| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Data::Pareto; |
|
2
|
|
|
|
|
|
|
|
|
3
|
2
|
|
|
2
|
|
52792
|
use warnings; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
60
|
|
|
4
|
2
|
|
|
2
|
|
11
|
use strict; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
68
|
|
|
5
|
|
|
|
|
|
|
|
|
6
|
2
|
|
|
2
|
|
10
|
use Scalar::Util qw( reftype ); |
|
|
2
|
|
|
|
|
7
|
|
|
|
2
|
|
|
|
|
242
|
|
|
7
|
2
|
|
|
2
|
|
9
|
use Carp; |
|
|
2
|
|
|
|
|
3
|
|
|
|
2
|
|
|
|
|
2244
|
|
|
8
|
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
=head1 NAME |
|
10
|
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
Data::Pareto - Computing Pareto sets in Perl |
|
12
|
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
=head1 VERSION |
|
14
|
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
Version 0.05 |
|
16
|
|
|
|
|
|
|
|
|
17
|
|
|
|
|
|
|
=cut |
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
our $VERSION = '0.05'; |
|
20
|
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
=head1 SYNOPSIS |
|
22
|
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
use Data::Pareto; |
|
24
|
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
# only first and third columns are used in comparison |
|
26
|
|
|
|
|
|
|
# the others are simply descriptive |
|
27
|
|
|
|
|
|
|
my $set = new Data::Pareto( { columns => [0, 2] } ); |
|
28
|
|
|
|
|
|
|
$set->add( |
|
29
|
|
|
|
|
|
|
[ 5, "pareto", 10, 11 ], |
|
30
|
|
|
|
|
|
|
[ 5, "dominated", 11, 9 ], |
|
31
|
|
|
|
|
|
|
[ 4, "pareto2", 12, 12 ] |
|
32
|
|
|
|
|
|
|
); |
|
33
|
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
# this returns [ [ 5, "pareto", 10, 11 ], [ 4, "pareto2", 12, 12 ] ], |
|
35
|
|
|
|
|
|
|
# the other one is dominated on selected columns |
|
36
|
|
|
|
|
|
|
$set->get_pareto_ref; |
|
37
|
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
=head1 DESCRIPTION |
|
39
|
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
This module makes calculation of Pareto set. Given a set of vectors |
|
41
|
|
|
|
|
|
|
(i.e. arrays of simple scalars), Pareto set is all the vectors from the given |
|
42
|
|
|
|
|
|
|
set which are not dominated by any other vector of the set. A vector C is |
|
43
|
|
|
|
|
|
|
said to be dominated by C, iff C<< X[i] >= Y[i] >> for all C and |
|
44
|
|
|
|
|
|
|
C<< X[i] > Y[i] >> for at least one C. |
|
45
|
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
Pareto sets play an important role in multiobjective optimization, where |
|
47
|
|
|
|
|
|
|
each non-dominated (i.e. Pareto) vector describes objectives value of |
|
48
|
|
|
|
|
|
|
"optimal" solution to the given problem. |
|
49
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
This module allows occurrence of duplicates in the set - this makes it |
|
51
|
|
|
|
|
|
|
rather a bag than a set, but is useful in practice (e.g. when we want to |
|
52
|
|
|
|
|
|
|
preserve two solutions giving the same objectives value, but structurally |
|
53
|
|
|
|
|
|
|
different). This assumption influences dominance definition given above: |
|
54
|
|
|
|
|
|
|
two duplicates never dominate each other and hence can be present in the Pareto |
|
55
|
|
|
|
|
|
|
set. This is controlled by C option passed to L: if set |
|
56
|
|
|
|
|
|
|
to C value, duplicates are allowed in Pareto set; otherwise, only the |
|
57
|
|
|
|
|
|
|
first found element of the subset of duplicated vectors is preserved in Pareto |
|
58
|
|
|
|
|
|
|
set. |
|
59
|
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
The values are allowed to be invalid. The meaning of 'invalid' is 'the worst |
|
61
|
|
|
|
|
|
|
possible'. It's different concept than 'unknown'; unknown value make the |
|
62
|
|
|
|
|
|
|
definition of domination less clear. |
|
63
|
|
|
|
|
|
|
|
|
64
|
|
|
|
|
|
|
By default, the comparison of column values is numerical and the smaller |
|
65
|
|
|
|
|
|
|
value dominates the larger one. If you want to override this behaviour, pass |
|
66
|
|
|
|
|
|
|
your own dominator sub in arguments to L. |
|
67
|
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
=head1 FUNCTIONS |
|
69
|
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
By default, a vector is passed around as a ref to array of consecutive column |
|
71
|
|
|
|
|
|
|
values. This means you shouldn't mess with it after passing to C method. |
|
72
|
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
=cut |
|
74
|
|
|
|
|
|
|
|
|
75
|
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
=head2 new |
|
77
|
|
|
|
|
|
|
|
|
78
|
|
|
|
|
|
|
Creates a new object for calculating Pareto set. |
|
79
|
|
|
|
|
|
|
|
|
80
|
|
|
|
|
|
|
The first argument passed is a hashref with options; the recognized options are: |
|
81
|
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
=over |
|
83
|
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
=item * C |
|
85
|
|
|
|
|
|
|
|
|
86
|
|
|
|
|
|
|
Arrayref containing column numbers which should be used for determining |
|
87
|
|
|
|
|
|
|
domination and duplication. Column numbers are C<0>-based array indexes to |
|
88
|
|
|
|
|
|
|
data vectors. |
|
89
|
|
|
|
|
|
|
|
|
90
|
|
|
|
|
|
|
Only values at those positions will be ever compared between vectors. |
|
91
|
|
|
|
|
|
|
Any other data in the vectors may be present and is not used in any way. |
|
92
|
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
At least one column number should be passed, for obvious reasons. |
|
94
|
|
|
|
|
|
|
|
|
95
|
|
|
|
|
|
|
=item * C |
|
96
|
|
|
|
|
|
|
|
|
97
|
|
|
|
|
|
|
If set to C value, duplicated vectors are all put in Pareto set (if they |
|
98
|
|
|
|
|
|
|
are Pareto, of course). If set to C, duplicates of vectors already |
|
99
|
|
|
|
|
|
|
in the Pareto set are discarded. |
|
100
|
|
|
|
|
|
|
|
|
101
|
|
|
|
|
|
|
=item * C |
|
102
|
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
The value considered invalid in pareto set. Such value is dominated by |
|
104
|
|
|
|
|
|
|
any value and dominates only invalid value. |
|
105
|
|
|
|
|
|
|
|
|
106
|
|
|
|
|
|
|
However, computations of domination in presence of invalid values can be |
|
107
|
|
|
|
|
|
|
considerably slower, as much as 5 times. So it probably will be faster to first |
|
108
|
|
|
|
|
|
|
parse the data and replace invalid markers with some huge-and-surely-dominated |
|
109
|
|
|
|
|
|
|
values. |
|
110
|
|
|
|
|
|
|
|
|
111
|
|
|
|
|
|
|
=item * C |
|
112
|
|
|
|
|
|
|
|
|
113
|
|
|
|
|
|
|
The sub(s) used to compare specific column values and determining domination |
|
114
|
|
|
|
|
|
|
between them. Scalar, sub ref or hash ref. If not set, the default is that |
|
115
|
|
|
|
|
|
|
the numerically smaller value dominates the other one. |
|
116
|
|
|
|
|
|
|
|
|
117
|
|
|
|
|
|
|
When the scalar is passed, it is assumed to be the name of a predefined |
|
118
|
|
|
|
|
|
|
dominator. This is a much faster option to specifying the sub of your own. |
|
119
|
|
|
|
|
|
|
Recognized dominators are: |
|
120
|
|
|
|
|
|
|
|
|
121
|
|
|
|
|
|
|
=over |
|
122
|
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
=item * C numerically smaller value dominates |
|
124
|
|
|
|
|
|
|
|
|
125
|
|
|
|
|
|
|
=item * C numerically greater value dominates |
|
126
|
|
|
|
|
|
|
|
|
127
|
|
|
|
|
|
|
=item * C earlier in collation order value dominates (lexicographical |
|
128
|
|
|
|
|
|
|
order) |
|
129
|
|
|
|
|
|
|
|
|
130
|
|
|
|
|
|
|
=item * C later in collation order value dominates (reversed |
|
131
|
|
|
|
|
|
|
lexicographical order) |
|
132
|
|
|
|
|
|
|
|
|
133
|
|
|
|
|
|
|
=item * C standard, i.e. C dominator |
|
134
|
|
|
|
|
|
|
|
|
135
|
|
|
|
|
|
|
=back |
|
136
|
|
|
|
|
|
|
|
|
137
|
|
|
|
|
|
|
During creation of Pareto set, the dominator sub is called with three arguments: |
|
138
|
|
|
|
|
|
|
column number, first vector's value, second vector's value, and should return |
|
139
|
|
|
|
|
|
|
C, when the second value dominates the first one, assuming they appeared |
|
140
|
|
|
|
|
|
|
in the specified column. |
|
141
|
|
|
|
|
|
|
|
|
142
|
|
|
|
|
|
|
Make sure that your sub returns C when two passed values are the same. |
|
143
|
|
|
|
|
|
|
This is necessary to obey the whole Pareto set domination contract. |
|
144
|
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
There are two approaches possible when the values in different columns are of |
|
146
|
|
|
|
|
|
|
different types, in the sense of domination. First, you can use passed column |
|
147
|
|
|
|
|
|
|
number to decide the domination check function. Alternatively, you can pass a |
|
148
|
|
|
|
|
|
|
hash ref with mapping from the column number to the sub ref used to compare the |
|
149
|
|
|
|
|
|
|
given column: |
|
150
|
|
|
|
|
|
|
|
|
151
|
|
|
|
|
|
|
my $lexi_dominator = sub { |
|
152
|
|
|
|
|
|
|
my ($col, $dominated, $by) = @_; |
|
153
|
|
|
|
|
|
|
return ($dominated ge $by); |
|
154
|
|
|
|
|
|
|
}; |
|
155
|
|
|
|
|
|
|
my $min_dominator = sub { |
|
156
|
|
|
|
|
|
|
my ($col, $dominated, $by) = @_; |
|
157
|
|
|
|
|
|
|
return ($dominated >= $by); |
|
158
|
|
|
|
|
|
|
} |
|
159
|
|
|
|
|
|
|
|
|
160
|
|
|
|
|
|
|
my $set = new Data::Pareto({ |
|
161
|
|
|
|
|
|
|
columns => [0, 2], |
|
162
|
|
|
|
|
|
|
column_dominator => { |
|
163
|
|
|
|
|
|
|
0 => $lexi_dominator, |
|
164
|
|
|
|
|
|
|
2 => $min_dominator |
|
165
|
|
|
|
|
|
|
} |
|
166
|
|
|
|
|
|
|
}); |
|
167
|
|
|
|
|
|
|
$set->add(['a', 'label 1', 12], ['b', 'label 2', 9]); |
|
168
|
|
|
|
|
|
|
|
|
169
|
|
|
|
|
|
|
=back |
|
170
|
|
|
|
|
|
|
|
|
171
|
|
|
|
|
|
|
The rest of arguments are assumed to be vectors, and passed to L |
|
172
|
|
|
|
|
|
|
method. |
|
173
|
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
=cut |
|
175
|
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
|
|
177
|
|
|
|
|
|
|
sub new { |
|
178
|
32
|
|
|
32
|
1
|
3769
|
my ($class, $attrs) = (shift, shift); |
|
179
|
32
|
|
|
|
|
158
|
my $self = bless { |
|
180
|
|
|
|
|
|
|
pareto => [ ], |
|
181
|
|
|
|
|
|
|
vectorStatus => { }, |
|
182
|
|
|
|
|
|
|
%$attrs |
|
183
|
|
|
|
|
|
|
}, $class; |
|
184
|
32
|
|
|
|
|
72
|
$self->_construct_subs; |
|
185
|
|
|
|
|
|
|
|
|
186
|
32
|
50
|
|
|
|
82
|
$self->add(@_) if @_; |
|
187
|
32
|
|
|
|
|
65
|
return $self; |
|
188
|
|
|
|
|
|
|
} |
|
189
|
|
|
|
|
|
|
|
|
190
|
|
|
|
|
|
|
=head2 add |
|
191
|
|
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
Tests vectors passed as arguments and adds the non-dominated ones to the |
|
193
|
|
|
|
|
|
|
Pareto set. |
|
194
|
|
|
|
|
|
|
|
|
195
|
|
|
|
|
|
|
=cut |
|
196
|
|
|
|
|
|
|
|
|
197
|
|
|
|
|
|
|
sub add { |
|
198
|
19
|
|
|
19
|
1
|
85
|
my $self = shift; |
|
199
|
19
|
|
|
|
|
51
|
$self->_update_pareto($_) for @_; |
|
200
|
|
|
|
|
|
|
} |
|
201
|
|
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
=head2 get_pareto |
|
203
|
|
|
|
|
|
|
|
|
204
|
|
|
|
|
|
|
Returns the current content of Pareto set as a list of vectors. |
|
205
|
|
|
|
|
|
|
|
|
206
|
|
|
|
|
|
|
=cut |
|
207
|
|
|
|
|
|
|
|
|
208
|
|
|
|
|
|
|
sub get_pareto { |
|
209
|
2
|
|
|
2
|
1
|
8
|
my ($self) = @_; |
|
210
|
2
|
|
|
|
|
3
|
return (@{$self->{pareto}}); |
|
|
2
|
|
|
|
|
6
|
|
|
211
|
|
|
|
|
|
|
} |
|
212
|
|
|
|
|
|
|
|
|
213
|
|
|
|
|
|
|
=head2 get_pareto_ref |
|
214
|
|
|
|
|
|
|
|
|
215
|
|
|
|
|
|
|
Returns the current content of Pareto set as a ref to array with vectors. |
|
216
|
|
|
|
|
|
|
The return value references the original array, so treat it as read-only! |
|
217
|
|
|
|
|
|
|
|
|
218
|
|
|
|
|
|
|
=cut |
|
219
|
|
|
|
|
|
|
|
|
220
|
|
|
|
|
|
|
sub get_pareto_ref { |
|
221
|
17
|
|
|
17
|
1
|
61
|
my ($self) = @_; |
|
222
|
17
|
|
|
|
|
114
|
return $self->{pareto}; |
|
223
|
|
|
|
|
|
|
} |
|
224
|
|
|
|
|
|
|
|
|
225
|
|
|
|
|
|
|
# update (potentially) the set with a new vector: |
|
226
|
|
|
|
|
|
|
# check if it is Pareto, if so, remove dominated vectors |
|
227
|
|
|
|
|
|
|
sub _update_pareto { |
|
228
|
43
|
|
|
43
|
|
52
|
my ($self, $NV) = @_; |
|
229
|
|
|
|
|
|
|
|
|
230
|
|
|
|
|
|
|
# check if we already have a duplicate? |
|
231
|
|
|
|
|
|
|
# if so, handle it gently, so there are no mind-cracking |
|
232
|
|
|
|
|
|
|
# algorithm variations after that |
|
233
|
|
|
|
|
|
|
|
|
234
|
43
|
100
|
|
|
|
72
|
if ($self->_has_duplicates($NV)) { |
|
235
|
|
|
|
|
|
|
# ...then it depends on the policy |
|
236
|
4
|
100
|
|
|
|
8
|
if ($self->{duplicates}) { |
|
237
|
|
|
|
|
|
|
# add the duplicated vector to the pareto set |
|
238
|
3
|
|
|
|
|
4
|
push @{$self->{pareto}}, $NV; |
|
|
3
|
|
|
|
|
5
|
|
|
239
|
|
|
|
|
|
|
} else { |
|
240
|
|
|
|
|
|
|
# simply disgard the new vector |
|
241
|
|
|
|
|
|
|
} |
|
242
|
4
|
|
|
|
|
12
|
return; |
|
243
|
|
|
|
|
|
|
} |
|
244
|
|
|
|
|
|
|
|
|
245
|
39
|
|
|
|
|
45
|
my @newP = ( ); |
|
246
|
39
|
|
|
|
|
62
|
my $surePareto = 0; |
|
247
|
|
|
|
|
|
|
|
|
248
|
|
|
|
|
|
|
# check with every vector considered pareto so far |
|
249
|
39
|
|
|
|
|
39
|
for my $o (@{$self->{pareto}}) { |
|
|
39
|
|
|
|
|
66
|
|
|
250
|
27
|
100
|
|
|
|
40
|
if ($surePareto) { |
|
251
|
|
|
|
|
|
|
# preserve the current vector only if it is not dominated by new (now Pareto) vector |
|
252
|
1
|
50
|
|
|
|
20
|
if ($self->{_sub_is_dominated}($self, $o, $NV)) { |
|
253
|
1
|
|
|
|
|
3
|
$self->_ban_vector($o); |
|
254
|
|
|
|
|
|
|
} else { |
|
255
|
0
|
|
|
|
|
0
|
push @newP, $o; |
|
256
|
|
|
|
|
|
|
} |
|
257
|
|
|
|
|
|
|
} else { |
|
258
|
|
|
|
|
|
|
# stop processing with unchanged Pareto set if the new vector is dominated by the current one |
|
259
|
26
|
100
|
|
|
|
524
|
return if $self->{_sub_is_dominated}($self, $NV, $o); |
|
260
|
|
|
|
|
|
|
|
|
261
|
|
|
|
|
|
|
# mark new vector as "sure Pareto" only if it dominates the current vector |
|
262
|
21
|
100
|
|
|
|
426
|
if ($self->{_sub_is_dominated}($self, $o, $NV)) { |
|
263
|
5
|
|
|
|
|
7
|
$surePareto = 1; |
|
264
|
|
|
|
|
|
|
# ...and hence we don't preserve the dominated current vector |
|
265
|
5
|
|
|
|
|
10
|
$self->_ban_vector($o); |
|
266
|
5
|
|
|
|
|
9
|
next; |
|
267
|
|
|
|
|
|
|
} |
|
268
|
|
|
|
|
|
|
|
|
269
|
|
|
|
|
|
|
# otherwise, the current vector is for sure Pareto still, so preserve it |
|
270
|
16
|
|
|
|
|
33
|
push @newP, $o; |
|
271
|
|
|
|
|
|
|
} |
|
272
|
|
|
|
|
|
|
} |
|
273
|
|
|
|
|
|
|
|
|
274
|
34
|
|
|
|
|
46
|
push @newP, $NV; |
|
275
|
34
|
|
|
|
|
65
|
$self->_mark_vector($NV); |
|
276
|
34
|
|
|
|
|
134
|
$self->{pareto} = \@newP; |
|
277
|
|
|
|
|
|
|
} |
|
278
|
|
|
|
|
|
|
|
|
279
|
|
|
|
|
|
|
=head2 is_dominated |
|
280
|
|
|
|
|
|
|
|
|
281
|
|
|
|
|
|
|
Checks if the first vector passed is dominated by the second one. |
|
282
|
|
|
|
|
|
|
The comparison is made based on the values in vectors' columns, which |
|
283
|
|
|
|
|
|
|
were passed to L. |
|
284
|
|
|
|
|
|
|
|
|
285
|
|
|
|
|
|
|
The vectors passed are never duplicates of each other when this method is |
|
286
|
|
|
|
|
|
|
called from inside this module. |
|
287
|
|
|
|
|
|
|
|
|
288
|
|
|
|
|
|
|
Returns C, when the first vector from arguments list |
|
289
|
|
|
|
|
|
|
is dominated by the other one, and C otherwise. |
|
290
|
|
|
|
|
|
|
|
|
291
|
|
|
|
|
|
|
=cut |
|
292
|
|
|
|
|
|
|
|
|
293
|
22
|
|
|
22
|
1
|
745
|
sub is_dominated { $_[0]->{_sub_is_dominated}(@_); } # pass the whole @_, as the sub thinks it is a method |
|
294
|
|
|
|
|
|
|
|
|
295
|
|
|
|
|
|
|
# these are is_dominated() parts which will be composed into the function, |
|
296
|
|
|
|
|
|
|
# depending on the constructor options. |
|
297
|
|
|
|
|
|
|
my %_is_dominated_parts = ( |
|
298
|
|
|
|
|
|
|
invalid => <<'_EOT_', |
|
299
|
|
|
|
|
|
|
next if $self->{_sub_is_invalid}($dominated->[$col]); # invalid dominated by anything |
|
300
|
|
|
|
|
|
|
return 0 if $self->{_sub_is_invalid}($by->[$col]); # invalid can't dominate valid |
|
301
|
|
|
|
|
|
|
_EOT_ |
|
302
|
|
|
|
|
|
|
dominator_min => '($dominated->[$col] >= $by->[$col])', |
|
303
|
|
|
|
|
|
|
dominator_max => '($dominated->[$col] <= $by->[$col])', |
|
304
|
|
|
|
|
|
|
dominator_lexi => '($dominated->[$col] ge $by->[$col])', |
|
305
|
|
|
|
|
|
|
dominator_lexi_rev => '($dominated->[$col] le $by->[$col])', |
|
306
|
|
|
|
|
|
|
|
|
307
|
|
|
|
|
|
|
_dominator_custom => <<'_EOT_', |
|
308
|
|
|
|
|
|
|
$self->{column_dominator}($col, $dominated->[$col], $by->[$col]) |
|
309
|
|
|
|
|
|
|
_EOT_ |
|
310
|
|
|
|
|
|
|
_dominator_custom_hash => <<'_EOT_', |
|
311
|
|
|
|
|
|
|
$self->{column_dominator}{$col}($col, $dominated->[$col], $by->[$col]) |
|
312
|
|
|
|
|
|
|
_EOT_ |
|
313
|
|
|
|
|
|
|
|
|
314
|
|
|
|
|
|
|
); |
|
315
|
|
|
|
|
|
|
$_is_dominated_parts{dominator_std} = $_is_dominated_parts{dominator_min}; |
|
316
|
|
|
|
|
|
|
|
|
317
|
|
|
|
|
|
|
sub _construct_subs { |
|
318
|
32
|
|
|
32
|
|
39
|
my ($self) = @_; |
|
319
|
|
|
|
|
|
|
|
|
320
|
32
|
|
|
|
|
29
|
my $invalid_part; |
|
321
|
32
|
100
|
|
|
|
66
|
if (exists $self->{invalid}) { |
|
322
|
4
|
|
|
|
|
5
|
my $inv = $self->{invalid}; |
|
323
|
4
|
|
|
23
|
|
14
|
$self->{_sub_is_invalid} = sub { $_[0] eq $inv }; |
|
|
23
|
|
|
|
|
378
|
|
|
324
|
4
|
|
|
|
|
9
|
$invalid_part = $_is_dominated_parts{invalid}; |
|
325
|
|
|
|
|
|
|
} else { |
|
326
|
28
|
|
|
2
|
|
91
|
$self->{_sub_is_invalid} = sub { 0 }; |
|
|
2
|
|
|
|
|
11
|
|
|
327
|
28
|
|
|
|
|
36
|
$invalid_part = ''; |
|
328
|
|
|
|
|
|
|
} |
|
329
|
|
|
|
|
|
|
|
|
330
|
32
|
|
|
|
|
32
|
my $cmp_part; |
|
331
|
32
|
100
|
|
|
|
69
|
if (exists $self->{column_dominator}) { |
|
332
|
10
|
|
50
|
|
|
26
|
my $dom = $self->{column_dominator} || ''; |
|
333
|
10
|
|
|
|
|
25
|
my $type = reftype $dom; |
|
334
|
10
|
100
|
66
|
|
|
25
|
if (!defined $type) { |
|
|
|
100
|
|
|
|
|
|
|
335
|
|
|
|
|
|
|
# builtin |
|
336
|
8
|
|
|
|
|
18
|
$cmp_part = $_is_dominated_parts{"dominator_$dom"}; |
|
337
|
8
|
50
|
|
|
|
18
|
croak "Unrecognized dominator builtin '$dom'" unless $cmp_part; |
|
338
|
|
|
|
|
|
|
} elsif ($type && $type eq 'HASH') { |
|
339
|
1
|
|
|
|
|
2
|
$cmp_part = $_is_dominated_parts{_dominator_custom_hash}; |
|
340
|
|
|
|
|
|
|
} else { |
|
341
|
1
|
|
|
|
|
3
|
$cmp_part = $_is_dominated_parts{_dominator_custom}; |
|
342
|
|
|
|
|
|
|
} |
|
343
|
|
|
|
|
|
|
} else { |
|
344
|
22
|
|
|
|
|
36
|
$cmp_part = $_is_dominated_parts{dominator_std}; |
|
345
|
|
|
|
|
|
|
} |
|
346
|
|
|
|
|
|
|
|
|
347
|
32
|
|
|
|
|
77
|
my $sub_str = <<'_EOT_' |
|
348
|
|
|
|
|
|
|
sub { |
|
349
|
|
|
|
|
|
|
my ($self, $dominated, $by) = @_; |
|
350
|
|
|
|
|
|
|
for my $col (@{$self->{columns}}) { |
|
351
|
|
|
|
|
|
|
_EOT_ |
|
352
|
|
|
|
|
|
|
. <<_EOT_ |
|
353
|
|
|
|
|
|
|
$invalid_part |
|
354
|
|
|
|
|
|
|
return 0 unless $cmp_part; |
|
355
|
|
|
|
|
|
|
} |
|
356
|
|
|
|
|
|
|
1; |
|
357
|
|
|
|
|
|
|
} |
|
358
|
|
|
|
|
|
|
_EOT_ |
|
359
|
|
|
|
|
|
|
; |
|
360
|
32
|
|
|
|
|
3282
|
$self->{_sub_is_dominated} = eval $sub_str; |
|
361
|
|
|
|
|
|
|
} |
|
362
|
|
|
|
|
|
|
|
|
363
|
|
|
|
|
|
|
=head2 is_invalid |
|
364
|
|
|
|
|
|
|
|
|
365
|
|
|
|
|
|
|
Checks if the given value is considered invalid for the current object. |
|
366
|
|
|
|
|
|
|
Every value is valid by default. |
|
367
|
|
|
|
|
|
|
|
|
368
|
|
|
|
|
|
|
=cut |
|
369
|
|
|
|
|
|
|
|
|
370
|
6
|
|
|
6
|
1
|
51
|
sub is_invalid { return $_[0]->{_sub_is_invalid}($_[1]); } |
|
371
|
|
|
|
|
|
|
|
|
372
|
|
|
|
|
|
|
# calculate the string repr. of a vector; to be used as a hash key |
|
373
|
|
|
|
|
|
|
sub _vector_key { |
|
374
|
83
|
|
|
83
|
|
86
|
my ($self, $v) = @_; |
|
375
|
83
|
|
|
|
|
94
|
my @cols = ( ); |
|
376
|
83
|
|
|
|
|
71
|
for my $c (@{$self->{columns}}) { |
|
|
83
|
|
|
|
|
146
|
|
|
377
|
191
|
|
|
|
|
273
|
push @cols, $v->[$c]; |
|
378
|
|
|
|
|
|
|
} |
|
379
|
|
|
|
|
|
|
|
|
380
|
83
|
|
|
|
|
267
|
return join ';', @cols; |
|
381
|
|
|
|
|
|
|
} |
|
382
|
|
|
|
|
|
|
|
|
383
|
|
|
|
|
|
|
# checks if the given vector has duplicates in Pareto |
|
384
|
|
|
|
|
|
|
sub _has_duplicates { |
|
385
|
43
|
|
|
43
|
|
44
|
my ($self, $v) = @_; |
|
386
|
43
|
|
|
|
|
73
|
my $key = $self->_vector_key($v); |
|
387
|
43
|
|
100
|
|
|
169
|
return (exists $self->{vectorStatus}{$key} && $self->{vectorStatus}{$key} > 0); |
|
388
|
|
|
|
|
|
|
} |
|
389
|
|
|
|
|
|
|
|
|
390
|
|
|
|
|
|
|
# mark the vector as not present in Pareto. |
|
391
|
|
|
|
|
|
|
# In the future it can be used to ban the vector from trying to return |
|
392
|
|
|
|
|
|
|
# to the Pareto set. |
|
393
|
|
|
|
|
|
|
sub _ban_vector { |
|
394
|
6
|
|
|
6
|
|
8
|
my ($self, $v) = @_; |
|
395
|
6
|
|
|
|
|
10
|
my $key = $self->_vector_key($v); |
|
396
|
6
|
|
|
|
|
11
|
$self->{vectorStatus}{$key} = 0; |
|
397
|
|
|
|
|
|
|
} |
|
398
|
|
|
|
|
|
|
|
|
399
|
|
|
|
|
|
|
# mark vector as present in the Pareto set. |
|
400
|
|
|
|
|
|
|
sub _mark_vector { |
|
401
|
34
|
|
|
34
|
|
38
|
my ($self, $v) = @_; |
|
402
|
34
|
|
|
|
|
56
|
my $key = $self->_vector_key($v); |
|
403
|
34
|
|
|
|
|
84
|
$self->{vectorStatus}{$key} = 1; |
|
404
|
|
|
|
|
|
|
} |
|
405
|
|
|
|
|
|
|
|
|
406
|
|
|
|
|
|
|
=head1 TODO |
|
407
|
|
|
|
|
|
|
|
|
408
|
|
|
|
|
|
|
Allow specifying built-in dominators inside dominator hash. |
|
409
|
|
|
|
|
|
|
|
|
410
|
|
|
|
|
|
|
For large data sets calculations become time-intensive. There are a couple |
|
411
|
|
|
|
|
|
|
of techniques which might be applied to improve the performance: |
|
412
|
|
|
|
|
|
|
|
|
413
|
|
|
|
|
|
|
=over |
|
414
|
|
|
|
|
|
|
|
|
415
|
|
|
|
|
|
|
=item * defer the phase of removing vectors dominated by newly added vectors |
|
416
|
|
|
|
|
|
|
to L call; this results in smaller number of arrays |
|
417
|
|
|
|
|
|
|
rewritings. |
|
418
|
|
|
|
|
|
|
|
|
419
|
|
|
|
|
|
|
=item * split the set of vectors being added into smaller subsets, calculate |
|
420
|
|
|
|
|
|
|
Pareto sets for such subsets, and then apply insertion of resulting Pareto |
|
421
|
|
|
|
|
|
|
subsets to the main set; this results in smaller number of useless tries of |
|
422
|
|
|
|
|
|
|
adding dominated vectors into the set. |
|
423
|
|
|
|
|
|
|
|
|
424
|
|
|
|
|
|
|
=back |
|
425
|
|
|
|
|
|
|
|
|
426
|
|
|
|
|
|
|
=head1 AUTHOR |
|
427
|
|
|
|
|
|
|
|
|
428
|
|
|
|
|
|
|
Przemyslaw Wesolek, C<< >> |
|
429
|
|
|
|
|
|
|
|
|
430
|
|
|
|
|
|
|
=head1 BUGS |
|
431
|
|
|
|
|
|
|
|
|
432
|
|
|
|
|
|
|
Please report any bugs or feature requests to C, or through |
|
433
|
|
|
|
|
|
|
the web interface at L. I will be notified, and then you'll |
|
434
|
|
|
|
|
|
|
automatically be notified of progress on your bug as I make changes. |
|
435
|
|
|
|
|
|
|
|
|
436
|
|
|
|
|
|
|
=head1 SUPPORT |
|
437
|
|
|
|
|
|
|
|
|
438
|
|
|
|
|
|
|
You can find documentation for this module with the perldoc command. |
|
439
|
|
|
|
|
|
|
|
|
440
|
|
|
|
|
|
|
perldoc Data::Pareto |
|
441
|
|
|
|
|
|
|
|
|
442
|
|
|
|
|
|
|
|
|
443
|
|
|
|
|
|
|
You can also look for information at: |
|
444
|
|
|
|
|
|
|
|
|
445
|
|
|
|
|
|
|
=over 4 |
|
446
|
|
|
|
|
|
|
|
|
447
|
|
|
|
|
|
|
=item * RT: CPAN's request tracker |
|
448
|
|
|
|
|
|
|
|
|
449
|
|
|
|
|
|
|
L |
|
450
|
|
|
|
|
|
|
|
|
451
|
|
|
|
|
|
|
=item * AnnoCPAN: Annotated CPAN documentation |
|
452
|
|
|
|
|
|
|
|
|
453
|
|
|
|
|
|
|
L |
|
454
|
|
|
|
|
|
|
|
|
455
|
|
|
|
|
|
|
=item * CPAN Ratings |
|
456
|
|
|
|
|
|
|
|
|
457
|
|
|
|
|
|
|
L |
|
458
|
|
|
|
|
|
|
|
|
459
|
|
|
|
|
|
|
=item * Search CPAN |
|
460
|
|
|
|
|
|
|
|
|
461
|
|
|
|
|
|
|
L |
|
462
|
|
|
|
|
|
|
|
|
463
|
|
|
|
|
|
|
=back |
|
464
|
|
|
|
|
|
|
|
|
465
|
|
|
|
|
|
|
=head1 COPYRIGHT & LICENSE |
|
466
|
|
|
|
|
|
|
|
|
467
|
|
|
|
|
|
|
|
|
468
|
|
|
|
|
|
|
Copyright 2009 Przemyslaw Wesolek |
|
469
|
|
|
|
|
|
|
|
|
470
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify it |
|
471
|
|
|
|
|
|
|
under the terms of the Artistic License 2.0. For details, see the full |
|
472
|
|
|
|
|
|
|
text of the license in the file LICENSE. |
|
473
|
|
|
|
|
|
|
|
|
474
|
|
|
|
|
|
|
=cut |
|
475
|
|
|
|
|
|
|
|
|
476
|
|
|
|
|
|
|
1; # End of Data::Pareto |