File Coverage

deps/libgit2/src/libgit2/xdiff/xpatience.c
Criterion Covered Total %
statement 0 152 0.0
branch 0 92 0.0
condition n/a
subroutine n/a
pod n/a
total 0 244 0.0


line stmt bran cond sub pod time code
1             /*
2             * LibXDiff by Davide Libenzi ( File Differential Library )
3             * Copyright (C) 2003-2016 Davide Libenzi, Johannes E. Schindelin
4             *
5             * This library is free software; you can redistribute it and/or
6             * modify it under the terms of the GNU Lesser General Public
7             * License as published by the Free Software Foundation; either
8             * version 2.1 of the License, or (at your option) any later version.
9             *
10             * This library is distributed in the hope that it will be useful,
11             * but WITHOUT ANY WARRANTY; without even the implied warranty of
12             * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13             * Lesser General Public License for more details.
14             *
15             * You should have received a copy of the GNU Lesser General Public
16             * License along with this library; if not, see
17             * .
18             *
19             * Davide Libenzi
20             *
21             */
22             #include "xinclude.h"
23              
24             /*
25             * The basic idea of patience diff is to find lines that are unique in
26             * both files. These are intuitively the ones that we want to see as
27             * common lines.
28             *
29             * The maximal ordered sequence of such line pairs (where ordered means
30             * that the order in the sequence agrees with the order of the lines in
31             * both files) naturally defines an initial set of common lines.
32             *
33             * Now, the algorithm tries to extend the set of common lines by growing
34             * the line ranges where the files have identical lines.
35             *
36             * Between those common lines, the patience diff algorithm is applied
37             * recursively, until no unique line pairs can be found; these line ranges
38             * are handled by the well-known Myers algorithm.
39             */
40              
41             #define NON_UNIQUE ULONG_MAX
42              
43             /*
44             * This is a hash mapping from line hash to line numbers in the first and
45             * second file.
46             */
47             struct hashmap {
48             int nr, alloc;
49             struct entry {
50             unsigned long hash;
51             /*
52             * 0 = unused entry, 1 = first line, 2 = second, etc.
53             * line2 is NON_UNIQUE if the line is not unique
54             * in either the first or the second file.
55             */
56             unsigned long line1, line2;
57             /*
58             * "next" & "previous" are used for the longest common
59             * sequence;
60             * initially, "next" reflects only the order in file1.
61             */
62             struct entry *next, *previous;
63              
64             /*
65             * If 1, this entry can serve as an anchor. See
66             * Documentation/diff-options.txt for more information.
67             */
68             unsigned anchor : 1;
69             } *entries, *first, *last;
70             /* were common records found? */
71             unsigned long has_matches;
72             mmfile_t *file1, *file2;
73             xdfenv_t *env;
74             xpparam_t const *xpp;
75             };
76              
77 0           static int is_anchor(xpparam_t const *xpp, const char *line)
78             {
79             int i;
80 0 0         for (i = 0; i < xpp->anchors_nr; i++) {
81 0 0         if (!strncmp(line, xpp->anchors[i], strlen(xpp->anchors[i])))
82 0           return 1;
83             }
84 0           return 0;
85             }
86              
87             /* The argument "pass" is 1 for the first file, 2 for the second. */
88 0           static void insert_record(xpparam_t const *xpp, int line, struct hashmap *map,
89             int pass)
90             {
91 0           xrecord_t **records = pass == 1 ?
92 0 0         map->env->xdf1.recs : map->env->xdf2.recs;
93 0           xrecord_t *record = records[line - 1];
94             /*
95             * After xdl_prepare_env() (or more precisely, due to
96             * xdl_classify_record()), the "ha" member of the records (AKA lines)
97             * is _not_ the hash anymore, but a linearized version of it. In
98             * other words, the "ha" member is guaranteed to start with 0 and
99             * the second record's ha can only be 0 or 1, etc.
100             *
101             * So we multiply ha by 2 in the hope that the hashing was
102             * "unique enough".
103             */
104 0           int index = (int)((record->ha << 1) % map->alloc);
105              
106 0 0         while (map->entries[index].line1) {
107 0 0         if (map->entries[index].hash != record->ha) {
108 0 0         if (++index >= map->alloc)
109 0           index = 0;
110 0           continue;
111             }
112 0 0         if (pass == 2)
113 0           map->has_matches = 1;
114 0 0         if (pass == 1 || map->entries[index].line2)
    0          
115 0           map->entries[index].line2 = NON_UNIQUE;
116             else
117 0           map->entries[index].line2 = line;
118 0           return;
119             }
120 0 0         if (pass == 2)
121 0           return;
122 0           map->entries[index].line1 = line;
123 0           map->entries[index].hash = record->ha;
124 0           map->entries[index].anchor = is_anchor(xpp, map->env->xdf1.recs[line - 1]->ptr);
125 0 0         if (!map->first)
126 0           map->first = map->entries + index;
127 0 0         if (map->last) {
128 0           map->last->next = map->entries + index;
129 0           map->entries[index].previous = map->last;
130             }
131 0           map->last = map->entries + index;
132 0           map->nr++;
133             }
134              
135             /*
136             * This function has to be called for each recursion into the inter-hunk
137             * parts, as previously non-unique lines can become unique when being
138             * restricted to a smaller part of the files.
139             *
140             * It is assumed that env has been prepared using xdl_prepare().
141             */
142 0           static int fill_hashmap(mmfile_t *file1, mmfile_t *file2,
143             xpparam_t const *xpp, xdfenv_t *env,
144             struct hashmap *result,
145             int line1, int count1, int line2, int count2)
146             {
147 0           result->file1 = file1;
148 0           result->file2 = file2;
149 0           result->xpp = xpp;
150 0           result->env = env;
151              
152             /* We know exactly how large we want the hash map */
153 0           result->alloc = count1 * 2;
154 0           result->entries = (struct entry *)
155 0           xdl_malloc(result->alloc * sizeof(struct entry));
156 0 0         if (!result->entries)
157 0           return -1;
158 0           memset(result->entries, 0, result->alloc * sizeof(struct entry));
159              
160             /* First, fill with entries from the first file */
161 0 0         while (count1--)
162 0           insert_record(xpp, line1++, result, 1);
163              
164             /* Then search for matches in the second file */
165 0 0         while (count2--)
166 0           insert_record(xpp, line2++, result, 2);
167              
168 0           return 0;
169             }
170              
171             /*
172             * Find the longest sequence with a smaller last element (meaning a smaller
173             * line2, as we construct the sequence with entries ordered by line1).
174             */
175 0           static int binary_search(struct entry **sequence, int longest,
176             struct entry *entry)
177             {
178 0           int left = -1, right = longest;
179              
180 0 0         while (left + 1 < right) {
181 0           int middle = left + (right - left) / 2;
182             /* by construction, no two entries can be equal */
183 0 0         if (sequence[middle]->line2 > entry->line2)
184 0           right = middle;
185             else
186 0           left = middle;
187             }
188             /* return the index in "sequence", _not_ the sequence length */
189 0           return left;
190             }
191              
192             /*
193             * The idea is to start with the list of common unique lines sorted by
194             * the order in file1. For each of these pairs, the longest (partial)
195             * sequence whose last element's line2 is smaller is determined.
196             *
197             * For efficiency, the sequences are kept in a list containing exactly one
198             * item per sequence length: the sequence with the smallest last
199             * element (in terms of line2).
200             */
201 0           static struct entry *find_longest_common_sequence(struct hashmap *map)
202             {
203 0           struct entry **sequence = xdl_malloc(map->nr * sizeof(struct entry *));
204 0           int longest = 0, i;
205             struct entry *entry;
206              
207             /*
208             * If not -1, this entry in sequence must never be overridden.
209             * Therefore, overriding entries before this has no effect, so
210             * do not do that either.
211             */
212 0           int anchor_i = -1;
213              
214 0 0         for (entry = map->first; entry; entry = entry->next) {
215 0 0         if (!entry->line2 || entry->line2 == NON_UNIQUE)
    0          
216 0           continue;
217 0           i = binary_search(sequence, longest, entry);
218 0 0         entry->previous = i < 0 ? NULL : sequence[i];
219 0           ++i;
220 0 0         if (i <= anchor_i)
221 0           continue;
222 0           sequence[i] = entry;
223 0 0         if (entry->anchor) {
224 0           anchor_i = i;
225 0           longest = anchor_i + 1;
226 0 0         } else if (i == longest) {
227 0           longest++;
228             }
229             }
230              
231             /* No common unique lines were found */
232 0 0         if (!longest) {
233 0           xdl_free(sequence);
234 0           return NULL;
235             }
236              
237             /* Iterate starting at the last element, adjusting the "next" members */
238 0           entry = sequence[longest - 1];
239 0           entry->next = NULL;
240 0 0         while (entry->previous) {
241 0           entry->previous->next = entry;
242 0           entry = entry->previous;
243             }
244 0           xdl_free(sequence);
245 0           return entry;
246             }
247              
248 0           static int match(struct hashmap *map, int line1, int line2)
249             {
250 0           xrecord_t *record1 = map->env->xdf1.recs[line1 - 1];
251 0           xrecord_t *record2 = map->env->xdf2.recs[line2 - 1];
252 0           return record1->ha == record2->ha;
253             }
254              
255             static int patience_diff(mmfile_t *file1, mmfile_t *file2,
256             xpparam_t const *xpp, xdfenv_t *env,
257             int line1, int count1, int line2, int count2);
258              
259 0           static int walk_common_sequence(struct hashmap *map, struct entry *first,
260             int line1, int count1, int line2, int count2)
261             {
262 0           int end1 = line1 + count1, end2 = line2 + count2;
263             int next1, next2;
264              
265             for (;;) {
266             /* Try to grow the line ranges of common lines */
267 0 0         if (first) {
268 0           next1 = first->line1;
269 0           next2 = first->line2;
270 0 0         while (next1 > line1 && next2 > line2 &&
271 0           match(map, next1 - 1, next2 - 1)) {
272 0           next1--;
273 0           next2--;
274             }
275             } else {
276 0           next1 = end1;
277 0           next2 = end2;
278             }
279 0 0         while (line1 < next1 && line2 < next2 &&
280 0           match(map, line1, line2)) {
281 0           line1++;
282 0           line2++;
283             }
284              
285             /* Recurse */
286 0 0         if (next1 > line1 || next2 > line2) {
    0          
287 0 0         if (patience_diff(map->file1, map->file2,
288             map->xpp, map->env,
289             line1, next1 - line1,
290             line2, next2 - line2))
291 0           return -1;
292             }
293              
294 0 0         if (!first)
295 0           return 0;
296              
297 0 0         while (first->next &&
    0          
298 0 0         first->next->line1 == first->line1 + 1 &&
299 0           first->next->line2 == first->line2 + 1)
300 0           first = first->next;
301              
302 0           line1 = first->line1 + 1;
303 0           line2 = first->line2 + 1;
304              
305 0           first = first->next;
306 0           }
307             }
308              
309 0           static int fall_back_to_classic_diff(struct hashmap *map,
310             int line1, int count1, int line2, int count2)
311             {
312             xpparam_t xpp;
313              
314 0           memset(&xpp, 0, sizeof(xpp));
315 0           xpp.flags = map->xpp->flags & ~XDF_DIFF_ALGORITHM_MASK;
316              
317 0           return xdl_fall_back_diff(map->env, &xpp,
318             line1, count1, line2, count2);
319             }
320              
321             /*
322             * Recursively find the longest common sequence of unique lines,
323             * and if none was found, ask xdl_do_diff() to do the job.
324             *
325             * This function assumes that env was prepared with xdl_prepare_env().
326             */
327 0           static int patience_diff(mmfile_t *file1, mmfile_t *file2,
328             xpparam_t const *xpp, xdfenv_t *env,
329             int line1, int count1, int line2, int count2)
330             {
331             struct hashmap map;
332             struct entry *first;
333 0           int result = 0;
334              
335             /* trivial case: one side is empty */
336 0 0         if (!count1) {
337 0 0         while(count2--)
338 0           env->xdf2.rchg[line2++ - 1] = 1;
339 0           return 0;
340 0 0         } else if (!count2) {
341 0 0         while(count1--)
342 0           env->xdf1.rchg[line1++ - 1] = 1;
343 0           return 0;
344             }
345              
346 0           memset(&map, 0, sizeof(map));
347 0 0         if (fill_hashmap(file1, file2, xpp, env, &map,
348             line1, count1, line2, count2))
349 0           return -1;
350              
351             /* are there any matching lines at all? */
352 0 0         if (!map.has_matches) {
353 0 0         while(count1--)
354 0           env->xdf1.rchg[line1++ - 1] = 1;
355 0 0         while(count2--)
356 0           env->xdf2.rchg[line2++ - 1] = 1;
357 0           xdl_free(map.entries);
358 0           return 0;
359             }
360              
361 0           first = find_longest_common_sequence(&map);
362 0 0         if (first)
363 0           result = walk_common_sequence(&map, first,
364             line1, count1, line2, count2);
365             else
366 0           result = fall_back_to_classic_diff(&map,
367             line1, count1, line2, count2);
368              
369 0           xdl_free(map.entries);
370 0           return result;
371             }
372              
373 0           int xdl_do_patience_diff(mmfile_t *file1, mmfile_t *file2,
374             xpparam_t const *xpp, xdfenv_t *env)
375             {
376 0 0         if (xdl_prepare_env(file1, file2, xpp, env) < 0)
377 0           return -1;
378              
379             /* environment is cleaned up in xdl_diff() */
380 0           return patience_diff(file1, file2, xpp, env,
381 0           1, env->xdf1.nrec, 1, env->xdf2.nrec);
382             }