File Coverage

deps/libgit2/src/xdiff/xpatience.c
Criterion Covered Total %
statement 0 158 0.0
branch 0 92 0.0
condition n/a
subroutine n/a
pod n/a
total 0 250 0.0


line stmt bran cond sub pod time code
1             /*
2             * LibXDiff by Davide Libenzi ( File Differential Library )
3             * Copyright (C) 2003-2016 Davide Libenzi, Johannes E. Schindelin
4             *
5             * This library is free software; you can redistribute it and/or
6             * modify it under the terms of the GNU Lesser General Public
7             * License as published by the Free Software Foundation; either
8             * version 2.1 of the License, or (at your option) any later version.
9             *
10             * This library is distributed in the hope that it will be useful,
11             * but WITHOUT ANY WARRANTY; without even the implied warranty of
12             * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13             * Lesser General Public License for more details.
14             *
15             * You should have received a copy of the GNU Lesser General Public
16             * License along with this library; if not, see
17             * .
18             *
19             * Davide Libenzi
20             *
21             */
22             #include "xinclude.h"
23             #include "xtypes.h"
24             #include "xdiff.h"
25              
26             /*
27             * The basic idea of patience diff is to find lines that are unique in
28             * both files. These are intuitively the ones that we want to see as
29             * common lines.
30             *
31             * The maximal ordered sequence of such line pairs (where ordered means
32             * that the order in the sequence agrees with the order of the lines in
33             * both files) naturally defines an initial set of common lines.
34             *
35             * Now, the algorithm tries to extend the set of common lines by growing
36             * the line ranges where the files have identical lines.
37             *
38             * Between those common lines, the patience diff algorithm is applied
39             * recursively, until no unique line pairs can be found; these line ranges
40             * are handled by the well-known Myers algorithm.
41             */
42              
43             #define NON_UNIQUE ULONG_MAX
44              
45             /*
46             * This is a hash mapping from line hash to line numbers in the first and
47             * second file.
48             */
49             struct hashmap {
50             int nr, alloc;
51             struct entry {
52             unsigned long hash;
53             /*
54             * 0 = unused entry, 1 = first line, 2 = second, etc.
55             * line2 is NON_UNIQUE if the line is not unique
56             * in either the first or the second file.
57             */
58             unsigned long line1, line2;
59             /*
60             * "next" & "previous" are used for the longest common
61             * sequence;
62             * initially, "next" reflects only the order in file1.
63             */
64             struct entry *next, *previous;
65              
66             /*
67             * If 1, this entry can serve as an anchor. See
68             * Documentation/diff-options.txt for more information.
69             */
70             unsigned anchor : 1;
71             } *entries, *first, *last;
72             /* were common records found? */
73             unsigned long has_matches;
74             mmfile_t *file1, *file2;
75             xdfenv_t *env;
76             xpparam_t const *xpp;
77             };
78              
79 0           static int is_anchor(xpparam_t const *xpp, const char *line)
80             {
81             unsigned long i;
82 0 0         for (i = 0; i < xpp->anchors_nr; i++) {
83 0 0         if (!strncmp(line, xpp->anchors[i], strlen(xpp->anchors[i])))
84 0           return 1;
85             }
86 0           return 0;
87             }
88              
89             /* The argument "pass" is 1 for the first file, 2 for the second. */
90 0           static void insert_record(xpparam_t const *xpp, int line, struct hashmap *map,
91             int pass)
92             {
93 0           xrecord_t **records = pass == 1 ?
94 0 0         map->env->xdf1.recs : map->env->xdf2.recs;
95 0           xrecord_t *record = records[line - 1], *other;
96             /*
97             * After xdl_prepare_env() (or more precisely, due to
98             * xdl_classify_record()), the "ha" member of the records (AKA lines)
99             * is _not_ the hash anymore, but a linearized version of it. In
100             * other words, the "ha" member is guaranteed to start with 0 and
101             * the second record's ha can only be 0 or 1, etc.
102             *
103             * So we multiply ha by 2 in the hope that the hashing was
104             * "unique enough".
105             */
106 0           int index = (int)((record->ha << 1) % map->alloc);
107              
108 0 0         while (map->entries[index].line1) {
109 0           other = map->env->xdf1.recs[map->entries[index].line1 - 1];
110 0           if (map->entries[index].hash != record->ha ||
111 0           !xdl_recmatch(record->ptr, record->size,
112             other->ptr, other->size,
113 0           map->xpp->flags)) {
114 0 0         if (++index >= map->alloc)
115 0           index = 0;
116 0           continue;
117             }
118 0 0         if (pass == 2)
119 0           map->has_matches = 1;
120 0 0         if (pass == 1 || map->entries[index].line2)
    0          
121 0           map->entries[index].line2 = NON_UNIQUE;
122             else
123 0           map->entries[index].line2 = line;
124 0           return;
125             }
126 0 0         if (pass == 2)
127 0           return;
128 0           map->entries[index].line1 = line;
129 0           map->entries[index].hash = record->ha;
130 0           map->entries[index].anchor = is_anchor(xpp, map->env->xdf1.recs[line - 1]->ptr);
131 0 0         if (!map->first)
132 0           map->first = map->entries + index;
133 0 0         if (map->last) {
134 0           map->last->next = map->entries + index;
135 0           map->entries[index].previous = map->last;
136             }
137 0           map->last = map->entries + index;
138 0           map->nr++;
139             }
140              
141             /*
142             * This function has to be called for each recursion into the inter-hunk
143             * parts, as previously non-unique lines can become unique when being
144             * restricted to a smaller part of the files.
145             *
146             * It is assumed that env has been prepared using xdl_prepare().
147             */
148 0           static int fill_hashmap(mmfile_t *file1, mmfile_t *file2,
149             xpparam_t const *xpp, xdfenv_t *env,
150             struct hashmap *result,
151             int line1, int count1, int line2, int count2)
152             {
153 0           result->file1 = file1;
154 0           result->file2 = file2;
155 0           result->xpp = xpp;
156 0           result->env = env;
157              
158             /* We know exactly how large we want the hash map */
159 0           result->alloc = count1 * 2;
160 0           result->entries = (struct entry *)
161 0           xdl_malloc(result->alloc * sizeof(struct entry));
162 0 0         if (!result->entries)
163 0           return -1;
164 0           memset(result->entries, 0, result->alloc * sizeof(struct entry));
165              
166             /* First, fill with entries from the first file */
167 0 0         while (count1--)
168 0           insert_record(xpp, line1++, result, 1);
169              
170             /* Then search for matches in the second file */
171 0 0         while (count2--)
172 0           insert_record(xpp, line2++, result, 2);
173              
174 0           return 0;
175             }
176              
177             /*
178             * Find the longest sequence with a smaller last element (meaning a smaller
179             * line2, as we construct the sequence with entries ordered by line1).
180             */
181 0           static int binary_search(struct entry **sequence, int longest,
182             struct entry *entry)
183             {
184 0           int left = -1, right = longest;
185              
186 0 0         while (left + 1 < right) {
187 0           int middle = left + (right - left) / 2;
188             /* by construction, no two entries can be equal */
189 0 0         if (sequence[middle]->line2 > entry->line2)
190 0           right = middle;
191             else
192 0           left = middle;
193             }
194             /* return the index in "sequence", _not_ the sequence length */
195 0           return left;
196             }
197              
198             /*
199             * The idea is to start with the list of common unique lines sorted by
200             * the order in file1. For each of these pairs, the longest (partial)
201             * sequence whose last element's line2 is smaller is determined.
202             *
203             * For efficiency, the sequences are kept in a list containing exactly one
204             * item per sequence length: the sequence with the smallest last
205             * element (in terms of line2).
206             */
207 0           static struct entry *find_longest_common_sequence(struct hashmap *map)
208             {
209 0           struct entry **sequence = xdl_malloc(map->nr * sizeof(struct entry *));
210 0           int longest = 0, i;
211             struct entry *entry;
212              
213             /*
214             * If not -1, this entry in sequence must never be overridden.
215             * Therefore, overriding entries before this has no effect, so
216             * do not do that either.
217             */
218 0           int anchor_i = -1;
219              
220 0 0         if (!sequence)
221 0           return NULL;
222              
223 0 0         for (entry = map->first; entry; entry = entry->next) {
224 0 0         if (!entry->line2 || entry->line2 == NON_UNIQUE)
    0          
225 0           continue;
226 0           i = binary_search(sequence, longest, entry);
227 0 0         entry->previous = i < 0 ? NULL : sequence[i];
228 0           ++i;
229 0 0         if (i <= anchor_i)
230 0           continue;
231 0           sequence[i] = entry;
232 0 0         if (entry->anchor) {
233 0           anchor_i = i;
234 0           longest = anchor_i + 1;
235 0 0         } else if (i == longest) {
236 0           longest++;
237             }
238             }
239              
240             /* No common unique lines were found */
241 0 0         if (!longest) {
242 0           xdl_free(sequence);
243 0           return NULL;
244             }
245              
246             /* Iterate starting at the last element, adjusting the "next" members */
247 0           entry = sequence[longest - 1];
248 0           entry->next = NULL;
249 0 0         while (entry->previous) {
250 0           entry->previous->next = entry;
251 0           entry = entry->previous;
252             }
253 0           xdl_free(sequence);
254 0           return entry;
255             }
256              
257 0           static int match(struct hashmap *map, int line1, int line2)
258             {
259 0           xrecord_t *record1 = map->env->xdf1.recs[line1 - 1];
260 0           xrecord_t *record2 = map->env->xdf2.recs[line2 - 1];
261 0           return xdl_recmatch(record1->ptr, record1->size,
262 0           record2->ptr, record2->size, map->xpp->flags);
263             }
264              
265             static int patience_diff(mmfile_t *file1, mmfile_t *file2,
266             xpparam_t const *xpp, xdfenv_t *env,
267             int line1, int count1, int line2, int count2);
268              
269 0           static int walk_common_sequence(struct hashmap *map, struct entry *first,
270             int line1, int count1, int line2, int count2)
271             {
272 0           int end1 = line1 + count1, end2 = line2 + count2;
273             int next1, next2;
274              
275             for (;;) {
276             /* Try to grow the line ranges of common lines */
277 0 0         if (first) {
278 0           next1 = first->line1;
279 0           next2 = first->line2;
280 0 0         while (next1 > line1 && next2 > line2 &&
281 0           match(map, next1 - 1, next2 - 1)) {
282 0           next1--;
283 0           next2--;
284             }
285             } else {
286 0           next1 = end1;
287 0           next2 = end2;
288             }
289 0 0         while (line1 < next1 && line2 < next2 &&
290 0           match(map, line1, line2)) {
291 0           line1++;
292 0           line2++;
293             }
294              
295             /* Recurse */
296 0 0         if (next1 > line1 || next2 > line2) {
    0          
297             struct hashmap submap;
298              
299 0           memset(&submap, 0, sizeof(submap));
300 0 0         if (patience_diff(map->file1, map->file2,
301             map->xpp, map->env,
302             line1, next1 - line1,
303             line2, next2 - line2))
304 0           return -1;
305             }
306              
307 0 0         if (!first)
308 0           return 0;
309              
310 0 0         while (first->next &&
    0          
311 0 0         first->next->line1 == first->line1 + 1 &&
312 0           first->next->line2 == first->line2 + 1)
313 0           first = first->next;
314              
315 0           line1 = first->line1 + 1;
316 0           line2 = first->line2 + 1;
317              
318 0           first = first->next;
319 0           }
320             }
321              
322 0           static int fall_back_to_classic_diff(struct hashmap *map,
323             int line1, int count1, int line2, int count2)
324             {
325             xpparam_t xpp;
326 0           xpp.flags = map->xpp->flags & ~XDF_DIFF_ALGORITHM_MASK;
327              
328 0           return xdl_fall_back_diff(map->env, &xpp,
329             line1, count1, line2, count2);
330             }
331              
332             /*
333             * Recursively find the longest common sequence of unique lines,
334             * and if none was found, ask xdl_do_diff() to do the job.
335             *
336             * This function assumes that env was prepared with xdl_prepare_env().
337             */
338 0           static int patience_diff(mmfile_t *file1, mmfile_t *file2,
339             xpparam_t const *xpp, xdfenv_t *env,
340             int line1, int count1, int line2, int count2)
341             {
342             struct hashmap map;
343             struct entry *first;
344 0           int result = 0;
345              
346             /* trivial case: one side is empty */
347 0 0         if (!count1) {
348 0 0         while(count2--)
349 0           env->xdf2.rchg[line2++ - 1] = 1;
350 0           return 0;
351 0 0         } else if (!count2) {
352 0 0         while(count1--)
353 0           env->xdf1.rchg[line1++ - 1] = 1;
354 0           return 0;
355             }
356              
357 0           memset(&map, 0, sizeof(map));
358 0 0         if (fill_hashmap(file1, file2, xpp, env, &map,
359             line1, count1, line2, count2))
360 0           return -1;
361              
362             /* are there any matching lines at all? */
363 0 0         if (!map.has_matches) {
364 0 0         while(count1--)
365 0           env->xdf1.rchg[line1++ - 1] = 1;
366 0 0         while(count2--)
367 0           env->xdf2.rchg[line2++ - 1] = 1;
368 0           xdl_free(map.entries);
369 0           return 0;
370             }
371              
372 0           first = find_longest_common_sequence(&map);
373 0 0         if (first)
374 0           result = walk_common_sequence(&map, first,
375             line1, count1, line2, count2);
376             else
377 0           result = fall_back_to_classic_diff(&map,
378             line1, count1, line2, count2);
379              
380 0           xdl_free(map.entries);
381 0           return result;
382             }
383              
384 0           int xdl_do_patience_diff(mmfile_t *file1, mmfile_t *file2,
385             xpparam_t const *xpp, xdfenv_t *env)
386             {
387 0 0         if (xdl_prepare_env(file1, file2, xpp, env) < 0)
388 0           return -1;
389              
390             /* environment is cleaned up in xdl_diff() */
391 0           return patience_diff(file1, file2, xpp, env,
392 0           1, env->xdf1.nrec, 1, env->xdf2.nrec);
393             }