| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
|
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
|
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
|
8
|
|
|
|
|
|
|
# version. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
|
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13
|
|
|
|
|
|
|
# for more details. |
|
14
|
|
|
|
|
|
|
# |
|
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
# math-image --path=CellularRule54 --all --scale=10 |
|
19
|
|
|
|
|
|
|
# math-image --path=CellularRule54 --all --output=numbers --size=132x50 |
|
20
|
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
package Math::PlanePath::CellularRule54; |
|
22
|
2
|
|
|
2
|
|
50
|
use 5.004; |
|
|
2
|
|
|
|
|
7
|
|
|
23
|
2
|
|
|
2
|
|
10
|
use strict; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
62
|
|
|
24
|
|
|
|
|
|
|
|
|
25
|
2
|
|
|
2
|
|
11
|
use vars '$VERSION', '@ISA'; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
132
|
|
|
26
|
|
|
|
|
|
|
$VERSION = 128; |
|
27
|
2
|
|
|
2
|
|
14
|
use Math::PlanePath; |
|
|
2
|
|
|
|
|
12
|
|
|
|
2
|
|
|
|
|
134
|
|
|
28
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
|
29
|
|
|
|
|
|
|
*_divrem = \&Math::PlanePath::_divrem; |
|
30
|
|
|
|
|
|
|
*_sqrtint = \&Math::PlanePath::_sqrtint; |
|
31
|
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
|
33
|
2
|
|
|
2
|
|
13
|
'round_nearest'; |
|
|
2
|
|
|
|
|
56
|
|
|
|
2
|
|
|
|
|
112
|
|
|
34
|
|
|
|
|
|
|
|
|
35
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
|
36
|
|
|
|
|
|
|
#use Smart::Comments; |
|
37
|
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
|
|
39
|
2
|
|
|
|
|
108
|
use constant parameter_info_array => |
|
40
|
|
|
|
|
|
|
[ Math::PlanePath::Base::Generic::parameter_info_nstart1(), |
|
41
|
2
|
|
|
2
|
|
14
|
]; |
|
|
2
|
|
|
|
|
3
|
|
|
42
|
|
|
|
|
|
|
|
|
43
|
2
|
|
|
2
|
|
11
|
use constant class_y_negative => 0; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
98
|
|
|
44
|
2
|
|
|
2
|
|
13
|
use constant n_frac_discontinuity => .5; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
174
|
|
|
45
|
|
|
|
|
|
|
sub x_negative_at_n { |
|
46
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
47
|
0
|
|
|
|
|
0
|
return $self->n_start + 1; |
|
48
|
|
|
|
|
|
|
} |
|
49
|
2
|
|
|
2
|
|
14
|
use constant sumxy_minimum => 0; # triangular X>=-Y so X+Y>=0 |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
142
|
|
|
50
|
2
|
|
|
2
|
|
12
|
use constant diffxy_maximum => 0; # triangular X<=Y so X-Y<=0 |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
134
|
|
|
51
|
2
|
|
|
2
|
|
13
|
use constant dx_maximum => 4; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
104
|
|
|
52
|
2
|
|
|
2
|
|
12
|
use constant dy_minimum => 0; |
|
|
2
|
|
|
|
|
5
|
|
|
|
2
|
|
|
|
|
119
|
|
|
53
|
2
|
|
|
2
|
|
13
|
use constant dy_maximum => 1; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
101
|
|
|
54
|
2
|
|
|
2
|
|
11
|
use constant absdx_minimum => 1; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
108
|
|
|
55
|
2
|
|
|
2
|
|
13
|
use constant dsumxy_maximum => 4; # straight East dX=+4 |
|
|
2
|
|
|
|
|
5
|
|
|
|
2
|
|
|
|
|
91
|
|
|
56
|
2
|
|
|
2
|
|
12
|
use constant ddiffxy_maximum => 4; # straight East dX=+4 |
|
|
2
|
|
|
|
|
5
|
|
|
|
2
|
|
|
|
|
109
|
|
|
57
|
2
|
|
|
2
|
|
12
|
use constant dir_maximum_dxdy => (-1,0); # supremum, West and dY=+1 up |
|
|
2
|
|
|
|
|
17
|
|
|
|
2
|
|
|
|
|
1498
|
|
|
58
|
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
61
|
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
sub new { |
|
63
|
1
|
|
|
1
|
1
|
9
|
my $self = shift->SUPER::new (@_); |
|
64
|
1
|
50
|
|
|
|
10
|
if (! defined $self->{'n_start'}) { |
|
65
|
0
|
|
|
|
|
0
|
$self->{'n_start'} = $self->default_n_start; |
|
66
|
|
|
|
|
|
|
} |
|
67
|
1
|
|
|
|
|
7
|
return $self; |
|
68
|
|
|
|
|
|
|
} |
|
69
|
|
|
|
|
|
|
# left add |
|
70
|
|
|
|
|
|
|
# even y=0 0 1 |
|
71
|
|
|
|
|
|
|
# 2 1 2 |
|
72
|
|
|
|
|
|
|
# 4 3 3 |
|
73
|
|
|
|
|
|
|
# 6 6 4 |
|
74
|
|
|
|
|
|
|
# left = y/2*(y/2+1)/2 |
|
75
|
|
|
|
|
|
|
# = y*(y+2)/8 of 4-cell figures |
|
76
|
|
|
|
|
|
|
# inverse y = -1 + sqrt(2 * $n + -1) |
|
77
|
|
|
|
|
|
|
# |
|
78
|
|
|
|
|
|
|
# left add |
|
79
|
|
|
|
|
|
|
# odd y=1 0 3 |
|
80
|
|
|
|
|
|
|
# 3 3 6 |
|
81
|
|
|
|
|
|
|
# 5 9 9 |
|
82
|
|
|
|
|
|
|
# 7 18 12 |
|
83
|
|
|
|
|
|
|
# left = 3*(y-1)/2*((y-1)/2+1)/2 |
|
84
|
|
|
|
|
|
|
# = 3*(y-1)*(y+1)/8 of 4-cell figures |
|
85
|
|
|
|
|
|
|
# |
|
86
|
|
|
|
|
|
|
# nbase y even = y*(y+2)/8 + 3*((y+1)-1)*((y+1)+1)/8 |
|
87
|
|
|
|
|
|
|
# = [ y*(y+2) + 3*y*(y+2) ] / 8 |
|
88
|
|
|
|
|
|
|
# = y*(y+2)/2 |
|
89
|
|
|
|
|
|
|
# y=0 nbase=0 |
|
90
|
|
|
|
|
|
|
# y=2 nbase=4 |
|
91
|
|
|
|
|
|
|
# y=4 nbase=12 |
|
92
|
|
|
|
|
|
|
# y=6 nbase=24 |
|
93
|
|
|
|
|
|
|
# |
|
94
|
|
|
|
|
|
|
# nbase y odd = 3*(y-1)*(y+1)/8 + (y+1)*(y+3)/8 |
|
95
|
|
|
|
|
|
|
# = (y+1) * (3y-3 + y+3)/8 |
|
96
|
|
|
|
|
|
|
# = (y+1)*4y/8 |
|
97
|
|
|
|
|
|
|
# = y*(y+1)/2 |
|
98
|
|
|
|
|
|
|
# y=1 nbase=1 |
|
99
|
|
|
|
|
|
|
# y=3 nbase=6 |
|
100
|
|
|
|
|
|
|
# y=5 nbase=15 |
|
101
|
|
|
|
|
|
|
# y=7 nbase=28 |
|
102
|
|
|
|
|
|
|
# inverse y = -1/2 + sqrt(2 * $n + -7/4) |
|
103
|
|
|
|
|
|
|
# = sqrt(2n-7/4) - 1/2 |
|
104
|
|
|
|
|
|
|
# = (2*sqrt(2n-7/4) - 1)/2 |
|
105
|
|
|
|
|
|
|
# = (sqrt(4n-7)-1)/2 |
|
106
|
|
|
|
|
|
|
# |
|
107
|
|
|
|
|
|
|
# dual |
|
108
|
|
|
|
|
|
|
# d = [ 0, 1, 2, 3 ] |
|
109
|
|
|
|
|
|
|
# N = [ 1, 5, 13, 25 ] |
|
110
|
|
|
|
|
|
|
# N = (2 d^2 + 2 d + 1) |
|
111
|
|
|
|
|
|
|
# = ((2*$d + 2)*$d + 1) |
|
112
|
|
|
|
|
|
|
# d = -1/2 + sqrt(1/2 * $n + -1/4) |
|
113
|
|
|
|
|
|
|
# = sqrt(1/2 * $n + -1/4) - 1/2 |
|
114
|
|
|
|
|
|
|
# = [ 2*sqrt(1/2 * $n + -1/4) - 1 ] / 2 |
|
115
|
|
|
|
|
|
|
# = [ sqrt(4/2 * $n + -4/4) - 1 ] / 2 |
|
116
|
|
|
|
|
|
|
# = [ sqrt(2*$n - 1) - 1 ] / 2 |
|
117
|
|
|
|
|
|
|
# |
|
118
|
|
|
|
|
|
|
|
|
119
|
|
|
|
|
|
|
sub n_to_xy { |
|
120
|
25
|
|
|
25
|
1
|
198
|
my ($self, $n) = @_; |
|
121
|
|
|
|
|
|
|
### CellularRule54 n_to_xy(): $n |
|
122
|
|
|
|
|
|
|
|
|
123
|
25
|
|
|
|
|
41
|
$n = $n - $self->{'n_start'}; # to N=0 basis |
|
124
|
25
|
|
|
|
|
33
|
my $frac; |
|
125
|
|
|
|
|
|
|
{ |
|
126
|
25
|
|
|
|
|
32
|
my $int = int($n); |
|
|
25
|
|
|
|
|
38
|
|
|
127
|
25
|
|
|
|
|
32
|
$frac = $n - $int; |
|
128
|
25
|
|
|
|
|
35
|
$n = $int; # BigFloat int() gives BigInt, use that |
|
129
|
25
|
50
|
|
|
|
51
|
if (2*$frac >= 1) { # $frac>=0.5 and BigInt friendly |
|
130
|
0
|
|
|
|
|
0
|
$frac -= 1; |
|
131
|
0
|
|
|
|
|
0
|
$n += 1; |
|
132
|
|
|
|
|
|
|
} |
|
133
|
|
|
|
|
|
|
# -0.5 <= $frac < 0.5 |
|
134
|
|
|
|
|
|
|
### assert: $frac >= -0.5 |
|
135
|
|
|
|
|
|
|
### assert: $frac < 0.5 |
|
136
|
|
|
|
|
|
|
} |
|
137
|
|
|
|
|
|
|
|
|
138
|
25
|
100
|
|
|
|
44
|
if ($n < 0) { |
|
139
|
3
|
|
|
|
|
17
|
return; |
|
140
|
|
|
|
|
|
|
} |
|
141
|
|
|
|
|
|
|
|
|
142
|
|
|
|
|
|
|
# d is the two-row group number, d=2*y, where n belongs |
|
143
|
|
|
|
|
|
|
# start of the two-row group is nbase = 2 d^2 + 2 d starting from N=0 |
|
144
|
|
|
|
|
|
|
# |
|
145
|
22
|
|
|
|
|
52
|
my $d = int((_sqrtint(2*$n+1) - 1) / 2); |
|
146
|
22
|
|
|
|
|
39
|
$n -= (2*$d + 2)*$d; # remainder within two-row |
|
147
|
|
|
|
|
|
|
### $d |
|
148
|
|
|
|
|
|
|
### remainder: $n |
|
149
|
22
|
100
|
|
|
|
40
|
if ($n <= $d) { |
|
150
|
|
|
|
|
|
|
# d+1 many points in the Y=0,2,4,6 etc even row, spaced 4*n apart |
|
151
|
7
|
|
|
|
|
13
|
$d *= 2; # y=2*d |
|
152
|
7
|
|
|
|
|
18
|
return ($frac + 4*$n - $d, |
|
153
|
|
|
|
|
|
|
$d); |
|
154
|
|
|
|
|
|
|
} else { |
|
155
|
|
|
|
|
|
|
# 3*d many points in the Y=1,3,5,7 etc odd row, using 3 in 4 cells |
|
156
|
15
|
|
|
|
|
25
|
$n -= $d+1; # remainder 0 upwards into odd row |
|
157
|
15
|
|
|
|
|
21
|
$d = 2*$d+1; # y=2*d+1 |
|
158
|
15
|
|
|
|
|
33
|
my ($q) = _divrem($n,3); |
|
159
|
15
|
|
|
|
|
38
|
return ($frac + $n + $q - $d, |
|
160
|
|
|
|
|
|
|
$d); |
|
161
|
|
|
|
|
|
|
} |
|
162
|
|
|
|
|
|
|
} |
|
163
|
|
|
|
|
|
|
|
|
164
|
|
|
|
|
|
|
sub xy_to_n { |
|
165
|
496
|
|
|
496
|
1
|
2321
|
my ($self, $x, $y) = @_; |
|
166
|
496
|
|
|
|
|
879
|
$x = round_nearest ($x); |
|
167
|
496
|
|
|
|
|
912
|
$y = round_nearest ($y); |
|
168
|
|
|
|
|
|
|
### CellularRule54 xy_to_n(): "$x,$y" |
|
169
|
|
|
|
|
|
|
|
|
170
|
496
|
100
|
66
|
|
|
1878
|
if ($y < 0 |
|
|
|
|
100
|
|
|
|
|
|
171
|
|
|
|
|
|
|
|| $x < -$y |
|
172
|
|
|
|
|
|
|
|| $x > $y) { |
|
173
|
240
|
|
|
|
|
471
|
return undef; |
|
174
|
|
|
|
|
|
|
} |
|
175
|
256
|
|
|
|
|
364
|
$x += $y; |
|
176
|
|
|
|
|
|
|
### x centred: $x |
|
177
|
256
|
100
|
|
|
|
438
|
if ($y % 2) { |
|
178
|
|
|
|
|
|
|
### odd row, 3 in 4 ... |
|
179
|
136
|
100
|
|
|
|
244
|
if (($x % 4) == 3) { |
|
180
|
28
|
|
|
|
|
56
|
return undef; |
|
181
|
|
|
|
|
|
|
} |
|
182
|
108
|
|
|
|
|
315
|
return $x - int($x/4) + $y*($y+1)/2 + $self->{'n_start'}; |
|
183
|
|
|
|
|
|
|
} else { |
|
184
|
|
|
|
|
|
|
## even row, sparse ... |
|
185
|
120
|
100
|
|
|
|
218
|
if ($x % 4) { |
|
186
|
84
|
|
|
|
|
160
|
return undef; |
|
187
|
|
|
|
|
|
|
} |
|
188
|
36
|
|
|
|
|
103
|
return $x/4 + $y*($y+2)/2 + $self->{'n_start'}; |
|
189
|
|
|
|
|
|
|
} |
|
190
|
|
|
|
|
|
|
} |
|
191
|
|
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
# not exact |
|
193
|
|
|
|
|
|
|
sub rect_to_n_range { |
|
194
|
0
|
|
|
0
|
1
|
0
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
|
195
|
|
|
|
|
|
|
### CellularRule54 rect_to_n_range(): "$x1,$y1, $x2,$y2" |
|
196
|
|
|
|
|
|
|
|
|
197
|
0
|
0
|
|
|
|
0
|
($x1,$y1, $x2,$y2) = _rect_for_V ($x1,$y1, $x2,$y2) |
|
198
|
|
|
|
|
|
|
or return (1,0); # rect outside pyramid |
|
199
|
|
|
|
|
|
|
|
|
200
|
0
|
|
|
|
|
0
|
my $zero = ($x1 * 0 * $y1 * $x2 * $y2); # inherit bignum |
|
201
|
|
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
# nbase y even y*(y+2)/2 |
|
203
|
|
|
|
|
|
|
# nbase y odd y*(y+1)/2 |
|
204
|
|
|
|
|
|
|
# y even end (y+1)*(y+2)/2 |
|
205
|
|
|
|
|
|
|
# y odd end (y+1)*(y+3)/2 |
|
206
|
|
|
|
|
|
|
|
|
207
|
0
|
|
|
|
|
0
|
$y2 += 1; |
|
208
|
|
|
|
|
|
|
return (# even/odd left end |
|
209
|
|
|
|
|
|
|
$zero + $y1*($y1 + 2-($y1%2))/2 + $self->{'n_start'}, |
|
210
|
|
|
|
|
|
|
|
|
211
|
|
|
|
|
|
|
# even/odd right end |
|
212
|
0
|
|
|
|
|
0
|
$zero + $y2*($y2 + 2-($y2%2))/2 + $self->{'n_start'} - 1); |
|
213
|
|
|
|
|
|
|
} |
|
214
|
|
|
|
|
|
|
|
|
215
|
|
|
|
|
|
|
# Return ($x1,$y1, $x2,$y2) which is the rectangle part chopped to the top |
|
216
|
|
|
|
|
|
|
# row entirely within the pyramid V and the bottom row partly within. |
|
217
|
|
|
|
|
|
|
# |
|
218
|
|
|
|
|
|
|
sub _rect_for_V { |
|
219
|
222
|
|
|
222
|
|
442
|
my ($x1,$y1, $x2,$y2) = @_; |
|
220
|
|
|
|
|
|
|
### _rect_for_V(): "$x1,$y1, $x2,$y2" |
|
221
|
|
|
|
|
|
|
|
|
222
|
222
|
|
|
|
|
539
|
$y1 = round_nearest ($y1); |
|
223
|
222
|
|
|
|
|
424
|
$y2 = round_nearest ($y2); |
|
224
|
222
|
100
|
|
|
|
474
|
if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); } # swap to y1<=y2 |
|
|
50
|
|
|
|
|
102
|
|
|
225
|
|
|
|
|
|
|
|
|
226
|
222
|
50
|
|
|
|
436
|
unless ($y2 >= 0) { |
|
227
|
|
|
|
|
|
|
### rect all negative, no N ... |
|
228
|
0
|
|
|
|
|
0
|
return; |
|
229
|
|
|
|
|
|
|
} |
|
230
|
222
|
50
|
|
|
|
402
|
unless ($y1 >= 0) { |
|
231
|
|
|
|
|
|
|
# increase y1 to zero, including negative infinity discarded |
|
232
|
0
|
|
|
|
|
0
|
$y1 = 0; |
|
233
|
|
|
|
|
|
|
} |
|
234
|
|
|
|
|
|
|
|
|
235
|
222
|
|
|
|
|
419
|
$x1 = round_nearest ($x1); |
|
236
|
222
|
|
|
|
|
448
|
$x2 = round_nearest ($x2); |
|
237
|
222
|
100
|
|
|
|
425
|
if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1); } # swap to x1<=x2 |
|
|
111
|
|
|
|
|
201
|
|
|
238
|
222
|
|
|
|
|
353
|
my $neg_y2 = -$y2; |
|
239
|
|
|
|
|
|
|
|
|
240
|
|
|
|
|
|
|
# \ / |
|
241
|
|
|
|
|
|
|
# y2 \ / +----- |
|
242
|
|
|
|
|
|
|
# \ / | |
|
243
|
|
|
|
|
|
|
# \ / |
|
244
|
|
|
|
|
|
|
# \/ x1 |
|
245
|
|
|
|
|
|
|
# |
|
246
|
|
|
|
|
|
|
# \ / |
|
247
|
|
|
|
|
|
|
# ----+ \ / y2 |
|
248
|
|
|
|
|
|
|
# | \ / |
|
249
|
|
|
|
|
|
|
# \ / |
|
250
|
|
|
|
|
|
|
# x2 \/ |
|
251
|
|
|
|
|
|
|
# |
|
252
|
222
|
50
|
33
|
|
|
717
|
if ($x1 > $y2 # off to the right |
|
253
|
|
|
|
|
|
|
|| $x2 < $neg_y2) { # off to the left |
|
254
|
|
|
|
|
|
|
### rect all off to the left or right, no N |
|
255
|
0
|
|
|
|
|
0
|
return; |
|
256
|
|
|
|
|
|
|
} |
|
257
|
|
|
|
|
|
|
|
|
258
|
|
|
|
|
|
|
# \ / x2 |
|
259
|
|
|
|
|
|
|
# \ +------+ y2 |
|
260
|
|
|
|
|
|
|
# \ | / | |
|
261
|
|
|
|
|
|
|
# \ +------+ |
|
262
|
|
|
|
|
|
|
# \/ |
|
263
|
|
|
|
|
|
|
# |
|
264
|
222
|
50
|
|
|
|
389
|
if ($x2 > $y2) { |
|
265
|
|
|
|
|
|
|
### top-right beyond pyramid, reduce ... |
|
266
|
0
|
|
|
|
|
0
|
$x2 = $y2; |
|
267
|
|
|
|
|
|
|
} |
|
268
|
|
|
|
|
|
|
|
|
269
|
|
|
|
|
|
|
# |
|
270
|
|
|
|
|
|
|
# x1 \ / |
|
271
|
|
|
|
|
|
|
# y2 +--------+ / y2 |
|
272
|
|
|
|
|
|
|
# | \ | / |
|
273
|
|
|
|
|
|
|
# +--------+/ |
|
274
|
|
|
|
|
|
|
# \/ |
|
275
|
|
|
|
|
|
|
# |
|
276
|
222
|
50
|
|
|
|
424
|
if ($x1 < $neg_y2) { |
|
277
|
|
|
|
|
|
|
### top-left beyond pyramid, increase ... |
|
278
|
0
|
|
|
|
|
0
|
$x1 = $neg_y2; |
|
279
|
|
|
|
|
|
|
} |
|
280
|
|
|
|
|
|
|
|
|
281
|
|
|
|
|
|
|
# \ | / |
|
282
|
|
|
|
|
|
|
# \ |/ |
|
283
|
|
|
|
|
|
|
# \ /| | |
|
284
|
|
|
|
|
|
|
# y1 \ / +-------+ |
|
285
|
|
|
|
|
|
|
# \/ x1 |
|
286
|
|
|
|
|
|
|
# |
|
287
|
|
|
|
|
|
|
# \| / |
|
288
|
|
|
|
|
|
|
# \ / |
|
289
|
|
|
|
|
|
|
# |\ / |
|
290
|
|
|
|
|
|
|
# -------+ \ / y1 |
|
291
|
|
|
|
|
|
|
# x2 \/ |
|
292
|
|
|
|
|
|
|
# |
|
293
|
|
|
|
|
|
|
# in both of the following y1=x2 or y1=-x2 leaves y1<=y2 because have |
|
294
|
|
|
|
|
|
|
# already established some part of the rectangle is in the V shape |
|
295
|
|
|
|
|
|
|
# |
|
296
|
222
|
50
|
|
|
|
2403
|
if ($x1 > $y1) { |
|
|
|
50
|
|
|
|
|
|
|
297
|
|
|
|
|
|
|
### x1 off to the right, so y1 row is outside, increase y1 ... |
|
298
|
0
|
|
|
|
|
0
|
$y1 = $x1; |
|
299
|
|
|
|
|
|
|
|
|
300
|
|
|
|
|
|
|
} elsif ((my $neg_x2 = -$x2) > $y1) { |
|
301
|
|
|
|
|
|
|
### x2 off to the left, so y1 row is outside, increase y1 ... |
|
302
|
0
|
|
|
|
|
0
|
$y1 = $neg_x2; |
|
303
|
|
|
|
|
|
|
} |
|
304
|
|
|
|
|
|
|
|
|
305
|
|
|
|
|
|
|
# values ordered |
|
306
|
|
|
|
|
|
|
### assert: $x1 <= $x2 |
|
307
|
|
|
|
|
|
|
### assert: $y1 <= $y2 |
|
308
|
|
|
|
|
|
|
|
|
309
|
|
|
|
|
|
|
# top row x1..x2 entirely within pyramid |
|
310
|
|
|
|
|
|
|
### assert: $x1 >= -$y2 |
|
311
|
|
|
|
|
|
|
### assert: $x2 <= $y2 |
|
312
|
|
|
|
|
|
|
|
|
313
|
|
|
|
|
|
|
# bottom row x1..x2 some part within pyramid |
|
314
|
|
|
|
|
|
|
### assert: $x1 <= $y1 |
|
315
|
|
|
|
|
|
|
### assert: $x2 >= -$y1 |
|
316
|
|
|
|
|
|
|
|
|
317
|
222
|
|
|
|
|
838
|
return ($x1,$y1, $x2,$y2); |
|
318
|
|
|
|
|
|
|
} |
|
319
|
|
|
|
|
|
|
|
|
320
|
|
|
|
|
|
|
1; |
|
321
|
|
|
|
|
|
|
__END__ |