| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Math::Business::BlackScholes::Binaries::Greeks::Vanna; |
|
2
|
1
|
|
|
1
|
|
334
|
use strict; use warnings; |
|
|
1
|
|
|
1
|
|
1
|
|
|
|
1
|
|
|
|
|
25
|
|
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
28
|
|
|
3
|
|
|
|
|
|
|
|
|
4
|
|
|
|
|
|
|
our $VERSION = '0.04'; |
|
5
|
|
|
|
|
|
|
|
|
6
|
1
|
|
|
1
|
|
3
|
use List::Util qw( max ); |
|
|
1
|
|
|
|
|
5
|
|
|
|
1
|
|
|
|
|
36
|
|
|
7
|
1
|
|
|
1
|
|
31
|
use Math::CDF qw( pnorm ); |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
31
|
|
|
8
|
1
|
|
|
1
|
|
3
|
use Math::Trig; |
|
|
1
|
|
|
|
|
0
|
|
|
|
1
|
|
|
|
|
119
|
|
|
9
|
1
|
|
|
1
|
|
4
|
use Math::Business::BlackScholes::Binaries; |
|
|
1
|
|
|
|
|
0
|
|
|
|
1
|
|
|
|
|
12
|
|
|
10
|
1
|
|
|
1
|
|
3
|
use Math::Business::BlackScholes::Binaries::Greeks::Delta; |
|
|
1
|
|
|
|
|
19
|
|
|
|
1
|
|
|
|
|
14
|
|
|
11
|
1
|
|
|
1
|
|
254
|
use Math::Business::BlackScholes::Binaries::Greeks::Vega; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
24
|
|
|
12
|
1
|
|
|
1
|
|
5
|
use Math::Business::BlackScholes::Binaries::Greeks::Math qw( dgauss ); |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
1281
|
|
|
13
|
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
=head1 NAME |
|
15
|
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
Math::Business::BlackScholes::Binaries::Greeks::Vanna |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
=head1 DESCRIPTION |
|
19
|
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
Gets the Vanna for different options, Vanilla and Foreign for all our bet types |
|
21
|
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
=head1 SUBROUTINES |
|
23
|
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
See L |
|
25
|
|
|
|
|
|
|
|
|
26
|
|
|
|
|
|
|
=cut |
|
27
|
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
sub vanilla_call { |
|
29
|
12
|
|
|
12
|
0
|
2211
|
my ( $S, $K, $t, $r_q, $mu, $vol ) = @_; |
|
30
|
|
|
|
|
|
|
|
|
31
|
12
|
|
|
|
|
36
|
my $d1 = |
|
32
|
|
|
|
|
|
|
( log( $S / $K ) + ( $mu + $vol * $vol / 2.0 ) * $t ) / |
|
33
|
|
|
|
|
|
|
( $vol * sqrt($t) ); |
|
34
|
12
|
|
|
|
|
14
|
my $d2 = $d1 - ( $vol * sqrt($t) ); |
|
35
|
|
|
|
|
|
|
|
|
36
|
12
|
|
|
|
|
25
|
my $vega = |
|
37
|
|
|
|
|
|
|
Math::Business::BlackScholes::Binaries::Greeks::Vega::vanilla_call( $S, |
|
38
|
|
|
|
|
|
|
$K, $t, $r_q, $mu, $vol ); |
|
39
|
12
|
|
|
|
|
16
|
my $vanna = -$vega * $d2 / ( $S * $vol * sqrt($t) ); |
|
40
|
12
|
|
|
|
|
16
|
return $vanna; |
|
41
|
|
|
|
|
|
|
} |
|
42
|
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
sub vanilla_put { |
|
44
|
6
|
|
|
6
|
0
|
1918
|
my ( $S, $K, $t, $r_q, $mu, $vol ) = @_; |
|
45
|
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
# Same as vanna of vanilla call (because vega_vanilla_call = vega_vanilla_put) |
|
47
|
6
|
|
|
|
|
9
|
return vanilla_call( $S, $K, $t, $r_q, $mu, $vol ); |
|
48
|
|
|
|
|
|
|
} |
|
49
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
sub call { |
|
51
|
32
|
|
|
32
|
0
|
2102
|
my ( $S, $U, $t, $r_q, $mu, $vol ) = @_; |
|
52
|
|
|
|
|
|
|
|
|
53
|
32
|
|
|
|
|
115
|
my $d1 = |
|
54
|
|
|
|
|
|
|
( log( $S / $U ) + ( $mu + $vol * $vol / 2.0 ) * $t ) / |
|
55
|
|
|
|
|
|
|
( $vol * sqrt($t) ); |
|
56
|
32
|
|
|
|
|
45
|
my $d2 = $d1 - ( $vol * sqrt($t) ); |
|
57
|
|
|
|
|
|
|
|
|
58
|
32
|
|
|
|
|
66
|
my $vanna = |
|
59
|
|
|
|
|
|
|
-dgauss($d2) * |
|
60
|
|
|
|
|
|
|
exp( -$r_q * $t ) * |
|
61
|
|
|
|
|
|
|
( 1 - $d1 * $d2 ) / |
|
62
|
|
|
|
|
|
|
( $S * $vol * $vol * sqrt($t) ); |
|
63
|
32
|
|
|
|
|
68
|
return $vanna; |
|
64
|
|
|
|
|
|
|
} |
|
65
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
sub put { |
|
67
|
16
|
|
|
16
|
0
|
2035
|
my ( $S, $D, $t, $r_q, $mu, $vol ) = @_; |
|
68
|
|
|
|
|
|
|
|
|
69
|
16
|
|
|
|
|
29
|
return -1 * call( $S, $D, $t, $r_q, $mu, $vol ); |
|
70
|
|
|
|
|
|
|
} |
|
71
|
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
sub expirymiss { |
|
73
|
10
|
|
|
10
|
0
|
2177
|
my ( $S, $U, $D, $t, $r_q, $mu, $vol ) = @_; |
|
74
|
|
|
|
|
|
|
|
|
75
|
10
|
|
|
|
|
26
|
return call( $S, $U, $t, $r_q, $mu, $vol ) + |
|
76
|
|
|
|
|
|
|
put( $S, $D, $t, $r_q, $mu, $vol ); |
|
77
|
|
|
|
|
|
|
} |
|
78
|
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
sub expiryrange { |
|
80
|
5
|
|
|
5
|
0
|
1569
|
my ( $S, $U, $D, $t, $r_q, $mu, $vol ) = @_; |
|
81
|
|
|
|
|
|
|
|
|
82
|
5
|
|
|
|
|
11
|
return -1 * expirymiss( $S, $U, $D, $t, $r_q, $mu, $vol ); |
|
83
|
|
|
|
|
|
|
} |
|
84
|
|
|
|
|
|
|
|
|
85
|
|
|
|
|
|
|
sub onetouch { |
|
86
|
13
|
|
|
13
|
0
|
2315
|
my ( $S, $U, $t, $r_q, $mu, $vol, $w ) = @_; |
|
87
|
|
|
|
|
|
|
|
|
88
|
13
|
100
|
|
|
|
28
|
if ( not defined $w ) { |
|
89
|
7
|
|
|
|
|
9
|
$w = 0; |
|
90
|
|
|
|
|
|
|
} |
|
91
|
|
|
|
|
|
|
|
|
92
|
13
|
|
|
|
|
22
|
my $sqrt_t = sqrt($t); |
|
93
|
|
|
|
|
|
|
|
|
94
|
13
|
|
|
|
|
29
|
my $theta = ( ($mu) / $vol ) + ( 0.5 * $vol ); |
|
95
|
|
|
|
|
|
|
|
|
96
|
13
|
|
|
|
|
20
|
my $theta_ = ( ($mu) / $vol ) - ( 0.5 * $vol ); |
|
97
|
|
|
|
|
|
|
|
|
98
|
|
|
|
|
|
|
# Floor v_ squared at just above zero in case negative interest rates push it negative. |
|
99
|
13
|
|
|
|
|
43
|
my $v_ = sqrt( max( $Math::Business::BlackScholes::Binaries::SMALL_VALUE_MU, ( $theta_ * $theta_ ) + ( 2 * ( 1 - $w ) * $r_q ) ) ); |
|
100
|
|
|
|
|
|
|
|
|
101
|
13
|
|
|
|
|
34
|
my $e = ( log( $S / $U ) - ( $vol * $v_ * $t ) ) / ( $vol * $sqrt_t ); |
|
102
|
13
|
|
|
|
|
31
|
my $e_ = ( -log( $S / $U ) - ( $vol * $v_ * $t ) ) / ( $vol * $sqrt_t ); |
|
103
|
|
|
|
|
|
|
|
|
104
|
13
|
100
|
|
|
|
27
|
my $eta = ( $S > $U ) ? 1 : -1; |
|
105
|
|
|
|
|
|
|
|
|
106
|
13
|
|
|
|
|
31
|
my $pa_e = |
|
107
|
|
|
|
|
|
|
( log( $U / $S ) / ( $vol * $vol * $sqrt_t ) ) + |
|
108
|
|
|
|
|
|
|
( ( $theta_ * $theta ) / ( $vol * $v_ ) * $sqrt_t ); |
|
109
|
13
|
|
|
|
|
32
|
my $pa_e_ = |
|
110
|
|
|
|
|
|
|
( -log( $U / $S ) / ( $vol * $vol * $sqrt_t ) ) + |
|
111
|
|
|
|
|
|
|
( ( $theta_ * $theta ) / ( $vol * $v_ ) * $sqrt_t ); |
|
112
|
|
|
|
|
|
|
|
|
113
|
13
|
|
|
|
|
23
|
my $A = |
|
114
|
|
|
|
|
|
|
-( $theta + $theta_ + ( $theta_ * $theta / $v_ ) + $v_ ) / |
|
115
|
|
|
|
|
|
|
( $vol * $vol ); |
|
116
|
13
|
|
|
|
|
21
|
my $A_ = |
|
117
|
|
|
|
|
|
|
-( $theta + $theta_ - ( $theta_ * $theta / $v_ ) - $v_ ) / |
|
118
|
|
|
|
|
|
|
( $vol * $vol ); |
|
119
|
|
|
|
|
|
|
|
|
120
|
13
|
|
|
|
|
17
|
my $d_ = ( log( $U / $S ) - $vol * $theta_ * $t ) / ( $vol * $sqrt_t ); |
|
121
|
|
|
|
|
|
|
|
|
122
|
13
|
|
|
|
|
14
|
my ( $part1, $part2, $subpart_1_1, $subpart_1_2, $subpart_2_1, |
|
123
|
|
|
|
|
|
|
$subpart_2_2 ); |
|
124
|
|
|
|
|
|
|
|
|
125
|
13
|
|
|
|
|
58
|
$subpart_1_1 = |
|
126
|
|
|
|
|
|
|
pnorm( -$eta * $e ) * $A * ( -$vol - ( $theta_ + $v_ ) * log( $U / $S ) ); |
|
127
|
13
|
|
|
|
|
31
|
$subpart_1_2 = |
|
128
|
|
|
|
|
|
|
$eta * |
|
129
|
|
|
|
|
|
|
dgauss($e) / |
|
130
|
|
|
|
|
|
|
$sqrt_t * |
|
131
|
|
|
|
|
|
|
( $d_ * $pa_e + $A * log( $U / $S ) - 1.0 / $vol ); |
|
132
|
|
|
|
|
|
|
|
|
133
|
13
|
|
|
|
|
32
|
$subpart_2_1 = |
|
134
|
|
|
|
|
|
|
pnorm( $eta * $e_ ) * |
|
135
|
|
|
|
|
|
|
$A_ * |
|
136
|
|
|
|
|
|
|
( -$vol - ( $theta_ - $v_ ) * log( $U / $S ) ); |
|
137
|
13
|
|
|
|
|
18
|
$subpart_2_2 = |
|
138
|
|
|
|
|
|
|
$eta * |
|
139
|
|
|
|
|
|
|
dgauss($e_) / |
|
140
|
|
|
|
|
|
|
$sqrt_t * |
|
141
|
|
|
|
|
|
|
( $d_ * $pa_e_ - $A_ * log( $U / $S ) + 1.0 / $vol ); |
|
142
|
|
|
|
|
|
|
|
|
143
|
13
|
|
|
|
|
23
|
$part1 = |
|
144
|
|
|
|
|
|
|
( ( $U / $S )**( ( $theta_ + $v_ ) / $vol ) ) * |
|
145
|
|
|
|
|
|
|
( $subpart_1_1 - $subpart_1_2 ); |
|
146
|
13
|
|
|
|
|
20
|
$part2 = |
|
147
|
|
|
|
|
|
|
( ( $U / $S )**( ( $theta_ - $v_ ) / $vol ) ) * |
|
148
|
|
|
|
|
|
|
( $subpart_2_1 + $subpart_2_2 ); |
|
149
|
|
|
|
|
|
|
|
|
150
|
13
|
|
|
|
|
33
|
return ( $part1 + $part2 ) * exp( -$w * $r_q * $t ) / ( $vol * $S ); |
|
151
|
|
|
|
|
|
|
} |
|
152
|
|
|
|
|
|
|
|
|
153
|
|
|
|
|
|
|
sub notouch { |
|
154
|
6
|
|
|
6
|
0
|
1910
|
my ( $S, $U, $t, $r_q, $mu, $vol, $w ) = @_; |
|
155
|
|
|
|
|
|
|
|
|
156
|
|
|
|
|
|
|
# No touch bet always pay out at end |
|
157
|
6
|
|
|
|
|
6
|
$w = 1; |
|
158
|
|
|
|
|
|
|
|
|
159
|
|
|
|
|
|
|
# Since the value VALUE_NOTOUCH = D(T) - VALUE_ONETOUCH, where D(T) |
|
160
|
|
|
|
|
|
|
# is the discount from time T, any derivative (other than with |
|
161
|
|
|
|
|
|
|
# respect to time or discount rate) of the value of notouch |
|
162
|
|
|
|
|
|
|
# is just the negative of the onetouch derivative. |
|
163
|
6
|
|
|
|
|
14
|
return ( -1 * onetouch( $S, $U, $t, $r_q, $mu, $vol, $w ) ); |
|
164
|
|
|
|
|
|
|
} |
|
165
|
|
|
|
|
|
|
|
|
166
|
|
|
|
|
|
|
sub upordown { |
|
167
|
13
|
|
|
13
|
0
|
2791
|
my ( $S, $U, $D, $t, $r_q, $mu, $vol, $w ) = @_; |
|
168
|
|
|
|
|
|
|
|
|
169
|
|
|
|
|
|
|
# $w = 0, paid at hit |
|
170
|
|
|
|
|
|
|
# $w = 1, paid at end |
|
171
|
13
|
100
|
|
|
|
38
|
if ( not defined $w ) { $w = 0; } |
|
|
7
|
|
|
|
|
43
|
|
|
172
|
|
|
|
|
|
|
|
|
173
|
13
|
|
|
|
|
53
|
return ot_up_ko_down_pelsser_1997( $S, $U, $D, $t, $r_q, $mu, $vol, $w ) + |
|
174
|
|
|
|
|
|
|
ot_down_ko_up_pelsser_1997( $S, $U, $D, $t, $r_q, $mu, $vol, $w ); |
|
175
|
|
|
|
|
|
|
} |
|
176
|
|
|
|
|
|
|
|
|
177
|
|
|
|
|
|
|
sub xw_common_function_pelsser_1997 { |
|
178
|
26
|
|
|
26
|
0
|
60
|
my ( $S, $U, $D, $t, $r_q, $mu, $vol, $w, $eta ) = @_; |
|
179
|
|
|
|
|
|
|
|
|
180
|
26
|
|
|
|
|
36
|
my $pi = Math::Trig::pi; |
|
181
|
|
|
|
|
|
|
|
|
182
|
26
|
|
|
|
|
49
|
my $h = log( $U / $D ); |
|
183
|
26
|
|
|
|
|
34
|
my $x = log( $S / $D ); |
|
184
|
|
|
|
|
|
|
|
|
185
|
|
|
|
|
|
|
# $eta = 1, onetouch up knockout down |
|
186
|
|
|
|
|
|
|
# $eta = 0, onetouch down knockout up |
|
187
|
|
|
|
|
|
|
# This variable used to check stability |
|
188
|
26
|
50
|
|
|
|
54
|
if ( not defined $eta ) { |
|
189
|
0
|
|
|
|
|
0
|
die |
|
190
|
|
|
|
|
|
|
"$0: (xw_common_function_pelsser_1997) Wrong usage of this function for S=$S, U=$U, D=$D, t=$t, r_q=$r_q, mu=$mu, vol=$vol, w=$w. eta not defined."; |
|
191
|
|
|
|
|
|
|
} |
|
192
|
26
|
100
|
|
|
|
51
|
if ( $eta == 0 ) { $x = $h - $x; } |
|
|
13
|
|
|
|
|
22
|
|
|
193
|
|
|
|
|
|
|
|
|
194
|
26
|
|
|
|
|
41
|
my $r_dash = $r_q * ( 1 - $w ); |
|
195
|
26
|
|
|
|
|
38
|
my $mu_new = $mu - ( 0.5 * $vol * $vol ); |
|
196
|
26
|
|
|
|
|
80
|
my $mu_dash = sqrt( max( $Math::Business::BlackScholes::Binaries::SMALL_VALUE_MU, ( $mu_new * $mu_new ) + ( 2 * $vol * $vol * $r_dash ) ) ); |
|
197
|
|
|
|
|
|
|
|
|
198
|
26
|
|
|
|
|
29
|
my $omega = ( $vol * $vol ); |
|
199
|
|
|
|
|
|
|
|
|
200
|
26
|
|
|
|
|
29
|
my $series_part = 0; |
|
201
|
26
|
|
|
|
|
26
|
my $hyp_part = 0; |
|
202
|
|
|
|
|
|
|
|
|
203
|
26
|
|
|
|
|
73
|
my $stability_constant = |
|
204
|
|
|
|
|
|
|
Math::Business::BlackScholes::Binaries::get_stability_constant_pelsser_1997( |
|
205
|
|
|
|
|
|
|
$S, $U, $D, $t, $r_q, $mu, $vol, $w, $eta, 1 ); |
|
206
|
|
|
|
|
|
|
|
|
207
|
26
|
|
|
|
|
345
|
my $iterations_required = |
|
208
|
|
|
|
|
|
|
Math::Business::BlackScholes::Binaries::get_min_iterations_pelsser_1997( |
|
209
|
|
|
|
|
|
|
$S, $U, $D, $t, $r_q, $mu, $vol, $w ); |
|
210
|
|
|
|
|
|
|
|
|
211
|
26
|
|
|
|
|
1037
|
for ( my $k = 1 ; $k < $iterations_required ; $k++ ) { |
|
212
|
570
|
|
|
|
|
801
|
my $lambda_k_dash = ( |
|
213
|
|
|
|
|
|
|
0.5 * ( |
|
214
|
|
|
|
|
|
|
( $mu_dash * $mu_dash ) / ( $vol * $vol ) + |
|
215
|
|
|
|
|
|
|
( $k * $k * $pi * $pi * $vol * $vol ) / ( $h * $h ) |
|
216
|
|
|
|
|
|
|
) |
|
217
|
|
|
|
|
|
|
); |
|
218
|
|
|
|
|
|
|
|
|
219
|
|
|
|
|
|
|
# d{lambda_k}/dw |
|
220
|
570
|
|
|
|
|
824
|
my $dlambdak_domega = |
|
221
|
|
|
|
|
|
|
0.5 * |
|
222
|
|
|
|
|
|
|
( -( $mu_new / $omega ) - |
|
223
|
|
|
|
|
|
|
( ( $mu_new * $mu_new ) / ( $omega * $omega ) ) + |
|
224
|
|
|
|
|
|
|
( ( $k * $k * $pi * $pi ) / ( $h * $h ) ) ); |
|
225
|
|
|
|
|
|
|
|
|
226
|
570
|
|
|
|
|
571
|
my $beta_k = exp( -$lambda_k_dash * $t ) / $lambda_k_dash; |
|
227
|
|
|
|
|
|
|
|
|
228
|
|
|
|
|
|
|
# d{beta_k}/d{lambda_k} |
|
229
|
570
|
|
|
|
|
779
|
my $dbetak_dlambdak = |
|
230
|
|
|
|
|
|
|
-exp( -$lambda_k_dash * $t ) * |
|
231
|
|
|
|
|
|
|
( ( $t * $lambda_k_dash + 1 ) / ( $lambda_k_dash**2 ) ); |
|
232
|
|
|
|
|
|
|
|
|
233
|
|
|
|
|
|
|
# d{beta_k}/dw |
|
234
|
570
|
|
|
|
|
470
|
my $dbetak_domega = $dlambdak_domega * $dbetak_dlambdak; |
|
235
|
|
|
|
|
|
|
|
|
236
|
570
|
|
|
|
|
745
|
my $phi = |
|
237
|
|
|
|
|
|
|
( 1.0 / ( $h * $h * $h ) ) * |
|
238
|
|
|
|
|
|
|
( $omega * $dbetak_domega + $beta_k ) * |
|
239
|
|
|
|
|
|
|
$k * |
|
240
|
|
|
|
|
|
|
$k; |
|
241
|
|
|
|
|
|
|
|
|
242
|
570
|
|
|
|
|
731
|
$series_part += $phi * $pi * $pi * cos( $k * $pi * ( $h - $x ) / $h ); |
|
243
|
|
|
|
|
|
|
|
|
244
|
570
|
50
|
66
|
|
|
1522
|
if ( $k == 1 |
|
245
|
|
|
|
|
|
|
and ( not( abs( 2 * $vol * $phi / $S ) < $stability_constant ) ) ) |
|
246
|
|
|
|
|
|
|
{ |
|
247
|
0
|
|
|
|
|
0
|
die |
|
248
|
|
|
|
|
|
|
"$0: PELSSER VANNA formula for S=$S, U=$U, D=$D, t=$t, r_q=$r_q, mu=$mu, vol=$vol, w=$w, eta=$eta cannot be evaluated because PELSSER VANNA stability conditions (2 * $vol * $phi / $S less than $stability_constant) not met. This could be due to barriers too big, volatilities too low, interest/dividend rates too high, or machine accuracy too low."; |
|
249
|
|
|
|
|
|
|
} |
|
250
|
|
|
|
|
|
|
} |
|
251
|
|
|
|
|
|
|
|
|
252
|
26
|
|
|
|
|
42
|
my $alpha = $mu_dash / ( $vol * $vol ); |
|
253
|
26
|
|
|
|
|
80
|
my $dalpha_domega = |
|
254
|
|
|
|
|
|
|
-( ( $mu_new * $omega ) + |
|
255
|
|
|
|
|
|
|
( 2 * $mu_new * $mu_new ) + |
|
256
|
|
|
|
|
|
|
( 2 * $r_dash * $omega ) ) / |
|
257
|
|
|
|
|
|
|
( 2 * $alpha * $omega * $omega * $omega ); |
|
258
|
|
|
|
|
|
|
|
|
259
|
|
|
|
|
|
|
# We have to handle the special case where the denominator approaches 0, see our documentation in |
|
260
|
|
|
|
|
|
|
# quant/Documents/Breakout_bet.tex under the SVN "quant" module. |
|
261
|
26
|
50
|
|
|
|
82
|
if ( ( Math::Trig::sinh( $alpha * $h )**2 ) == 0 ) { |
|
262
|
0
|
|
|
|
|
0
|
$hyp_part = 0; |
|
263
|
|
|
|
|
|
|
} |
|
264
|
|
|
|
|
|
|
else { |
|
265
|
26
|
|
|
|
|
292
|
$hyp_part = |
|
266
|
|
|
|
|
|
|
-( $dalpha_domega * $alpha ) * |
|
267
|
|
|
|
|
|
|
( ( ( $h + $x ) * Math::Trig::cosh( $alpha * ( $h - $x ) ) ) + |
|
268
|
|
|
|
|
|
|
( ( $h - $x ) * Math::Trig::cosh( $alpha * ( $h + $x ) ) ) ) / |
|
269
|
|
|
|
|
|
|
( 2 * |
|
270
|
|
|
|
|
|
|
Math::Trig::sinh( $alpha * $h ) * |
|
271
|
|
|
|
|
|
|
Math::Trig::sinh( $alpha * $h ) ) + |
|
272
|
|
|
|
|
|
|
$dalpha_domega * |
|
273
|
|
|
|
|
|
|
( Math::Trig::sinh( $alpha * ( $h - $x ) ) + |
|
274
|
|
|
|
|
|
|
Math::Trig::sinh( $alpha * ( $h + $x ) ) ) / |
|
275
|
|
|
|
|
|
|
( 2 * |
|
276
|
|
|
|
|
|
|
Math::Trig::sinh( $alpha * $h ) * |
|
277
|
|
|
|
|
|
|
Math::Trig::sinh( $alpha * $h ) ); |
|
278
|
|
|
|
|
|
|
} |
|
279
|
|
|
|
|
|
|
|
|
280
|
26
|
|
|
|
|
1024
|
my $d2c_domegadx = ( $hyp_part + $series_part ) * exp( -$r_q * $w * $t ); |
|
281
|
|
|
|
|
|
|
|
|
282
|
26
|
|
|
|
|
51
|
return $d2c_domegadx; |
|
283
|
|
|
|
|
|
|
} |
|
284
|
|
|
|
|
|
|
|
|
285
|
|
|
|
|
|
|
sub ot_up_ko_down_pelsser_1997 { |
|
286
|
13
|
|
|
13
|
0
|
31
|
my ( $S, $U, $D, $t, $r_q, $mu, $vol, $w ) = @_; |
|
287
|
|
|
|
|
|
|
|
|
288
|
13
|
|
|
|
|
38
|
my $mu_new = $mu - ( 0.5 * $vol * $vol ); |
|
289
|
13
|
|
|
|
|
36
|
my $h = log( $U / $D ); |
|
290
|
13
|
|
|
|
|
30
|
my $x = log( $S / $D ); |
|
291
|
13
|
|
|
|
|
16
|
my $omega = ( $vol * $vol ); |
|
292
|
|
|
|
|
|
|
|
|
293
|
13
|
|
|
|
|
43
|
my $c = |
|
294
|
|
|
|
|
|
|
Math::Business::BlackScholes::Binaries::common_function_pelsser_1997( $S, |
|
295
|
|
|
|
|
|
|
$U, $D, $t, $r_q, $mu, $vol, $w, 1 ); |
|
296
|
13
|
|
|
|
|
2124
|
my $dc_domega = |
|
297
|
|
|
|
|
|
|
Math::Business::BlackScholes::Binaries::Greeks::Vega::w_common_function_pelsser_1997( |
|
298
|
|
|
|
|
|
|
$S, $U, $D, $t, $r_q, $mu, $vol, $w, 1 ); |
|
299
|
13
|
|
|
|
|
71
|
my $dc_dx = |
|
300
|
|
|
|
|
|
|
Math::Business::BlackScholes::Binaries::Greeks::Delta::x_common_function_pelsser_1997( |
|
301
|
|
|
|
|
|
|
$S, $U, $D, $t, $r_q, $mu, $vol, $w, 1 ); |
|
302
|
13
|
|
|
|
|
43
|
my $d2c_domegadx = |
|
303
|
|
|
|
|
|
|
xw_common_function_pelsser_1997( $S, $U, $D, $t, $r_q, $mu, $vol, $w, 1 ); |
|
304
|
|
|
|
|
|
|
|
|
305
|
13
|
|
|
|
|
118
|
my $d2Vu_domegadx = |
|
306
|
|
|
|
|
|
|
( ( ( ( 0.5 * $omega ) + $mu_new ) / ( $omega * $omega ) ) * |
|
307
|
|
|
|
|
|
|
( 1 + ( $mu_new / $omega ) * ( $h - $x ) ) * |
|
308
|
|
|
|
|
|
|
exp( ( $mu_new / $omega ) * ( $h - $x ) ) * |
|
309
|
|
|
|
|
|
|
$c ) - |
|
310
|
|
|
|
|
|
|
( ( ( ( 0.5 * $omega ) + $mu_new ) / ( $omega * $omega ) ) * |
|
311
|
|
|
|
|
|
|
( $h - $x ) * |
|
312
|
|
|
|
|
|
|
exp( ( $mu_new / $omega ) * ( $h - $x ) ) * |
|
313
|
|
|
|
|
|
|
$dc_dx ) - |
|
314
|
|
|
|
|
|
|
( ( $mu_new / $omega ) * |
|
315
|
|
|
|
|
|
|
exp( ( $mu_new / $omega ) * ( $h - $x ) ) * |
|
316
|
|
|
|
|
|
|
$dc_domega ) + |
|
317
|
|
|
|
|
|
|
( exp( ( $mu_new / $omega ) * ( $h - $x ) ) * $d2c_domegadx ); |
|
318
|
|
|
|
|
|
|
|
|
319
|
13
|
|
|
|
|
47
|
return ( 2 * $vol / $S ) * $d2Vu_domegadx; |
|
320
|
|
|
|
|
|
|
} |
|
321
|
|
|
|
|
|
|
|
|
322
|
|
|
|
|
|
|
sub ot_down_ko_up_pelsser_1997 { |
|
323
|
13
|
|
|
13
|
0
|
30
|
my ( $S, $U, $D, $t, $r_q, $mu, $vol, $w ) = @_; |
|
324
|
|
|
|
|
|
|
|
|
325
|
13
|
|
|
|
|
39
|
my $mu_new = $mu - ( 0.5 * $vol * $vol ); |
|
326
|
13
|
|
|
|
|
20
|
my $h = log( $U / $D ); |
|
327
|
13
|
|
|
|
|
23
|
my $x = log( $S / $D ); |
|
328
|
13
|
|
|
|
|
25
|
my $omega = ( $vol * $vol ); |
|
329
|
|
|
|
|
|
|
|
|
330
|
13
|
|
|
|
|
31
|
my $c = |
|
331
|
|
|
|
|
|
|
Math::Business::BlackScholes::Binaries::common_function_pelsser_1997( $S, |
|
332
|
|
|
|
|
|
|
$U, $D, $t, $r_q, $mu, $vol, $w, 0 ); |
|
333
|
13
|
|
|
|
|
2022
|
my $dc_domega = |
|
334
|
|
|
|
|
|
|
Math::Business::BlackScholes::Binaries::Greeks::Vega::w_common_function_pelsser_1997( |
|
335
|
|
|
|
|
|
|
$S, $U, $D, $t, $r_q, $mu, $vol, $w, 0 ); |
|
336
|
13
|
|
|
|
|
43
|
my $dc_dx = |
|
337
|
|
|
|
|
|
|
Math::Business::BlackScholes::Binaries::Greeks::Delta::x_common_function_pelsser_1997( |
|
338
|
|
|
|
|
|
|
$S, $U, $D, $t, $r_q, $mu, $vol, $w, 0 ); |
|
339
|
13
|
|
|
|
|
31
|
my $d2c_domegadx = |
|
340
|
|
|
|
|
|
|
xw_common_function_pelsser_1997( $S, $U, $D, $t, $r_q, $mu, $vol, $w, 0 ); |
|
341
|
|
|
|
|
|
|
|
|
342
|
13
|
|
|
|
|
97
|
my $d2Vl_domegadx = |
|
343
|
|
|
|
|
|
|
( ( ( ( 0.5 * $omega ) + $mu_new ) / ( $omega * $omega ) ) * |
|
344
|
|
|
|
|
|
|
( 1 - ( $mu_new / $omega ) * $x ) * |
|
345
|
|
|
|
|
|
|
exp( -( $mu_new / $omega ) * $x ) * |
|
346
|
|
|
|
|
|
|
$c ) - |
|
347
|
|
|
|
|
|
|
( ( ( ( 0.5 * $omega ) + $mu_new ) / ( $omega * $omega ) ) * |
|
348
|
|
|
|
|
|
|
$x * |
|
349
|
|
|
|
|
|
|
exp( -( $mu_new / $omega ) * $x ) * |
|
350
|
|
|
|
|
|
|
$dc_dx ) - |
|
351
|
|
|
|
|
|
|
( ( $mu_new / $omega ) * exp( -( $mu_new / $omega ) * $x ) * $dc_domega ) |
|
352
|
|
|
|
|
|
|
- ( exp( -( $mu_new / $omega ) * $x ) * $d2c_domegadx ); |
|
353
|
|
|
|
|
|
|
|
|
354
|
13
|
|
|
|
|
46
|
return ( 2 * $vol / $S ) * $d2Vl_domegadx; |
|
355
|
|
|
|
|
|
|
} |
|
356
|
|
|
|
|
|
|
|
|
357
|
|
|
|
|
|
|
sub range { |
|
358
|
6
|
|
|
6
|
0
|
3157
|
my ( $S, $U, $D, $t, $r_q, $mu, $vol, $w ) = @_; |
|
359
|
|
|
|
|
|
|
|
|
360
|
|
|
|
|
|
|
# Range always pay out at end |
|
361
|
6
|
|
|
|
|
12
|
$w = 1; |
|
362
|
|
|
|
|
|
|
|
|
363
|
6
|
|
|
|
|
20
|
return -1 * upordown( $S, $U, $D, $t, $r_q, $mu, $vol, $w ); |
|
364
|
|
|
|
|
|
|
} |
|
365
|
|
|
|
|
|
|
|
|
366
|
|
|
|
|
|
|
1; |
|
367
|
|
|
|
|
|
|
|