| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
|
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
|
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
|
8
|
|
|
|
|
|
|
# version. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
|
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13
|
|
|
|
|
|
|
# for more details. |
|
14
|
|
|
|
|
|
|
# |
|
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
package Math::PlanePath::TheodorusSpiral; |
|
20
|
1
|
|
|
1
|
|
931
|
use 5.004; |
|
|
1
|
|
|
|
|
3
|
|
|
21
|
1
|
|
|
1
|
|
4
|
use strict; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
19
|
|
|
22
|
1
|
|
|
1
|
|
338
|
use Math::Libm 'hypot'; |
|
|
1
|
|
|
|
|
2654
|
|
|
|
1
|
|
|
|
|
70
|
|
|
23
|
|
|
|
|
|
|
#use List::Util 'max'; |
|
24
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
|
25
|
|
|
|
|
|
|
|
|
26
|
1
|
|
|
1
|
|
6
|
use vars '$VERSION', '@ISA'; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
51
|
|
|
27
|
|
|
|
|
|
|
$VERSION = 128; |
|
28
|
1
|
|
|
1
|
|
584
|
use Math::PlanePath; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
34
|
|
|
29
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
|
30
|
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
|
32
|
1
|
|
|
|
|
37
|
'is_infinite', |
|
33
|
1
|
|
|
1
|
|
6
|
'round_nearest'; |
|
|
1
|
|
|
|
|
1
|
|
|
34
|
|
|
|
|
|
|
|
|
35
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
|
36
|
|
|
|
|
|
|
#use Smart::Comments; |
|
37
|
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
|
|
39
|
1
|
|
|
1
|
|
4
|
use constant n_start => 0; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
39
|
|
|
40
|
1
|
|
|
1
|
|
5
|
use constant figure => 'circle'; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
33
|
|
|
41
|
1
|
|
|
1
|
|
5
|
use constant x_negative_at_n => 4; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
31
|
|
|
42
|
1
|
|
|
1
|
|
4
|
use constant y_negative_at_n => 7; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
30
|
|
|
43
|
1
|
|
|
1
|
|
4
|
use constant gcdxy_maximum => 1; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
32
|
|
|
44
|
1
|
|
|
1
|
|
4
|
use constant dx_minimum => -1; # supremum when straight |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
51
|
|
|
45
|
1
|
|
|
1
|
|
5
|
use constant dx_maximum => 1; # at N=0 |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
43
|
|
|
46
|
1
|
|
|
1
|
|
5
|
use constant dy_minimum => -1; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
35
|
|
|
47
|
1
|
|
|
1
|
|
5
|
use constant dy_maximum => 1; # at N=1 |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
45
|
|
|
48
|
1
|
|
|
1
|
|
5
|
use constant dsumxy_minimum => -sqrt(2); # supremum diagonal |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
45
|
|
|
49
|
1
|
|
|
1
|
|
5
|
use constant dsumxy_maximum => sqrt(2); |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
37
|
|
|
50
|
1
|
|
|
1
|
|
4
|
use constant ddiffxy_minimum => -sqrt(2); # supremum diagonal |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
42
|
|
|
51
|
1
|
|
|
1
|
|
5
|
use constant ddiffxy_maximum => sqrt(2); |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
33
|
|
|
52
|
1
|
|
|
1
|
|
4
|
use constant turn_any_right => 0; # left always |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
45
|
|
|
53
|
1
|
|
|
1
|
|
5
|
use constant turn_any_straight => 0; # left always |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
47
|
|
|
54
|
|
|
|
|
|
|
|
|
55
|
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
57
|
|
|
|
|
|
|
|
|
58
|
|
|
|
|
|
|
# This adding up of unit steps isn't very good. The last x,y,n is kept |
|
59
|
|
|
|
|
|
|
# anticipating successively higher n, not necessarily consecutive, plus past |
|
60
|
|
|
|
|
|
|
# x,y,n at _SAVE intervals for going backwards. |
|
61
|
|
|
|
|
|
|
# |
|
62
|
|
|
|
|
|
|
# The simplest formulas for the polar angle, possibly with the analytic |
|
63
|
|
|
|
|
|
|
# continuation version don't seem much better, but theta approaches |
|
64
|
|
|
|
|
|
|
# 2*sqrt(N) + const, or 2*sqrt(N) + 1/(6*sqrt(N+1)) + const + O(n^(3/2)), so |
|
65
|
|
|
|
|
|
|
# more terms of that might have tolerably rapid convergence. |
|
66
|
|
|
|
|
|
|
# |
|
67
|
|
|
|
|
|
|
# The arctan sums for the polar angle end up as the generalized Riemann |
|
68
|
|
|
|
|
|
|
# zeta, or the generalized minus the plain. Is there a good formula for |
|
69
|
|
|
|
|
|
|
# that which would converge quickly? |
|
70
|
|
|
|
|
|
|
|
|
71
|
1
|
|
|
1
|
|
6
|
use constant 1.02; # for leading underscore |
|
|
1
|
|
|
|
|
11
|
|
|
|
1
|
|
|
|
|
19
|
|
|
72
|
1
|
|
|
1
|
|
4
|
use constant _SAVE => 1000; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
498
|
|
|
73
|
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
my @save_n = (1); |
|
75
|
|
|
|
|
|
|
my @save_x = (1); |
|
76
|
|
|
|
|
|
|
my @save_y = (0); |
|
77
|
|
|
|
|
|
|
my $next_save = _SAVE; |
|
78
|
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
sub new { |
|
80
|
2
|
|
|
2
|
1
|
99
|
return shift->SUPER::new (i => 1, |
|
81
|
|
|
|
|
|
|
x => 1, |
|
82
|
|
|
|
|
|
|
y => 0, |
|
83
|
|
|
|
|
|
|
@_); |
|
84
|
|
|
|
|
|
|
} |
|
85
|
|
|
|
|
|
|
|
|
86
|
|
|
|
|
|
|
# r = sqrt(int) |
|
87
|
|
|
|
|
|
|
# (frac r)^2 |
|
88
|
|
|
|
|
|
|
# = hypot(r, frac)^2 frac at right angle to radial |
|
89
|
|
|
|
|
|
|
# = r^2 + $frac^2 |
|
90
|
|
|
|
|
|
|
# = sqrt(int)^2 + $frac^2 |
|
91
|
|
|
|
|
|
|
# = $int + $frac^2 |
|
92
|
|
|
|
|
|
|
# |
|
93
|
|
|
|
|
|
|
sub n_to_rsquared { |
|
94
|
10
|
|
|
10
|
1
|
165
|
my ($self, $n) = @_; |
|
95
|
10
|
50
|
|
|
|
20
|
if ($n < 0) { return undef; } |
|
|
0
|
|
|
|
|
0
|
|
|
96
|
10
|
|
|
|
|
13
|
my $int = int($n); |
|
97
|
10
|
|
|
|
|
14
|
$n -= $int; # fractional part |
|
98
|
10
|
|
|
|
|
37
|
return $n*$n + $int; |
|
99
|
|
|
|
|
|
|
} |
|
100
|
|
|
|
|
|
|
|
|
101
|
|
|
|
|
|
|
# r = sqrt(i) |
|
102
|
|
|
|
|
|
|
# x,y angle |
|
103
|
|
|
|
|
|
|
# r*x/hypot, r*y/hypot |
|
104
|
|
|
|
|
|
|
# |
|
105
|
|
|
|
|
|
|
# newx = x - y/r |
|
106
|
|
|
|
|
|
|
# newy = y + x/r |
|
107
|
|
|
|
|
|
|
# (x-y/r)^2 + (y+x/r)^2 |
|
108
|
|
|
|
|
|
|
# = x^2 - 2y/r + y^2/r^2 |
|
109
|
|
|
|
|
|
|
# + y^2 + 2x/r + x^2/r^2 |
|
110
|
|
|
|
|
|
|
|
|
111
|
|
|
|
|
|
|
sub n_to_xy { |
|
112
|
10
|
|
|
10
|
1
|
398
|
my ($self, $n) = @_; |
|
113
|
|
|
|
|
|
|
#### TheodorusSpiral n_to_xy(): $n |
|
114
|
|
|
|
|
|
|
|
|
115
|
10
|
50
|
|
|
|
22
|
if ($n < 0) { return; } |
|
|
0
|
|
|
|
|
0
|
|
|
116
|
10
|
50
|
|
|
|
20
|
if (is_infinite($n)) { return ($n,$n); } |
|
|
0
|
|
|
|
|
0
|
|
|
117
|
|
|
|
|
|
|
|
|
118
|
10
|
100
|
|
|
|
21
|
if ($n < 1) { |
|
119
|
2
|
|
|
|
|
5
|
return ($n, 0); |
|
120
|
|
|
|
|
|
|
} |
|
121
|
8
|
|
|
|
|
11
|
my $frac = $n; |
|
122
|
8
|
|
|
|
|
9
|
$n = int($n); |
|
123
|
8
|
|
|
|
|
10
|
$frac -= $n; |
|
124
|
|
|
|
|
|
|
|
|
125
|
8
|
|
|
|
|
16
|
my $i = $self->{'i'}; |
|
126
|
8
|
|
|
|
|
8
|
my $x = $self->{'x'}; |
|
127
|
8
|
|
|
|
|
8
|
my $y = $self->{'y'}; |
|
128
|
|
|
|
|
|
|
#### n_to_xy(): "$n from state $i $x,$y" |
|
129
|
|
|
|
|
|
|
|
|
130
|
8
|
100
|
|
|
|
15
|
if ($i > $n) { |
|
131
|
2
|
|
|
|
|
5
|
for (my $pos = $#save_n; $pos >= 0; $pos--) { |
|
132
|
5
|
100
|
|
|
|
11
|
if ($save_n[$pos] <= $n) { |
|
133
|
2
|
|
|
|
|
3
|
$i = $save_n[$pos]; |
|
134
|
2
|
|
|
|
|
2
|
$x = $save_x[$pos]; |
|
135
|
2
|
|
|
|
|
3
|
$y = $save_y[$pos]; |
|
136
|
2
|
|
|
|
|
17
|
last; |
|
137
|
|
|
|
|
|
|
} |
|
138
|
|
|
|
|
|
|
} |
|
139
|
|
|
|
|
|
|
### resume: "$i $x,$y" |
|
140
|
|
|
|
|
|
|
} |
|
141
|
|
|
|
|
|
|
|
|
142
|
8
|
|
|
|
|
17
|
while ($i < $n) { |
|
143
|
3112
|
|
|
|
|
3361
|
my $r = sqrt($i); |
|
144
|
3112
|
|
|
|
|
14761
|
($x,$y) = ($x - $y/$r, $y + $x/$r); |
|
145
|
6224
|
|
|
|
|
3161
|
$i++; |
|
146
|
|
|
|
|
|
|
|
|
147
|
6224
|
100
|
|
|
|
5208
|
if ($i == $next_save) { |
|
148
|
2
|
|
|
|
|
4
|
push @save_n, $i; |
|
149
|
2
|
|
|
|
|
4
|
push @save_x, $x; |
|
150
|
2
|
|
|
|
|
3
|
push @save_y, $y; |
|
151
|
2
|
|
|
|
|
4
|
$next_save += _SAVE; |
|
152
|
|
|
|
|
|
|
|
|
153
|
|
|
|
|
|
|
### save: $i |
|
154
|
|
|
|
|
|
|
### @save_n |
|
155
|
|
|
|
|
|
|
### @save_x |
|
156
|
|
|
|
|
|
|
### @save_y |
|
157
|
|
|
|
|
|
|
} |
|
158
|
|
|
|
|
|
|
} |
|
159
|
|
|
|
|
|
|
|
|
160
|
3120
|
|
|
|
|
10
|
$self->{'i'} = $i; |
|
161
|
3120
|
|
|
|
|
12
|
$self->{'x'} = $x; |
|
162
|
3120
|
|
|
|
|
9
|
$self->{'y'} = $y; |
|
163
|
|
|
|
|
|
|
|
|
164
|
3120
|
100
|
|
|
|
15
|
if ($frac) { |
|
165
|
3
|
|
|
|
|
4
|
my $r = sqrt($n); |
|
166
|
3
|
|
|
|
|
11
|
return ($x - $frac*$y/$r, |
|
167
|
|
|
|
|
|
|
$y + $frac*$x/$r); |
|
168
|
|
|
|
|
|
|
} else { |
|
169
|
|
|
|
|
|
|
#### integer return: "$i $x,$y" |
|
170
|
3117
|
|
|
|
|
16
|
return ($x,$y); |
|
171
|
|
|
|
|
|
|
} |
|
172
|
|
|
|
|
|
|
} |
|
173
|
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
sub xy_to_n { |
|
175
|
0
|
|
|
0
|
1
|
|
my ($self, $x, $y) = @_; |
|
176
|
|
|
|
|
|
|
### TheodorusSpiral xy_to_n(): "$x, $y" |
|
177
|
0
|
|
|
|
|
|
my $r = hypot ($x,$y); |
|
178
|
0
|
|
|
|
|
|
my $n_lo = int (max (0, $r - .51) ** 2); |
|
179
|
0
|
|
|
|
|
|
my $n_hi = int (($r + .51) ** 2); |
|
180
|
|
|
|
|
|
|
### $n_lo |
|
181
|
|
|
|
|
|
|
### $n_hi |
|
182
|
|
|
|
|
|
|
|
|
183
|
0
|
0
|
0
|
|
|
|
if (is_infinite($n_lo) || is_infinite($n_hi)) { |
|
184
|
|
|
|
|
|
|
### infinite range, r inf or too big ... |
|
185
|
0
|
|
|
|
|
|
return undef; |
|
186
|
|
|
|
|
|
|
} |
|
187
|
|
|
|
|
|
|
|
|
188
|
|
|
|
|
|
|
# for(;;) loop since $n_lo..$n_hi limited to IV range |
|
189
|
0
|
|
|
|
|
|
for (my $n = $n_lo; $n <= $n_hi; $n += 1) { |
|
190
|
0
|
|
|
|
|
|
my ($nx,$ny) = $self->n_to_xy($n); |
|
191
|
|
|
|
|
|
|
#### $n |
|
192
|
|
|
|
|
|
|
#### $nx |
|
193
|
|
|
|
|
|
|
#### $ny |
|
194
|
|
|
|
|
|
|
#### hypot: hypot ($x-$nx,$y-$ny) |
|
195
|
0
|
0
|
|
|
|
|
if (hypot ($x-$nx,$y-$ny) <= 0.5) { |
|
196
|
0
|
|
|
|
|
|
return $n; |
|
197
|
|
|
|
|
|
|
} |
|
198
|
|
|
|
|
|
|
} |
|
199
|
0
|
|
|
|
|
|
return undef; |
|
200
|
|
|
|
|
|
|
} |
|
201
|
|
|
|
|
|
|
|
|
202
|
1
|
|
|
1
|
|
414
|
use Math::PlanePath::SacksSpiral; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
44
|
|
|
203
|
|
|
|
|
|
|
# not exact |
|
204
|
|
|
|
|
|
|
*rect_to_n_range = \&Math::PlanePath::SacksSpiral::rect_to_n_range; |
|
205
|
|
|
|
|
|
|
|
|
206
|
|
|
|
|
|
|
1; |
|
207
|
|
|
|
|
|
|
__END__ |