
|
5502
|
36
|
|
|
|
|
3428
|
my $t2 = $t * $t; |
|
5503
|
36
|
|
|
|
|
55
|
my $v = $p - $t2; |
|
5504
|
36
|
|
|
|
|
650
|
$sum += $t2**3 * (4*$t2*$t2 - $p9*$t2 + $pp7) * (Math::Prime::Util::hclassno(4*$v) + 2 * Math::Prime::Util::hclassno($v)); |
|
5505
|
|
|
|
|
|
|
} |
|
5506
|
8
|
|
|
|
|
3076
|
$p = Math::BigInt->new("$p"); |
|
5507
|
|
|
|
|
|
|
} else { |
|
5508
|
0
|
|
|
|
|
0
|
$p = Math::BigInt->new("$p"); |
|
5509
|
0
|
|
|
|
|
0
|
my($p9,$pp7) = (9*$p, 7*$p*$p); |
|
5510
|
0
|
|
|
|
|
0
|
for my $t (1 .. Math::Prime::Util::sqrtint($p)) { |
|
5511
|
0
|
|
|
|
|
0
|
my $t2 = Math::BigInt->new("$t") ** 2; |
|
5512
|
0
|
|
|
|
|
0
|
my $v = $p - $t2; |
|
5513
|
0
|
|
|
|
|
0
|
$sum += $t2**3 * (4*$t2*$t2 - $p9*$t2 + $pp7) * (Math::Prime::Util::hclassno(4*$v) + 2 * Math::Prime::Util::hclassno($v)); |
|
5514
|
|
|
|
|
|
|
} |
|
5515
|
|
|
|
|
|
|
} |
|
5516
|
8
|
|
|
|
|
295
|
28*$p**6 - 28*$p**5 - 90*$p**4 - 35*$p**3 - 1 - 32 * ($sum/3); |
|
5517
|
|
|
|
|
|
|
} |
|
5518
|
|
|
|
|
|
|
|
|
5519
|
|
|
|
|
|
|
# Recursive method for handling prime powers |
|
5520
|
|
|
|
|
|
|
sub _taupower { |
|
5521
|
9
|
|
|
9
|
|
1160
|
my($p, $e) = @_; |
|
5522
|
9
|
50
|
|
|
|
18
|
return 1 if $e <= 0; |
|
5523
|
9
|
100
|
|
|
|
21
|
return _tauprime($p) if $e == 1; |
|
5524
|
2
|
|
|
|
|
7
|
$p = Math::BigInt->new("$p"); |
|
5525
|
2
|
|
|
|
|
86
|
my($tp, $p11) = ( _tauprime($p), $p**11 ); |
|
5526
|
2
|
100
|
|
|
|
5108
|
return $tp ** 2 - $p11 if $e == 2; |
|
5527
|
1
|
50
|
|
|
|
5
|
return $tp ** 3 - 2 * $tp * $p11 if $e == 3; |
|
5528
|
1
|
50
|
|
|
|
4
|
return $tp ** 4 - 3 * $tp**2 * $p11 + $p11**2 if $e == 4; |
|
5529
|
|
|
|
|
|
|
# Recurse -3 |
|
5530
|
1
|
|
|
|
|
4
|
($tp**3 - 2*$tp*$p11) * _taupower($p,$e-3) + ($p11*$p11 - $tp*$tp*$p11) * _taupower($p,$e-4); |
|
5531
|
|
|
|
|
|
|
} |
|
5532
|
|
|
|
|
|
|
|
|
5533
|
|
|
|
|
|
|
sub ramanujan_tau { |
|
5534
|
4
|
|
|
4
|
0
|
4999
|
my $n = shift; |
|
5535
|
4
|
50
|
|
|
|
12
|
return 0 if $n <= 0; |
|
5536
|
|
|
|
|
|
|
|
|
5537
|
|
|
|
|
|
|
# Use GMP if we have no XS or if size is small |
|
5538
|
4
|
50
|
33
|
|
|
18
|
if ($n < 100000 || !Math::Prime::Util::prime_get_config()->{'xs'}) { |
|
5539
|
4
|
50
|
|
|
|
11
|
if ($Math::Prime::Util::_GMPfunc{"ramanujan_tau"}) { |
|
5540
|
0
|
|
|
|
|
0
|
return Math::Prime::Util::_reftyped($_[0], Math::Prime::Util::GMP::ramanujan_tau($n)); |
|
5541
|
|
|
|
|
|
|
} |
|
5542
|
|
|
|
|
|
|
} |
|
5543
|
|
|
|
|
|
|
|
|
5544
|
|
|
|
|
|
|
# _taup is faster for small numbers, but gets very slow. It's not a huge |
|
5545
|
|
|
|
|
|
|
# deal, and the GMP code will probably get run for small inputs anyway. |
|
5546
|
4
|
|
|
|
|
28
|
vecprod(map { _taupower($_->[0],$_->[1]) } Math::Prime::Util::factor_exp($n)); |
|
|
7
|
|
|
|
|
4822
|
|
|
5547
|
|
|
|
|
|
|
} |
|
5548
|
|
|
|
|
|
|
|
|
5549
|
|
|
|
|
|
|
sub _Euler { |
|
5550
|
79
|
|
|
79
|
|
149
|
my($dig) = @_; |
|
5551
|
|
|
|
|
|
|
return Math::Prime::Util::GMP::Euler($dig) |
|
5552
|
79
|
0
|
33
|
|
|
170
|
if $dig > 70 && $Math::Prime::Util::_GMPfunc{"Euler"}; |
|
5553
|
79
|
|
|
|
|
498
|
'0.57721566490153286060651209008240243104215933593992359880576723488486772677766467'; |
|
5554
|
|
|
|
|
|
|
} |
|
5555
|
|
|
|
|
|
|
sub _Li2 { |
|
5556
|
1
|
|
|
1
|
|
3
|
my($dig) = @_; |
|
5557
|
|
|
|
|
|
|
return Math::Prime::Util::GMP::li(2,$dig) |
|
5558
|
1
|
0
|
33
|
|
|
4
|
if $dig > 70 && $Math::Prime::Util::_GMPfunc{"li"}; |
|
5559
|
1
|
|
|
|
|
5
|
'1.04516378011749278484458888919461313652261557815120157583290914407501320521'; |
|
5560
|
|
|
|
|
|
|
} |
|
5561
|
|
|
|
|
|
|
|
|
5562
|
|
|
|
|
|
|
sub ExponentialIntegral { |
|
5563
|
18
|
|
|
18
|
0
|
7685
|
my($x) = @_; |
|
5564
|
18
|
50
|
|
|
|
68
|
return - MPU_INFINITY if $x == 0; |
|
5565
|
18
|
50
|
|
|
|
45
|
return 0 if $x == - MPU_INFINITY; |
|
5566
|
18
|
50
|
|
|
|
45
|
return MPU_INFINITY if $x == MPU_INFINITY; |
|
5567
|
|
|
|
|
|
|
|
|
5568
|
18
|
50
|
|
|
|
44
|
if ($Math::Prime::Util::_GMPfunc{"ei"}) { |
|
5569
|
0
|
0
|
0
|
|
|
0
|
$x = Math::BigFloat->new("$x") if defined $bignum::VERSION && ref($x) ne 'Math::BigFloat'; |
|
5570
|
0
|
0
|
|
|
|
0
|
return 0.0 + Math::Prime::Util::GMP::ei($x,40) if !ref($x); |
|
5571
|
0
|
|
|
|
|
0
|
my $str = Math::Prime::Util::GMP::ei($x, _find_big_acc($x)); |
|
5572
|
0
|
|
|
|
|
0
|
return $x->copy->bzero->badd($str); |
|
5573
|
|
|
|
|
|
|
} |
|
5574
|
|
|
|
|
|
|
|
|
5575
|
18
|
50
|
33
|
|
|
49
|
$x = Math::BigFloat->new("$x") if defined $bignum::VERSION && ref($x) ne 'Math::BigFloat'; |
|
5576
|
|
|
|
|
|
|
|
|
5577
|
18
|
|
|
|
|
26
|
my $tol = 1e-16; |
|
5578
|
18
|
|
|
|
|
23
|
my $sum = 0.0; |
|
5579
|
18
|
|
|
|
|
31
|
my($y, $t); |
|
5580
|
18
|
|
|
|
|
25
|
my $c = 0.0; |
|
5581
|
18
|
|
|
|
|
29
|
my $val; # The result from one of the four methods |
|
5582
|
|
|
|
|
|
|
|
|
5583
|
18
|
100
|
|
|
|
108
|
if ($x < -1) { |
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
5584
|
|
|
|
|
|
|
# Continued fraction |
|
5585
|
1
|
|
|
|
|
3
|
my $lc = 0; |
|
5586
|
1
|
|
|
|
|
5
|
my $ld = 1 / (1 - $x); |
|
5587
|
1
|
|
|
|
|
3
|
$val = $ld * (-exp($x)); |
|
5588
|
1
|
|
|
|
|
4
|
for my $n (1 .. 100000) { |
|
5589
|
15
|
|
|
|
|
28
|
$lc = 1 / (2*$n + 1 - $x - $n*$n*$lc); |
|
5590
|
15
|
|
|
|
|
29
|
$ld = 1 / (2*$n + 1 - $x - $n*$n*$ld); |
|
5591
|
15
|
|
|
|
|
19
|
my $old = $val; |
|
5592
|
15
|
|
|
|
|
21
|
$val *= $ld/$lc; |
|
5593
|
15
|
100
|
|
|
|
33
|
last if abs($val - $old) <= ($tol * abs($val)); |
|
5594
|
|
|
|
|
|
|
} |
|
5595
|
|
|
|
|
|
|
} elsif ($x < 0) { |
|
5596
|
|
|
|
|
|
|
# Rational Chebyshev approximation |
|
5597
|
5
|
|
|
|
|
12
|
my @C6p = ( -148151.02102575750838086, |
|
5598
|
|
|
|
|
|
|
150260.59476436982420737, |
|
5599
|
|
|
|
|
|
|
89904.972007457256553251, |
|
5600
|
|
|
|
|
|
|
15924.175980637303639884, |
|
5601
|
|
|
|
|
|
|
2150.0672908092918123209, |
|
5602
|
|
|
|
|
|
|
116.69552669734461083368, |
|
5603
|
|
|
|
|
|
|
5.0196785185439843791020); |
|
5604
|
5
|
|
|
|
|
12
|
my @C6q = ( 256664.93484897117319268, |
|
5605
|
|
|
|
|
|
|
184340.70063353677359298, |
|
5606
|
|
|
|
|
|
|
52440.529172056355429883, |
|
5607
|
|
|
|
|
|
|
8125.8035174768735759866, |
|
5608
|
|
|
|
|
|
|
750.43163907103936624165, |
|
5609
|
|
|
|
|
|
|
40.205465640027706061433, |
|
5610
|
|
|
|
|
|
|
1.0000000000000000000000); |
|
5611
|
5
|
|
|
|
|
13
|
my $sumn = $C6p[0]-$x*($C6p[1]-$x*($C6p[2]-$x*($C6p[3]-$x*($C6p[4]-$x*($C6p[5]-$x*$C6p[6]))))); |
|
5612
|
5
|
|
|
|
|
11
|
my $sumd = $C6q[0]-$x*($C6q[1]-$x*($C6q[2]-$x*($C6q[3]-$x*($C6q[4]-$x*($C6q[5]-$x*$C6q[6]))))); |
|
5613
|
5
|
|
|
|
|
16
|
$val = log(-$x) - ($sumn / $sumd); |
|
5614
|
|
|
|
|
|
|
} elsif ($x < -log($tol)) { |
|
5615
|
|
|
|
|
|
|
# Convergent series |
|
5616
|
9
|
|
|
|
|
14
|
my $fact_n = 1; |
|
5617
|
9
|
|
|
|
|
23
|
$y = _Euler(18)-$c; $t = $sum+$y; $c = ($t-$sum)-$y; $sum = $t; |
|
|
9
|
|
|
|
|
15
|
|
|
|
9
|
|
|
|
|
17
|
|
|
|
9
|
|
|
|
|
13
|
|
|
5618
|
9
|
|
|
|
|
18
|
$y = log($x)-$c; $t = $sum+$y; $c = ($t-$sum)-$y; $sum = $t; |
|
|
9
|
|
|
|
|
12
|
|
|
|
9
|
|
|
|
|
12
|
|
|
|
9
|
|
|
|
|
15
|
|
|
5619
|
9
|
|
|
|
|
19
|
for my $n (1 .. 200) { |
|
5620
|
401
|
|
|
|
|
515
|
$fact_n *= $x/$n; |
|
5621
|
401
|
|
|
|
|
513
|
my $term = $fact_n / $n; |
|
5622
|
401
|
|
|
|
|
494
|
$y = $term-$c; $t = $sum+$y; $c = ($t-$sum)-$y; $sum = $t; |
|
|
401
|
|
|
|
|
501
|
|
|
|
401
|
|
|
|
|
539
|
|
|
|
401
|
|
|
|
|
475
|
|
|
5623
|
401
|
100
|
|
|
|
692
|
last if $term < $tol; |
|
5624
|
|
|
|
|
|
|
} |
|
5625
|
9
|
|
|
|
|
18
|
$val = $sum; |
|
5626
|
|
|
|
|
|
|
} else { |
|
5627
|
|
|
|
|
|
|
# Asymptotic divergent series |
|
5628
|
3
|
|
|
|
|
8
|
my $invx = 1.0 / $x; |
|
5629
|
3
|
|
|
|
|
6
|
my $term = $invx; |
|
5630
|
3
|
|
|
|
|
7
|
$sum = 1.0 + $term; |
|
5631
|
3
|
|
|
|
|
9
|
for my $n (2 .. 200) { |
|
5632
|
81
|
|
|
|
|
100
|
my $last_term = $term; |
|
5633
|
81
|
|
|
|
|
132
|
$term *= $n * $invx; |
|
5634
|
81
|
100
|
|
|
|
136
|
last if $term < $tol; |
|
5635
|
78
|
50
|
|
|
|
123
|
if ($term < $last_term) { |
|
5636
|
78
|
|
|
|
|
96
|
$y = $term-$c; $t = $sum+$y; $c = ($t-$sum)-$y; $sum = $t; |
|
|
78
|
|
|
|
|
99
|
|
|
|
78
|
|
|
|
|
99
|
|
|
|
78
|
|
|
|
|
110
|
|
|
5637
|
|
|
|
|
|
|
} else { |
|
5638
|
0
|
|
|
|
|
0
|
$y = (-$last_term/3)-$c; $t = $sum+$y; $c = ($t-$sum)-$y; $sum = $t; |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
5639
|
0
|
|
|
|
|
0
|
last; |
|
5640
|
|
|
|
|
|
|
} |
|
5641
|
|
|
|
|
|
|
} |
|
5642
|
3
|
|
|
|
|
22
|
$val = exp($x) * $invx * $sum; |
|
5643
|
|
|
|
|
|
|
} |
|
5644
|
18
|
|
|
|
|
158
|
$val; |
|
5645
|
|
|
|
|
|
|
} |
|
5646
|
|
|
|
|
|
|
|
|
5647
|
|
|
|
|
|
|
sub LogarithmicIntegral { |
|
5648
|
91
|
|
|
91
|
0
|
21859
|
my($x,$opt) = @_; |
|
5649
|
91
|
100
|
|
|
|
304
|
return 0 if $x == 0; |
|
5650
|
90
|
50
|
|
|
|
14350
|
return - MPU_INFINITY if $x == 1; |
|
5651
|
90
|
50
|
|
|
|
11974
|
return MPU_INFINITY if $x == MPU_INFINITY; |
|
5652
|
90
|
50
|
|
|
|
11363
|
croak "Invalid input to LogarithmicIntegral: x must be > 0" if $x <= 0; |
|
5653
|
90
|
50
|
|
|
|
13616
|
$opt = 0 unless defined $opt; |
|
5654
|
|
|
|
|
|
|
|
|
5655
|
90
|
50
|
|
|
|
293
|
if ($Math::Prime::Util::_GMPfunc{"li"}) { |
|
5656
|
0
|
0
|
0
|
|
|
0
|
$x = Math::BigFloat->new("$x") if defined $bignum::VERSION && ref($x) ne 'Math::BigFloat'; |
|
5657
|
0
|
0
|
|
|
|
0
|
return 0.0 + Math::Prime::Util::GMP::li($x,40) if !ref($x); |
|
5658
|
0
|
|
|
|
|
0
|
my $str = Math::Prime::Util::GMP::li($x, _find_big_acc($x)); |
|
5659
|
0
|
|
|
|
|
0
|
return $x->copy->bzero->badd($str); |
|
5660
|
|
|
|
|
|
|
} |
|
5661
|
|
|
|
|
|
|
|
|
5662
|
90
|
100
|
|
|
|
228
|
if ($x == 2) { |
|
5663
|
1
|
50
|
|
|
|
7
|
my $li2const = (ref($x) eq 'Math::BigFloat') ? Math::BigFloat->new(_Li2(_find_big_acc($x))) : 0.0+_Li2(30); |
|
5664
|
1
|
|
|
|
|
9
|
return $li2const; |
|
5665
|
|
|
|
|
|
|
} |
|
5666
|
|
|
|
|
|
|
|
|
5667
|
89
|
50
|
|
|
|
11608
|
if (defined $bignum::VERSION) { |
|
|
|
100
|
|
|
|
|
|
|
5668
|
|
|
|
|
|
|
# If bignum is on, always use Math::BigFloat. |
|
5669
|
0
|
0
|
|
|
|
0
|
$x = Math::BigFloat->new("$x") if ref($x) ne 'Math::BigFloat'; |
|
5670
|
|
|
|
|
|
|
} elsif (ref($x)) { |
|
5671
|
|
|
|
|
|
|
# bignum is off, use native if small, BigFloat otherwise. |
|
5672
|
79
|
100
|
|
|
|
239
|
if ($x <= 1e16) { |
|
5673
|
60
|
|
|
|
|
14395
|
$x = _bigint_to_int($x); |
|
5674
|
|
|
|
|
|
|
} else { |
|
5675
|
19
|
50
|
|
|
|
5931
|
$x = _upgrade_to_float($x) if ref($x) ne 'Math::BigFloat'; |
|
5676
|
|
|
|
|
|
|
} |
|
5677
|
|
|
|
|
|
|
} |
|
5678
|
|
|
|
|
|
|
# Make sure we preserve whatever accuracy setting the input was using. |
|
5679
|
89
|
100
|
66
|
|
|
1901
|
$x->accuracy($_[0]->accuracy) if ref($x) && ref($_[0]) =~ /^Math::Big/ && $_[0]->accuracy; |
|
|
|
|
100
|
|
|
|
|
|
5680
|
|
|
|
|
|
|
|
|
5681
|
|
|
|
|
|
|
# Do divergent series here for big inputs. Common for big pc approximations. |
|
5682
|
|
|
|
|
|
|
# Why is this here? |
|
5683
|
|
|
|
|
|
|
# 1) exp(log(x)) results in a lot of lost precision |
|
5684
|
|
|
|
|
|
|
# 2) exp(x) with lots of precision turns out to be really slow, and in |
|
5685
|
|
|
|
|
|
|
# this case it was unnecessary. |
|
5686
|
89
|
|
|
|
|
782
|
my $tol = 1e-16; |
|
5687
|
89
|
|
|
|
|
161
|
my $xdigits = 0; |
|
5688
|
89
|
|
|
|
|
149
|
my $finalacc = 0; |
|
5689
|
89
|
100
|
|
|
|
250
|
if (ref($x) =~ /^Math::Big/) { |
|
5690
|
19
|
|
|
|
|
80
|
$xdigits = _find_big_acc($x); |
|
5691
|
19
|
|
|
|
|
64
|
my $xlen = length($x->copy->bfloor->bstr()); |
|
5692
|
19
|
100
|
|
|
|
2553
|
$xdigits = $xlen if $xdigits < $xlen; |
|
5693
|
19
|
|
|
|
|
64
|
$finalacc = $xdigits; |
|
5694
|
19
|
|
|
|
|
85
|
$xdigits += length(int(log(0.0+"$x"))) + 1; |
|
5695
|
19
|
|
|
|
|
1093
|
$tol = Math::BigFloat->new(10)->bpow(-$xdigits); |
|
5696
|
19
|
|
|
|
|
27375
|
$x->accuracy($xdigits); |
|
5697
|
|
|
|
|
|
|
} |
|
5698
|
89
|
100
|
|
|
|
1562
|
my $logx = $xdigits ? $x->copy->blog(undef,$xdigits) : log($x); |
|
5699
|
|
|
|
|
|
|
|
|
5700
|
|
|
|
|
|
|
# TODO: See if we can tune this |
|
5701
|
89
|
|
|
|
|
1741288
|
if (0 && $x >= 1) { |
|
5702
|
|
|
|
|
|
|
_upgrade_to_float(); |
|
5703
|
|
|
|
|
|
|
my $sum = Math::BigFloat->new(0); |
|
5704
|
|
|
|
|
|
|
my $inner_sum = Math::BigFloat->new(0); |
|
5705
|
|
|
|
|
|
|
my $p = Math::BigFloat->new(-1); |
|
5706
|
|
|
|
|
|
|
my $factorial = 1; |
|
5707
|
|
|
|
|
|
|
my $power2 = 1; |
|
5708
|
|
|
|
|
|
|
my $q; |
|
5709
|
|
|
|
|
|
|
my $k = 0; |
|
5710
|
|
|
|
|
|
|
my $neglogx = -$logx; |
|
5711
|
|
|
|
|
|
|
for my $n (1 .. 1000) { |
|
5712
|
|
|
|
|
|
|
$factorial = vecprod($factorial, $n); |
|
5713
|
|
|
|
|
|
|
$q = vecprod($factorial, $power2); |
|
5714
|
|
|
|
|
|
|
$power2 = vecprod(2, $power2); |
|
5715
|
|
|
|
|
|
|
while ($k <= ($n-1)>>1) { |
|
5716
|
|
|
|
|
|
|
$inner_sum += Math::BigFloat->new(1) / (2*$k+1); |
|
5717
|
|
|
|
|
|
|
$k++; |
|
5718
|
|
|
|
|
|
|
} |
|
5719
|
|
|
|
|
|
|
$p *= $neglogx; |
|
5720
|
|
|
|
|
|
|
my $term = ($p / $q) * $inner_sum; |
|
5721
|
|
|
|
|
|
|
$sum += $term; |
|
5722
|
|
|
|
|
|
|
last if abs($term) < $tol; |
|
5723
|
|
|
|
|
|
|
} |
|
5724
|
|
|
|
|
|
|
$sum *= sqrt($x); |
|
5725
|
|
|
|
|
|
|
return 0.0+_Euler(18) + log($logx) + $sum unless ref($x)=~/^Math::Big/; |
|
5726
|
|
|
|
|
|
|
my $val = Math::BigFloat->new(_Euler(40))->badd("".log($logx))->badd("$sum"); |
|
5727
|
|
|
|
|
|
|
$val->accuracy($finalacc) if $xdigits; |
|
5728
|
|
|
|
|
|
|
return $val; |
|
5729
|
|
|
|
|
|
|
} |
|
5730
|
|
|
|
|
|
|
|
|
5731
|
89
|
100
|
|
|
|
259
|
if ($x > 1e16) { |
|
5732
|
19
|
50
|
|
|
|
8260
|
my $invx = ref($logx) ? Math::BigFloat->bone / $logx : 1.0/$logx; |
|
5733
|
|
|
|
|
|
|
# n = 0 => 0!/(logx)^0 = 1/1 = 1 |
|
5734
|
|
|
|
|
|
|
# n = 1 => 1!/(logx)^1 = 1/logx |
|
5735
|
19
|
|
|
|
|
20542
|
my $term = $invx; |
|
5736
|
19
|
|
|
|
|
114
|
my $sum = 1.0 + $term; |
|
5737
|
19
|
|
|
|
|
14619
|
for my $n (2 .. 1000) { |
|
5738
|
947
|
|
|
|
|
46144
|
my $last_term = $term; |
|
5739
|
947
|
|
|
|
|
2513
|
$term *= $n * $invx; |
|
5740
|
947
|
50
|
|
|
|
1080833
|
last if $term < $tol; |
|
5741
|
947
|
100
|
|
|
|
125697
|
if ($term < $last_term) { |
|
5742
|
928
|
|
|
|
|
130210
|
$sum += $term; |
|
5743
|
|
|
|
|
|
|
} else { |
|
5744
|
19
|
|
|
|
|
4048
|
$sum -= ($last_term/3); |
|
5745
|
19
|
|
|
|
|
32473
|
last; |
|
5746
|
|
|
|
|
|
|
} |
|
5747
|
928
|
50
|
|
|
|
598917
|
$term->bround($xdigits) if $xdigits; |
|
5748
|
|
|
|
|
|
|
} |
|
5749
|
19
|
|
|
|
|
97
|
$invx *= $sum; |
|
5750
|
19
|
|
|
|
|
12196
|
$invx *= $x; |
|
5751
|
19
|
50
|
33
|
|
|
8847
|
$invx->accuracy($finalacc) if ref($invx) && $xdigits; |
|
5752
|
19
|
|
|
|
|
6943
|
return $invx; |
|
5753
|
|
|
|
|
|
|
} |
|
5754
|
|
|
|
|
|
|
# Convergent series. |
|
5755
|
70
|
50
|
|
|
|
168
|
if ($x >= 1) { |
|
5756
|
70
|
|
|
|
|
100
|
my $fact_n = 1.0; |
|
5757
|
70
|
|
|
|
|
98
|
my $nfac = 1.0; |
|
5758
|
70
|
|
|
|
|
117
|
my $sum = 0.0; |
|
5759
|
70
|
|
|
|
|
149
|
for my $n (1 .. 200) { |
|
5760
|
2909
|
|
|
|
|
3774
|
$fact_n *= $logx/$n; |
|
5761
|
2909
|
|
|
|
|
3840
|
my $term = $fact_n / $n; |
|
5762
|
2909
|
|
|
|
|
3519
|
$sum += $term; |
|
5763
|
2909
|
100
|
|
|
|
4614
|
last if $term < $tol; |
|
5764
|
2839
|
50
|
|
|
|
4729
|
$term->bround($xdigits) if $xdigits; |
|
5765
|
|
|
|
|
|
|
} |
|
5766
|
|
|
|
|
|
|
|
|
5767
|
70
|
50
|
|
|
|
248
|
return 0.0+_Euler(18) + log($logx) + $sum unless ref($x) =~ /^Math::Big/; |
|
5768
|
|
|
|
|
|
|
|
|
5769
|
0
|
|
|
|
|
0
|
my $val = Math::BigFloat->new(_Euler(40))->badd("".log($logx))->badd("$sum"); |
|
5770
|
0
|
0
|
|
|
|
0
|
$val->accuracy($finalacc) if $xdigits; |
|
5771
|
0
|
|
|
|
|
0
|
return $val; |
|
5772
|
|
|
|
|
|
|
} |
|
5773
|
|
|
|
|
|
|
|
|
5774
|
0
|
|
|
|
|
0
|
ExponentialIntegral($logx); |
|
5775
|
|
|
|
|
|
|
} |
|
5776
|
|
|
|
|
|
|
|
|
5777
|
|
|
|
|
|
|
# Riemann Zeta function for native integers. |
|
5778
|
|
|
|
|
|
|
my @_Riemann_Zeta_Table = ( |
|
5779
|
|
|
|
|
|
|
0.6449340668482264364724151666460251892, # zeta(2) - 1 |
|
5780
|
|
|
|
|
|
|
0.2020569031595942853997381615114499908, |
|
5781
|
|
|
|
|
|
|
0.0823232337111381915160036965411679028, |
|
5782
|
|
|
|
|
|
|
0.0369277551433699263313654864570341681, |
|
5783
|
|
|
|
|
|
|
0.0173430619844491397145179297909205279, |
|
5784
|
|
|
|
|
|
|
0.0083492773819228268397975498497967596, |
|
5785
|
|
|
|
|
|
|
0.0040773561979443393786852385086524653, |
|
5786
|
|
|
|
|
|
|
0.0020083928260822144178527692324120605, |
|
5787
|
|
|
|
|
|
|
0.0009945751278180853371459589003190170, |
|
5788
|
|
|
|
|
|
|
0.0004941886041194645587022825264699365, |
|
5789
|
|
|
|
|
|
|
0.0002460865533080482986379980477396710, |
|
5790
|
|
|
|
|
|
|
0.0001227133475784891467518365263573957, |
|
5791
|
|
|
|
|
|
|
0.0000612481350587048292585451051353337, |
|
5792
|
|
|
|
|
|
|
0.0000305882363070204935517285106450626, |
|
5793
|
|
|
|
|
|
|
0.0000152822594086518717325714876367220, |
|
5794
|
|
|
|
|
|
|
0.0000076371976378997622736002935630292, |
|
5795
|
|
|
|
|
|
|
0.0000038172932649998398564616446219397, |
|
5796
|
|
|
|
|
|
|
0.0000019082127165539389256569577951013, |
|
5797
|
|
|
|
|
|
|
0.0000009539620338727961131520386834493, |
|
5798
|
|
|
|
|
|
|
0.0000004769329867878064631167196043730, |
|
5799
|
|
|
|
|
|
|
0.0000002384505027277329900036481867530, |
|
5800
|
|
|
|
|
|
|
0.0000001192199259653110730677887188823, |
|
5801
|
|
|
|
|
|
|
0.0000000596081890512594796124402079358, |
|
5802
|
|
|
|
|
|
|
0.0000000298035035146522801860637050694, |
|
5803
|
|
|
|
|
|
|
0.0000000149015548283650412346585066307, |
|
5804
|
|
|
|
|
|
|
0.0000000074507117898354294919810041706, |
|
5805
|
|
|
|
|
|
|
0.0000000037253340247884570548192040184, |
|
5806
|
|
|
|
|
|
|
0.0000000018626597235130490064039099454, |
|
5807
|
|
|
|
|
|
|
0.0000000009313274324196681828717647350, |
|
5808
|
|
|
|
|
|
|
0.0000000004656629065033784072989233251, |
|
5809
|
|
|
|
|
|
|
0.0000000002328311833676505492001455976, |
|
5810
|
|
|
|
|
|
|
0.0000000001164155017270051977592973835, |
|
5811
|
|
|
|
|
|
|
0.0000000000582077208790270088924368599, |
|
5812
|
|
|
|
|
|
|
0.0000000000291038504449709968692942523, |
|
5813
|
|
|
|
|
|
|
0.0000000000145519218910419842359296322, |
|
5814
|
|
|
|
|
|
|
0.0000000000072759598350574810145208690, |
|
5815
|
|
|
|
|
|
|
0.0000000000036379795473786511902372363, |
|
5816
|
|
|
|
|
|
|
0.0000000000018189896503070659475848321, |
|
5817
|
|
|
|
|
|
|
0.0000000000009094947840263889282533118, |
|
5818
|
|
|
|
|
|
|
); |
|
5819
|
|
|
|
|
|
|
|
|
5820
|
|
|
|
|
|
|
|
|
5821
|
|
|
|
|
|
|
sub RiemannZeta { |
|
5822
|
160
|
|
|
160
|
0
|
4940
|
my($x) = @_; |
|
5823
|
|
|
|
|
|
|
|
|
5824
|
160
|
100
|
|
|
|
467
|
my $ix = ($x == int($x)) ? "" . Math::BigInt->new($x) : 0; |
|
5825
|
|
|
|
|
|
|
|
|
5826
|
|
|
|
|
|
|
# Try our GMP code if possible. |
|
5827
|
160
|
50
|
|
|
|
10527
|
if ($Math::Prime::Util::_GMPfunc{"zeta"}) { |
|
5828
|
0
|
|
|
|
|
0
|
my($wantbf,$xdigits) = _bfdigits($x); |
|
5829
|
|
|
|
|
|
|
# If we knew the *exact* number of zero digits, we could let GMP zeta |
|
5830
|
|
|
|
|
|
|
# handle the correct rounding. But we don't, so we have to go over. |
|
5831
|
0
|
|
|
|
|
0
|
my $zero_dig = "".int($x / 3) - 1; |
|
5832
|
0
|
|
|
|
|
0
|
my $strval = Math::Prime::Util::GMP::zeta($x, $xdigits + 8 + $zero_dig); |
|
5833
|
0
|
0
|
|
|
|
0
|
if ($strval =~ s/^(1\.0*)/./) { |
|
5834
|
0
|
0
|
|
|
|
0
|
$strval .= "e-".(length($1)-2) if length($1) > 2; |
|
5835
|
|
|
|
|
|
|
} else { |
|
5836
|
0
|
|
|
|
|
0
|
$strval =~ s/^(\d+)/$1-1/e; |
|
|
0
|
|
|
|
|
0
|
|
|
5837
|
|
|
|
|
|
|
} |
|
5838
|
|
|
|
|
|
|
|
|
5839
|
0
|
0
|
|
|
|
0
|
return ($wantbf) ? Math::BigFloat->new($strval,$wantbf) : 0.0 + $strval; |
|
5840
|
|
|
|
|
|
|
} |
|
5841
|
|
|
|
|
|
|
|
|
5842
|
|
|
|
|
|
|
# If we need a bigfloat result, then call our PP routine. |
|
5843
|
160
|
100
|
66
|
|
|
569
|
if (defined $bignum::VERSION || ref($x) =~ /^Math::Big/) { |
|
5844
|
4
|
|
|
|
|
1379
|
require Math::Prime::Util::ZetaBigFloat; |
|
5845
|
4
|
|
|
|
|
18
|
return Math::Prime::Util::ZetaBigFloat::RiemannZeta($x); |
|
5846
|
|
|
|
|
|
|
} |
|
5847
|
|
|
|
|
|
|
|
|
5848
|
|
|
|
|
|
|
# Native float results |
|
5849
|
156
|
100
|
100
|
|
|
505
|
return 0.0 + $_Riemann_Zeta_Table[int($x)-2] |
|
5850
|
|
|
|
|
|
|
if $x == int($x) && defined $_Riemann_Zeta_Table[int($x)-2]; |
|
5851
|
148
|
|
|
|
|
225
|
my $tol = 1.11e-16; |
|
5852
|
|
|
|
|
|
|
|
|
5853
|
|
|
|
|
|
|
# Series based on (2n)! / B_2n. |
|
5854
|
|
|
|
|
|
|
# This is a simplification of the Cephes zeta function. |
|
5855
|
148
|
|
|
|
|
329
|
my @A = ( |
|
5856
|
|
|
|
|
|
|
12.0, |
|
5857
|
|
|
|
|
|
|
-720.0, |
|
5858
|
|
|
|
|
|
|
30240.0, |
|
5859
|
|
|
|
|
|
|
-1209600.0, |
|
5860
|
|
|
|
|
|
|
47900160.0, |
|
5861
|
|
|
|
|
|
|
-1892437580.3183791606367583212735166426, |
|
5862
|
|
|
|
|
|
|
74724249600.0, |
|
5863
|
|
|
|
|
|
|
-2950130727918.1642244954382084600497650, |
|
5864
|
|
|
|
|
|
|
116467828143500.67248729113000661089202, |
|
5865
|
|
|
|
|
|
|
-4597978722407472.6105457273596737891657, |
|
5866
|
|
|
|
|
|
|
181521054019435467.73425331153534235290, |
|
5867
|
|
|
|
|
|
|
-7166165256175667011.3346447367083352776, |
|
5868
|
|
|
|
|
|
|
282908877253042996618.18640556532523927, |
|
5869
|
|
|
|
|
|
|
); |
|
5870
|
148
|
|
|
|
|
196
|
my $s = 0.0; |
|
5871
|
148
|
|
|
|
|
201
|
my $rb = 0.0; |
|
5872
|
148
|
|
|
|
|
247
|
foreach my $i (2 .. 10) { |
|
5873
|
533
|
|
|
|
|
875
|
$rb = $i ** -$x; |
|
5874
|
533
|
|
|
|
|
689
|
$s += $rb; |
|
5875
|
533
|
100
|
|
|
|
1193
|
return $s if abs($rb/$s) < $tol; |
|
5876
|
|
|
|
|
|
|
} |
|
5877
|
4
|
|
|
|
|
7
|
my $w = 10.0; |
|
5878
|
4
|
|
|
|
|
12
|
$s = $s + $rb*$w/($x-1.0) - 0.5*$rb; |
|
5879
|
4
|
|
|
|
|
8
|
my $ra = 1.0; |
|
5880
|
4
|
|
|
|
|
9
|
foreach my $i (0 .. 12) { |
|
5881
|
29
|
|
|
|
|
39
|
my $k = 2*$i; |
|
5882
|
29
|
|
|
|
|
41
|
$ra *= $x + $k; |
|
5883
|
29
|
|
|
|
|
35
|
$rb /= $w; |
|
5884
|
29
|
|
|
|
|
49
|
my $t = $ra*$rb/$A[$i]; |
|
5885
|
29
|
|
|
|
|
37
|
$s += $t; |
|
5886
|
29
|
|
|
|
|
37
|
$t = abs($t/$s); |
|
5887
|
29
|
100
|
|
|
|
52
|
last if $t < $tol; |
|
5888
|
25
|
|
|
|
|
34
|
$ra *= $x + $k + 1.0; |
|
5889
|
25
|
|
|
|
|
38
|
$rb /= $w; |
|
5890
|
|
|
|
|
|
|
} |
|
5891
|
4
|
|
|
|
|
35
|
return $s; |
|
5892
|
|
|
|
|
|
|
} |
|
5893
|
|
|
|
|
|
|
|
|
5894
|
|
|
|
|
|
|
# Riemann R function |
|
5895
|
|
|
|
|
|
|
sub RiemannR { |
|
5896
|
10
|
|
|
10
|
0
|
4449
|
my($x) = @_; |
|
5897
|
|
|
|
|
|
|
|
|
5898
|
10
|
50
|
|
|
|
39
|
croak "Invalid input to ReimannR: x must be > 0" if $x <= 0; |
|
5899
|
|
|
|
|
|
|
|
|
5900
|
|
|
|
|
|
|
# With MPU::GMP v0.49 this is fast. |
|
5901
|
10
|
50
|
|
|
|
28
|
if ($Math::Prime::Util::_GMPfunc{"riemannr"}) { |
|
5902
|
0
|
|
|
|
|
0
|
my($wantbf,$xdigits) = _bfdigits($x); |
|
5903
|
0
|
|
|
|
|
0
|
my $strval = Math::Prime::Util::GMP::riemannr($x, $xdigits); |
|
5904
|
0
|
0
|
|
|
|
0
|
return ($wantbf) ? Math::BigFloat->new($strval,$wantbf) : 0.0 + $strval; |
|
5905
|
|
|
|
|
|
|
} |
|
5906
|
|
|
|
|
|
|
|
|
5907
|
|
|
|
|
|
|
|
|
5908
|
|
|
|
|
|
|
# TODO: look into this as a generic solution |
|
5909
|
10
|
|
|
|
|
16
|
if (0 && $Math::Prime::Util::_GMPfunc{"zeta"}) { |
|
5910
|
|
|
|
|
|
|
my($wantbf,$xdigits) = _bfdigits($x); |
|
5911
|
|
|
|
|
|
|
$x = _upgrade_to_float($x); |
|
5912
|
|
|
|
|
|
|
|
|
5913
|
|
|
|
|
|
|
my $extra_acc = 4; |
|
5914
|
|
|
|
|
|
|
$xdigits += $extra_acc; |
|
5915
|
|
|
|
|
|
|
$x->accuracy($xdigits); |
|
5916
|
|
|
|
|
|
|
|
|
5917
|
|
|
|
|
|
|
my $logx = log($x); |
|
5918
|
|
|
|
|
|
|
my $part_term = $x->copy->bone; |
|
5919
|
|
|
|
|
|
|
my $sum = $x->copy->bone; |
|
5920
|
|
|
|
|
|
|
my $tol = $x->copy->bone->brsft($xdigits-1, 10); |
|
5921
|
|
|
|
|
|
|
my $bigk = $x->copy->bone; |
|
5922
|
|
|
|
|
|
|
my $term; |
|
5923
|
|
|
|
|
|
|
for my $k (1 .. 10000) { |
|
5924
|
|
|
|
|
|
|
$part_term *= $logx / $bigk; |
|
5925
|
|
|
|
|
|
|
my $zarg = $bigk->copy->binc; |
|
5926
|
|
|
|
|
|
|
my $zeta = (RiemannZeta($zarg) * $bigk) + $bigk; |
|
5927
|
|
|
|
|
|
|
#my $strval = Math::Prime::Util::GMP::zeta($k+1, $xdigits + int(($k+1) / 3)); |
|
5928
|
|
|
|
|
|
|
#my $zeta = Math::BigFloat->new($strval)->bdec->bmul($bigk)->badd($bigk); |
|
5929
|
|
|
|
|
|
|
$term = $part_term / $zeta; |
|
5930
|
|
|
|
|
|
|
$sum += $term; |
|
5931
|
|
|
|
|
|
|
last if $term < ($tol * $sum); |
|
5932
|
|
|
|
|
|
|
$bigk->binc; |
|
5933
|
|
|
|
|
|
|
} |
|
5934
|
|
|
|
|
|
|
$sum->bround($xdigits-$extra_acc); |
|
5935
|
|
|
|
|
|
|
my $strval = "$sum"; |
|
5936
|
|
|
|
|
|
|
return ($wantbf) ? Math::BigFloat->new($strval,$wantbf) : 0.0 + $strval; |
|
5937
|
|
|
|
|
|
|
} |
|
5938
|
|
|
|
|
|
|
|
|
5939
|
10
|
50
|
33
|
|
|
50
|
if (defined $bignum::VERSION || ref($x) =~ /^Math::Big/) { |
|
5940
|
0
|
|
|
|
|
0
|
require Math::Prime::Util::ZetaBigFloat; |
|
5941
|
0
|
|
|
|
|
0
|
return Math::Prime::Util::ZetaBigFloat::RiemannR($x); |
|
5942
|
|
|
|
|
|
|
} |
|
5943
|
|
|
|
|
|
|
|
|
5944
|
10
|
|
|
|
|
15
|
my $sum = 0.0; |
|
5945
|
10
|
|
|
|
|
18
|
my $tol = 1e-18; |
|
5946
|
10
|
|
|
|
|
21
|
my($c, $y, $t) = (0.0); |
|
5947
|
10
|
100
|
|
|
|
26
|
if ($x > 10**17) { |
|
5948
|
1
|
|
|
|
|
63
|
my @mob = Math::Prime::Util::moebius(0,300); |
|
5949
|
1
|
|
|
|
|
6
|
for my $k (1 .. 300) { |
|
5950
|
19
|
100
|
|
|
|
38
|
next if $mob[$k] == 0; |
|
5951
|
13
|
|
|
|
|
70
|
my $term = $mob[$k] / $k * |
|
5952
|
|
|
|
|
|
|
Math::Prime::Util::LogarithmicIntegral($x**(1.0/$k)); |
|
5953
|
13
|
|
|
|
|
19
|
$y = $term-$c; $t = $sum+$y; $c = ($t-$sum)-$y; $sum = $t; |
|
|
13
|
|
|
|
|
21
|
|
|
|
13
|
|
|
|
|
19
|
|
|
|
13
|
|
|
|
|
18
|
|
|
5954
|
13
|
100
|
|
|
|
42
|
last if abs($term) < ($tol * abs($sum)); |
|
5955
|
|
|
|
|
|
|
} |
|
5956
|
|
|
|
|
|
|
} else { |
|
5957
|
9
|
|
|
|
|
16
|
$y = 1.0-$c; $t = $sum+$y; $c = ($t-$sum)-$y; $sum = $t; |
|
|
9
|
|
|
|
|
17
|
|
|
|
9
|
|
|
|
|
19
|
|
|
|
9
|
|
|
|
|
13
|
|
|
5958
|
9
|
|
|
|
|
24
|
my $flogx = log($x); |
|
5959
|
9
|
|
|
|
|
15
|
my $part_term = 1.0; |
|
5960
|
9
|
|
|
|
|
23
|
for my $k (1 .. 10000) { |
|
5961
|
425
|
100
|
|
|
|
823
|
my $zeta = ($k <= $#_Riemann_Zeta_Table) |
|
5962
|
|
|
|
|
|
|
? $_Riemann_Zeta_Table[$k+1-2] # Small k from table |
|
5963
|
|
|
|
|
|
|
: RiemannZeta($k+1); # Large k from function |
|
5964
|
425
|
|
|
|
|
596
|
$part_term *= $flogx / $k; |
|
5965
|
425
|
|
|
|
|
644
|
my $term = $part_term / ($k + $k * $zeta); |
|
5966
|
425
|
|
|
|
|
579
|
$y = $term-$c; $t = $sum+$y; $c = ($t-$sum)-$y; $sum = $t; |
|
|
425
|
|
|
|
|
508
|
|
|
|
425
|
|
|
|
|
552
|
|
|
|
425
|
|
|
|
|
555
|
|
|
5967
|
425
|
100
|
|
|
|
772
|
last if $term < ($tol * $sum); |
|
5968
|
|
|
|
|
|
|
} |
|
5969
|
|
|
|
|
|
|
} |
|
5970
|
10
|
|
|
|
|
89
|
return $sum; |
|
5971
|
|
|
|
|
|
|
} |
|
5972
|
|
|
|
|
|
|
|
|
5973
|
|
|
|
|
|
|
sub LambertW { |
|
5974
|
1
|
|
|
1
|
0
|
457
|
my $x = shift; |
|
5975
|
1
|
50
|
|
|
|
6
|
croak "Invalid input to LambertW: x must be >= -1/e" if $x < -0.36787944118; |
|
5976
|
1
|
50
|
|
|
|
4
|
$x = _upgrade_to_float($x) if ref($x) eq 'Math::BigInt'; |
|
5977
|
1
|
50
|
|
|
|
4
|
my $xacc = ref($x) ? _find_big_acc($x) : 0; |
|
5978
|
1
|
|
|
|
|
3
|
my $w; |
|
5979
|
|
|
|
|
|
|
|
|
5980
|
1
|
50
|
|
|
|
5
|
if ($Math::Prime::Util::_GMPfunc{"lambertw"}) { |
|
5981
|
0
|
0
|
|
|
|
0
|
my $w = (!$xacc) |
|
5982
|
|
|
|
|
|
|
? 0.0 + Math::Prime::Util::GMP::lambertw($x) |
|
5983
|
|
|
|
|
|
|
: $x->copy->bzero->badd(Math::Prime::Util::GMP::lambertw($x, $xacc)); |
|
5984
|
0
|
|
|
|
|
0
|
return $w; |
|
5985
|
|
|
|
|
|
|
} |
|
5986
|
|
|
|
|
|
|
|
|
5987
|
|
|
|
|
|
|
# Approximation |
|
5988
|
1
|
50
|
|
|
|
8
|
if ($x < -0.06) { |
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
5989
|
0
|
|
|
|
|
0
|
my $ti = $x * 2 * exp($x-$x+1) + 2; |
|
5990
|
0
|
0
|
|
|
|
0
|
return -1 if $ti <= 0; |
|
5991
|
0
|
|
|
|
|
0
|
my $t = sqrt($ti); |
|
5992
|
0
|
|
|
|
|
0
|
$w = (-1 + 1/6*$t + (257/720)*$t*$t + (13/720)*$t*$t*$t) / (1 + (5/6)*$t + (103/720)*$t*$t); |
|
5993
|
|
|
|
|
|
|
} elsif ($x < 1.363) { |
|
5994
|
0
|
|
|
|
|
0
|
my $l1 = log($x + 1); |
|
5995
|
0
|
|
|
|
|
0
|
$w = $l1 * (1 - log(1+$l1) / (2+$l1)); |
|
5996
|
|
|
|
|
|
|
} elsif ($x < 3.7) { |
|
5997
|
0
|
|
|
|
|
0
|
my $l1 = log($x); |
|
5998
|
0
|
|
|
|
|
0
|
my $l2 = log($l1); |
|
5999
|
0
|
|
|
|
|
0
|
$w = $l1 - $l2 - log(1 - $l2/$l1)/2.0; |
|
6000
|
|
|
|
|
|
|
} else { |
|
6001
|
1
|
|
|
|
|
3
|
my $l1 = log($x); |
|
6002
|
1
|
|
|
|
|
3
|
my $l2 = log($l1); |
|
6003
|
1
|
|
|
|
|
4
|
my $d1 = 2 * $l1 * $l1; |
|
6004
|
1
|
|
|
|
|
4
|
my $d2 = 3 * $l1 * $d1; |
|
6005
|
1
|
|
|
|
|
3
|
my $d3 = 2 * $l1 * $d2; |
|
6006
|
1
|
|
|
|
|
2
|
my $d4 = 5 * $l1 * $d3; |
|
6007
|
1
|
|
|
|
|
10
|
$w = $l1 - $l2 + $l2/$l1 + $l2*($l2-2)/$d1 |
|
6008
|
|
|
|
|
|
|
+ $l2*(6+$l2*(-9+2*$l2))/$d2 |
|
6009
|
|
|
|
|
|
|
+ $l2*(-12+$l2*(36+$l2*(-22+3*$l2)))/$d3 |
|
6010
|
|
|
|
|
|
|
+ $l2*(60+$l2*(-300+$l2*(350+$l2*(-125+12*$l2))))/$d4; |
|
6011
|
|
|
|
|
|
|
} |
|
6012
|
|
|
|
|
|
|
|
|
6013
|
|
|
|
|
|
|
# Now iterate to get the answer |
|
6014
|
|
|
|
|
|
|
# |
|
6015
|
|
|
|
|
|
|
# Newton: |
|
6016
|
|
|
|
|
|
|
# $w = $w*(log($x) - log($w) + 1) / ($w+1); |
|
6017
|
|
|
|
|
|
|
# Halley: |
|
6018
|
|
|
|
|
|
|
# my $e = exp($w); |
|
6019
|
|
|
|
|
|
|
# my $f = $w * $e - $x; |
|
6020
|
|
|
|
|
|
|
# $w -= $f / ($w*$e+$e - ($w+2)*$f/(2*$w+2)); |
|
6021
|
|
|
|
|
|
|
|
|
6022
|
|
|
|
|
|
|
# Fritsch converges quadratically, so tolerance could be 4x smaller. Use 2x. |
|
6023
|
1
|
50
|
|
|
|
4
|
my $tol = ($xacc) ? 10**(-int(1+$xacc/2)) : 1e-16; |
|
6024
|
1
|
50
|
|
|
|
3
|
$w->accuracy($xacc+10) if $xacc; |
|
6025
|
1
|
|
|
|
|
4
|
for (1 .. 200) { |
|
6026
|
200
|
50
|
|
|
|
311
|
last if $w == 0; |
|
6027
|
200
|
|
|
|
|
267
|
my $w1 = $w + 1; |
|
6028
|
200
|
|
|
|
|
278
|
my $zn = log($x/$w) - $w; |
|
6029
|
200
|
|
|
|
|
297
|
my $qn = $w1 * 2 * ($w1+(2*$zn/3)); |
|
6030
|
200
|
|
|
|
|
296
|
my $en = ($zn/$w1) * ($qn-$zn)/($qn-$zn*2); |
|
6031
|
200
|
|
|
|
|
261
|
my $wen = $w * $en; |
|
6032
|
200
|
|
|
|
|
244
|
$w += $wen; |
|
6033
|
200
|
50
|
|
|
|
353
|
last if abs($wen) < $tol; |
|
6034
|
|
|
|
|
|
|
} |
|
6035
|
1
|
50
|
|
|
|
5
|
$w->accuracy($xacc) if $xacc; |
|
6036
|
|
|
|
|
|
|
|
|
6037
|
1
|
|
|
|
|
5
|
$w; |
|
6038
|
|
|
|
|
|
|
} |
|
6039
|
|
|
|
|
|
|
|
|
6040
|
|
|
|
|
|
|
my $_Pi = "3.141592653589793238462643383279503"; |
|
6041
|
|
|
|
|
|
|
sub Pi { |
|
6042
|
986
|
|
|
986
|
0
|
776882
|
my $digits = shift; |
|
6043
|
986
|
50
|
|
|
|
2700
|
return 0.0+$_Pi unless $digits; |
|
6044
|
986
|
50
|
|
|
|
2076
|
return 0.0+sprintf("%.*lf", $digits-1, $_Pi) if $digits < 15; |
|
6045
|
986
|
100
|
|
|
|
2046
|
return _upgrade_to_float($_Pi, $digits) if $digits < 30; |
|
6046
|
|
|
|
|
|
|
|
|
6047
|
|
|
|
|
|
|
# Performance ranking: |
|
6048
|
|
|
|
|
|
|
# MPU::GMP Uses AGM or Ramanujan/Chudnosky with binary splitting |
|
6049
|
|
|
|
|
|
|
# MPFR Uses AGM, from 1x to 1/4x the above |
|
6050
|
|
|
|
|
|
|
# Perl AGM w/GMP also AGM, nice growth rate, but slower than above |
|
6051
|
|
|
|
|
|
|
# C pidigits much worse than above, but faster than the others |
|
6052
|
|
|
|
|
|
|
# Perl AGM without Math::BigInt::GMP, it's sluggish |
|
6053
|
|
|
|
|
|
|
# Math::BigFloat new versions use AGM, old ones are *very* slow |
|
6054
|
|
|
|
|
|
|
# |
|
6055
|
|
|
|
|
|
|
# With a few thousand digits, any of the top 4 are fine. |
|
6056
|
|
|
|
|
|
|
# At 10k digits, the first two are pulling away. |
|
6057
|
|
|
|
|
|
|
# At 50k digits, the first three are 5-20x faster than C pidigits, and |
|
6058
|
|
|
|
|
|
|
# pray you're not having to the Perl BigFloat methods without GMP. |
|
6059
|
|
|
|
|
|
|
# At 100k digits, the first two are 15x faster than the third, C pidigits |
|
6060
|
|
|
|
|
|
|
# is 200x slower, and the rest thousands of times slower. |
|
6061
|
|
|
|
|
|
|
# At 1M digits, the first is under 1 second, MPFR under 2 seconds, |
|
6062
|
|
|
|
|
|
|
# Perl AGM (Math::BigInt::GMP) is over a minute, and C piigits at 1.5 hours. |
|
6063
|
|
|
|
|
|
|
# |
|
6064
|
|
|
|
|
|
|
# Interestingly, Math::BigInt::Pari, while greatly faster than Calc, is |
|
6065
|
|
|
|
|
|
|
# *much* slower than GMP for these operations (both AGM and Machin). While |
|
6066
|
|
|
|
|
|
|
# Perl AGM with the Math::BigInt::GMP backend will pull away from C pidigits, |
|
6067
|
|
|
|
|
|
|
# using it with the other backends doesn't do so. |
|
6068
|
|
|
|
|
|
|
# |
|
6069
|
|
|
|
|
|
|
# The GMP program at https://gmplib.org/download/misc/gmp-chudnovsky.c |
|
6070
|
|
|
|
|
|
|
# will run ~4x faster than MPFR and ~1.5x faster than MPU::GMP. |
|
6071
|
|
|
|
|
|
|
|
|
6072
|
972
|
|
|
|
|
3575
|
my $have_bigint_gmp = Math::BigInt->config()->{lib} =~ /GMP/; |
|
6073
|
972
|
|
|
|
|
46154
|
my $have_xdigits = Math::Prime::Util::prime_get_config()->{'xs'}; |
|
6074
|
972
|
|
|
|
|
2829
|
my $_verbose = Math::Prime::Util::prime_get_config()->{'verbose'}; |
|
6075
|
|
|
|
|
|
|
|
|
6076
|
972
|
50
|
|
|
|
3021
|
if ($Math::Prime::Util::_GMPfunc{"Pi"}) { |
|
6077
|
0
|
0
|
|
|
|
0
|
print " using MPUGMP for Pi($digits)\n" if $_verbose; |
|
6078
|
0
|
|
|
|
|
0
|
return _upgrade_to_float( Math::Prime::Util::GMP::Pi($digits) ); |
|
6079
|
|
|
|
|
|
|
} |
|
6080
|
|
|
|
|
|
|
|
|
6081
|
|
|
|
|
|
|
# We could consider looking for Math::MPFR or Math::Pari |
|
6082
|
|
|
|
|
|
|
|
|
6083
|
|
|
|
|
|
|
# This has a *much* better growth rate than the later solutions. |
|
6084
|
972
|
100
|
33
|
|
|
3420
|
if ( !$have_xdigits || ($have_bigint_gmp && $digits > 100) ) { |
|
|
|
|
66
|
|
|
|
|
|
6085
|
1
|
50
|
|
|
|
3
|
print " using Perl AGM for Pi($digits)\n" if $_verbose; |
|
6086
|
|
|
|
|
|
|
# Brent-Salamin (aka AGM or Gauss-Legendre) |
|
6087
|
1
|
|
|
|
|
2
|
$digits += 8; |
|
6088
|
1
|
|
|
|
|
13
|
my $HALF = _upgrade_to_float(0.5); |
|
6089
|
1
|
|
|
|
|
315
|
my ($an, $bn, $tn, $pn) = ($HALF->copy->bone, $HALF->copy->bsqrt($digits), |
|
6090
|
|
|
|
|
|
|
$HALF->copy->bmul($HALF), $HALF->copy->bone); |
|
6091
|
1
|
|
|
|
|
7891
|
while ($pn < $digits) { |
|
6092
|
7
|
|
|
|
|
3788
|
my $prev_an = $an->copy; |
|
6093
|
7
|
|
|
|
|
221
|
$an->badd($bn)->bmul($HALF, $digits); |
|
6094
|
7
|
|
|
|
|
5717
|
$bn->bmul($prev_an)->bsqrt($digits); |
|
6095
|
7
|
|
|
|
|
83726
|
$prev_an->bsub($an); |
|
6096
|
7
|
|
|
|
|
3114
|
$tn->bsub($pn * $prev_an * $prev_an); |
|
6097
|
7
|
|
|
|
|
13605
|
$pn->badd($pn); |
|
6098
|
|
|
|
|
|
|
} |
|
6099
|
1
|
|
|
|
|
521
|
$an->badd($bn); |
|
6100
|
1
|
|
|
|
|
399
|
$an->bmul($an,$digits)->bdiv(4*$tn, $digits-8); |
|
6101
|
1
|
|
|
|
|
2779
|
return $an; |
|
6102
|
|
|
|
|
|
|
} |
|
6103
|
|
|
|
|
|
|
|
|
6104
|
|
|
|
|
|
|
# Spigot method in C. Low overhead but not good growth rate. |
|
6105
|
971
|
50
|
|
|
|
1908
|
if ($have_xdigits) { |
|
6106
|
971
|
50
|
|
|
|
1708
|
print " using XS spigot for Pi($digits)\n" if $_verbose; |
|
6107
|
971
|
|
|
|
|
3595377
|
return _upgrade_to_float(Math::Prime::Util::_pidigits($digits)); |
|
6108
|
|
|
|
|
|
|
} |
|
6109
|
|
|
|
|
|
|
|
|
6110
|
|
|
|
|
|
|
# We're going to have to use the Math::BigFloat code. |
|
6111
|
|
|
|
|
|
|
# 1) it rounds incorrectly (e.g. 761, 1372, 1509,...). |
|
6112
|
|
|
|
|
|
|
# Fix by adding some digits and rounding. |
|
6113
|
|
|
|
|
|
|
# 2) AGM is *much* faster once past ~2000 digits |
|
6114
|
|
|
|
|
|
|
# 3) It is very slow without the GMP backend. The Pari backend helps |
|
6115
|
|
|
|
|
|
|
# but it still pretty bad. With Calc it's glacial for large inputs. |
|
6116
|
|
|
|
|
|
|
|
|
6117
|
|
|
|
|
|
|
# Math::BigFloat AGM spigot AGM |
|
6118
|
|
|
|
|
|
|
# Size GMP Pari Calc GMP Pari Calc C C+GMP |
|
6119
|
|
|
|
|
|
|
# 500 0.04 0.60 0.30 0.08 0.10 0.47 0.09 0.06 |
|
6120
|
|
|
|
|
|
|
# 1000 0.04 0.11 1.82 0.09 0.14 1.82 0.09 0.06 |
|
6121
|
|
|
|
|
|
|
# 2000 0.07 0.37 13.5 0.09 0.34 9.16 0.10 0.06 |
|
6122
|
|
|
|
|
|
|
# 4000 0.14 2.17 107.8 0.12 1.14 39.7 0.20 0.06 |
|
6123
|
|
|
|
|
|
|
# 8000 0.52 15.7 0.22 4.63 186.2 0.56 0.08 |
|
6124
|
|
|
|
|
|
|
# 16000 2.73 121.8 0.52 19.2 2.00 0.08 |
|
6125
|
|
|
|
|
|
|
# 32000 15.4 1.42 7.78 0.12 |
|
6126
|
|
|
|
|
|
|
# ^ ^ ^ |
|
6127
|
|
|
|
|
|
|
# | use this THIRD ---+ | |
|
6128
|
|
|
|
|
|
|
# use this SECOND ---+ | |
|
6129
|
|
|
|
|
|
|
# use this FIRST ---+ |
|
6130
|
|
|
|
|
|
|
# approx |
|
6131
|
|
|
|
|
|
|
# growth 5.6x 7.6x 8.0x 2.7x 4.1x 4.7x 3.9x 2.0x |
|
6132
|
|
|
|
|
|
|
|
|
6133
|
0
|
0
|
|
|
|
0
|
print " using BigFloat for Pi($digits)\n" if $_verbose; |
|
6134
|
0
|
|
|
|
|
0
|
_upgrade_to_float(0); |
|
6135
|
0
|
|
|
|
|
0
|
return Math::BigFloat::bpi($digits+10)->round($digits); |
|
6136
|
|
|
|
|
|
|
} |
|
6137
|
|
|
|
|
|
|
|
|
6138
|
|
|
|
|
|
|
sub forpart { |
|
6139
|
1
|
|
|
1
|
0
|
1579
|
my($sub, $n, $rhash) = @_; |
|
6140
|
1
|
|
|
|
|
6
|
_forcompositions(1, $sub, $n, $rhash); |
|
6141
|
|
|
|
|
|
|
} |
|
6142
|
|
|
|
|
|
|
sub forcomp { |
|
6143
|
0
|
|
|
0
|
0
|
0
|
my($sub, $n, $rhash) = @_; |
|
6144
|
0
|
|
|
|
|
0
|
_forcompositions(0, $sub, $n, $rhash); |
|
6145
|
|
|
|
|
|
|
} |
|
6146
|
|
|
|
|
|
|
sub _forcompositions { |
|
6147
|
1
|
|
|
1
|
|
4
|
my($ispart, $sub, $n, $rhash) = @_; |
|
6148
|
1
|
|
|
|
|
4
|
_validate_positive_integer($n); |
|
6149
|
1
|
|
|
|
|
6
|
my($mina, $maxa, $minn, $maxn, $primeq) = (1,$n,1,$n,-1); |
|
6150
|
1
|
50
|
|
|
|
3
|
if (defined $rhash) { |
|
6151
|
0
|
0
|
|
|
|
0
|
croak "forpart second argument must be a hash reference" |
|
6152
|
|
|
|
|
|
|
unless ref($rhash) eq 'HASH'; |
|
6153
|
0
|
0
|
|
|
|
0
|
if (defined $rhash->{amin}) { |
|
6154
|
0
|
|
|
|
|
0
|
$mina = $rhash->{amin}; |
|
6155
|
0
|
|
|
|
|
0
|
_validate_positive_integer($mina); |
|
6156
|
|
|
|
|
|
|
} |
|
6157
|
0
|
0
|
|
|
|
0
|
if (defined $rhash->{amax}) { |
|
6158
|
0
|
|
|
|
|
0
|
$maxa = $rhash->{amax}; |
|
6159
|
0
|
|
|
|
|
0
|
_validate_positive_integer($maxa); |
|
6160
|
|
|
|
|
|
|
} |
|
6161
|
0
|
0
|
|
|
|
0
|
$minn = $maxn = $rhash->{n} if defined $rhash->{n}; |
|
6162
|
0
|
0
|
|
|
|
0
|
$minn = $rhash->{nmin} if defined $rhash->{nmin}; |
|
6163
|
0
|
0
|
|
|
|
0
|
$maxn = $rhash->{nmax} if defined $rhash->{nmax}; |
|
6164
|
0
|
|
|
|
|
0
|
_validate_positive_integer($minn); |
|
6165
|
0
|
|
|
|
|
0
|
_validate_positive_integer($maxn); |
|
6166
|
0
|
0
|
|
|
|
0
|
if (defined $rhash->{prime}) { |
|
6167
|
0
|
|
|
|
|
0
|
$primeq = $rhash->{prime}; |
|
6168
|
0
|
|
|
|
|
0
|
_validate_positive_integer($primeq); |
|
6169
|
|
|
|
|
|
|
} |
|
6170
|
0
|
0
|
|
|
|
0
|
$mina = 1 if $mina < 1; |
|
6171
|
0
|
0
|
|
|
|
0
|
$maxa = $n if $maxa > $n; |
|
6172
|
0
|
0
|
|
|
|
0
|
$minn = 1 if $minn < 1; |
|
6173
|
0
|
0
|
|
|
|
0
|
$maxn = $n if $maxn > $n; |
|
6174
|
0
|
0
|
0
|
|
|
0
|
$primeq = 2 if $primeq != -1 && $primeq != 0; |
|
6175
|
|
|
|
|
|
|
} |
|
6176
|
|
|
|
|
|
|
|
|
6177
|
1
|
50
|
33
|
|
|
5
|
$sub->() if $n == 0 && $minn <= 1; |
|
6178
|
1
|
50
|
33
|
|
|
14
|
return if $n < $minn || $minn > $maxn || $mina > $maxa || $maxn <= 0 || $maxa <= 0; |
|
|
|
|
33
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
6179
|
|
|
|
|
|
|
|
|
6180
|
1
|
|
|
|
|
4
|
my $oldforexit = Math::Prime::Util::_start_for_loop(); |
|
6181
|
1
|
|
|
|
|
3
|
my ($x, $y, $r, $k); |
|
6182
|
1
|
|
|
|
|
14
|
my @a = (0) x ($n); |
|
6183
|
1
|
|
|
|
|
3
|
$k = 1; |
|
6184
|
1
|
|
|
|
|
3
|
$a[0] = $mina - 1; |
|
6185
|
1
|
|
|
|
|
4
|
$a[1] = $n - $mina + 1; |
|
6186
|
1
|
|
|
|
|
4
|
while ($k != 0) { |
|
6187
|
5
|
|
|
|
|
24
|
$x = $a[$k-1]+1; |
|
6188
|
5
|
|
|
|
|
14
|
$y = $a[$k]-1; |
|
6189
|
5
|
|
|
|
|
9
|
$k--; |
|
6190
|
5
|
50
|
|
|
|
11
|
$r = $ispart ? $x : 1; |
|
6191
|
5
|
|
|
|
|
11
|
while ($r <= $y) { |
|
6192
|
4
|
|
|
|
|
6
|
$a[$k] = $x; |
|
6193
|
4
|
|
|
|
|
6
|
$x = $r; |
|
6194
|
4
|
|
|
|
|
5
|
$y -= $x; |
|
6195
|
4
|
|
|
|
|
9
|
$k++; |
|
6196
|
|
|
|
|
|
|
} |
|
6197
|
5
|
|
|
|
|
7
|
$a[$k] = $x + $y; |
|
6198
|
|
|
|
|
|
|
# Restrict size |
|
6199
|
5
|
|
|
|
|
11
|
while ($k+1 > $maxn) { |
|
6200
|
0
|
|
|
|
|
0
|
$a[$k-1] += $a[$k]; |
|
6201
|
0
|
|
|
|
|
0
|
$k--; |
|
6202
|
|
|
|
|
|
|
} |
|
6203
|
5
|
50
|
|
|
|
10
|
next if $k+1 < $minn; |
|
6204
|
|
|
|
|
|
|
# Restrict values |
|
6205
|
5
|
50
|
33
|
|
|
29
|
if ($mina > 1 || $maxa < $n) { |
|
6206
|
0
|
0
|
|
|
|
0
|
last if $a[0] > $maxa; |
|
6207
|
0
|
0
|
|
|
|
0
|
if ($ispart) { |
|
6208
|
0
|
0
|
|
|
|
0
|
next if $a[$k] > $maxa; |
|
6209
|
|
|
|
|
|
|
} else { |
|
6210
|
0
|
0
|
|
0
|
|
0
|
next if Math::Prime::Util::vecany(sub{ $_ < $mina || $_ > $maxa }, @a[0..$k]); |
|
|
0
|
0
|
|
|
|
0
|
|
|
6211
|
|
|
|
|
|
|
} |
|
6212
|
|
|
|
|
|
|
} |
|
6213
|
5
|
50
|
33
|
0
|
|
12
|
next if $primeq == 0 && Math::Prime::Util::vecany(sub{ is_prime($_) }, @a[0..$k]); |
|
|
0
|
|
|
|
|
0
|
|
|
6214
|
5
|
50
|
33
|
0
|
|
13
|
next if $primeq == 2 && Math::Prime::Util::vecany(sub{ !is_prime($_) }, @a[0..$k]); |
|
|
0
|
|
|
|
|
0
|
|
|
6215
|
5
|
50
|
|
|
|
14
|
last if Math::Prime::Util::_get_forexit(); |
|
6216
|
5
|
|
|
|
|
17
|
$sub->(@a[0 .. $k]); |
|
6217
|
|
|
|
|
|
|
} |
|
6218
|
1
|
|
|
|
|
7
|
Math::Prime::Util::_end_for_loop($oldforexit); |
|
6219
|
|
|
|
|
|
|
} |
|
6220
|
|
|
|
|
|
|
sub forcomb { |
|
6221
|
1
|
|
|
1
|
0
|
609
|
my($sub, $n, $k) = @_; |
|
6222
|
1
|
|
|
|
|
5
|
_validate_positive_integer($n); |
|
6223
|
|
|
|
|
|
|
|
|
6224
|
1
|
|
|
|
|
3
|
my($begk, $endk); |
|
6225
|
1
|
50
|
|
|
|
13
|
if (defined $k) { |
|
6226
|
1
|
|
|
|
|
6
|
_validate_positive_integer($k); |
|
6227
|
1
|
50
|
|
|
|
3
|
return if $k > $n; |
|
6228
|
1
|
|
|
|
|
4
|
$begk = $endk = $k; |
|
6229
|
|
|
|
|
|
|
} else { |
|
6230
|
0
|
|
|
|
|
0
|
$begk = 0; |
|
6231
|
0
|
|
|
|
|
0
|
$endk = $n; |
|
6232
|
|
|
|
|
|
|
} |
|
6233
|
|
|
|
|
|
|
|
|
6234
|
1
|
|
|
|
|
5
|
my $oldforexit = Math::Prime::Util::_start_for_loop(); |
|
6235
|
1
|
|
|
|
|
4
|
for my $k ($begk .. $endk) { |
|
6236
|
1
|
50
|
|
|
|
4
|
if ($k == 0) { |
|
6237
|
0
|
|
|
|
|
0
|
$sub->(); |
|
6238
|
|
|
|
|
|
|
} else { |
|
6239
|
1
|
|
|
|
|
5
|
my @c = 0 .. $k-1; |
|
6240
|
1
|
|
|
|
|
2
|
while (1) { |
|
6241
|
3
|
|
|
|
|
10
|
$sub->(@c); |
|
6242
|
3
|
50
|
|
|
|
15
|
last if Math::Prime::Util::_get_forexit(); |
|
6243
|
3
|
100
|
|
|
|
18
|
next if $c[-1]++ < $n-1; |
|
6244
|
2
|
|
|
|
|
7
|
my $i = $k-2; |
|
6245
|
2
|
|
100
|
|
|
20
|
$i-- while $i >= 0 && $c[$i] >= $n-($k-$i); |
|
6246
|
2
|
100
|
|
|
|
11
|
last if $i < 0; |
|
6247
|
1
|
|
|
|
|
3
|
$c[$i]++; |
|
6248
|
1
|
|
|
|
|
4
|
while (++$i < $k) { $c[$i] = $c[$i-1] + 1; } |
|
|
1
|
|
|
|
|
4
|
|
|
6249
|
|
|
|
|
|
|
} |
|
6250
|
|
|
|
|
|
|
} |
|
6251
|
1
|
50
|
|
|
|
14
|
last if Math::Prime::Util::_get_forexit(); |
|
6252
|
|
|
|
|
|
|
} |
|
6253
|
1
|
|
|
|
|
4
|
Math::Prime::Util::_end_for_loop($oldforexit); |
|
6254
|
|
|
|
|
|
|
} |
|
6255
|
|
|
|
|
|
|
sub _forperm { |
|
6256
|
1
|
|
|
1
|
|
2
|
my($sub, $n, $all_perm) = @_; |
|
6257
|
1
|
|
|
|
|
3
|
my $k = $n; |
|
6258
|
1
|
|
|
|
|
3
|
my @c = reverse 0 .. $k-1; |
|
6259
|
1
|
|
|
|
|
14
|
my $inc = 0; |
|
6260
|
1
|
|
|
|
|
4
|
my $send = 1; |
|
6261
|
1
|
|
|
|
|
5
|
my $oldforexit = Math::Prime::Util::_start_for_loop(); |
|
6262
|
1
|
|
|
|
|
3
|
while (1) { |
|
6263
|
6
|
50
|
|
|
|
15
|
if (!$all_perm) { # Derangements via simple filtering. |
|
6264
|
0
|
|
|
|
|
0
|
$send = 1; |
|
6265
|
0
|
|
|
|
|
0
|
for my $p (0 .. $#c) { |
|
6266
|
0
|
0
|
|
|
|
0
|
if ($c[$p] == $k-$p-1) { |
|
6267
|
0
|
|
|
|
|
0
|
$send = 0; |
|
6268
|
0
|
|
|
|
|
0
|
last; |
|
6269
|
|
|
|
|
|
|
} |
|
6270
|
|
|
|
|
|
|
} |
|
6271
|
|
|
|
|
|
|
} |
|
6272
|
6
|
50
|
|
|
|
11
|
if ($send) { |
|
6273
|
6
|
|
|
|
|
19
|
$sub->(reverse @c); |
|
6274
|
6
|
50
|
|
|
|
27
|
last if Math::Prime::Util::_get_forexit(); |
|
6275
|
|
|
|
|
|
|
} |
|
6276
|
6
|
100
|
|
|
|
20
|
if (++$inc & 1) { |
|
6277
|
3
|
|
|
|
|
9
|
@c[0,1] = @c[1,0]; |
|
6278
|
3
|
|
|
|
|
5
|
next; |
|
6279
|
|
|
|
|
|
|
} |
|
6280
|
3
|
|
|
|
|
4
|
my $j = 2; |
|
6281
|
3
|
|
100
|
|
|
22
|
$j++ while $j < $k && $c[$j] > $c[$j-1]; |
|
6282
|
3
|
100
|
|
|
|
9
|
last if $j >= $k; |
|
6283
|
2
|
|
|
|
|
4
|
my $m = 0; |
|
6284
|
2
|
|
|
|
|
5
|
$m++ while $c[$j] > $c[$m]; |
|
6285
|
2
|
|
|
|
|
5
|
@c[$j,$m] = @c[$m,$j]; |
|
6286
|
2
|
|
|
|
|
18
|
@c[0..$j-1] = reverse @c[0..$j-1]; |
|
6287
|
|
|
|
|
|
|
} |
|
6288
|
1
|
|
|
|
|
8
|
Math::Prime::Util::_end_for_loop($oldforexit); |
|
6289
|
|
|
|
|
|
|
} |
|
6290
|
|
|
|
|
|
|
sub forperm { |
|
6291
|
1
|
|
|
1
|
0
|
1114
|
my($sub, $n, $k) = @_; |
|
6292
|
1
|
|
|
|
|
14
|
_validate_positive_integer($n); |
|
6293
|
1
|
50
|
|
|
|
7
|
croak "Too many arguments for forperm" if defined $k; |
|
6294
|
1
|
50
|
|
|
|
4
|
return $sub->() if $n == 0; |
|
6295
|
1
|
50
|
|
|
|
4
|
return $sub->(0) if $n == 1; |
|
6296
|
1
|
|
|
|
|
6
|
_forperm($sub, $n, 1); |
|
6297
|
|
|
|
|
|
|
} |
|
6298
|
|
|
|
|
|
|
sub forderange { |
|
6299
|
0
|
|
|
0
|
0
|
0
|
my($sub, $n, $k) = @_; |
|
6300
|
0
|
|
|
|
|
0
|
_validate_positive_integer($n); |
|
6301
|
0
|
0
|
|
|
|
0
|
croak "Too many arguments for forderange" if defined $k; |
|
6302
|
0
|
0
|
|
|
|
0
|
return $sub->() if $n == 0; |
|
6303
|
0
|
0
|
|
|
|
0
|
return if $n == 1; |
|
6304
|
0
|
|
|
|
|
0
|
_forperm($sub, $n, 0); |
|
6305
|
|
|
|
|
|
|
} |
|
6306
|
|
|
|
|
|
|
|
|
6307
|
|
|
|
|
|
|
sub _multiset_permutations { |
|
6308
|
78
|
|
|
78
|
|
127
|
my($sub, $prefix, $ar, $sum) = @_; |
|
6309
|
|
|
|
|
|
|
|
|
6310
|
78
|
100
|
|
|
|
129
|
return if $sum == 0; |
|
6311
|
|
|
|
|
|
|
|
|
6312
|
|
|
|
|
|
|
# Remove any values with 0 occurances |
|
6313
|
77
|
|
|
|
|
120
|
my @n = grep { $_->[1] > 0 } @$ar; |
|
|
238
|
|
|
|
|
454
|
|
|
6314
|
|
|
|
|
|
|
|
|
6315
|
77
|
50
|
|
|
|
162
|
if ($sum == 1) { # A single value |
|
|
|
100
|
|
|
|
|
|
|
6316
|
0
|
|
|
|
|
0
|
$sub->(@$prefix, $n[0]->[0]); |
|
6317
|
|
|
|
|
|
|
} elsif ($sum == 2) { # Optimize the leaf case |
|
6318
|
51
|
|
|
|
|
73
|
my($n0,$n1) = map { $_->[0] } @n; |
|
|
97
|
|
|
|
|
169
|
|
|
6319
|
51
|
100
|
|
|
|
96
|
if (@n == 1) { |
|
6320
|
5
|
|
|
|
|
13
|
$sub->(@$prefix, $n0, $n0); |
|
6321
|
|
|
|
|
|
|
} else { |
|
6322
|
46
|
|
|
|
|
111
|
$sub->(@$prefix, $n0, $n1); |
|
6323
|
46
|
100
|
|
|
|
235
|
$sub->(@$prefix, $n1, $n0) unless Math::Prime::Util::_get_forexit(); |
|
6324
|
|
|
|
|
|
|
} |
|
6325
|
|
|
|
|
|
|
} elsif (0 && $sum == scalar(@n)) { # All entries have 1 occurance |
|
6326
|
|
|
|
|
|
|
# TODO: Figure out a way to use this safely. We need to capture any |
|
6327
|
|
|
|
|
|
|
# lastfor that was seen in the forperm. |
|
6328
|
|
|
|
|
|
|
my @i = map { $_->[0] } @n; |
|
6329
|
0
|
|
|
0
|
|
0
|
Math::Prime::Util::forperm(sub { $sub->(@$prefix, @i[@_]) }, 1+$#i); |
|
6330
|
|
|
|
|
|
|
} else { # Recurse over each leading value |
|
6331
|
26
|
|
|
|
|
46
|
for my $v (@n) { |
|
6332
|
73
|
|
|
|
|
90
|
$v->[1]--; |
|
6333
|
73
|
|
|
|
|
113
|
push @$prefix, $v->[0]; |
|
6334
|
40
|
|
|
40
|
|
1149864
|
no warnings 'recursion'; |
|
|
40
|
|
|
|
|
109
|
|
|
|
40
|
|
|
|
|
113802
|
|
|
6335
|
73
|
|
|
|
|
193
|
_multiset_permutations($sub, $prefix, \@n, $sum-1); |
|
6336
|
73
|
|
|
|
|
249
|
pop @$prefix; |
|
6337
|
73
|
|
|
|
|
93
|
$v->[1]++; |
|
6338
|
73
|
100
|
|
|
|
169
|
last if Math::Prime::Util::_get_forexit(); |
|
6339
|
|
|
|
|
|
|
} |
|
6340
|
|
|
|
|
|
|
} |
|
6341
|
|
|
|
|
|
|
} |
|
6342
|
|
|
|
|
|
|
|
|
6343
|
|
|
|
|
|
|
sub numtoperm { |
|
6344
|
0
|
|
|
0
|
0
|
0
|
my($n,$k) = @_; |
|
6345
|
0
|
|
|
|
|
0
|
_validate_positive_integer($n); |
|
6346
|
0
|
|
|
|
|
0
|
_validate_integer($k); |
|
6347
|
0
|
0
|
|
|
|
0
|
return () if $n == 0; |
|
6348
|
0
|
0
|
|
|
|
0
|
return (0) if $n == 1; |
|
6349
|
0
|
|
|
|
|
0
|
my $f = factorial($n-1); |
|
6350
|
0
|
0
|
0
|
|
|
0
|
$k %= vecprod($f,$n) if $k < 0 || int($k/$f) >= $n; |
|
6351
|
0
|
|
|
|
|
0
|
my @S = map { $_ } 0 .. $n-1; |
|
|
0
|
|
|
|
|
0
|
|
|
6352
|
0
|
|
|
|
|
0
|
my @V; |
|
6353
|
0
|
|
|
|
|
0
|
while ($n-- > 0) { |
|
6354
|
0
|
|
|
|
|
0
|
my $i = int($k/$f); |
|
6355
|
0
|
|
|
|
|
0
|
push @V, splice(@S,$i,1); |
|
6356
|
0
|
0
|
|
|
|
0
|
last if $n == 0; |
|
6357
|
0
|
|
|
|
|
0
|
$k -= $i*$f; |
|
6358
|
0
|
|
|
|
|
0
|
$f /= $n; |
|
6359
|
|
|
|
|
|
|
} |
|
6360
|
0
|
|
|
|
|
0
|
@V; |
|
6361
|
|
|
|
|
|
|
} |
|
6362
|
|
|
|
|
|
|
|
|
6363
|
|
|
|
|
|
|
sub permtonum { |
|
6364
|
2
|
|
|
2
|
0
|
10533
|
my $A = shift; |
|
6365
|
2
|
50
|
|
|
|
11
|
croak "permtonum argument must be an array reference" |
|
6366
|
|
|
|
|
|
|
unless ref($A) eq 'ARRAY'; |
|
6367
|
2
|
|
|
|
|
5
|
my $n = scalar(@$A); |
|
6368
|
2
|
100
|
|
|
|
12
|
return 0 if $n == 0; |
|
6369
|
|
|
|
|
|
|
{ |
|
6370
|
1
|
|
|
|
|
8
|
my %S; |
|
|
1
|
|
|
|
|
2
|
|
|
6371
|
1
|
|
|
|
|
4
|
for my $v (@$A) { |
|
6372
|
|
|
|
|
|
|
croak "permtonum invalid permutation array" |
|
6373
|
26
|
50
|
33
|
|
|
165
|
if !defined $v || $v < 0 || $v >= $n || $S{$v}++; |
|
|
|
|
33
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
6374
|
|
|
|
|
|
|
} |
|
6375
|
|
|
|
|
|
|
} |
|
6376
|
1
|
|
|
|
|
7
|
my $f = factorial($n-1); |
|
6377
|
1
|
|
|
|
|
3
|
my $rank = 0; |
|
6378
|
1
|
|
|
|
|
7
|
for my $i (0 .. $n-2) { |
|
6379
|
25
|
|
|
|
|
6218
|
my $k = 0; |
|
6380
|
25
|
|
|
|
|
70
|
for my $j ($i+1 .. $n-1) { |
|
6381
|
325
|
100
|
|
|
|
587
|
$k++ if $A->[$j] < $A->[$i]; |
|
6382
|
|
|
|
|
|
|
} |
|
6383
|
25
|
|
|
|
|
152
|
$rank = Math::Prime::Util::vecsum($rank, Math::Prime::Util::vecprod($k,$f)); |
|
6384
|
25
|
|
|
|
|
123
|
$f /= $n-$i-1; |
|
6385
|
|
|
|
|
|
|
} |
|
6386
|
1
|
|
|
|
|
222
|
$rank; |
|
6387
|
|
|
|
|
|
|
} |
|
6388
|
|
|
|
|
|
|
|
|
6389
|
|
|
|
|
|
|
sub randperm { |
|
6390
|
0
|
|
|
0
|
0
|
0
|
my($n,$k) = @_; |
|
6391
|
0
|
|
|
|
|
0
|
_validate_positive_integer($n); |
|
6392
|
0
|
0
|
|
|
|
0
|
if (defined $k) { |
|
6393
|
0
|
|
|
|
|
0
|
_validate_positive_integer($k); |
|
6394
|
|
|
|
|
|
|
} |
|
6395
|
0
|
0
|
0
|
|
|
0
|
$k = $n if !defined($k) || $k > $n; |
|
6396
|
0
|
0
|
|
|
|
0
|
return () if $k == 0; |
|
6397
|
|
|
|
|
|
|
|
|
6398
|
0
|
|
|
|
|
0
|
my @S; |
|
6399
|
0
|
0
|
|
|
|
0
|
if ("$k"/"$n" <= 0.30) { |
|
6400
|
0
|
|
|
|
|
0
|
my %seen; |
|
6401
|
|
|
|
|
|
|
my $v; |
|
6402
|
0
|
|
|
|
|
0
|
for my $i (1 .. $k) { |
|
6403
|
0
|
|
|
|
|
0
|
do { $v = Math::Prime::Util::urandomm($n); } while $seen{$v}++; |
|
|
0
|
|
|
|
|
0
|
|
|
6404
|
0
|
|
|
|
|
0
|
push @S,$v; |
|
6405
|
|
|
|
|
|
|
} |
|
6406
|
|
|
|
|
|
|
} else { |
|
6407
|
0
|
|
|
|
|
0
|
@S = map { $_ } 0..$n-1; |
|
|
0
|
|
|
|
|
0
|
|
|
6408
|
0
|
|
|
|
|
0
|
for my $i (0 .. $n-2) { |
|
6409
|
0
|
0
|
|
|
|
0
|
last if $i >= $k; |
|
6410
|
0
|
|
|
|
|
0
|
my $j = Math::Prime::Util::urandomm($n-$i); |
|
6411
|
0
|
|
|
|
|
0
|
@S[$i,$i+$j] = @S[$i+$j,$i]; |
|
6412
|
|
|
|
|
|
|
} |
|
6413
|
0
|
|
|
|
|
0
|
$#S = $k-1; |
|
6414
|
|
|
|
|
|
|
} |
|
6415
|
0
|
|
|
|
|
0
|
return @S; |
|
6416
|
|
|
|
|
|
|
} |
|
6417
|
|
|
|
|
|
|
|
|
6418
|
|
|
|
|
|
|
sub shuffle { |
|
6419
|
0
|
|
|
0
|
0
|
0
|
my @S=@_; |
|
6420
|
|
|
|
|
|
|
# Note: almost all the time is spent in urandomm. |
|
6421
|
0
|
|
|
|
|
0
|
for (my $i = $#S; $i >= 1; $i--) { |
|
6422
|
0
|
|
|
|
|
0
|
my $j = Math::Prime::Util::urandomm($i+1); |
|
6423
|
0
|
|
|
|
|
0
|
@S[$i,$j] = @S[$j,$i]; |
|
6424
|
|
|
|
|
|
|
} |
|
6425
|
0
|
|
|
|
|
0
|
@S; |
|
6426
|
|
|
|
|
|
|
} |
|
6427
|
|
|
|
|
|
|
|
|
6428
|
|
|
|
|
|
|
############################################################################### |
|
6429
|
|
|
|
|
|
|
# Random numbers |
|
6430
|
|
|
|
|
|
|
############################################################################### |
|
6431
|
|
|
|
|
|
|
|
|
6432
|
|
|
|
|
|
|
# PPFE: irand irand64 drand random_bytes csrand srand _is_csprng_well_seeded |
|
6433
|
|
|
|
|
|
|
sub urandomb { |
|
6434
|
46
|
|
|
46
|
0
|
175
|
my($n) = @_; |
|
6435
|
46
|
50
|
|
|
|
162
|
return 0 if $n <= 0; |
|
6436
|
46
|
50
|
|
|
|
139
|
return ( Math::Prime::Util::irand() >> (32-$n) ) if $n <= 32; |
|
6437
|
46
|
50
|
|
|
|
125
|
return ( Math::Prime::Util::irand64() >> (64-$n) ) if MPU_MAXBITS >= 64 && $n <= 64; |
|
6438
|
46
|
|
|
|
|
874
|
my $bytes = Math::Prime::Util::random_bytes(($n+7)>>3); |
|
6439
|
46
|
|
|
|
|
244
|
my $binary = substr(unpack("B*",$bytes),0,$n); |
|
6440
|
46
|
|
|
|
|
294
|
return Math::BigInt->new("0b$binary"); |
|
6441
|
|
|
|
|
|
|
} |
|
6442
|
|
|
|
|
|
|
sub urandomm { |
|
6443
|
46
|
|
|
46
|
0
|
163
|
my($n) = @_; |
|
6444
|
|
|
|
|
|
|
# _validate_positive_integer($n); |
|
6445
|
|
|
|
|
|
|
return Math::Prime::Util::_reftyped($_[0], Math::Prime::Util::GMP::urandomm($n)) |
|
6446
|
46
|
50
|
|
|
|
192
|
if $Math::Prime::Util::_GMPfunc{"urandomm"}; |
|
6447
|
46
|
50
|
|
|
|
182
|
return 0 if $n <= 1; |
|
6448
|
46
|
|
|
|
|
5815
|
my $r; |
|
6449
|
46
|
50
|
|
|
|
143
|
if ($n <= 4294967295) { |
|
|
|
50
|
|
|
|
|
|
|
6450
|
0
|
|
|
|
|
0
|
my $rmax = int(4294967295 / $n) * $n; |
|
6451
|
0
|
|
|
|
|
0
|
do { $r = Math::Prime::Util::irand() } while $r >= $rmax; |
|
|
0
|
|
|
|
|
0
|
|
|
6452
|
|
|
|
|
|
|
} elsif (!ref($n)) { |
|
6453
|
0
|
|
|
|
|
0
|
my $rmax = int(~0 / $n) * $n; |
|
6454
|
0
|
|
|
|
|
0
|
do { $r = Math::Prime::Util::irand64() } while $r >= $rmax; |
|
|
0
|
|
|
|
|
0
|
|
|
6455
|
|
|
|
|
|
|
} else { |
|
6456
|
|
|
|
|
|
|
# TODO: verify and try to optimize this |
|
6457
|
46
|
|
|
|
|
6209
|
my $bits = length($n->as_bin) - 2; |
|
6458
|
46
|
|
|
|
|
12656
|
my $bytes = 1 + (($bits+7)>>3); |
|
6459
|
46
|
|
|
|
|
229
|
my $rmax = Math::BigInt->bone->blsft($bytes*8)->bdec; |
|
6460
|
46
|
|
|
|
|
24614
|
my $overflow = $rmax - ($rmax % $n); |
|
6461
|
46
|
|
|
|
|
16926
|
do { $r = Math::Prime::Util::urandomb($bytes*8); } while $r >= $overflow; |
|
|
46
|
|
|
|
|
3004
|
|
|
6462
|
|
|
|
|
|
|
} |
|
6463
|
46
|
|
|
|
|
23013
|
return $r % $n; |
|
6464
|
|
|
|
|
|
|
} |
|
6465
|
|
|
|
|
|
|
|
|
6466
|
|
|
|
|
|
|
sub random_prime { |
|
6467
|
2
|
|
|
2
|
0
|
133963
|
my($low, $high) = @_; |
|
6468
|
2
|
50
|
|
|
|
12
|
if (scalar(@_) == 1) { ($low,$high) = (2,$low); } |
|
|
0
|
|
|
|
|
0
|
|
|
6469
|
2
|
|
|
|
|
10
|
else { _validate_positive_integer($low); } |
|
6470
|
2
|
|
|
|
|
11
|
_validate_positive_integer($high); |
|
6471
|
|
|
|
|
|
|
|
|
6472
|
|
|
|
|
|
|
return Math::Prime::Util::_reftyped($_[0], Math::Prime::Util::GMP::random_prime($low, $high)) |
|
6473
|
2
|
50
|
|
|
|
20
|
if $Math::Prime::Util::_GMPfunc{"random_prime"}; |
|
6474
|
|
|
|
|
|
|
|
|
6475
|
2
|
|
|
|
|
1079
|
require Math::Prime::Util::RandomPrimes; |
|
6476
|
2
|
|
|
|
|
13
|
return Math::Prime::Util::RandomPrimes::random_prime($low,$high); |
|
6477
|
|
|
|
|
|
|
} |
|
6478
|
|
|
|
|
|
|
|
|
6479
|
|
|
|
|
|
|
sub random_ndigit_prime { |
|
6480
|
3
|
|
|
3
|
0
|
2719
|
my($digits) = @_; |
|
6481
|
3
|
|
|
|
|
20
|
_validate_positive_integer($digits, 1); |
|
6482
|
|
|
|
|
|
|
return Math::Prime::Util::_reftyped($_[0], Math::Prime::Util::GMP::random_ndigit_prime($digits)) |
|
6483
|
3
|
50
|
|
|
|
13
|
if $Math::Prime::Util::_GMPfunc{"random_ndigit_prime"}; |
|
6484
|
3
|
|
|
|
|
957
|
require Math::Prime::Util::RandomPrimes; |
|
6485
|
3
|
|
|
|
|
18
|
return Math::Prime::Util::RandomPrimes::random_ndigit_prime($digits); |
|
6486
|
|
|
|
|
|
|
} |
|
6487
|
|
|
|
|
|
|
sub random_nbit_prime { |
|
6488
|
6
|
|
|
6
|
0
|
79294
|
my($bits) = @_; |
|
6489
|
6
|
|
|
|
|
33
|
_validate_positive_integer($bits, 2); |
|
6490
|
|
|
|
|
|
|
return Math::Prime::Util::_reftyped($_[0], Math::Prime::Util::GMP::random_nbit_prime($bits)) |
|
6491
|
6
|
50
|
|
|
|
29
|
if $Math::Prime::Util::_GMPfunc{"random_nbit_prime"}; |
|
6492
|
6
|
|
|
|
|
53
|
require Math::Prime::Util::RandomPrimes; |
|
6493
|
6
|
|
|
|
|
36
|
return Math::Prime::Util::RandomPrimes::random_nbit_prime($bits); |
|
6494
|
|
|
|
|
|
|
} |
|
6495
|
|
|
|
|
|
|
sub random_strong_prime { |
|
6496
|
1
|
|
|
1
|
0
|
212
|
my($bits) = @_; |
|
6497
|
1
|
|
|
|
|
7
|
_validate_positive_integer($bits, 128); |
|
6498
|
|
|
|
|
|
|
return Math::Prime::Util::_reftyped($_[0], Math::Prime::Util::GMP::random_strong_prime($bits)) |
|
6499
|
1
|
50
|
|
|
|
6
|
if $Math::Prime::Util::_GMPfunc{"random_strong_prime"}; |
|
6500
|
1
|
|
|
|
|
10
|
require Math::Prime::Util::RandomPrimes; |
|
6501
|
1
|
|
|
|
|
8
|
return Math::Prime::Util::RandomPrimes::random_strong_prime($bits); |
|
6502
|
|
|
|
|
|
|
} |
|
6503
|
|
|
|
|
|
|
|
|
6504
|
|
|
|
|
|
|
sub random_maurer_prime { |
|
6505
|
3
|
|
|
3
|
0
|
1122
|
my($bits) = @_; |
|
6506
|
3
|
|
|
|
|
19
|
_validate_positive_integer($bits, 2); |
|
6507
|
|
|
|
|
|
|
|
|
6508
|
|
|
|
|
|
|
return Math::Prime::Util::_reftyped($_[0], Math::Prime::Util::GMP::random_maurer_prime($bits)) |
|
6509
|
3
|
50
|
|
|
|
15
|
if $Math::Prime::Util::_GMPfunc{"random_maurer_prime"}; |
|
6510
|
|
|
|
|
|
|
|
|
6511
|
3
|
|
|
|
|
29
|
require Math::Prime::Util::RandomPrimes; |
|
6512
|
3
|
|
|
|
|
22
|
my ($n, $cert) = Math::Prime::Util::RandomPrimes::random_maurer_prime_with_cert($bits); |
|
6513
|
3
|
50
|
|
|
|
24
|
croak "maurer prime $n failed certificate verification!" |
|
6514
|
|
|
|
|
|
|
unless Math::Prime::Util::verify_prime($cert); |
|
6515
|
|
|
|
|
|
|
|
|
6516
|
3
|
|
|
|
|
36
|
return $n; |
|
6517
|
|
|
|
|
|
|
} |
|
6518
|
|
|
|
|
|
|
|
|
6519
|
|
|
|
|
|
|
sub random_shawe_taylor_prime { |
|
6520
|
1
|
|
|
1
|
0
|
57
|
my($bits) = @_; |
|
6521
|
1
|
|
|
|
|
7
|
_validate_positive_integer($bits, 2); |
|
6522
|
|
|
|
|
|
|
|
|
6523
|
|
|
|
|
|
|
return Math::Prime::Util::_reftyped($_[0], Math::Prime::Util::GMP::random_shawe_taylor_prime($bits)) |
|
6524
|
1
|
50
|
|
|
|
7
|
if $Math::Prime::Util::_GMPfunc{"random_shawe_taylor_prime"}; |
|
6525
|
|
|
|
|
|
|
|
|
6526
|
1
|
|
|
|
|
11
|
require Math::Prime::Util::RandomPrimes; |
|
6527
|
1
|
|
|
|
|
7
|
my ($n, $cert) = Math::Prime::Util::RandomPrimes::random_shawe_taylor_prime_with_cert($bits); |
|
6528
|
1
|
50
|
|
|
|
7
|
croak "shawe-taylor prime $n failed certificate verification!" |
|
6529
|
|
|
|
|
|
|
unless Math::Prime::Util::verify_prime($cert); |
|
6530
|
|
|
|
|
|
|
|
|
6531
|
1
|
|
|
|
|
13
|
return $n; |
|
6532
|
|
|
|
|
|
|
} |
|
6533
|
|
|
|
|
|
|
|
|
6534
|
|
|
|
|
|
|
sub miller_rabin_random { |
|
6535
|
2
|
|
|
2
|
0
|
579
|
my($n, $k, $seed) = @_; |
|
6536
|
2
|
|
|
|
|
10
|
_validate_positive_integer($n); |
|
6537
|
2
|
50
|
|
|
|
11
|
if (scalar(@_) == 1 ) { $k = 1; } else { _validate_positive_integer($k); } |
|
|
0
|
|
|
|
|
0
|
|
|
|
2
|
|
|
|
|
7
|
|
|
6538
|
|
|
|
|
|
|
|
|
6539
|
2
|
50
|
|
|
|
9
|
return 1 if $k <= 0; |
|
6540
|
|
|
|
|
|
|
|
|
6541
|
2
|
50
|
|
|
|
11
|
if ($Math::Prime::Util::_GMPfunc{"miller_rabin_random"}) { |
|
6542
|
0
|
0
|
|
|
|
0
|
return Math::Prime::Util::GMP::miller_rabin_random($n, $k, $seed) if defined $seed; |
|
6543
|
0
|
|
|
|
|
0
|
return Math::Prime::Util::GMP::miller_rabin_random($n, $k); |
|
6544
|
|
|
|
|
|
|
} |
|
6545
|
|
|
|
|
|
|
|
|
6546
|
|
|
|
|
|
|
# Math::Prime::Util::prime_get_config()->{'assume_rh'}) ==> 2*log(n)^2 |
|
6547
|
2
|
50
|
|
|
|
9
|
if ($k >= int(3*$n/4) ) { |
|
6548
|
0
|
|
|
|
|
0
|
for (2 .. int(3*$n/4)+2) { |
|
6549
|
0
|
0
|
|
|
|
0
|
return 0 unless Math::Prime::Util::is_strong_pseudoprime($n, $_); |
|
6550
|
|
|
|
|
|
|
} |
|
6551
|
0
|
|
|
|
|
0
|
return 1; |
|
6552
|
|
|
|
|
|
|
} |
|
6553
|
2
|
|
|
|
|
1344
|
my $brange = $n-2; |
|
6554
|
2
|
100
|
|
|
|
457
|
return 0 unless Math::Prime::Util::is_strong_pseudoprime($n, Math::Prime::Util::urandomm($brange)+2 ); |
|
6555
|
1
|
|
|
|
|
4
|
$k--; |
|
6556
|
1
|
|
|
|
|
7
|
while ($k > 0) { |
|
6557
|
1
|
50
|
|
|
|
6
|
my $nbases = ($k >= 20) ? 20 : $k; |
|
6558
|
1
|
50
|
|
|
|
5
|
return 0 unless is_strong_pseudoprime($n, map { urandomm($brange)+2 } 1 .. $nbases); |
|
|
19
|
|
|
|
|
6935
|
|
|
6559
|
1
|
|
|
|
|
31
|
$k -= $nbases; |
|
6560
|
|
|
|
|
|
|
} |
|
6561
|
1
|
|
|
|
|
18
|
1; |
|
6562
|
|
|
|
|
|
|
} |
|
6563
|
|
|
|
|
|
|
|
|
6564
|
|
|
|
|
|
|
sub random_semiprime { |
|
6565
|
1
|
|
|
1
|
0
|
5027
|
my($b) = @_; |
|
6566
|
1
|
50
|
33
|
|
|
12
|
return 0 if defined $b && int($b) < 0; |
|
6567
|
1
|
|
|
|
|
7
|
_validate_positive_integer($b,4); |
|
6568
|
|
|
|
|
|
|
|
|
6569
|
1
|
|
|
|
|
2
|
my $n; |
|
6570
|
1
|
50
|
|
|
|
7
|
my $min = ($b <= MPU_MAXBITS) ? (1 << ($b-1)) : BTWO->copy->bpow($b-1); |
|
6571
|
1
|
|
|
|
|
501
|
my $max = $min + ($min - 1); |
|
6572
|
1
|
|
|
|
|
313
|
my $L = $b >> 1; |
|
6573
|
1
|
|
|
|
|
4
|
my $N = $b - $L; |
|
6574
|
1
|
50
|
|
|
|
5
|
my $one = ($b <= MPU_MAXBITS) ? 1 : BONE; |
|
6575
|
1
|
|
33
|
|
|
3
|
do { |
|
6576
|
1
|
|
|
|
|
5
|
$n = $one * random_nbit_prime($L) * random_nbit_prime($N); |
|
6577
|
|
|
|
|
|
|
} while $n < $min || $n > $max; |
|
6578
|
1
|
50
|
33
|
|
|
329
|
$n = _bigint_to_int($n) if ref($n) && $n->bacmp(BMAX) <= 0; |
|
6579
|
1
|
|
|
|
|
33
|
$n; |
|
6580
|
|
|
|
|
|
|
} |
|
6581
|
|
|
|
|
|
|
|
|
6582
|
|
|
|
|
|
|
sub random_unrestricted_semiprime { |
|
6583
|
1
|
|
|
1
|
0
|
453
|
my($b) = @_; |
|
6584
|
1
|
50
|
33
|
|
|
10
|
return 0 if defined $b && int($b) < 0; |
|
6585
|
1
|
|
|
|
|
6
|
_validate_positive_integer($b,3); |
|
6586
|
|
|
|
|
|
|
|
|
6587
|
1
|
|
|
|
|
2
|
my $n; |
|
6588
|
1
|
50
|
|
|
|
7
|
my $min = ($b <= MPU_MAXBITS) ? (1 << ($b-1)) : BTWO->copy->bpow($b-1); |
|
6589
|
1
|
|
|
|
|
480
|
my $max = $min + ($min - 1); |
|
6590
|
|
|
|
|
|
|
|
|
6591
|
1
|
50
|
|
|
|
301
|
if ($b <= 64) { |
|
6592
|
0
|
|
|
|
|
0
|
do { |
|
6593
|
0
|
|
|
|
|
0
|
$n = $min + urandomb($b-1); |
|
6594
|
|
|
|
|
|
|
} while !Math::Prime::Util::is_semiprime($n); |
|
6595
|
|
|
|
|
|
|
} else { |
|
6596
|
|
|
|
|
|
|
# Try to get probabilities right for small divisors |
|
6597
|
1
|
|
|
|
|
39
|
my %M = ( |
|
6598
|
|
|
|
|
|
|
2 => 1.91218397452243, |
|
6599
|
|
|
|
|
|
|
3 => 1.33954826555021, |
|
6600
|
|
|
|
|
|
|
5 => 0.854756717114822, |
|
6601
|
|
|
|
|
|
|
7 => 0.635492301836862, |
|
6602
|
|
|
|
|
|
|
11 => 0.426616792046787, |
|
6603
|
|
|
|
|
|
|
13 => 0.368193843118344, |
|
6604
|
|
|
|
|
|
|
17 => 0.290512701603111, |
|
6605
|
|
|
|
|
|
|
19 => 0.263359264658156, |
|
6606
|
|
|
|
|
|
|
23 => 0.222406328935102, |
|
6607
|
|
|
|
|
|
|
29 => 0.181229250520242, |
|
6608
|
|
|
|
|
|
|
31 => 0.170874199059434, |
|
6609
|
|
|
|
|
|
|
37 => 0.146112155735473, |
|
6610
|
|
|
|
|
|
|
41 => 0.133427839963585, |
|
6611
|
|
|
|
|
|
|
43 => 0.127929010905662, |
|
6612
|
|
|
|
|
|
|
47 => 0.118254609086782, |
|
6613
|
|
|
|
|
|
|
53 => 0.106316418106489, |
|
6614
|
|
|
|
|
|
|
59 => 0.0966989675438643, |
|
6615
|
|
|
|
|
|
|
61 => 0.0938833658008547, |
|
6616
|
|
|
|
|
|
|
67 => 0.0864151823151671, |
|
6617
|
|
|
|
|
|
|
71 => 0.0820822953188297, |
|
6618
|
|
|
|
|
|
|
73 => 0.0800964416340746, |
|
6619
|
|
|
|
|
|
|
79 => 0.0747060914833344, |
|
6620
|
|
|
|
|
|
|
83 => 0.0714973706654851, |
|
6621
|
|
|
|
|
|
|
89 => 0.0672115468436284, |
|
6622
|
|
|
|
|
|
|
97 => 0.0622818892486191, |
|
6623
|
|
|
|
|
|
|
101 => 0.0600855891549939, |
|
6624
|
|
|
|
|
|
|
103 => 0.0590613570015407, |
|
6625
|
|
|
|
|
|
|
107 => 0.0570921135626976, |
|
6626
|
|
|
|
|
|
|
109 => 0.0561691667641485, |
|
6627
|
|
|
|
|
|
|
113 => 0.0544330141081874, |
|
6628
|
|
|
|
|
|
|
127 => 0.0490620204315701, |
|
6629
|
|
|
|
|
|
|
); |
|
6630
|
1
|
|
|
|
|
3
|
my ($p,$r); |
|
6631
|
1
|
|
|
|
|
120
|
$r = Math::Prime::Util::drand(); |
|
6632
|
1
|
|
|
|
|
7
|
for my $prime (2..127) { |
|
6633
|
126
|
100
|
|
|
|
222
|
next unless defined $M{$prime}; |
|
6634
|
31
|
|
|
|
|
53
|
my $PR = $M{$prime} / $b + 0.19556 / $prime; |
|
6635
|
31
|
50
|
|
|
|
57
|
if ($r <= $PR) { |
|
6636
|
0
|
|
|
|
|
0
|
$p = $prime; |
|
6637
|
0
|
|
|
|
|
0
|
last; |
|
6638
|
|
|
|
|
|
|
} |
|
6639
|
31
|
|
|
|
|
111
|
$r -= $PR; |
|
6640
|
|
|
|
|
|
|
} |
|
6641
|
1
|
50
|
|
|
|
4
|
if (!defined $p) { |
|
6642
|
|
|
|
|
|
|
# Idea from Charles Greathouse IV, 2010. The distribution is right |
|
6643
|
|
|
|
|
|
|
# at the high level (small primes weighted more and not far off what |
|
6644
|
|
|
|
|
|
|
# we get with the uniform selection), but there is a noticeable skew |
|
6645
|
|
|
|
|
|
|
# toward primes with a large gap after them. For instance 3 ends up |
|
6646
|
|
|
|
|
|
|
# being weighted as much as 2, and 7 more than 5. |
|
6647
|
|
|
|
|
|
|
# |
|
6648
|
|
|
|
|
|
|
# Since we handled small divisors earlier, this is less bothersome. |
|
6649
|
1
|
|
|
|
|
3
|
my $M = 0.26149721284764278375542683860869585905; |
|
6650
|
1
|
|
|
|
|
8
|
my $weight = $M + log($b * log(2)/2); |
|
6651
|
1
|
|
|
|
|
2
|
my $minr = log(log(131)); |
|
6652
|
1
|
|
|
|
|
2
|
do { |
|
6653
|
2
|
|
|
|
|
8
|
$r = Math::Prime::Util::drand($weight) - $M; |
|
6654
|
|
|
|
|
|
|
} while $r < $minr; |
|
6655
|
|
|
|
|
|
|
# Using Math::BigFloat::bexp is ungodly slow, so avoid at all costs. |
|
6656
|
1
|
|
|
|
|
11
|
my $re = exp($r); |
|
6657
|
1
|
50
|
|
|
|
7
|
my $a = ($re < log(~0)) ? int(exp($re)+0.5) |
|
6658
|
|
|
|
|
|
|
: _upgrade_to_float($re)->bexp->bround->as_int; |
|
6659
|
1
|
50
|
|
|
|
16
|
$p = $a < 2 ? 2 : Math::Prime::Util::prev_prime($a+1); |
|
6660
|
|
|
|
|
|
|
} |
|
6661
|
1
|
50
|
|
|
|
11
|
my $ranmin = ref($min) ? $min->badd($p-1)->bdiv($p)->as_int : int(($min+$p-1)/$p); |
|
6662
|
1
|
50
|
|
|
|
588
|
my $ranmax = ref($max) ? $max->bdiv($p)->as_int : int($max/$p); |
|
6663
|
1
|
|
|
|
|
384
|
my $q = random_prime($ranmin, $ranmax); |
|
6664
|
1
|
|
|
|
|
85
|
$n = Math::Prime::Util::vecprod($p,$q); |
|
6665
|
|
|
|
|
|
|
} |
|
6666
|
1
|
50
|
33
|
|
|
8
|
$n = _bigint_to_int($n) if ref($n) && $n->bacmp(BMAX) <= 0; |
|
6667
|
1
|
|
|
|
|
26
|
$n; |
|
6668
|
|
|
|
|
|
|
} |
|
6669
|
|
|
|
|
|
|
|
|
6670
|
|
|
|
|
|
|
sub random_factored_integer { |
|
6671
|
0
|
|
|
0
|
0
|
|
my($n) = @_; |
|
6672
|
0
|
0
|
0
|
|
|
|
return (0,[]) if defined $n && int($n) < 0; |
|
6673
|
0
|
|
|
|
|
|
_validate_positive_integer($n,1); |
|
6674
|
|
|
|
|
|
|
|
|
6675
|
0
|
|
|
|
|
|
while (1) { |
|
6676
|
0
|
|
|
|
|
|
my @S = ($n); |
|
6677
|
|
|
|
|
|
|
# make s_i chain |
|
6678
|
0
|
|
|
|
|
|
push @S, 1 + Math::Prime::Util::urandomm($S[-1]) while $S[-1] > 1; |
|
6679
|
|
|
|
|
|
|
# first is n, last is 1 |
|
6680
|
0
|
|
|
|
|
|
@S = grep { is_prime($_) } @S[1 .. $#S-1]; |
|
|
0
|
|
|
|
|
|
|
|
6681
|
0
|
|
|
|
|
|
my $r = Math::Prime::Util::vecprod(@S); |
|
6682
|
0
|
0
|
0
|
|
|
|
return ($r, [@S]) if $r <= $n && (1+urandomm($n)) <= $r; |
|
6683
|
|
|
|
|
|
|
} |
|
6684
|
|
|
|
|
|
|
} |
|
6685
|
|
|
|
|
|
|
|
|
6686
|
|
|
|
|
|
|
|
|
6687
|
|
|
|
|
|
|
|
|
6688
|
|
|
|
|
|
|
1; |
|
6689
|
|
|
|
|
|
|
|
|
6690
|
|
|
|
|
|
|
__END__ |