File Coverage

ext/xxHash/xxhash.h
Criterion Covered Total %
statement 0 239 0.0
branch 0 526 0.0
condition n/a
subroutine n/a
pod n/a
total 0 765 0.0


line stmt bran cond sub pod time code
1             /*
2             * xxHash - Extremely Fast Hash algorithm
3             * Header File
4             * Copyright (C) 2012-2020 Yann Collet
5             *
6             * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
7             *
8             * Redistribution and use in source and binary forms, with or without
9             * modification, are permitted provided that the following conditions are
10             * met:
11             *
12             * * Redistributions of source code must retain the above copyright
13             * notice, this list of conditions and the following disclaimer.
14             * * Redistributions in binary form must reproduce the above
15             * copyright notice, this list of conditions and the following disclaimer
16             * in the documentation and/or other materials provided with the
17             * distribution.
18             *
19             * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20             * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21             * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22             * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23             * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24             * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25             * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26             * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27             * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28             * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29             * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30             *
31             * You can contact the author at:
32             * - xxHash homepage: https://www.xxhash.com
33             * - xxHash source repository: https://github.com/Cyan4973/xxHash
34             */
35             /*!
36             * @mainpage xxHash
37             *
38             * @file xxhash.h
39             * xxHash prototypes and implementation
40             */
41             /* TODO: update */
42             /* Notice extracted from xxHash homepage:
43              
44             xxHash is an extremely fast hash algorithm, running at RAM speed limits.
45             It also successfully passes all tests from the SMHasher suite.
46              
47             Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz)
48              
49             Name Speed Q.Score Author
50             xxHash 5.4 GB/s 10
51             CrapWow 3.2 GB/s 2 Andrew
52             MurmurHash 3a 2.7 GB/s 10 Austin Appleby
53             SpookyHash 2.0 GB/s 10 Bob Jenkins
54             SBox 1.4 GB/s 9 Bret Mulvey
55             Lookup3 1.2 GB/s 9 Bob Jenkins
56             SuperFastHash 1.2 GB/s 1 Paul Hsieh
57             CityHash64 1.05 GB/s 10 Pike & Alakuijala
58             FNV 0.55 GB/s 5 Fowler, Noll, Vo
59             CRC32 0.43 GB/s 9
60             MD5-32 0.33 GB/s 10 Ronald L. Rivest
61             SHA1-32 0.28 GB/s 10
62              
63             Q.Score is a measure of quality of the hash function.
64             It depends on successfully passing SMHasher test set.
65             10 is a perfect score.
66              
67             Note: SMHasher's CRC32 implementation is not the fastest one.
68             Other speed-oriented implementations can be faster,
69             especially in combination with PCLMUL instruction:
70             https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html?showComment=1552696407071#c3490092340461170735
71              
72             A 64-bit version, named XXH64, is available since r35.
73             It offers much better speed, but for 64-bit applications only.
74             Name Speed on 64 bits Speed on 32 bits
75             XXH64 13.8 GB/s 1.9 GB/s
76             XXH32 6.8 GB/s 6.0 GB/s
77             */
78              
79             #if defined (__cplusplus)
80             extern "C" {
81             #endif
82              
83             /* ****************************
84             * INLINE mode
85             ******************************/
86             /*!
87             * XXH_INLINE_ALL (and XXH_PRIVATE_API)
88             * Use these build macros to inline xxhash into the target unit.
89             * Inlining improves performance on small inputs, especially when the length is
90             * expressed as a compile-time constant:
91             *
92             * https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html
93             *
94             * It also keeps xxHash symbols private to the unit, so they are not exported.
95             *
96             * Usage:
97             * #define XXH_INLINE_ALL
98             * #include "xxhash.h"
99             *
100             * Do not compile and link xxhash.o as a separate object, as it is not useful.
101             */
102             #if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \
103             && !defined(XXH_INLINE_ALL_31684351384)
104             /* this section should be traversed only once */
105             # define XXH_INLINE_ALL_31684351384
106             /* give access to the advanced API, required to compile implementations */
107             # undef XXH_STATIC_LINKING_ONLY /* avoid macro redef */
108             # define XXH_STATIC_LINKING_ONLY
109             /* make all functions private */
110             # undef XXH_PUBLIC_API
111             # if defined(__GNUC__)
112             # define XXH_PUBLIC_API static __inline __attribute__((unused))
113             # elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
114             # define XXH_PUBLIC_API static inline
115             # elif defined(_MSC_VER)
116             # define XXH_PUBLIC_API static __inline
117             # else
118             /* note: this version may generate warnings for unused static functions */
119             # define XXH_PUBLIC_API static
120             # endif
121              
122             /*
123             * This part deals with the special case where a unit wants to inline xxHash,
124             * but "xxhash.h" has previously been included without XXH_INLINE_ALL, such
125             * as part of some previously included *.h header file.
126             * Without further action, the new include would just be ignored,
127             * and functions would effectively _not_ be inlined (silent failure).
128             * The following macros solve this situation by prefixing all inlined names,
129             * avoiding naming collision with previous inclusions.
130             */
131             # ifdef XXH_NAMESPACE
132             # error "XXH_INLINE_ALL with XXH_NAMESPACE is not supported"
133             /*
134             * Note: Alternative: #undef all symbols (it's a pretty large list).
135             * Without #error: it compiles, but functions are actually not inlined.
136             */
137             # endif
138             # define XXH_NAMESPACE XXH_INLINE_
139             /*
140             * Some identifiers (enums, type names) are not symbols, but they must
141             * still be renamed to avoid redeclaration.
142             * Alternative solution: do not redeclare them.
143             * However, this requires some #ifdefs, and is a more dispersed action.
144             * Meanwhile, renaming can be achieved in a single block
145             */
146             # define XXH_IPREF(Id) XXH_INLINE_ ## Id
147             # define XXH_OK XXH_IPREF(XXH_OK)
148             # define XXH_ERROR XXH_IPREF(XXH_ERROR)
149             # define XXH_errorcode XXH_IPREF(XXH_errorcode)
150             # define XXH32_canonical_t XXH_IPREF(XXH32_canonical_t)
151             # define XXH64_canonical_t XXH_IPREF(XXH64_canonical_t)
152             # define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t)
153             # define XXH32_state_s XXH_IPREF(XXH32_state_s)
154             # define XXH32_state_t XXH_IPREF(XXH32_state_t)
155             # define XXH64_state_s XXH_IPREF(XXH64_state_s)
156             # define XXH64_state_t XXH_IPREF(XXH64_state_t)
157             # define XXH3_state_s XXH_IPREF(XXH3_state_s)
158             # define XXH3_state_t XXH_IPREF(XXH3_state_t)
159             # define XXH128_hash_t XXH_IPREF(XXH128_hash_t)
160             /* Ensure the header is parsed again, even if it was previously included */
161             # undef XXHASH_H_5627135585666179
162             # undef XXHASH_H_STATIC_13879238742
163             #endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */
164              
165              
166              
167             /* ****************************************************************
168             * Stable API
169             *****************************************************************/
170             #ifndef XXHASH_H_5627135585666179
171             #define XXHASH_H_5627135585666179 1
172              
173              
174             /*!
175             * @defgroup public Public API
176             * Contains details on the public xxHash functions.
177             * @{
178             */
179             /* specific declaration modes for Windows */
180             #if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
181             # if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
182             # ifdef XXH_EXPORT
183             # define XXH_PUBLIC_API __declspec(dllexport)
184             # elif XXH_IMPORT
185             # define XXH_PUBLIC_API __declspec(dllimport)
186             # endif
187             # else
188             # define XXH_PUBLIC_API /* do nothing */
189             # endif
190             #endif
191              
192             #ifdef XXH_DOXYGEN
193             /*!
194             * @brief Emulate a namespace by transparently prefixing all symbols.
195             *
196             * If you want to include _and expose_ xxHash functions from within your own
197             * library, but also want to avoid symbol collisions with other libraries which
198             * may also include xxHash, you can use XXH_NAMESPACE to automatically prefix
199             * any public symbol from xxhash library with the value of XXH_NAMESPACE
200             * (therefore, avoid empty or numeric values).
201             *
202             * Note that no change is required within the calling program as long as it
203             * includes `xxhash.h`: Regular symbol names will be automatically translated
204             * by this header.
205             */
206             # define XXH_NAMESPACE /* YOUR NAME HERE */
207             # undef XXH_NAMESPACE
208             #endif
209              
210             #ifdef XXH_NAMESPACE
211             # define XXH_CAT(A,B) A##B
212             # define XXH_NAME2(A,B) XXH_CAT(A,B)
213             # define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
214             /* XXH32 */
215             # define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
216             # define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
217             # define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
218             # define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset)
219             # define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update)
220             # define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest)
221             # define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState)
222             # define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash)
223             # define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical)
224             /* XXH64 */
225             # define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
226             # define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
227             # define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
228             # define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset)
229             # define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update)
230             # define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest)
231             # define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState)
232             # define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
233             # define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical)
234             /* XXH3_64bits */
235             # define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits)
236             # define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret)
237             # define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed)
238             # define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState)
239             # define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState)
240             # define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState)
241             # define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset)
242             # define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed)
243             # define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret)
244             # define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update)
245             # define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest)
246             # define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret)
247             /* XXH3_128bits */
248             # define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128)
249             # define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits)
250             # define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed)
251             # define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret)
252             # define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset)
253             # define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed)
254             # define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret)
255             # define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update)
256             # define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest)
257             # define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual)
258             # define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp)
259             # define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash)
260             # define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical)
261             #endif
262              
263              
264             /* *************************************
265             * Version
266             ***************************************/
267             #define XXH_VERSION_MAJOR 0
268             #define XXH_VERSION_MINOR 8
269             #define XXH_VERSION_RELEASE 0
270             #define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE)
271              
272             /*!
273             * @brief Obtains the xxHash version.
274             *
275             * This is only useful when xxHash is compiled as a shared library, as it is
276             * independent of the version defined in the header.
277             *
278             * @return `XXH_VERSION_NUMBER` as of when the function was compiled.
279             */
280             XXH_PUBLIC_API unsigned XXH_versionNumber (void);
281              
282              
283             /* ****************************
284             * Definitions
285             ******************************/
286             #include /* size_t */
287             typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;
288              
289              
290             /*-**********************************************************************
291             * 32-bit hash
292             ************************************************************************/
293             #if defined(XXH_DOXYGEN) /* Don't show include */
294             /*!
295             * @brief An unsigned 32-bit integer.
296             *
297             * Not necessarily defined to `uint32_t` but functionally equivalent.
298             */
299             typedef uint32_t XXH32_hash_t;
300             #elif !defined (__VMS) \
301             && (defined (__cplusplus) \
302             || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
303             # include
304             typedef uint32_t XXH32_hash_t;
305             #else
306             # include
307             # if UINT_MAX == 0xFFFFFFFFUL
308             typedef unsigned int XXH32_hash_t;
309             # else
310             # if ULONG_MAX == 0xFFFFFFFFUL
311             typedef unsigned long XXH32_hash_t;
312             # else
313             # error "unsupported platform: need a 32-bit type"
314             # endif
315             # endif
316             #endif
317              
318             /*!
319             * @}
320             *
321             * @defgroup xxh32_family XXH32 family
322             * @ingroup public
323             * Contains functions used in the classic 32-bit xxHash algorithm.
324             *
325             * @note
326             * XXH32 is considered rather weak by today's standards.
327             * The @ref xxh3_family provides competitive speed for both 32-bit and 64-bit
328             * systems, and offers true 64/128 bit hash results. It provides a superior
329             * level of dispersion, and greatly reduces the risks of collisions.
330             *
331             * @see @ref xxh64_family, @ref xxh3_family : Other xxHash families
332             * @see @ref xxh32_impl for implementation details
333             * @{
334             */
335              
336             /*!
337             * @brief Calculates the 32-bit hash of @p input using xxHash32.
338             *
339             * Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s
340             *
341             * @param input The block of data to be hashed, at least @p length bytes in size.
342             * @param length The length of @p input, in bytes.
343             * @param seed The 32-bit seed to alter the hash's output predictably.
344             *
345             * @pre
346             * The memory between @p input and @p input + @p length must be valid,
347             * readable, contiguous memory. However, if @p length is `0`, @p input may be
348             * `NULL`. In C++, this also must be *TriviallyCopyable*.
349             *
350             * @return The calculated 32-bit hash value.
351             *
352             * @see
353             * XXH64(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128():
354             * Direct equivalents for the other variants of xxHash.
355             * @see
356             * XXH32_createState(), XXH32_update(), XXH32_digest(): Streaming version.
357             */
358             XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed);
359              
360             /*!
361             * Streaming functions generate the xxHash value from an incremental input.
362             * This method is slower than single-call functions, due to state management.
363             * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized.
364             *
365             * An XXH state must first be allocated using `XXH*_createState()`.
366             *
367             * Start a new hash by initializing the state with a seed using `XXH*_reset()`.
368             *
369             * Then, feed the hash state by calling `XXH*_update()` as many times as necessary.
370             *
371             * The function returns an error code, with 0 meaning OK, and any other value
372             * meaning there is an error.
373             *
374             * Finally, a hash value can be produced anytime, by using `XXH*_digest()`.
375             * This function returns the nn-bits hash as an int or long long.
376             *
377             * It's still possible to continue inserting input into the hash state after a
378             * digest, and generate new hash values later on by invoking `XXH*_digest()`.
379             *
380             * When done, release the state using `XXH*_freeState()`.
381             *
382             * Example code for incrementally hashing a file:
383             * @code{.c}
384             * #include
385             * #include
386             * #define BUFFER_SIZE 256
387             *
388             * // Note: XXH64 and XXH3 use the same interface.
389             * XXH32_hash_t
390             * hashFile(FILE* stream)
391             * {
392             * XXH32_state_t* state;
393             * unsigned char buf[BUFFER_SIZE];
394             * size_t amt;
395             * XXH32_hash_t hash;
396             *
397             * state = XXH32_createState(); // Create a state
398             * assert(state != NULL); // Error check here
399             * XXH32_reset(state, 0xbaad5eed); // Reset state with our seed
400             * while ((amt = fread(buf, 1, sizeof(buf), stream)) != 0) {
401             * XXH32_update(state, buf, amt); // Hash the file in chunks
402             * }
403             * hash = XXH32_digest(state); // Finalize the hash
404             * XXH32_freeState(state); // Clean up
405             * return hash;
406             * }
407             * @endcode
408             */
409              
410             /*!
411             * @typedef struct XXH32_state_s XXH32_state_t
412             * @brief The opaque state struct for the XXH32 streaming API.
413             *
414             * @see XXH32_state_s for details.
415             */
416             typedef struct XXH32_state_s XXH32_state_t;
417              
418             /*!
419             * @brief Allocates an @ref XXH32_state_t.
420             *
421             * Must be freed with XXH32_freeState().
422             * @return An allocated XXH32_state_t on success, `NULL` on failure.
423             */
424             XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void);
425             /*!
426             * @brief Frees an @ref XXH32_state_t.
427             *
428             * Must be allocated with XXH32_createState().
429             * @param statePtr A pointer to an @ref XXH32_state_t allocated with @ref XXH32_createState().
430             * @return XXH_OK.
431             */
432             XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr);
433             /*!
434             * @brief Copies one @ref XXH32_state_t to another.
435             *
436             * @param dst_state The state to copy to.
437             * @param src_state The state to copy from.
438             * @pre
439             * @p dst_state and @p src_state must not be `NULL` and must not overlap.
440             */
441             XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state);
442              
443             /*!
444             * @brief Resets an @ref XXH32_state_t to begin a new hash.
445             *
446             * This function resets and seeds a state. Call it before @ref XXH32_update().
447             *
448             * @param statePtr The state struct to reset.
449             * @param seed The 32-bit seed to alter the hash result predictably.
450             *
451             * @pre
452             * @p statePtr must not be `NULL`.
453             *
454             * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
455             */
456             XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, XXH32_hash_t seed);
457              
458             /*!
459             * @brief Consumes a block of @p input to an @ref XXH32_state_t.
460             *
461             * Call this to incrementally consume blocks of data.
462             *
463             * @param statePtr The state struct to update.
464             * @param input The block of data to be hashed, at least @p length bytes in size.
465             * @param length The length of @p input, in bytes.
466             *
467             * @pre
468             * @p statePtr must not be `NULL`.
469             * @pre
470             * The memory between @p input and @p input + @p length must be valid,
471             * readable, contiguous memory. However, if @p length is `0`, @p input may be
472             * `NULL`. In C++, this also must be *TriviallyCopyable*.
473             *
474             * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
475             */
476             XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
477              
478             /*!
479             * @brief Returns the calculated hash value from an @ref XXH32_state_t.
480             *
481             * @note
482             * Calling XXH32_digest() will not affect @p statePtr, so you can update,
483             * digest, and update again.
484             *
485             * @param statePtr The state struct to calculate the hash from.
486             *
487             * @pre
488             * @p statePtr must not be `NULL`.
489             *
490             * @return The calculated xxHash32 value from that state.
491             */
492             XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr);
493              
494             /******* Canonical representation *******/
495              
496             /*
497             * The default return values from XXH functions are unsigned 32 and 64 bit
498             * integers.
499             * This the simplest and fastest format for further post-processing.
500             *
501             * However, this leaves open the question of what is the order on the byte level,
502             * since little and big endian conventions will store the same number differently.
503             *
504             * The canonical representation settles this issue by mandating big-endian
505             * convention, the same convention as human-readable numbers (large digits first).
506             *
507             * When writing hash values to storage, sending them over a network, or printing
508             * them, it's highly recommended to use the canonical representation to ensure
509             * portability across a wider range of systems, present and future.
510             *
511             * The following functions allow transformation of hash values to and from
512             * canonical format.
513             */
514              
515             /*!
516             * @brief Canonical (big endian) representation of @ref XXH32_hash_t.
517             */
518             typedef struct {
519             unsigned char digest[4]; /*!< Hash bytes, big endian */
520             } XXH32_canonical_t;
521              
522             /*!
523             * @brief Converts an @ref XXH32_hash_t to a big endian @ref XXH32_canonical_t.
524             *
525             * @param dst The @ref XXH32_canonical_t pointer to be stored to.
526             * @param hash The @ref XXH32_hash_t to be converted.
527             *
528             * @pre
529             * @p dst must not be `NULL`.
530             */
531             XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
532              
533             /*!
534             * @brief Converts an @ref XXH32_canonical_t to a native @ref XXH32_hash_t.
535             *
536             * @param src The @ref XXH32_canonical_t to convert.
537             *
538             * @pre
539             * @p src must not be `NULL`.
540             *
541             * @return The converted hash.
542             */
543             XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
544              
545              
546             /*!
547             * @}
548             * @ingroup public
549             * @{
550             */
551              
552             #ifndef XXH_NO_LONG_LONG
553             /*-**********************************************************************
554             * 64-bit hash
555             ************************************************************************/
556             #if defined(XXH_DOXYGEN) /* don't include */
557             /*!
558             * @brief An unsigned 64-bit integer.
559             *
560             * Not necessarily defined to `uint64_t` but functionally equivalent.
561             */
562             typedef uint64_t XXH64_hash_t;
563             #elif !defined (__VMS) \
564             && (defined (__cplusplus) \
565             || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
566             # include
567             typedef uint64_t XXH64_hash_t;
568             #else
569             # include
570             # if defined(__LP64__) && ULONG_MAX == 0xFFFFFFFFFFFFFFFFULL
571             /* LP64 ABI says uint64_t is unsigned long */
572             typedef unsigned long XXH64_hash_t;
573             # else
574             /* the following type must have a width of 64-bit */
575             typedef unsigned long long XXH64_hash_t;
576             # endif
577             #endif
578              
579             /*!
580             * @}
581             *
582             * @defgroup xxh64_family XXH64 family
583             * @ingroup public
584             * @{
585             * Contains functions used in the classic 64-bit xxHash algorithm.
586             *
587             * @note
588             * XXH3 provides competitive speed for both 32-bit and 64-bit systems,
589             * and offers true 64/128 bit hash results. It provides a superior level of
590             * dispersion, and greatly reduces the risks of collisions.
591             */
592              
593              
594             /*!
595             * @brief Calculates the 64-bit hash of @p input using xxHash64.
596             *
597             * This function usually runs faster on 64-bit systems, but slower on 32-bit
598             * systems (see benchmark).
599             *
600             * @param input The block of data to be hashed, at least @p length bytes in size.
601             * @param length The length of @p input, in bytes.
602             * @param seed The 64-bit seed to alter the hash's output predictably.
603             *
604             * @pre
605             * The memory between @p input and @p input + @p length must be valid,
606             * readable, contiguous memory. However, if @p length is `0`, @p input may be
607             * `NULL`. In C++, this also must be *TriviallyCopyable*.
608             *
609             * @return The calculated 64-bit hash.
610             *
611             * @see
612             * XXH32(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128():
613             * Direct equivalents for the other variants of xxHash.
614             * @see
615             * XXH64_createState(), XXH64_update(), XXH64_digest(): Streaming version.
616             */
617             XXH_PUBLIC_API XXH64_hash_t XXH64(const void* input, size_t length, XXH64_hash_t seed);
618              
619             /******* Streaming *******/
620             /*!
621             * @brief The opaque state struct for the XXH64 streaming API.
622             *
623             * @see XXH64_state_s for details.
624             */
625             typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */
626             XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void);
627             XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr);
628             XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dst_state, const XXH64_state_t* src_state);
629              
630             XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH64_state_t* statePtr, XXH64_hash_t seed);
631             XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length);
632             XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* statePtr);
633              
634             /******* Canonical representation *******/
635             typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t;
636             XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash);
637             XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src);
638              
639             /*!
640             * @}
641             * ************************************************************************
642             * @defgroup xxh3_family XXH3 family
643             * @ingroup public
644             * @{
645             *
646             * XXH3 is a more recent hash algorithm featuring:
647             * - Improved speed for both small and large inputs
648             * - True 64-bit and 128-bit outputs
649             * - SIMD acceleration
650             * - Improved 32-bit viability
651             *
652             * Speed analysis methodology is explained here:
653             *
654             * https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html
655             *
656             * Compared to XXH64, expect XXH3 to run approximately
657             * ~2x faster on large inputs and >3x faster on small ones,
658             * exact differences vary depending on platform.
659             *
660             * XXH3's speed benefits greatly from SIMD and 64-bit arithmetic,
661             * but does not require it.
662             * Any 32-bit and 64-bit targets that can run XXH32 smoothly
663             * can run XXH3 at competitive speeds, even without vector support.
664             * Further details are explained in the implementation.
665             *
666             * Optimized implementations are provided for AVX512, AVX2, SSE2, NEON, POWER8,
667             * ZVector and scalar targets. This can be controlled via the XXH_VECTOR macro.
668             *
669             * XXH3 implementation is portable:
670             * it has a generic C90 formulation that can be compiled on any platform,
671             * all implementations generage exactly the same hash value on all platforms.
672             * Starting from v0.8.0, it's also labelled "stable", meaning that
673             * any future version will also generate the same hash value.
674             *
675             * XXH3 offers 2 variants, _64bits and _128bits.
676             *
677             * When only 64 bits are needed, prefer invoking the _64bits variant, as it
678             * reduces the amount of mixing, resulting in faster speed on small inputs.
679             * It's also generally simpler to manipulate a scalar return type than a struct.
680             *
681             * The API supports one-shot hashing, streaming mode, and custom secrets.
682             */
683              
684             /*-**********************************************************************
685             * XXH3 64-bit variant
686             ************************************************************************/
687              
688             /* XXH3_64bits():
689             * default 64-bit variant, using default secret and default seed of 0.
690             * It's the fastest variant. */
691             XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* data, size_t len);
692              
693             /*
694             * XXH3_64bits_withSeed():
695             * This variant generates a custom secret on the fly
696             * based on default secret altered using the `seed` value.
697             * While this operation is decently fast, note that it's not completely free.
698             * Note: seed==0 produces the same results as XXH3_64bits().
699             */
700             XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
701              
702             /*!
703             * The bare minimum size for a custom secret.
704             *
705             * @see
706             * XXH3_64bits_withSecret(), XXH3_64bits_reset_withSecret(),
707             * XXH3_128bits_withSecret(), XXH3_128bits_reset_withSecret().
708             */
709             #define XXH3_SECRET_SIZE_MIN 136
710              
711             /*
712             * XXH3_64bits_withSecret():
713             * It's possible to provide any blob of bytes as a "secret" to generate the hash.
714             * This makes it more difficult for an external actor to prepare an intentional collision.
715             * The main condition is that secretSize *must* be large enough (>= XXH3_SECRET_SIZE_MIN).
716             * However, the quality of produced hash values depends on secret's entropy.
717             * Technically, the secret must look like a bunch of random bytes.
718             * Avoid "trivial" or structured data such as repeated sequences or a text document.
719             * Whenever unsure about the "randomness" of the blob of bytes,
720             * consider relabelling it as a "custom seed" instead,
721             * and employ "XXH3_generateSecret()" (see below)
722             * to generate a high entropy secret derived from the custom seed.
723             */
724             XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
725              
726              
727             /******* Streaming *******/
728             /*
729             * Streaming requires state maintenance.
730             * This operation costs memory and CPU.
731             * As a consequence, streaming is slower than one-shot hashing.
732             * For better performance, prefer one-shot functions whenever applicable.
733             */
734              
735             /*!
736             * @brief The state struct for the XXH3 streaming API.
737             *
738             * @see XXH3_state_s for details.
739             */
740             typedef struct XXH3_state_s XXH3_state_t;
741             XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void);
742             XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr);
743             XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state);
744              
745             /*
746             * XXH3_64bits_reset():
747             * Initialize with default parameters.
748             * digest will be equivalent to `XXH3_64bits()`.
749             */
750             XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t* statePtr);
751             /*
752             * XXH3_64bits_reset_withSeed():
753             * Generate a custom secret from `seed`, and store it into `statePtr`.
754             * digest will be equivalent to `XXH3_64bits_withSeed()`.
755             */
756             XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
757             /*
758             * XXH3_64bits_reset_withSecret():
759             * `secret` is referenced, it _must outlive_ the hash streaming session.
760             * Similar to one-shot API, `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`,
761             * and the quality of produced hash values depends on secret's entropy
762             * (secret's content should look like a bunch of random bytes).
763             * When in doubt about the randomness of a candidate `secret`,
764             * consider employing `XXH3_generateSecret()` instead (see below).
765             */
766             XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
767              
768             XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
769             XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* statePtr);
770              
771             /* note : canonical representation of XXH3 is the same as XXH64
772             * since they both produce XXH64_hash_t values */
773              
774              
775             /*-**********************************************************************
776             * XXH3 128-bit variant
777             ************************************************************************/
778              
779             /*!
780             * @brief The return value from 128-bit hashes.
781             *
782             * Stored in little endian order, although the fields themselves are in native
783             * endianness.
784             */
785             typedef struct {
786             XXH64_hash_t low64; /*!< `value & 0xFFFFFFFFFFFFFFFF` */
787             XXH64_hash_t high64; /*!< `value >> 64` */
788             } XXH128_hash_t;
789              
790             XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* data, size_t len);
791             XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
792             XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
793              
794             /******* Streaming *******/
795             /*
796             * Streaming requires state maintenance.
797             * This operation costs memory and CPU.
798             * As a consequence, streaming is slower than one-shot hashing.
799             * For better performance, prefer one-shot functions whenever applicable.
800             *
801             * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits().
802             * Use already declared XXH3_createState() and XXH3_freeState().
803             *
804             * All reset and streaming functions have same meaning as their 64-bit counterpart.
805             */
806              
807             XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t* statePtr);
808             XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
809             XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
810              
811             XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
812             XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* statePtr);
813              
814             /* Following helper functions make it possible to compare XXH128_hast_t values.
815             * Since XXH128_hash_t is a structure, this capability is not offered by the language.
816             * Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */
817              
818             /*!
819             * XXH128_isEqual():
820             * Return: 1 if `h1` and `h2` are equal, 0 if they are not.
821             */
822             XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2);
823              
824             /*!
825             * XXH128_cmp():
826             *
827             * This comparator is compatible with stdlib's `qsort()`/`bsearch()`.
828             *
829             * return: >0 if *h128_1 > *h128_2
830             * =0 if *h128_1 == *h128_2
831             * <0 if *h128_1 < *h128_2
832             */
833             XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2);
834              
835              
836             /******* Canonical representation *******/
837             typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t;
838             XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash);
839             XXH_PUBLIC_API XXH128_hash_t XXH128_hashFromCanonical(const XXH128_canonical_t* src);
840              
841              
842             #endif /* XXH_NO_LONG_LONG */
843              
844             /*!
845             * @}
846             */
847             #endif /* XXHASH_H_5627135585666179 */
848              
849              
850              
851             #if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742)
852             #define XXHASH_H_STATIC_13879238742
853             /* ****************************************************************************
854             * This section contains declarations which are not guaranteed to remain stable.
855             * They may change in future versions, becoming incompatible with a different
856             * version of the library.
857             * These declarations should only be used with static linking.
858             * Never use them in association with dynamic linking!
859             ***************************************************************************** */
860              
861             /*
862             * These definitions are only present to allow static allocation
863             * of XXH states, on stack or in a struct, for example.
864             * Never **ever** access their members directly.
865             */
866              
867             /*!
868             * @internal
869             * @brief Structure for XXH32 streaming API.
870             *
871             * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
872             * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
873             * an opaque type. This allows fields to safely be changed.
874             *
875             * Typedef'd to @ref XXH32_state_t.
876             * Do not access the members of this struct directly.
877             * @see XXH64_state_s, XXH3_state_s
878             */
879             struct XXH32_state_s {
880             XXH32_hash_t total_len_32; /*!< Total length hashed, modulo 2^32 */
881             XXH32_hash_t large_len; /*!< Whether the hash is >= 16 (handles @ref total_len_32 overflow) */
882             XXH32_hash_t v1; /*!< First accumulator lane */
883             XXH32_hash_t v2; /*!< Second accumulator lane */
884             XXH32_hash_t v3; /*!< Third accumulator lane */
885             XXH32_hash_t v4; /*!< Fourth accumulator lane */
886             XXH32_hash_t mem32[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[16]. */
887             XXH32_hash_t memsize; /*!< Amount of data in @ref mem32 */
888             XXH32_hash_t reserved; /*!< Reserved field. Do not read or write to it, it may be removed. */
889             }; /* typedef'd to XXH32_state_t */
890              
891              
892             #ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */
893              
894             /*!
895             * @internal
896             * @brief Structure for XXH64 streaming API.
897             *
898             * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
899             * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
900             * an opaque type. This allows fields to safely be changed.
901             *
902             * Typedef'd to @ref XXH64_state_t.
903             * Do not access the members of this struct directly.
904             * @see XXH32_state_s, XXH3_state_s
905             */
906             struct XXH64_state_s {
907             XXH64_hash_t total_len; /*!< Total length hashed. This is always 64-bit. */
908             XXH64_hash_t v1; /*!< First accumulator lane */
909             XXH64_hash_t v2; /*!< Second accumulator lane */
910             XXH64_hash_t v3; /*!< Third accumulator lane */
911             XXH64_hash_t v4; /*!< Fourth accumulator lane */
912             XXH64_hash_t mem64[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[32]. */
913             XXH32_hash_t memsize; /*!< Amount of data in @ref mem64 */
914             XXH32_hash_t reserved32; /*!< Reserved field, needed for padding anyways*/
915             XXH64_hash_t reserved64; /*!< Reserved field. Do not read or write to it, it may be removed. */
916             }; /* typedef'd to XXH64_state_t */
917              
918             #if defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11+ */
919             # include
920             # define XXH_ALIGN(n) alignas(n)
921             #elif defined(__GNUC__)
922             # define XXH_ALIGN(n) __attribute__ ((aligned(n)))
923             #elif defined(_MSC_VER)
924             # define XXH_ALIGN(n) __declspec(align(n))
925             #else
926             # define XXH_ALIGN(n) /* disabled */
927             #endif
928              
929             /* Old GCC versions only accept the attribute after the type in structures. */
930             #if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) /* C11+ */ \
931             && defined(__GNUC__)
932             # define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align)
933             #else
934             # define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type
935             #endif
936              
937             /*!
938             * @brief The size of the internal XXH3 buffer.
939             *
940             * This is the optimal update size for incremental hashing.
941             *
942             * @see XXH3_64b_update(), XXH3_128b_update().
943             */
944             #define XXH3_INTERNALBUFFER_SIZE 256
945              
946             /*!
947             * @brief Default size of the secret buffer (and @ref XXH3_kSecret).
948             *
949             * This is the size used in @ref XXH3_kSecret and the seeded functions.
950             *
951             * Not to be confused with @ref XXH3_SECRET_SIZE_MIN.
952             */
953             #define XXH3_SECRET_DEFAULT_SIZE 192
954              
955             /*!
956             * @internal
957             * @brief Structure for XXH3 streaming API.
958             *
959             * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
960             * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
961             * an opaque type. This allows fields to safely be changed.
962             *
963             * @note **This structure has a strict alignment requirement of 64 bytes.** Do
964             * not allocate this with `malloc()` or `new`, it will not be sufficiently
965             * aligned. Use @ref XXH3_createState() and @ref XXH3_freeState(), or stack
966             * allocation.
967             *
968             * Typedef'd to @ref XXH3_state_t.
969             * Do not access the members of this struct directly.
970             *
971             * @see XXH3_INITSTATE() for stack initialization.
972             * @see XXH3_createState(), XXH3_freeState().
973             * @see XXH32_state_s, XXH64_state_s
974             */
975             struct XXH3_state_s {
976             XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]);
977             /*!< The 8 accumulators. Similar to `vN` in @ref XXH32_state_s::v1 and @ref XXH64_state_s */
978             XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]);
979             /*!< Used to store a custom secret generated from a seed. */
980             XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]);
981             /*!< The internal buffer. @see XXH32_state_s::mem32 */
982             XXH32_hash_t bufferedSize;
983             /*!< The amount of memory in @ref buffer, @see XXH32_state_s::memsize */
984             XXH32_hash_t reserved32;
985             /*!< Reserved field. Needed for padding on 64-bit. */
986             size_t nbStripesSoFar;
987             /*!< Number or stripes processed. */
988             XXH64_hash_t totalLen;
989             /*!< Total length hashed. 64-bit even on 32-bit targets. */
990             size_t nbStripesPerBlock;
991             /*!< Number of stripes per block. */
992             size_t secretLimit;
993             /*!< Size of @ref customSecret or @ref extSecret */
994             XXH64_hash_t seed;
995             /*!< Seed for _withSeed variants. Must be zero otherwise, @see XXH3_INITSTATE() */
996             XXH64_hash_t reserved64;
997             /*!< Reserved field. */
998             const unsigned char* extSecret;
999             /*!< Reference to an external secret for the _withSecret variants, NULL
1000             * for other variants. */
1001             /* note: there may be some padding at the end due to alignment on 64 bytes */
1002             }; /* typedef'd to XXH3_state_t */
1003              
1004             #undef XXH_ALIGN_MEMBER
1005              
1006             /*!
1007             * @brief Initializes a stack-allocated `XXH3_state_s`.
1008             *
1009             * When the @ref XXH3_state_t structure is merely emplaced on stack,
1010             * it should be initialized with XXH3_INITSTATE() or a memset()
1011             * in case its first reset uses XXH3_NNbits_reset_withSeed().
1012             * This init can be omitted if the first reset uses default or _withSecret mode.
1013             * This operation isn't necessary when the state is created with XXH3_createState().
1014             * Note that this doesn't prepare the state for a streaming operation,
1015             * it's still necessary to use XXH3_NNbits_reset*() afterwards.
1016             */
1017             #define XXH3_INITSTATE(XXH3_state_ptr) { (XXH3_state_ptr)->seed = 0; }
1018              
1019              
1020             /* === Experimental API === */
1021             /* Symbols defined below must be considered tied to a specific library version. */
1022              
1023             /*
1024             * XXH3_generateSecret():
1025             *
1026             * Derive a high-entropy secret from any user-defined content, named customSeed.
1027             * The generated secret can be used in combination with `*_withSecret()` functions.
1028             * The `_withSecret()` variants are useful to provide a higher level of protection than 64-bit seed,
1029             * as it becomes much more difficult for an external actor to guess how to impact the calculation logic.
1030             *
1031             * The function accepts as input a custom seed of any length and any content,
1032             * and derives from it a high-entropy secret of length XXH3_SECRET_DEFAULT_SIZE
1033             * into an already allocated buffer secretBuffer.
1034             * The generated secret is _always_ XXH_SECRET_DEFAULT_SIZE bytes long.
1035             *
1036             * The generated secret can then be used with any `*_withSecret()` variant.
1037             * Functions `XXH3_128bits_withSecret()`, `XXH3_64bits_withSecret()`,
1038             * `XXH3_128bits_reset_withSecret()` and `XXH3_64bits_reset_withSecret()`
1039             * are part of this list. They all accept a `secret` parameter
1040             * which must be very long for implementation reasons (>= XXH3_SECRET_SIZE_MIN)
1041             * _and_ feature very high entropy (consist of random-looking bytes).
1042             * These conditions can be a high bar to meet, so
1043             * this function can be used to generate a secret of proper quality.
1044             *
1045             * customSeed can be anything. It can have any size, even small ones,
1046             * and its content can be anything, even stupidly "low entropy" source such as a bunch of zeroes.
1047             * The resulting `secret` will nonetheless provide all expected qualities.
1048             *
1049             * Supplying NULL as the customSeed copies the default secret into `secretBuffer`.
1050             * When customSeedSize > 0, supplying NULL as customSeed is undefined behavior.
1051             */
1052             XXH_PUBLIC_API void XXH3_generateSecret(void* secretBuffer, const void* customSeed, size_t customSeedSize);
1053              
1054              
1055             /* simple short-cut to pre-selected XXH3_128bits variant */
1056             XXH_PUBLIC_API XXH128_hash_t XXH128(const void* data, size_t len, XXH64_hash_t seed);
1057              
1058              
1059             #endif /* XXH_NO_LONG_LONG */
1060             #if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)
1061             # define XXH_IMPLEMENTATION
1062             #endif
1063              
1064             #endif /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */
1065              
1066              
1067             /* ======================================================================== */
1068             /* ======================================================================== */
1069             /* ======================================================================== */
1070              
1071              
1072             /*-**********************************************************************
1073             * xxHash implementation
1074             *-**********************************************************************
1075             * xxHash's implementation used to be hosted inside xxhash.c.
1076             *
1077             * However, inlining requires implementation to be visible to the compiler,
1078             * hence be included alongside the header.
1079             * Previously, implementation was hosted inside xxhash.c,
1080             * which was then #included when inlining was activated.
1081             * This construction created issues with a few build and install systems,
1082             * as it required xxhash.c to be stored in /include directory.
1083             *
1084             * xxHash implementation is now directly integrated within xxhash.h.
1085             * As a consequence, xxhash.c is no longer needed in /include.
1086             *
1087             * xxhash.c is still available and is still useful.
1088             * In a "normal" setup, when xxhash is not inlined,
1089             * xxhash.h only exposes the prototypes and public symbols,
1090             * while xxhash.c can be built into an object file xxhash.o
1091             * which can then be linked into the final binary.
1092             ************************************************************************/
1093              
1094             #if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \
1095             || defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387)
1096             # define XXH_IMPLEM_13a8737387
1097              
1098             /* *************************************
1099             * Tuning parameters
1100             ***************************************/
1101              
1102             /*!
1103             * @defgroup tuning Tuning parameters
1104             * @{
1105             *
1106             * Various macros to control xxHash's behavior.
1107             */
1108             #ifdef XXH_DOXYGEN
1109             /*!
1110             * @brief Define this to disable 64-bit code.
1111             *
1112             * Useful if only using the @ref xxh32_family and you have a strict C90 compiler.
1113             */
1114             # define XXH_NO_LONG_LONG
1115             # undef XXH_NO_LONG_LONG /* don't actually */
1116             /*!
1117             * @brief Controls how unaligned memory is accessed.
1118             *
1119             * By default, access to unaligned memory is controlled by `memcpy()`, which is
1120             * safe and portable.
1121             *
1122             * Unfortunately, on some target/compiler combinations, the generated assembly
1123             * is sub-optimal.
1124             *
1125             * The below switch allow selection of a different access method
1126             * in the search for improved performance.
1127             *
1128             * @par Possible options:
1129             *
1130             * - `XXH_FORCE_MEMORY_ACCESS=0` (default): `memcpy`
1131             * @par
1132             * Use `memcpy()`. Safe and portable. Note that most modern compilers will
1133             * eliminate the function call and treat it as an unaligned access.
1134             *
1135             * - `XXH_FORCE_MEMORY_ACCESS=1`: `__attribute__((packed))`
1136             * @par
1137             * Depends on compiler extensions and is therefore not portable.
1138             * This method is safe _if_ your compiler supports it,
1139             * and *generally* as fast or faster than `memcpy`.
1140             *
1141             * - `XXH_FORCE_MEMORY_ACCESS=2`: Direct cast
1142             * @par
1143             * Casts directly and dereferences. This method doesn't depend on the
1144             * compiler, but it violates the C standard as it directly dereferences an
1145             * unaligned pointer. It can generate buggy code on targets which do not
1146             * support unaligned memory accesses, but in some circumstances, it's the
1147             * only known way to get the most performance.
1148             *
1149             * - `XXH_FORCE_MEMORY_ACCESS=3`: Byteshift
1150             * @par
1151             * Also portable. This can generate the best code on old compilers which don't
1152             * inline small `memcpy()` calls, and it might also be faster on big-endian
1153             * systems which lack a native byteswap instruction. However, some compilers
1154             * will emit literal byteshifts even if the target supports unaligned access.
1155             * .
1156             *
1157             * @warning
1158             * Methods 1 and 2 rely on implementation-defined behavior. Use these with
1159             * care, as what works on one compiler/platform/optimization level may cause
1160             * another to read garbage data or even crash.
1161             *
1162             * See https://stackoverflow.com/a/32095106/646947 for details.
1163             *
1164             * Prefer these methods in priority order (0 > 3 > 1 > 2)
1165             */
1166             # define XXH_FORCE_MEMORY_ACCESS 0
1167             /*!
1168             * @def XXH_ACCEPT_NULL_INPUT_POINTER
1169             * @brief Whether to add explicit `NULL` checks.
1170             *
1171             * If the input pointer is `NULL` and the length is non-zero, xxHash's default
1172             * behavior is to dereference it, triggering a segfault.
1173             *
1174             * When this macro is enabled, xxHash actively checks the input for a null pointer.
1175             * If it is, the result for null input pointers is the same as a zero-length input.
1176             */
1177             # define XXH_ACCEPT_NULL_INPUT_POINTER 0
1178             /*!
1179             * @def XXH_FORCE_ALIGN_CHECK
1180             * @brief If defined to non-zero, adds a special path for aligned inputs (XXH32()
1181             * and XXH64() only).
1182             *
1183             * This is an important performance trick for architectures without decent
1184             * unaligned memory access performance.
1185             *
1186             * It checks for input alignment, and when conditions are met, uses a "fast
1187             * path" employing direct 32-bit/64-bit reads, resulting in _dramatically
1188             * faster_ read speed.
1189             *
1190             * The check costs one initial branch per hash, which is generally negligible,
1191             * but not zero.
1192             *
1193             * Moreover, it's not useful to generate an additional code path if memory
1194             * access uses the same instruction for both aligned and unaligned
1195             * addresses (e.g. x86 and aarch64).
1196             *
1197             * In these cases, the alignment check can be removed by setting this macro to 0.
1198             * Then the code will always use unaligned memory access.
1199             * Align check is automatically disabled on x86, x64 & arm64,
1200             * which are platforms known to offer good unaligned memory accesses performance.
1201             *
1202             * This option does not affect XXH3 (only XXH32 and XXH64).
1203             */
1204             # define XXH_FORCE_ALIGN_CHECK 0
1205              
1206             /*!
1207             * @def XXH_NO_INLINE_HINTS
1208             * @brief When non-zero, sets all functions to `static`.
1209             *
1210             * By default, xxHash tries to force the compiler to inline almost all internal
1211             * functions.
1212             *
1213             * This can usually improve performance due to reduced jumping and improved
1214             * constant folding, but significantly increases the size of the binary which
1215             * might not be favorable.
1216             *
1217             * Additionally, sometimes the forced inlining can be detrimental to performance,
1218             * depending on the architecture.
1219             *
1220             * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the
1221             * compiler full control on whether to inline or not.
1222             *
1223             * When not optimizing (-O0), optimizing for size (-Os, -Oz), or using
1224             * -fno-inline with GCC or Clang, this will automatically be defined.
1225             */
1226             # define XXH_NO_INLINE_HINTS 0
1227              
1228             /*!
1229             * @def XXH_REROLL
1230             * @brief Whether to reroll `XXH32_finalize` and `XXH64_finalize`.
1231             *
1232             * For performance, `XXH32_finalize` and `XXH64_finalize` use an unrolled loop
1233             * in the form of a switch statement.
1234             *
1235             * This is not always desirable, as it generates larger code, and depending on
1236             * the architecture, may even be slower
1237             *
1238             * This is automatically defined with `-Os`/`-Oz` on GCC and Clang.
1239             */
1240             # define XXH_REROLL 0
1241              
1242             /*!
1243             * @internal
1244             * @brief Redefines old internal names.
1245             *
1246             * For compatibility with code that uses xxHash's internals before the names
1247             * were changed to improve namespacing. There is no other reason to use this.
1248             */
1249             # define XXH_OLD_NAMES
1250             # undef XXH_OLD_NAMES /* don't actually use, it is ugly. */
1251             #endif /* XXH_DOXYGEN */
1252             /*!
1253             * @}
1254             */
1255              
1256             #ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
1257             /* prefer __packed__ structures (method 1) for gcc on armv7 and armv8 */
1258             # if !defined(__clang__) && ( \
1259             (defined(__INTEL_COMPILER) && !defined(_WIN32)) || \
1260             (defined(__GNUC__) && (defined(__ARM_ARCH) && __ARM_ARCH >= 7)) )
1261             # define XXH_FORCE_MEMORY_ACCESS 1
1262             # endif
1263             #endif
1264              
1265             #ifndef XXH_ACCEPT_NULL_INPUT_POINTER /* can be defined externally */
1266             # define XXH_ACCEPT_NULL_INPUT_POINTER 0
1267             #endif
1268              
1269             #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
1270             # if defined(__i386) || defined(__x86_64__) || defined(__aarch64__) \
1271             || defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM64) /* visual */
1272             # define XXH_FORCE_ALIGN_CHECK 0
1273             # else
1274             # define XXH_FORCE_ALIGN_CHECK 1
1275             # endif
1276             #endif
1277              
1278             #ifndef XXH_NO_INLINE_HINTS
1279             # if defined(__OPTIMIZE_SIZE__) /* -Os, -Oz */ \
1280             || defined(__NO_INLINE__) /* -O0, -fno-inline */
1281             # define XXH_NO_INLINE_HINTS 1
1282             # else
1283             # define XXH_NO_INLINE_HINTS 0
1284             # endif
1285             #endif
1286              
1287             #ifndef XXH_REROLL
1288             # if defined(__OPTIMIZE_SIZE__)
1289             # define XXH_REROLL 1
1290             # else
1291             # define XXH_REROLL 0
1292             # endif
1293             #endif
1294              
1295             /*!
1296             * @defgroup impl Implementation
1297             * @{
1298             */
1299              
1300              
1301             /* *************************************
1302             * Includes & Memory related functions
1303             ***************************************/
1304             /*
1305             * Modify the local functions below should you wish to use
1306             * different memory routines for malloc() and free()
1307             */
1308             #include
1309              
1310             /*!
1311             * @internal
1312             * @brief Modify this function to use a different routine than malloc().
1313             */
1314             static void* XXH_malloc(size_t s) { return malloc(s); }
1315              
1316             /*!
1317             * @internal
1318             * @brief Modify this function to use a different routine than free().
1319             */
1320             static void XXH_free(void* p) { free(p); }
1321              
1322             #include
1323              
1324             /*!
1325             * @internal
1326             * @brief Modify this function to use a different routine than memcpy().
1327             */
1328             static void* XXH_memcpy(void* dest, const void* src, size_t size)
1329             {
1330             return memcpy(dest,src,size);
1331             }
1332              
1333             #include /* ULLONG_MAX */
1334              
1335              
1336             /* *************************************
1337             * Compiler Specific Options
1338             ***************************************/
1339             #ifdef _MSC_VER /* Visual Studio warning fix */
1340             # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
1341             #endif
1342              
1343             #if XXH_NO_INLINE_HINTS /* disable inlining hints */
1344             # if defined(__GNUC__)
1345             # define XXH_FORCE_INLINE static __attribute__((unused))
1346             # else
1347             # define XXH_FORCE_INLINE static
1348             # endif
1349             # define XXH_NO_INLINE static
1350             /* enable inlining hints */
1351             #elif defined(_MSC_VER) /* Visual Studio */
1352             # define XXH_FORCE_INLINE static __forceinline
1353             # define XXH_NO_INLINE static __declspec(noinline)
1354             #elif defined(__GNUC__)
1355             # define XXH_FORCE_INLINE static __inline__ __attribute__((always_inline, unused))
1356             # define XXH_NO_INLINE static __attribute__((noinline))
1357             #elif defined (__cplusplus) \
1358             || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* C99 */
1359             # define XXH_FORCE_INLINE static inline
1360             # define XXH_NO_INLINE static
1361             #else
1362             # define XXH_FORCE_INLINE static
1363             # define XXH_NO_INLINE static
1364             #endif
1365              
1366              
1367              
1368             /* *************************************
1369             * Debug
1370             ***************************************/
1371             /*!
1372             * @ingroup tuning
1373             * @def XXH_DEBUGLEVEL
1374             * @brief Sets the debugging level.
1375             *
1376             * XXH_DEBUGLEVEL is expected to be defined externally, typically via the
1377             * compiler's command line options. The value must be a number.
1378             */
1379             #ifndef XXH_DEBUGLEVEL
1380             # ifdef DEBUGLEVEL /* backwards compat */
1381             # define XXH_DEBUGLEVEL DEBUGLEVEL
1382             # else
1383             # define XXH_DEBUGLEVEL 0
1384             # endif
1385             #endif
1386              
1387             #if (XXH_DEBUGLEVEL>=1)
1388             # include /* note: can still be disabled with NDEBUG */
1389             # define XXH_ASSERT(c) assert(c)
1390             #else
1391             # define XXH_ASSERT(c) ((void)0)
1392             #endif
1393              
1394             /* note: use after variable declarations */
1395             #define XXH_STATIC_ASSERT(c) do { enum { XXH_sa = 1/(int)(!!(c)) }; } while (0)
1396              
1397              
1398             /* *************************************
1399             * Basic Types
1400             ***************************************/
1401             #if !defined (__VMS) \
1402             && (defined (__cplusplus) \
1403             || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
1404             # include
1405             typedef uint8_t xxh_u8;
1406             #else
1407             typedef unsigned char xxh_u8;
1408             #endif
1409             typedef XXH32_hash_t xxh_u32;
1410              
1411             #ifdef XXH_OLD_NAMES
1412             # define BYTE xxh_u8
1413             # define U8 xxh_u8
1414             # define U32 xxh_u32
1415             #endif
1416              
1417             /* *** Memory access *** */
1418              
1419             /*!
1420             * @internal
1421             * @fn xxh_u32 XXH_read32(const void* ptr)
1422             * @brief Reads an unaligned 32-bit integer from @p ptr in native endianness.
1423             *
1424             * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
1425             *
1426             * @param ptr The pointer to read from.
1427             * @return The 32-bit native endian integer from the bytes at @p ptr.
1428             */
1429              
1430             /*!
1431             * @internal
1432             * @fn xxh_u32 XXH_readLE32(const void* ptr)
1433             * @brief Reads an unaligned 32-bit little endian integer from @p ptr.
1434             *
1435             * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
1436             *
1437             * @param ptr The pointer to read from.
1438             * @return The 32-bit little endian integer from the bytes at @p ptr.
1439             */
1440              
1441             /*!
1442             * @internal
1443             * @fn xxh_u32 XXH_readBE32(const void* ptr)
1444             * @brief Reads an unaligned 32-bit big endian integer from @p ptr.
1445             *
1446             * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
1447             *
1448             * @param ptr The pointer to read from.
1449             * @return The 32-bit big endian integer from the bytes at @p ptr.
1450             */
1451              
1452             /*!
1453             * @internal
1454             * @fn xxh_u32 XXH_readLE32_align(const void* ptr, XXH_alignment align)
1455             * @brief Like @ref XXH_readLE32(), but has an option for aligned reads.
1456             *
1457             * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
1458             * Note that when @ref XXH_FORCE_ALIGN_CHECK == 0, the @p align parameter is
1459             * always @ref XXH_alignment::XXH_unaligned.
1460             *
1461             * @param ptr The pointer to read from.
1462             * @param align Whether @p ptr is aligned.
1463             * @pre
1464             * If @p align == @ref XXH_alignment::XXH_aligned, @p ptr must be 4 byte
1465             * aligned.
1466             * @return The 32-bit little endian integer from the bytes at @p ptr.
1467             */
1468              
1469             #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
1470             /*
1471             * Manual byteshift. Best for old compilers which don't inline memcpy.
1472             * We actually directly use XXH_readLE32 and XXH_readBE32.
1473             */
1474             #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
1475              
1476             /*
1477             * Force direct memory access. Only works on CPU which support unaligned memory
1478             * access in hardware.
1479             */
1480             static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; }
1481              
1482             #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
1483              
1484             /*
1485             * __pack instructions are safer but compiler specific, hence potentially
1486             * problematic for some compilers.
1487             *
1488             * Currently only defined for GCC and ICC.
1489             */
1490             #ifdef XXH_OLD_NAMES
1491             typedef union { xxh_u32 u32; } __attribute__((packed)) unalign;
1492             #endif
1493             static xxh_u32 XXH_read32(const void* ptr)
1494             {
1495             typedef union { xxh_u32 u32; } __attribute__((packed)) xxh_unalign;
1496             return ((const xxh_unalign*)ptr)->u32;
1497             }
1498              
1499             #else
1500              
1501             /*
1502             * Portable and safe solution. Generally efficient.
1503             * see: https://stackoverflow.com/a/32095106/646947
1504             */
1505             static xxh_u32 XXH_read32(const void* memPtr)
1506             {
1507             xxh_u32 val;
1508             memcpy(&val, memPtr, sizeof(val));
1509             return val;
1510             }
1511              
1512             #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
1513              
1514              
1515             /* *** Endianness *** */
1516             typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
1517              
1518             /*!
1519             * @ingroup tuning
1520             * @def XXH_CPU_LITTLE_ENDIAN
1521             * @brief Whether the target is little endian.
1522             *
1523             * Defined to 1 if the target is little endian, or 0 if it is big endian.
1524             * It can be defined externally, for example on the compiler command line.
1525             *
1526             * If it is not defined, a runtime check (which is usually constant folded)
1527             * is used instead.
1528             *
1529             * @note
1530             * This is not necessarily defined to an integer constant.
1531             *
1532             * @see XXH_isLittleEndian() for the runtime check.
1533             */
1534             #ifndef XXH_CPU_LITTLE_ENDIAN
1535             /*
1536             * Try to detect endianness automatically, to avoid the nonstandard behavior
1537             * in `XXH_isLittleEndian()`
1538             */
1539             # if defined(_WIN32) /* Windows is always little endian */ \
1540             || defined(__LITTLE_ENDIAN__) \
1541             || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
1542             # define XXH_CPU_LITTLE_ENDIAN 1
1543             # elif defined(__BIG_ENDIAN__) \
1544             || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
1545             # define XXH_CPU_LITTLE_ENDIAN 0
1546             # else
1547             /*!
1548             * @internal
1549             * @brief Runtime check for @ref XXH_CPU_LITTLE_ENDIAN.
1550             *
1551             * Most compilers will constant fold this.
1552             */
1553             static int XXH_isLittleEndian(void)
1554             {
1555             /*
1556             * Portable and well-defined behavior.
1557             * Don't use static: it is detrimental to performance.
1558             */
1559             const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 };
1560             return one.c[0];
1561             }
1562             # define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian()
1563             # endif
1564             #endif
1565              
1566              
1567              
1568              
1569             /* ****************************************
1570             * Compiler-specific Functions and Macros
1571             ******************************************/
1572             #define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
1573              
1574             #ifdef __has_builtin
1575             # define XXH_HAS_BUILTIN(x) __has_builtin(x)
1576             #else
1577             # define XXH_HAS_BUILTIN(x) 0
1578             #endif
1579              
1580             /*!
1581             * @internal
1582             * @def XXH_rotl32(x,r)
1583             * @brief 32-bit rotate left.
1584             *
1585             * @param x The 32-bit integer to be rotated.
1586             * @param r The number of bits to rotate.
1587             * @pre
1588             * @p r > 0 && @p r < 32
1589             * @note
1590             * @p x and @p r may be evaluated multiple times.
1591             * @return The rotated result.
1592             */
1593             #if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \
1594             && XXH_HAS_BUILTIN(__builtin_rotateleft64)
1595             # define XXH_rotl32 __builtin_rotateleft32
1596             # define XXH_rotl64 __builtin_rotateleft64
1597             /* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */
1598             #elif defined(_MSC_VER)
1599             # define XXH_rotl32(x,r) _rotl(x,r)
1600             # define XXH_rotl64(x,r) _rotl64(x,r)
1601             #else
1602             # define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))
1603             # define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r))))
1604             #endif
1605              
1606             /*!
1607             * @internal
1608             * @fn xxh_u32 XXH_swap32(xxh_u32 x)
1609             * @brief A 32-bit byteswap.
1610             *
1611             * @param x The 32-bit integer to byteswap.
1612             * @return @p x, byteswapped.
1613             */
1614             #if defined(_MSC_VER) /* Visual Studio */
1615             # define XXH_swap32 _byteswap_ulong
1616             #elif XXH_GCC_VERSION >= 403
1617             # define XXH_swap32 __builtin_bswap32
1618             #else
1619             static xxh_u32 XXH_swap32 (xxh_u32 x)
1620             {
1621             return ((x << 24) & 0xff000000 ) |
1622             ((x << 8) & 0x00ff0000 ) |
1623             ((x >> 8) & 0x0000ff00 ) |
1624             ((x >> 24) & 0x000000ff );
1625             }
1626             #endif
1627              
1628              
1629             /* ***************************
1630             * Memory reads
1631             *****************************/
1632              
1633             /*!
1634             * @internal
1635             * @brief Enum to indicate whether a pointer is aligned.
1636             */
1637             typedef enum {
1638             XXH_aligned, /*!< Aligned */
1639             XXH_unaligned /*!< Possibly unaligned */
1640             } XXH_alignment;
1641              
1642             /*
1643             * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load.
1644             *
1645             * This is ideal for older compilers which don't inline memcpy.
1646             */
1647             #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
1648              
1649             XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr)
1650             {
1651             const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
1652             return bytePtr[0]
1653             | ((xxh_u32)bytePtr[1] << 8)
1654             | ((xxh_u32)bytePtr[2] << 16)
1655             | ((xxh_u32)bytePtr[3] << 24);
1656             }
1657              
1658             XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr)
1659             {
1660             const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
1661             return bytePtr[3]
1662             | ((xxh_u32)bytePtr[2] << 8)
1663             | ((xxh_u32)bytePtr[1] << 16)
1664             | ((xxh_u32)bytePtr[0] << 24);
1665             }
1666              
1667             #else
1668             XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr)
1669             {
1670             return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
1671             }
1672              
1673             static xxh_u32 XXH_readBE32(const void* ptr)
1674             {
1675             return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
1676             }
1677             #endif
1678              
1679             XXH_FORCE_INLINE xxh_u32
1680             XXH_readLE32_align(const void* ptr, XXH_alignment align)
1681             {
1682             if (align==XXH_unaligned) {
1683             return XXH_readLE32(ptr);
1684             } else {
1685             return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr);
1686             }
1687             }
1688              
1689              
1690             /* *************************************
1691             * Misc
1692             ***************************************/
1693             /*! @ingroup public */
1694             XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
1695              
1696              
1697             /* *******************************************************************
1698             * 32-bit hash functions
1699             *********************************************************************/
1700             /*!
1701             * @}
1702             * @defgroup xxh32_impl XXH32 implementation
1703             * @ingroup impl
1704             * @{
1705             */
1706             static const xxh_u32 XXH_PRIME32_1 = 0x9E3779B1U; /*!< 0b10011110001101110111100110110001 */
1707             static const xxh_u32 XXH_PRIME32_2 = 0x85EBCA77U; /*!< 0b10000101111010111100101001110111 */
1708             static const xxh_u32 XXH_PRIME32_3 = 0xC2B2AE3DU; /*!< 0b11000010101100101010111000111101 */
1709             static const xxh_u32 XXH_PRIME32_4 = 0x27D4EB2FU; /*!< 0b00100111110101001110101100101111 */
1710             static const xxh_u32 XXH_PRIME32_5 = 0x165667B1U; /*!< 0b00010110010101100110011110110001 */
1711              
1712             #ifdef XXH_OLD_NAMES
1713             # define PRIME32_1 XXH_PRIME32_1
1714             # define PRIME32_2 XXH_PRIME32_2
1715             # define PRIME32_3 XXH_PRIME32_3
1716             # define PRIME32_4 XXH_PRIME32_4
1717             # define PRIME32_5 XXH_PRIME32_5
1718             #endif
1719              
1720             /*!
1721             * @internal
1722             * @brief Normal stripe processing routine.
1723             *
1724             * This shuffles the bits so that any bit from @p input impacts several bits in
1725             * @p acc.
1726             *
1727             * @param acc The accumulator lane.
1728             * @param input The stripe of input to mix.
1729             * @return The mixed accumulator lane.
1730             */
1731             static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input)
1732             {
1733             acc += input * XXH_PRIME32_2;
1734             acc = XXH_rotl32(acc, 13);
1735             acc *= XXH_PRIME32_1;
1736             #if defined(__GNUC__) && defined(__SSE4_1__) && !defined(XXH_ENABLE_AUTOVECTORIZE)
1737             /*
1738             * UGLY HACK:
1739             * This inline assembly hack forces acc into a normal register. This is the
1740             * only thing that prevents GCC and Clang from autovectorizing the XXH32
1741             * loop (pragmas and attributes don't work for some reason) without globally
1742             * disabling SSE4.1.
1743             *
1744             * The reason we want to avoid vectorization is because despite working on
1745             * 4 integers at a time, there are multiple factors slowing XXH32 down on
1746             * SSE4:
1747             * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on
1748             * newer chips!) making it slightly slower to multiply four integers at
1749             * once compared to four integers independently. Even when pmulld was
1750             * fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE
1751             * just to multiply unless doing a long operation.
1752             *
1753             * - Four instructions are required to rotate,
1754             * movqda tmp, v // not required with VEX encoding
1755             * pslld tmp, 13 // tmp <<= 13
1756             * psrld v, 19 // x >>= 19
1757             * por v, tmp // x |= tmp
1758             * compared to one for scalar:
1759             * roll v, 13 // reliably fast across the board
1760             * shldl v, v, 13 // Sandy Bridge and later prefer this for some reason
1761             *
1762             * - Instruction level parallelism is actually more beneficial here because
1763             * the SIMD actually serializes this operation: While v1 is rotating, v2
1764             * can load data, while v3 can multiply. SSE forces them to operate
1765             * together.
1766             *
1767             * How this hack works:
1768             * __asm__("" // Declare an assembly block but don't declare any instructions
1769             * : // However, as an Input/Output Operand,
1770             * "+r" // constrain a read/write operand (+) as a general purpose register (r).
1771             * (acc) // and set acc as the operand
1772             * );
1773             *
1774             * Because of the 'r', the compiler has promised that seed will be in a
1775             * general purpose register and the '+' says that it will be 'read/write',
1776             * so it has to assume it has changed. It is like volatile without all the
1777             * loads and stores.
1778             *
1779             * Since the argument has to be in a normal register (not an SSE register),
1780             * each time XXH32_round is called, it is impossible to vectorize.
1781             */
1782             __asm__("" : "+r" (acc));
1783             #endif
1784             return acc;
1785             }
1786              
1787             /*!
1788             * @internal
1789             * @brief Mixes all bits to finalize the hash.
1790             *
1791             * The final mix ensures that all input bits have a chance to impact any bit in
1792             * the output digest, resulting in an unbiased distribution.
1793             *
1794             * @param h32 The hash to avalanche.
1795             * @return The avalanched hash.
1796             */
1797             static xxh_u32 XXH32_avalanche(xxh_u32 h32)
1798             {
1799             h32 ^= h32 >> 15;
1800             h32 *= XXH_PRIME32_2;
1801             h32 ^= h32 >> 13;
1802             h32 *= XXH_PRIME32_3;
1803             h32 ^= h32 >> 16;
1804             return(h32);
1805             }
1806              
1807             #define XXH_get32bits(p) XXH_readLE32_align(p, align)
1808              
1809             /*!
1810             * @internal
1811             * @brief Processes the last 0-15 bytes of @p ptr.
1812             *
1813             * There may be up to 15 bytes remaining to consume from the input.
1814             * This final stage will digest them to ensure that all input bytes are present
1815             * in the final mix.
1816             *
1817             * @param h32 The hash to finalize.
1818             * @param ptr The pointer to the remaining input.
1819             * @param len The remaining length, modulo 16.
1820             * @param align Whether @p ptr is aligned.
1821             * @return The finalized hash.
1822             */
1823             static xxh_u32
1824             XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align)
1825             {
1826             #define XXH_PROCESS1 do { \
1827             h32 += (*ptr++) * XXH_PRIME32_5; \
1828             h32 = XXH_rotl32(h32, 11) * XXH_PRIME32_1; \
1829             } while (0)
1830              
1831             #define XXH_PROCESS4 do { \
1832             h32 += XXH_get32bits(ptr) * XXH_PRIME32_3; \
1833             ptr += 4; \
1834             h32 = XXH_rotl32(h32, 17) * XXH_PRIME32_4; \
1835             } while (0)
1836              
1837             /* Compact rerolled version */
1838             if (XXH_REROLL) {
1839             len &= 15;
1840             while (len >= 4) {
1841             XXH_PROCESS4;
1842             len -= 4;
1843             }
1844             while (len > 0) {
1845             XXH_PROCESS1;
1846             --len;
1847             }
1848             return XXH32_avalanche(h32);
1849             } else {
1850             switch(len&15) /* or switch(bEnd - p) */ {
1851             case 12: XXH_PROCESS4;
1852             /* fallthrough */
1853             case 8: XXH_PROCESS4;
1854             /* fallthrough */
1855             case 4: XXH_PROCESS4;
1856             return XXH32_avalanche(h32);
1857              
1858             case 13: XXH_PROCESS4;
1859             /* fallthrough */
1860             case 9: XXH_PROCESS4;
1861             /* fallthrough */
1862             case 5: XXH_PROCESS4;
1863             XXH_PROCESS1;
1864             return XXH32_avalanche(h32);
1865              
1866             case 14: XXH_PROCESS4;
1867             /* fallthrough */
1868             case 10: XXH_PROCESS4;
1869             /* fallthrough */
1870             case 6: XXH_PROCESS4;
1871             XXH_PROCESS1;
1872             XXH_PROCESS1;
1873             return XXH32_avalanche(h32);
1874              
1875             case 15: XXH_PROCESS4;
1876             /* fallthrough */
1877             case 11: XXH_PROCESS4;
1878             /* fallthrough */
1879             case 7: XXH_PROCESS4;
1880             /* fallthrough */
1881             case 3: XXH_PROCESS1;
1882             /* fallthrough */
1883             case 2: XXH_PROCESS1;
1884             /* fallthrough */
1885             case 1: XXH_PROCESS1;
1886             /* fallthrough */
1887             case 0: return XXH32_avalanche(h32);
1888             }
1889             XXH_ASSERT(0);
1890             return h32; /* reaching this point is deemed impossible */
1891             }
1892             }
1893              
1894             #ifdef XXH_OLD_NAMES
1895             # define PROCESS1 XXH_PROCESS1
1896             # define PROCESS4 XXH_PROCESS4
1897             #else
1898             # undef XXH_PROCESS1
1899             # undef XXH_PROCESS4
1900             #endif
1901              
1902             /*!
1903             * @internal
1904             * @brief The implementation for @ref XXH32().
1905             *
1906             * @param input, len, seed Directly passed from @ref XXH32().
1907             * @param align Whether @p input is aligned.
1908             * @return The calculated hash.
1909             */
1910             XXH_FORCE_INLINE xxh_u32
1911             XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align)
1912             {
1913             const xxh_u8* bEnd = input + len;
1914             xxh_u32 h32;
1915              
1916             #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
1917             if (input==NULL) {
1918             len=0;
1919             bEnd=input=(const xxh_u8*)(size_t)16;
1920             }
1921             #endif
1922              
1923             if (len>=16) {
1924             const xxh_u8* const limit = bEnd - 15;
1925             xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
1926             xxh_u32 v2 = seed + XXH_PRIME32_2;
1927             xxh_u32 v3 = seed + 0;
1928             xxh_u32 v4 = seed - XXH_PRIME32_1;
1929              
1930             do {
1931             v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4;
1932             v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4;
1933             v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4;
1934             v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4;
1935             } while (input < limit);
1936              
1937             h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7)
1938             + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
1939             } else {
1940             h32 = seed + XXH_PRIME32_5;
1941             }
1942              
1943             h32 += (xxh_u32)len;
1944              
1945             return XXH32_finalize(h32, input, len&15, align);
1946             }
1947              
1948             /*! @ingroup xxh32_family */
1949             XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed)
1950             {
1951             #if 0
1952             /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
1953             XXH32_state_t state;
1954             XXH32_reset(&state, seed);
1955             XXH32_update(&state, (const xxh_u8*)input, len);
1956             return XXH32_digest(&state);
1957             #else
1958             if (XXH_FORCE_ALIGN_CHECK) {
1959             if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */
1960             return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
1961             } }
1962              
1963             return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
1964             #endif
1965             }
1966              
1967              
1968              
1969             /******* Hash streaming *******/
1970             /*!
1971             * @ingroup xxh32_family
1972             */
1973             XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
1974             {
1975             return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
1976             }
1977             /*! @ingroup xxh32_family */
1978             XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
1979             {
1980             XXH_free(statePtr);
1981             return XXH_OK;
1982             }
1983              
1984             /*! @ingroup xxh32_family */
1985             XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
1986             {
1987             memcpy(dstState, srcState, sizeof(*dstState));
1988             }
1989              
1990             /*! @ingroup xxh32_family */
1991             XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed)
1992             {
1993             XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
1994             memset(&state, 0, sizeof(state));
1995             state.v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
1996             state.v2 = seed + XXH_PRIME32_2;
1997             state.v3 = seed + 0;
1998             state.v4 = seed - XXH_PRIME32_1;
1999             /* do not write into reserved, planned to be removed in a future version */
2000             memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved));
2001             return XXH_OK;
2002             }
2003              
2004              
2005             /*! @ingroup xxh32_family */
2006             XXH_PUBLIC_API XXH_errorcode
2007             XXH32_update(XXH32_state_t* state, const void* input, size_t len)
2008             {
2009             if (input==NULL)
2010             #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
2011             return XXH_OK;
2012             #else
2013             return XXH_ERROR;
2014             #endif
2015              
2016             { const xxh_u8* p = (const xxh_u8*)input;
2017             const xxh_u8* const bEnd = p + len;
2018              
2019             state->total_len_32 += (XXH32_hash_t)len;
2020             state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16));
2021              
2022             if (state->memsize + len < 16) { /* fill in tmp buffer */
2023             XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len);
2024             state->memsize += (XXH32_hash_t)len;
2025             return XXH_OK;
2026             }
2027              
2028             if (state->memsize) { /* some data left from previous update */
2029             XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize);
2030             { const xxh_u32* p32 = state->mem32;
2031             state->v1 = XXH32_round(state->v1, XXH_readLE32(p32)); p32++;
2032             state->v2 = XXH32_round(state->v2, XXH_readLE32(p32)); p32++;
2033             state->v3 = XXH32_round(state->v3, XXH_readLE32(p32)); p32++;
2034             state->v4 = XXH32_round(state->v4, XXH_readLE32(p32));
2035             }
2036             p += 16-state->memsize;
2037             state->memsize = 0;
2038             }
2039              
2040             if (p <= bEnd-16) {
2041             const xxh_u8* const limit = bEnd - 16;
2042             xxh_u32 v1 = state->v1;
2043             xxh_u32 v2 = state->v2;
2044             xxh_u32 v3 = state->v3;
2045             xxh_u32 v4 = state->v4;
2046              
2047             do {
2048             v1 = XXH32_round(v1, XXH_readLE32(p)); p+=4;
2049             v2 = XXH32_round(v2, XXH_readLE32(p)); p+=4;
2050             v3 = XXH32_round(v3, XXH_readLE32(p)); p+=4;
2051             v4 = XXH32_round(v4, XXH_readLE32(p)); p+=4;
2052             } while (p<=limit);
2053              
2054             state->v1 = v1;
2055             state->v2 = v2;
2056             state->v3 = v3;
2057             state->v4 = v4;
2058             }
2059              
2060             if (p < bEnd) {
2061             XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
2062             state->memsize = (unsigned)(bEnd-p);
2063             }
2064             }
2065              
2066             return XXH_OK;
2067             }
2068              
2069              
2070             /*! @ingroup xxh32_family */
2071             XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state)
2072             {
2073             xxh_u32 h32;
2074              
2075             if (state->large_len) {
2076             h32 = XXH_rotl32(state->v1, 1)
2077             + XXH_rotl32(state->v2, 7)
2078             + XXH_rotl32(state->v3, 12)
2079             + XXH_rotl32(state->v4, 18);
2080             } else {
2081             h32 = state->v3 /* == seed */ + XXH_PRIME32_5;
2082             }
2083              
2084             h32 += state->total_len_32;
2085              
2086             return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned);
2087             }
2088              
2089              
2090             /******* Canonical representation *******/
2091              
2092             /*!
2093             * @ingroup xxh32_family
2094             * The default return values from XXH functions are unsigned 32 and 64 bit
2095             * integers.
2096             *
2097             * The canonical representation uses big endian convention, the same convention
2098             * as human-readable numbers (large digits first).
2099             *
2100             * This way, hash values can be written into a file or buffer, remaining
2101             * comparable across different systems.
2102             *
2103             * The following functions allow transformation of hash values to and from their
2104             * canonical format.
2105             */
2106             XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
2107             {
2108             XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
2109             if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
2110             memcpy(dst, &hash, sizeof(*dst));
2111             }
2112             /*! @ingroup xxh32_family */
2113             XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
2114             {
2115             return XXH_readBE32(src);
2116             }
2117              
2118              
2119             #ifndef XXH_NO_LONG_LONG
2120              
2121             /* *******************************************************************
2122             * 64-bit hash functions
2123             *********************************************************************/
2124             /*!
2125             * @}
2126             * @ingroup impl
2127             * @{
2128             */
2129             /******* Memory access *******/
2130              
2131             typedef XXH64_hash_t xxh_u64;
2132              
2133             #ifdef XXH_OLD_NAMES
2134             # define U64 xxh_u64
2135             #endif
2136              
2137             /*!
2138             * XXH_REROLL_XXH64:
2139             * Whether to reroll the XXH64_finalize() loop.
2140             *
2141             * Just like XXH32, we can unroll the XXH64_finalize() loop. This can be a
2142             * performance gain on 64-bit hosts, as only one jump is required.
2143             *
2144             * However, on 32-bit hosts, because arithmetic needs to be done with two 32-bit
2145             * registers, and 64-bit arithmetic needs to be simulated, it isn't beneficial
2146             * to unroll. The code becomes ridiculously large (the largest function in the
2147             * binary on i386!), and rerolling it saves anywhere from 3kB to 20kB. It is
2148             * also slightly faster because it fits into cache better and is more likely
2149             * to be inlined by the compiler.
2150             *
2151             * If XXH_REROLL is defined, this is ignored and the loop is always rerolled.
2152             */
2153             #ifndef XXH_REROLL_XXH64
2154             # if (defined(__ILP32__) || defined(_ILP32)) /* ILP32 is often defined on 32-bit GCC family */ \
2155             || !(defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) /* x86-64 */ \
2156             || defined(_M_ARM64) || defined(__aarch64__) || defined(__arm64__) /* aarch64 */ \
2157             || defined(__PPC64__) || defined(__PPC64LE__) || defined(__ppc64__) || defined(__powerpc64__) /* ppc64 */ \
2158             || defined(__mips64__) || defined(__mips64)) /* mips64 */ \
2159             || (!defined(SIZE_MAX) || SIZE_MAX < ULLONG_MAX) /* check limits */
2160             # define XXH_REROLL_XXH64 1
2161             # else
2162             # define XXH_REROLL_XXH64 0
2163             # endif
2164             #endif /* !defined(XXH_REROLL_XXH64) */
2165              
2166             #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
2167             /*
2168             * Manual byteshift. Best for old compilers which don't inline memcpy.
2169             * We actually directly use XXH_readLE64 and XXH_readBE64.
2170             */
2171             #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
2172              
2173             /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
2174             static xxh_u64 XXH_read64(const void* memPtr)
2175             {
2176             return *(const xxh_u64*) memPtr;
2177             }
2178              
2179             #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
2180              
2181             /*
2182             * __pack instructions are safer, but compiler specific, hence potentially
2183             * problematic for some compilers.
2184             *
2185             * Currently only defined for GCC and ICC.
2186             */
2187             #ifdef XXH_OLD_NAMES
2188             typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64;
2189             #endif
2190             static xxh_u64 XXH_read64(const void* ptr)
2191             {
2192             typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) xxh_unalign64;
2193             return ((const xxh_unalign64*)ptr)->u64;
2194             }
2195              
2196             #else
2197              
2198             /*
2199             * Portable and safe solution. Generally efficient.
2200             * see: https://stackoverflow.com/a/32095106/646947
2201             */
2202             static xxh_u64 XXH_read64(const void* memPtr)
2203             {
2204             xxh_u64 val;
2205             memcpy(&val, memPtr, sizeof(val));
2206             return val;
2207             }
2208              
2209             #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
2210              
2211             #if defined(_MSC_VER) /* Visual Studio */
2212             # define XXH_swap64 _byteswap_uint64
2213             #elif XXH_GCC_VERSION >= 403
2214             # define XXH_swap64 __builtin_bswap64
2215             #else
2216             static xxh_u64 XXH_swap64(xxh_u64 x)
2217             {
2218             return ((x << 56) & 0xff00000000000000ULL) |
2219             ((x << 40) & 0x00ff000000000000ULL) |
2220             ((x << 24) & 0x0000ff0000000000ULL) |
2221             ((x << 8) & 0x000000ff00000000ULL) |
2222             ((x >> 8) & 0x00000000ff000000ULL) |
2223             ((x >> 24) & 0x0000000000ff0000ULL) |
2224             ((x >> 40) & 0x000000000000ff00ULL) |
2225             ((x >> 56) & 0x00000000000000ffULL);
2226             }
2227             #endif
2228              
2229              
2230             /* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */
2231             #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
2232              
2233             XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr)
2234             {
2235             const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
2236             return bytePtr[0]
2237             | ((xxh_u64)bytePtr[1] << 8)
2238             | ((xxh_u64)bytePtr[2] << 16)
2239             | ((xxh_u64)bytePtr[3] << 24)
2240             | ((xxh_u64)bytePtr[4] << 32)
2241             | ((xxh_u64)bytePtr[5] << 40)
2242             | ((xxh_u64)bytePtr[6] << 48)
2243             | ((xxh_u64)bytePtr[7] << 56);
2244             }
2245              
2246             XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr)
2247             {
2248             const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
2249             return bytePtr[7]
2250             | ((xxh_u64)bytePtr[6] << 8)
2251             | ((xxh_u64)bytePtr[5] << 16)
2252             | ((xxh_u64)bytePtr[4] << 24)
2253             | ((xxh_u64)bytePtr[3] << 32)
2254             | ((xxh_u64)bytePtr[2] << 40)
2255             | ((xxh_u64)bytePtr[1] << 48)
2256             | ((xxh_u64)bytePtr[0] << 56);
2257             }
2258              
2259             #else
2260             XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr)
2261             {
2262             return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
2263             }
2264              
2265             static xxh_u64 XXH_readBE64(const void* ptr)
2266             {
2267             return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
2268             }
2269             #endif
2270              
2271             XXH_FORCE_INLINE xxh_u64
2272             XXH_readLE64_align(const void* ptr, XXH_alignment align)
2273             {
2274             if (align==XXH_unaligned)
2275             return XXH_readLE64(ptr);
2276             else
2277             return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr);
2278             }
2279              
2280              
2281             /******* xxh64 *******/
2282             /*!
2283             * @}
2284             * @defgroup xxh64_impl XXH64 implementation
2285             * @ingroup impl
2286             * @{
2287             */
2288             static const xxh_u64 XXH_PRIME64_1 = 0x9E3779B185EBCA87ULL; /*!< 0b1001111000110111011110011011000110000101111010111100101010000111 */
2289             static const xxh_u64 XXH_PRIME64_2 = 0xC2B2AE3D27D4EB4FULL; /*!< 0b1100001010110010101011100011110100100111110101001110101101001111 */
2290             static const xxh_u64 XXH_PRIME64_3 = 0x165667B19E3779F9ULL; /*!< 0b0001011001010110011001111011000110011110001101110111100111111001 */
2291             static const xxh_u64 XXH_PRIME64_4 = 0x85EBCA77C2B2AE63ULL; /*!< 0b1000010111101011110010100111011111000010101100101010111001100011 */
2292             static const xxh_u64 XXH_PRIME64_5 = 0x27D4EB2F165667C5ULL; /*!< 0b0010011111010100111010110010111100010110010101100110011111000101 */
2293              
2294             #ifdef XXH_OLD_NAMES
2295             # define PRIME64_1 XXH_PRIME64_1
2296             # define PRIME64_2 XXH_PRIME64_2
2297             # define PRIME64_3 XXH_PRIME64_3
2298             # define PRIME64_4 XXH_PRIME64_4
2299             # define PRIME64_5 XXH_PRIME64_5
2300             #endif
2301              
2302             static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input)
2303             {
2304             acc += input * XXH_PRIME64_2;
2305             acc = XXH_rotl64(acc, 31);
2306             acc *= XXH_PRIME64_1;
2307             return acc;
2308             }
2309              
2310             static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val)
2311             {
2312             val = XXH64_round(0, val);
2313             acc ^= val;
2314             acc = acc * XXH_PRIME64_1 + XXH_PRIME64_4;
2315             return acc;
2316             }
2317              
2318             static xxh_u64 XXH64_avalanche(xxh_u64 h64)
2319             {
2320 0           h64 ^= h64 >> 33;
2321 0           h64 *= XXH_PRIME64_2;
2322 0           h64 ^= h64 >> 29;
2323 0           h64 *= XXH_PRIME64_3;
2324 0           h64 ^= h64 >> 32;
2325             return h64;
2326             }
2327              
2328              
2329             #define XXH_get64bits(p) XXH_readLE64_align(p, align)
2330              
2331             static xxh_u64
2332             XXH64_finalize(xxh_u64 h64, const xxh_u8* ptr, size_t len, XXH_alignment align)
2333             {
2334             #define XXH_PROCESS1_64 do { \
2335             h64 ^= (*ptr++) * XXH_PRIME64_5; \
2336             h64 = XXH_rotl64(h64, 11) * XXH_PRIME64_1; \
2337             } while (0)
2338              
2339             #define XXH_PROCESS4_64 do { \
2340             h64 ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1; \
2341             ptr += 4; \
2342             h64 = XXH_rotl64(h64, 23) * XXH_PRIME64_2 + XXH_PRIME64_3; \
2343             } while (0)
2344              
2345             #define XXH_PROCESS8_64 do { \
2346             xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr)); \
2347             ptr += 8; \
2348             h64 ^= k1; \
2349             h64 = XXH_rotl64(h64,27) * XXH_PRIME64_1 + XXH_PRIME64_4; \
2350             } while (0)
2351              
2352             /* Rerolled version for 32-bit targets is faster and much smaller. */
2353             if (XXH_REROLL || XXH_REROLL_XXH64) {
2354             len &= 31;
2355             while (len >= 8) {
2356             XXH_PROCESS8_64;
2357             len -= 8;
2358             }
2359             if (len >= 4) {
2360             XXH_PROCESS4_64;
2361             len -= 4;
2362             }
2363             while (len > 0) {
2364             XXH_PROCESS1_64;
2365             --len;
2366             }
2367             return XXH64_avalanche(h64);
2368             } else {
2369             switch(len & 31) {
2370             case 24: XXH_PROCESS8_64;
2371             /* fallthrough */
2372             case 16: XXH_PROCESS8_64;
2373             /* fallthrough */
2374             case 8: XXH_PROCESS8_64;
2375             return XXH64_avalanche(h64);
2376              
2377             case 28: XXH_PROCESS8_64;
2378             /* fallthrough */
2379             case 20: XXH_PROCESS8_64;
2380             /* fallthrough */
2381             case 12: XXH_PROCESS8_64;
2382             /* fallthrough */
2383             case 4: XXH_PROCESS4_64;
2384             return XXH64_avalanche(h64);
2385              
2386             case 25: XXH_PROCESS8_64;
2387             /* fallthrough */
2388             case 17: XXH_PROCESS8_64;
2389             /* fallthrough */
2390             case 9: XXH_PROCESS8_64;
2391             XXH_PROCESS1_64;
2392             return XXH64_avalanche(h64);
2393              
2394             case 29: XXH_PROCESS8_64;
2395             /* fallthrough */
2396             case 21: XXH_PROCESS8_64;
2397             /* fallthrough */
2398             case 13: XXH_PROCESS8_64;
2399             /* fallthrough */
2400             case 5: XXH_PROCESS4_64;
2401             XXH_PROCESS1_64;
2402             return XXH64_avalanche(h64);
2403              
2404             case 26: XXH_PROCESS8_64;
2405             /* fallthrough */
2406             case 18: XXH_PROCESS8_64;
2407             /* fallthrough */
2408             case 10: XXH_PROCESS8_64;
2409             XXH_PROCESS1_64;
2410             XXH_PROCESS1_64;
2411             return XXH64_avalanche(h64);
2412              
2413             case 30: XXH_PROCESS8_64;
2414             /* fallthrough */
2415             case 22: XXH_PROCESS8_64;
2416             /* fallthrough */
2417             case 14: XXH_PROCESS8_64;
2418             /* fallthrough */
2419             case 6: XXH_PROCESS4_64;
2420             XXH_PROCESS1_64;
2421             XXH_PROCESS1_64;
2422             return XXH64_avalanche(h64);
2423              
2424             case 27: XXH_PROCESS8_64;
2425             /* fallthrough */
2426             case 19: XXH_PROCESS8_64;
2427             /* fallthrough */
2428             case 11: XXH_PROCESS8_64;
2429             XXH_PROCESS1_64;
2430             XXH_PROCESS1_64;
2431             XXH_PROCESS1_64;
2432             return XXH64_avalanche(h64);
2433              
2434             case 31: XXH_PROCESS8_64;
2435             /* fallthrough */
2436             case 23: XXH_PROCESS8_64;
2437             /* fallthrough */
2438             case 15: XXH_PROCESS8_64;
2439             /* fallthrough */
2440             case 7: XXH_PROCESS4_64;
2441             /* fallthrough */
2442             case 3: XXH_PROCESS1_64;
2443             /* fallthrough */
2444             case 2: XXH_PROCESS1_64;
2445             /* fallthrough */
2446             case 1: XXH_PROCESS1_64;
2447             /* fallthrough */
2448             case 0: return XXH64_avalanche(h64);
2449             }
2450             }
2451             /* impossible to reach */
2452             XXH_ASSERT(0);
2453             return 0; /* unreachable, but some compilers complain without it */
2454             }
2455              
2456             #ifdef XXH_OLD_NAMES
2457             # define PROCESS1_64 XXH_PROCESS1_64
2458             # define PROCESS4_64 XXH_PROCESS4_64
2459             # define PROCESS8_64 XXH_PROCESS8_64
2460             #else
2461             # undef XXH_PROCESS1_64
2462             # undef XXH_PROCESS4_64
2463             # undef XXH_PROCESS8_64
2464             #endif
2465              
2466             XXH_FORCE_INLINE xxh_u64
2467             XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align)
2468             {
2469             const xxh_u8* bEnd = input + len;
2470             xxh_u64 h64;
2471              
2472             #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
2473             if (input==NULL) {
2474             len=0;
2475             bEnd=input=(const xxh_u8*)(size_t)32;
2476             }
2477             #endif
2478              
2479             if (len>=32) {
2480             const xxh_u8* const limit = bEnd - 32;
2481             xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
2482             xxh_u64 v2 = seed + XXH_PRIME64_2;
2483             xxh_u64 v3 = seed + 0;
2484             xxh_u64 v4 = seed - XXH_PRIME64_1;
2485              
2486             do {
2487             v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8;
2488             v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8;
2489             v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8;
2490             v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8;
2491             } while (input<=limit);
2492              
2493             h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
2494             h64 = XXH64_mergeRound(h64, v1);
2495             h64 = XXH64_mergeRound(h64, v2);
2496             h64 = XXH64_mergeRound(h64, v3);
2497             h64 = XXH64_mergeRound(h64, v4);
2498              
2499             } else {
2500             h64 = seed + XXH_PRIME64_5;
2501             }
2502              
2503             h64 += (xxh_u64) len;
2504              
2505             return XXH64_finalize(h64, input, len, align);
2506             }
2507              
2508              
2509             /*! @ingroup xxh64_family */
2510             XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, XXH64_hash_t seed)
2511             {
2512             #if 0
2513             /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
2514             XXH64_state_t state;
2515             XXH64_reset(&state, seed);
2516             XXH64_update(&state, (const xxh_u8*)input, len);
2517             return XXH64_digest(&state);
2518             #else
2519             if (XXH_FORCE_ALIGN_CHECK) {
2520             if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */
2521             return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
2522             } }
2523              
2524             return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
2525              
2526             #endif
2527             }
2528              
2529             /******* Hash Streaming *******/
2530              
2531             /*! @ingroup xxh64_family*/
2532             XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
2533             {
2534             return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
2535             }
2536             /*! @ingroup xxh64_family */
2537             XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
2538             {
2539             XXH_free(statePtr);
2540             return XXH_OK;
2541             }
2542              
2543             /*! @ingroup xxh64_family */
2544             XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState)
2545             {
2546             memcpy(dstState, srcState, sizeof(*dstState));
2547             }
2548              
2549             /*! @ingroup xxh64_family */
2550             XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, XXH64_hash_t seed)
2551             {
2552             XXH64_state_t state; /* use a local state to memcpy() in order to avoid strict-aliasing warnings */
2553             memset(&state, 0, sizeof(state));
2554             state.v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
2555             state.v2 = seed + XXH_PRIME64_2;
2556             state.v3 = seed + 0;
2557             state.v4 = seed - XXH_PRIME64_1;
2558             /* do not write into reserved64, might be removed in a future version */
2559             memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved64));
2560             return XXH_OK;
2561             }
2562              
2563             /*! @ingroup xxh64_family */
2564             XXH_PUBLIC_API XXH_errorcode
2565             XXH64_update (XXH64_state_t* state, const void* input, size_t len)
2566             {
2567             if (input==NULL)
2568             #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
2569             return XXH_OK;
2570             #else
2571             return XXH_ERROR;
2572             #endif
2573              
2574             { const xxh_u8* p = (const xxh_u8*)input;
2575             const xxh_u8* const bEnd = p + len;
2576              
2577             state->total_len += len;
2578              
2579             if (state->memsize + len < 32) { /* fill in tmp buffer */
2580             XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len);
2581             state->memsize += (xxh_u32)len;
2582             return XXH_OK;
2583             }
2584              
2585             if (state->memsize) { /* tmp buffer is full */
2586             XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize);
2587             state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0));
2588             state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1));
2589             state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2));
2590             state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3));
2591             p += 32 - state->memsize;
2592             state->memsize = 0;
2593             }
2594              
2595             if (p+32 <= bEnd) {
2596             const xxh_u8* const limit = bEnd - 32;
2597             xxh_u64 v1 = state->v1;
2598             xxh_u64 v2 = state->v2;
2599             xxh_u64 v3 = state->v3;
2600             xxh_u64 v4 = state->v4;
2601              
2602             do {
2603             v1 = XXH64_round(v1, XXH_readLE64(p)); p+=8;
2604             v2 = XXH64_round(v2, XXH_readLE64(p)); p+=8;
2605             v3 = XXH64_round(v3, XXH_readLE64(p)); p+=8;
2606             v4 = XXH64_round(v4, XXH_readLE64(p)); p+=8;
2607             } while (p<=limit);
2608              
2609             state->v1 = v1;
2610             state->v2 = v2;
2611             state->v3 = v3;
2612             state->v4 = v4;
2613             }
2614              
2615             if (p < bEnd) {
2616             XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
2617             state->memsize = (unsigned)(bEnd-p);
2618             }
2619             }
2620              
2621             return XXH_OK;
2622             }
2623              
2624              
2625             /*! @ingroup xxh64_family */
2626             XXH_PUBLIC_API XXH64_hash_t XXH64_digest(const XXH64_state_t* state)
2627             {
2628             xxh_u64 h64;
2629              
2630             if (state->total_len >= 32) {
2631             xxh_u64 const v1 = state->v1;
2632             xxh_u64 const v2 = state->v2;
2633             xxh_u64 const v3 = state->v3;
2634             xxh_u64 const v4 = state->v4;
2635              
2636             h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
2637             h64 = XXH64_mergeRound(h64, v1);
2638             h64 = XXH64_mergeRound(h64, v2);
2639             h64 = XXH64_mergeRound(h64, v3);
2640             h64 = XXH64_mergeRound(h64, v4);
2641             } else {
2642             h64 = state->v3 /*seed*/ + XXH_PRIME64_5;
2643             }
2644              
2645             h64 += (xxh_u64) state->total_len;
2646              
2647             return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned);
2648             }
2649              
2650              
2651             /******* Canonical representation *******/
2652              
2653             /*! @ingroup xxh64_family */
2654             XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
2655             {
2656             XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
2657             if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
2658             memcpy(dst, &hash, sizeof(*dst));
2659             }
2660              
2661             /*! @ingroup xxh64_family */
2662             XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
2663             {
2664             return XXH_readBE64(src);
2665             }
2666              
2667              
2668              
2669             /* *********************************************************************
2670             * XXH3
2671             * New generation hash designed for speed on small keys and vectorization
2672             ************************************************************************ */
2673             /*!
2674             * @}
2675             * @defgroup xxh3_impl XXH3 implementation
2676             * @ingroup impl
2677             * @{
2678             */
2679              
2680             /* === Compiler specifics === */
2681              
2682             #if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */
2683             # define XXH_RESTRICT restrict
2684             #else
2685             /* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */
2686             # define XXH_RESTRICT /* disable */
2687             #endif
2688              
2689             #if (defined(__GNUC__) && (__GNUC__ >= 3)) \
2690             || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \
2691             || defined(__clang__)
2692             # define XXH_likely(x) __builtin_expect(x, 1)
2693             # define XXH_unlikely(x) __builtin_expect(x, 0)
2694             #else
2695             # define XXH_likely(x) (x)
2696             # define XXH_unlikely(x) (x)
2697             #endif
2698              
2699             #if defined(__GNUC__)
2700             # if defined(__AVX2__)
2701             # include
2702             # elif defined(__SSE2__)
2703             # include
2704             # elif defined(__ARM_NEON__) || defined(__ARM_NEON)
2705             # define inline __inline__ /* circumvent a clang bug */
2706             # include
2707             # undef inline
2708             # endif
2709             #elif defined(_MSC_VER)
2710             # include
2711             #endif
2712              
2713             /*
2714             * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while
2715             * remaining a true 64-bit/128-bit hash function.
2716             *
2717             * This is done by prioritizing a subset of 64-bit operations that can be
2718             * emulated without too many steps on the average 32-bit machine.
2719             *
2720             * For example, these two lines seem similar, and run equally fast on 64-bit:
2721             *
2722             * xxh_u64 x;
2723             * x ^= (x >> 47); // good
2724             * x ^= (x >> 13); // bad
2725             *
2726             * However, to a 32-bit machine, there is a major difference.
2727             *
2728             * x ^= (x >> 47) looks like this:
2729             *
2730             * x.lo ^= (x.hi >> (47 - 32));
2731             *
2732             * while x ^= (x >> 13) looks like this:
2733             *
2734             * // note: funnel shifts are not usually cheap.
2735             * x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13));
2736             * x.hi ^= (x.hi >> 13);
2737             *
2738             * The first one is significantly faster than the second, simply because the
2739             * shift is larger than 32. This means:
2740             * - All the bits we need are in the upper 32 bits, so we can ignore the lower
2741             * 32 bits in the shift.
2742             * - The shift result will always fit in the lower 32 bits, and therefore,
2743             * we can ignore the upper 32 bits in the xor.
2744             *
2745             * Thanks to this optimization, XXH3 only requires these features to be efficient:
2746             *
2747             * - Usable unaligned access
2748             * - A 32-bit or 64-bit ALU
2749             * - If 32-bit, a decent ADC instruction
2750             * - A 32 or 64-bit multiply with a 64-bit result
2751             * - For the 128-bit variant, a decent byteswap helps short inputs.
2752             *
2753             * The first two are already required by XXH32, and almost all 32-bit and 64-bit
2754             * platforms which can run XXH32 can run XXH3 efficiently.
2755             *
2756             * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one
2757             * notable exception.
2758             *
2759             * First of all, Thumb-1 lacks support for the UMULL instruction which
2760             * performs the important long multiply. This means numerous __aeabi_lmul
2761             * calls.
2762             *
2763             * Second of all, the 8 functional registers are just not enough.
2764             * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
2765             * Lo registers, and this shuffling results in thousands more MOVs than A32.
2766             *
2767             * A32 and T32 don't have this limitation. They can access all 14 registers,
2768             * do a 32->64 multiply with UMULL, and the flexible operand allowing free
2769             * shifts is helpful, too.
2770             *
2771             * Therefore, we do a quick sanity check.
2772             *
2773             * If compiling Thumb-1 for a target which supports ARM instructions, we will
2774             * emit a warning, as it is not a "sane" platform to compile for.
2775             *
2776             * Usually, if this happens, it is because of an accident and you probably need
2777             * to specify -march, as you likely meant to compile for a newer architecture.
2778             *
2779             * Credit: large sections of the vectorial and asm source code paths
2780             * have been contributed by @easyaspi314
2781             */
2782             #if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
2783             # warning "XXH3 is highly inefficient without ARM or Thumb-2."
2784             #endif
2785              
2786             /* ==========================================
2787             * Vectorization detection
2788             * ========================================== */
2789              
2790             #ifdef XXH_DOXYGEN
2791             /*!
2792             * @ingroup tuning
2793             * @brief Overrides the vectorization implementation chosen for XXH3.
2794             *
2795             * Can be defined to 0 to disable SIMD or any of the values mentioned in
2796             * @ref XXH_VECTOR_TYPE.
2797             *
2798             * If this is not defined, it uses predefined macros to determine the best
2799             * implementation.
2800             */
2801             # define XXH_VECTOR XXH_SCALAR
2802             /*!
2803             * @ingroup tuning
2804             * @brief Possible values for @ref XXH_VECTOR.
2805             *
2806             * Note that these are actually implemented as macros.
2807             *
2808             * If this is not defined, it is detected automatically.
2809             * @ref XXH_X86DISPATCH overrides this.
2810             */
2811             enum XXH_VECTOR_TYPE /* fake enum */ {
2812             XXH_SCALAR = 0, /*!< Portable scalar version */
2813             XXH_SSE2 = 1, /*!<
2814             * SSE2 for Pentium 4, Opteron, all x86_64.
2815             *
2816             * @note SSE2 is also guaranteed on Windows 10, macOS, and
2817             * Android x86.
2818             */
2819             XXH_AVX2 = 2, /*!< AVX2 for Haswell and Bulldozer */
2820             XXH_AVX512 = 3, /*!< AVX512 for Skylake and Icelake */
2821             XXH_NEON = 4, /*!< NEON for most ARMv7-A and all AArch64 */
2822             XXH_VSX = 5, /*!< VSX and ZVector for POWER8/z13 (64-bit) */
2823             };
2824             /*!
2825             * @ingroup tuning
2826             * @brief Selects the minimum alignment for XXH3's accumulators.
2827             *
2828             * When using SIMD, this should match the alignment reqired for said vector
2829             * type, so, for example, 32 for AVX2.
2830             *
2831             * Default: Auto detected.
2832             */
2833             # define XXH_ACC_ALIGN 8
2834             #endif
2835              
2836             /* Actual definition */
2837             #ifndef XXH_DOXYGEN
2838             # define XXH_SCALAR 0
2839             # define XXH_SSE2 1
2840             # define XXH_AVX2 2
2841             # define XXH_AVX512 3
2842             # define XXH_NEON 4
2843             # define XXH_VSX 5
2844             #endif
2845              
2846             #ifndef XXH_VECTOR /* can be defined on command line */
2847             # if defined(__AVX512F__)
2848             # define XXH_VECTOR XXH_AVX512
2849             # elif defined(__AVX2__)
2850             # define XXH_VECTOR XXH_AVX2
2851             # elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
2852             # define XXH_VECTOR XXH_SSE2
2853             # elif defined(__GNUC__) /* msvc support maybe later */ \
2854             && (defined(__ARM_NEON__) || defined(__ARM_NEON)) \
2855             && (defined(__LITTLE_ENDIAN__) /* We only support little endian NEON */ \
2856             || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
2857             # define XXH_VECTOR XXH_NEON
2858             # elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \
2859             || (defined(__s390x__) && defined(__VEC__)) \
2860             && defined(__GNUC__) /* TODO: IBM XL */
2861             # define XXH_VECTOR XXH_VSX
2862             # else
2863             # define XXH_VECTOR XXH_SCALAR
2864             # endif
2865             #endif
2866              
2867             /*
2868             * Controls the alignment of the accumulator,
2869             * for compatibility with aligned vector loads, which are usually faster.
2870             */
2871             #ifndef XXH_ACC_ALIGN
2872             # if defined(XXH_X86DISPATCH)
2873             # define XXH_ACC_ALIGN 64 /* for compatibility with avx512 */
2874             # elif XXH_VECTOR == XXH_SCALAR /* scalar */
2875             # define XXH_ACC_ALIGN 8
2876             # elif XXH_VECTOR == XXH_SSE2 /* sse2 */
2877             # define XXH_ACC_ALIGN 16
2878             # elif XXH_VECTOR == XXH_AVX2 /* avx2 */
2879             # define XXH_ACC_ALIGN 32
2880             # elif XXH_VECTOR == XXH_NEON /* neon */
2881             # define XXH_ACC_ALIGN 16
2882             # elif XXH_VECTOR == XXH_VSX /* vsx */
2883             # define XXH_ACC_ALIGN 16
2884             # elif XXH_VECTOR == XXH_AVX512 /* avx512 */
2885             # define XXH_ACC_ALIGN 64
2886             # endif
2887             #endif
2888              
2889             #if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \
2890             || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512
2891             # define XXH_SEC_ALIGN XXH_ACC_ALIGN
2892             #else
2893             # define XXH_SEC_ALIGN 8
2894             #endif
2895              
2896             /*
2897             * UGLY HACK:
2898             * GCC usually generates the best code with -O3 for xxHash.
2899             *
2900             * However, when targeting AVX2, it is overzealous in its unrolling resulting
2901             * in code roughly 3/4 the speed of Clang.
2902             *
2903             * There are other issues, such as GCC splitting _mm256_loadu_si256 into
2904             * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which
2905             * only applies to Sandy and Ivy Bridge... which don't even support AVX2.
2906             *
2907             * That is why when compiling the AVX2 version, it is recommended to use either
2908             * -O2 -mavx2 -march=haswell
2909             * or
2910             * -O2 -mavx2 -mno-avx256-split-unaligned-load
2911             * for decent performance, or to use Clang instead.
2912             *
2913             * Fortunately, we can control the first one with a pragma that forces GCC into
2914             * -O2, but the other one we can't control without "failed to inline always
2915             * inline function due to target mismatch" warnings.
2916             */
2917             #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
2918             && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
2919             && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
2920             # pragma GCC push_options
2921             # pragma GCC optimize("-O2")
2922             #endif
2923              
2924              
2925             #if XXH_VECTOR == XXH_NEON
2926             /*
2927             * NEON's setup for vmlal_u32 is a little more complicated than it is on
2928             * SSE2, AVX2, and VSX.
2929             *
2930             * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast.
2931             *
2932             * To do the same operation, the 128-bit 'Q' register needs to be split into
2933             * two 64-bit 'D' registers, performing this operation::
2934             *
2935             * [ a | b ]
2936             * | '---------. .--------' |
2937             * | x |
2938             * | .---------' '--------. |
2939             * [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[ a >> 32 | b >> 32 ]
2940             *
2941             * Due to significant changes in aarch64, the fastest method for aarch64 is
2942             * completely different than the fastest method for ARMv7-A.
2943             *
2944             * ARMv7-A treats D registers as unions overlaying Q registers, so modifying
2945             * D11 will modify the high half of Q5. This is similar to how modifying AH
2946             * will only affect bits 8-15 of AX on x86.
2947             *
2948             * VZIP takes two registers, and puts even lanes in one register and odd lanes
2949             * in the other.
2950             *
2951             * On ARMv7-A, this strangely modifies both parameters in place instead of
2952             * taking the usual 3-operand form.
2953             *
2954             * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the
2955             * lower and upper halves of the Q register to end up with the high and low
2956             * halves where we want - all in one instruction.
2957             *
2958             * vzip.32 d10, d11 @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] }
2959             *
2960             * Unfortunately we need inline assembly for this: Instructions modifying two
2961             * registers at once is not possible in GCC or Clang's IR, and they have to
2962             * create a copy.
2963             *
2964             * aarch64 requires a different approach.
2965             *
2966             * In order to make it easier to write a decent compiler for aarch64, many
2967             * quirks were removed, such as conditional execution.
2968             *
2969             * NEON was also affected by this.
2970             *
2971             * aarch64 cannot access the high bits of a Q-form register, and writes to a
2972             * D-form register zero the high bits, similar to how writes to W-form scalar
2973             * registers (or DWORD registers on x86_64) work.
2974             *
2975             * The formerly free vget_high intrinsics now require a vext (with a few
2976             * exceptions)
2977             *
2978             * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent
2979             * of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one
2980             * operand.
2981             *
2982             * The equivalent of the VZIP.32 on the lower and upper halves would be this
2983             * mess:
2984             *
2985             * ext v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] }
2986             * zip1 v1.2s, v0.2s, v2.2s // v1 = { v0[0], v2[0] }
2987             * zip2 v0.2s, v0.2s, v1.2s // v0 = { v0[1], v2[1] }
2988             *
2989             * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN):
2990             *
2991             * shrn v1.2s, v0.2d, #32 // v1 = (uint32x2_t)(v0 >> 32);
2992             * xtn v0.2s, v0.2d // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF);
2993             *
2994             * This is available on ARMv7-A, but is less efficient than a single VZIP.32.
2995             */
2996              
2997             /*!
2998             * Function-like macro:
2999             * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi)
3000             * {
3001             * outLo = (uint32x2_t)(in & 0xFFFFFFFF);
3002             * outHi = (uint32x2_t)(in >> 32);
3003             * in = UNDEFINED;
3004             * }
3005             */
3006             # if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \
3007             && defined(__GNUC__) \
3008             && !defined(__aarch64__) && !defined(__arm64__)
3009             # define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \
3010             do { \
3011             /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */ \
3012             /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */ \
3013             /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \
3014             __asm__("vzip.32 %e0, %f0" : "+w" (in)); \
3015             (outLo) = vget_low_u32 (vreinterpretq_u32_u64(in)); \
3016             (outHi) = vget_high_u32(vreinterpretq_u32_u64(in)); \
3017             } while (0)
3018             # else
3019             # define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \
3020             do { \
3021             (outLo) = vmovn_u64 (in); \
3022             (outHi) = vshrn_n_u64 ((in), 32); \
3023             } while (0)
3024             # endif
3025             #endif /* XXH_VECTOR == XXH_NEON */
3026              
3027             /*
3028             * VSX and Z Vector helpers.
3029             *
3030             * This is very messy, and any pull requests to clean this up are welcome.
3031             *
3032             * There are a lot of problems with supporting VSX and s390x, due to
3033             * inconsistent intrinsics, spotty coverage, and multiple endiannesses.
3034             */
3035             #if XXH_VECTOR == XXH_VSX
3036             # if defined(__s390x__)
3037             # include
3038             # else
3039             /* gcc's altivec.h can have the unwanted consequence to unconditionally
3040             * #define bool, vector, and pixel keywords,
3041             * with bad consequences for programs already using these keywords for other purposes.
3042             * The paragraph defining these macros is skipped when __APPLE_ALTIVEC__ is defined.
3043             * __APPLE_ALTIVEC__ is _generally_ defined automatically by the compiler,
3044             * but it seems that, in some cases, it isn't.
3045             * Force the build macro to be defined, so that keywords are not altered.
3046             */
3047             # if defined(__GNUC__) && !defined(__APPLE_ALTIVEC__)
3048             # define __APPLE_ALTIVEC__
3049             # endif
3050             # include
3051             # endif
3052              
3053             typedef __vector unsigned long long xxh_u64x2;
3054             typedef __vector unsigned char xxh_u8x16;
3055             typedef __vector unsigned xxh_u32x4;
3056              
3057             # ifndef XXH_VSX_BE
3058             # if defined(__BIG_ENDIAN__) \
3059             || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
3060             # define XXH_VSX_BE 1
3061             # elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
3062             # warning "-maltivec=be is not recommended. Please use native endianness."
3063             # define XXH_VSX_BE 1
3064             # else
3065             # define XXH_VSX_BE 0
3066             # endif
3067             # endif /* !defined(XXH_VSX_BE) */
3068              
3069             # if XXH_VSX_BE
3070             # if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__))
3071             # define XXH_vec_revb vec_revb
3072             # else
3073             /*!
3074             * A polyfill for POWER9's vec_revb().
3075             */
3076             XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val)
3077             {
3078             xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
3079             0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
3080             return vec_perm(val, val, vByteSwap);
3081             }
3082             # endif
3083             # endif /* XXH_VSX_BE */
3084              
3085             /*!
3086             * Performs an unaligned vector load and byte swaps it on big endian.
3087             */
3088             XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr)
3089             {
3090             xxh_u64x2 ret;
3091             memcpy(&ret, ptr, sizeof(xxh_u64x2));
3092             # if XXH_VSX_BE
3093             ret = XXH_vec_revb(ret);
3094             # endif
3095             return ret;
3096             }
3097              
3098             /*
3099             * vec_mulo and vec_mule are very problematic intrinsics on PowerPC
3100             *
3101             * These intrinsics weren't added until GCC 8, despite existing for a while,
3102             * and they are endian dependent. Also, their meaning swap depending on version.
3103             * */
3104             # if defined(__s390x__)
3105             /* s390x is always big endian, no issue on this platform */
3106             # define XXH_vec_mulo vec_mulo
3107             # define XXH_vec_mule vec_mule
3108             # elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw)
3109             /* Clang has a better way to control this, we can just use the builtin which doesn't swap. */
3110             # define XXH_vec_mulo __builtin_altivec_vmulouw
3111             # define XXH_vec_mule __builtin_altivec_vmuleuw
3112             # else
3113             /* gcc needs inline assembly */
3114             /* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
3115             XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b)
3116             {
3117             xxh_u64x2 result;
3118             __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
3119             return result;
3120             }
3121             XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b)
3122             {
3123             xxh_u64x2 result;
3124             __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
3125             return result;
3126             }
3127             # endif /* XXH_vec_mulo, XXH_vec_mule */
3128             #endif /* XXH_VECTOR == XXH_VSX */
3129              
3130              
3131             /* prefetch
3132             * can be disabled, by declaring XXH_NO_PREFETCH build macro */
3133             #if defined(XXH_NO_PREFETCH)
3134             # define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
3135             #else
3136             # if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86)) /* _mm_prefetch() not defined outside of x86/x64 */
3137             # include /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
3138             # define XXH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
3139             # elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
3140             # define XXH_PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
3141             # else
3142             # define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
3143             # endif
3144             #endif /* XXH_NO_PREFETCH */
3145              
3146              
3147             /* ==========================================
3148             * XXH3 default settings
3149             * ========================================== */
3150              
3151             #define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */
3152              
3153             #if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
3154             # error "default keyset is not large enough"
3155             #endif
3156              
3157             /*! Pseudorandom secret taken directly from FARSH. */
3158             XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = {
3159             0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
3160             0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
3161             0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
3162             0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
3163             0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
3164             0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
3165             0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
3166             0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
3167             0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
3168             0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
3169             0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
3170             0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
3171             };
3172              
3173              
3174             #ifdef XXH_OLD_NAMES
3175             # define kSecret XXH3_kSecret
3176             #endif
3177              
3178             #ifdef XXH_DOXYGEN
3179             /*!
3180             * @brief Calculates a 32-bit to 64-bit long multiply.
3181             *
3182             * Implemented as a macro.
3183             *
3184             * Wraps `__emulu` on MSVC x86 because it tends to call `__allmul` when it doesn't
3185             * need to (but it shouldn't need to anyways, it is about 7 instructions to do
3186             * a 64x64 multiply...). Since we know that this will _always_ emit `MULL`, we
3187             * use that instead of the normal method.
3188             *
3189             * If you are compiling for platforms like Thumb-1 and don't have a better option,
3190             * you may also want to write your own long multiply routine here.
3191             *
3192             * @param x, y Numbers to be multiplied
3193             * @return 64-bit product of the low 32 bits of @p x and @p y.
3194             */
3195             XXH_FORCE_INLINE xxh_u64
3196             XXH_mult32to64(xxh_u64 x, xxh_u64 y)
3197             {
3198             return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF);
3199             }
3200             #elif defined(_MSC_VER) && defined(_M_IX86)
3201             # include
3202             # define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y))
3203             #else
3204             /*
3205             * Downcast + upcast is usually better than masking on older compilers like
3206             * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers.
3207             *
3208             * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands
3209             * and perform a full 64x64 multiply -- entirely redundant on 32-bit.
3210             */
3211             # define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y))
3212             #endif
3213              
3214             /*!
3215             * @brief Calculates a 64->128-bit long multiply.
3216             *
3217             * Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar
3218             * version.
3219             *
3220             * @param lhs, rhs The 64-bit integers to be multiplied
3221             * @return The 128-bit result represented in an @ref XXH128_hash_t.
3222             */
3223             static XXH128_hash_t
3224             XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs)
3225             {
3226             /*
3227             * GCC/Clang __uint128_t method.
3228             *
3229             * On most 64-bit targets, GCC and Clang define a __uint128_t type.
3230             * This is usually the best way as it usually uses a native long 64-bit
3231             * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
3232             *
3233             * Usually.
3234             *
3235             * Despite being a 32-bit platform, Clang (and emscripten) define this type
3236             * despite not having the arithmetic for it. This results in a laggy
3237             * compiler builtin call which calculates a full 128-bit multiply.
3238             * In that case it is best to use the portable one.
3239             * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
3240             */
3241             #if defined(__GNUC__) && !defined(__wasm__) \
3242             && defined(__SIZEOF_INT128__) \
3243             || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
3244              
3245 0           __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs;
3246             XXH128_hash_t r128;
3247 0           r128.low64 = (xxh_u64)(product);
3248 0           r128.high64 = (xxh_u64)(product >> 64);
3249             return r128;
3250              
3251             /*
3252             * MSVC for x64's _umul128 method.
3253             *
3254             * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct);
3255             *
3256             * This compiles to single operand MUL on x64.
3257             */
3258             #elif defined(_M_X64) || defined(_M_IA64)
3259              
3260             #ifndef _MSC_VER
3261             # pragma intrinsic(_umul128)
3262             #endif
3263             xxh_u64 product_high;
3264             xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
3265             XXH128_hash_t r128;
3266             r128.low64 = product_low;
3267             r128.high64 = product_high;
3268             return r128;
3269              
3270             #else
3271             /*
3272             * Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
3273             *
3274             * This is a fast and simple grade school multiply, which is shown below
3275             * with base 10 arithmetic instead of base 0x100000000.
3276             *
3277             * 9 3 // D2 lhs = 93
3278             * x 7 5 // D2 rhs = 75
3279             * ----------
3280             * 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
3281             * 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
3282             * 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
3283             * + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
3284             * ---------
3285             * 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
3286             * + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
3287             * ---------
3288             * 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
3289             *
3290             * The reasons for adding the products like this are:
3291             * 1. It avoids manual carry tracking. Just like how
3292             * (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
3293             * This avoids a lot of complexity.
3294             *
3295             * 2. It hints for, and on Clang, compiles to, the powerful UMAAL
3296             * instruction available in ARM's Digital Signal Processing extension
3297             * in 32-bit ARMv6 and later, which is shown below:
3298             *
3299             * void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
3300             * {
3301             * xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
3302             * *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
3303             * *RdHi = (xxh_u32)(product >> 32);
3304             * }
3305             *
3306             * This instruction was designed for efficient long multiplication, and
3307             * allows this to be calculated in only 4 instructions at speeds
3308             * comparable to some 64-bit ALUs.
3309             *
3310             * 3. It isn't terrible on other platforms. Usually this will be a couple
3311             * of 32-bit ADD/ADCs.
3312             */
3313              
3314             /* First calculate all of the cross products. */
3315             xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
3316             xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF);
3317             xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
3318             xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32);
3319              
3320             /* Now add the products together. These will never overflow. */
3321             xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
3322             xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
3323             xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
3324              
3325             XXH128_hash_t r128;
3326             r128.low64 = lower;
3327             r128.high64 = upper;
3328             return r128;
3329             #endif
3330             }
3331              
3332             /*!
3333             * @brief Calculates a 64-bit to 128-bit multiply, then XOR folds it.
3334             *
3335             * The reason for the separate function is to prevent passing too many structs
3336             * around by value. This will hopefully inline the multiply, but we don't force it.
3337             *
3338             * @param lhs, rhs The 64-bit integers to multiply
3339             * @return The low 64 bits of the product XOR'd by the high 64 bits.
3340             * @see XXH_mult64to128()
3341             */
3342             static xxh_u64
3343             XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs)
3344             {
3345             XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
3346 0           return product.low64 ^ product.high64;
3347             }
3348              
3349             /*! Seems to produce slightly better code on GCC for some reason. */
3350             XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift)
3351             {
3352             XXH_ASSERT(0 <= shift && shift < 64);
3353 0           return v64 ^ (v64 >> shift);
3354             }
3355              
3356             /*
3357             * This is a fast avalanche stage,
3358             * suitable when input bits are already partially mixed
3359             */
3360             static XXH64_hash_t XXH3_avalanche(xxh_u64 h64)
3361             {
3362             h64 = XXH_xorshift64(h64, 37);
3363 0           h64 *= 0x165667919E3779F9ULL;
3364             h64 = XXH_xorshift64(h64, 32);
3365             return h64;
3366             }
3367              
3368             /*
3369             * This is a stronger avalanche,
3370             * inspired by Pelle Evensen's rrmxmx
3371             * preferable when input has not been previously mixed
3372             */
3373             static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len)
3374             {
3375             /* this mix is inspired by Pelle Evensen's rrmxmx */
3376 0           h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24);
3377 0           h64 *= 0x9FB21C651E98DF25ULL;
3378 0           h64 ^= (h64 >> 35) + len ;
3379 0           h64 *= 0x9FB21C651E98DF25ULL;
3380             return XXH_xorshift64(h64, 28);
3381             }
3382              
3383              
3384             /* ==========================================
3385             * Short keys
3386             * ==========================================
3387             * One of the shortcomings of XXH32 and XXH64 was that their performance was
3388             * sub-optimal on short lengths. It used an iterative algorithm which strongly
3389             * favored lengths that were a multiple of 4 or 8.
3390             *
3391             * Instead of iterating over individual inputs, we use a set of single shot
3392             * functions which piece together a range of lengths and operate in constant time.
3393             *
3394             * Additionally, the number of multiplies has been significantly reduced. This
3395             * reduces latency, especially when emulating 64-bit multiplies on 32-bit.
3396             *
3397             * Depending on the platform, this may or may not be faster than XXH32, but it
3398             * is almost guaranteed to be faster than XXH64.
3399             */
3400              
3401             /*
3402             * At very short lengths, there isn't enough input to fully hide secrets, or use
3403             * the entire secret.
3404             *
3405             * There is also only a limited amount of mixing we can do before significantly
3406             * impacting performance.
3407             *
3408             * Therefore, we use different sections of the secret and always mix two secret
3409             * samples with an XOR. This should have no effect on performance on the
3410             * seedless or withSeed variants because everything _should_ be constant folded
3411             * by modern compilers.
3412             *
3413             * The XOR mixing hides individual parts of the secret and increases entropy.
3414             *
3415             * This adds an extra layer of strength for custom secrets.
3416             */
3417             XXH_FORCE_INLINE XXH64_hash_t
3418             XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
3419             {
3420             XXH_ASSERT(input != NULL);
3421             XXH_ASSERT(1 <= len && len <= 3);
3422             XXH_ASSERT(secret != NULL);
3423             /*
3424             * len = 1: combined = { input[0], 0x01, input[0], input[0] }
3425             * len = 2: combined = { input[1], 0x02, input[0], input[1] }
3426             * len = 3: combined = { input[2], 0x03, input[0], input[1] }
3427             */
3428 0           { xxh_u8 const c1 = input[0];
3429 0           xxh_u8 const c2 = input[len >> 1];
3430 0           xxh_u8 const c3 = input[len - 1];
3431 0           xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24)
3432 0           | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
3433 0           xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
3434 0           xxh_u64 const keyed = (xxh_u64)combined ^ bitflip;
3435             return XXH64_avalanche(keyed);
3436             }
3437             }
3438              
3439             XXH_FORCE_INLINE XXH64_hash_t
3440             XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
3441             {
3442             XXH_ASSERT(input != NULL);
3443             XXH_ASSERT(secret != NULL);
3444             XXH_ASSERT(4 <= len && len < 8);
3445 0           seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
3446             { xxh_u32 const input1 = XXH_readLE32(input);
3447 0           xxh_u32 const input2 = XXH_readLE32(input + len - 4);
3448 0           xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed;
3449 0           xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32);
3450 0           xxh_u64 const keyed = input64 ^ bitflip;
3451             return XXH3_rrmxmx(keyed, len);
3452             }
3453             }
3454              
3455             XXH_FORCE_INLINE XXH64_hash_t
3456             XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
3457             {
3458             XXH_ASSERT(input != NULL);
3459             XXH_ASSERT(secret != NULL);
3460             XXH_ASSERT(8 <= len && len <= 16);
3461 0           { xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed;
3462 0           xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed;
3463 0           xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1;
3464 0           xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2;
3465 0           xxh_u64 const acc = len
3466 0           + XXH_swap64(input_lo) + input_hi
3467             + XXH3_mul128_fold64(input_lo, input_hi);
3468             return XXH3_avalanche(acc);
3469             }
3470             }
3471              
3472             XXH_FORCE_INLINE XXH64_hash_t
3473             XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
3474             {
3475             XXH_ASSERT(len <= 16);
3476 0 0         { if (XXH_likely(len > 8)) return XXH3_len_9to16_64b(input, len, secret, seed);
    0          
    0          
3477 0 0         if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed);
    0          
    0          
3478 0 0         if (len) return XXH3_len_1to3_64b(input, len, secret, seed);
    0          
    0          
3479 0           return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64)));
3480             }
3481             }
3482              
3483             /*
3484             * DISCLAIMER: There are known *seed-dependent* multicollisions here due to
3485             * multiplication by zero, affecting hashes of lengths 17 to 240.
3486             *
3487             * However, they are very unlikely.
3488             *
3489             * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all
3490             * unseeded non-cryptographic hashes, it does not attempt to defend itself
3491             * against specially crafted inputs, only random inputs.
3492             *
3493             * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes
3494             * cancelling out the secret is taken an arbitrary number of times (addressed
3495             * in XXH3_accumulate_512), this collision is very unlikely with random inputs
3496             * and/or proper seeding:
3497             *
3498             * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a
3499             * function that is only called up to 16 times per hash with up to 240 bytes of
3500             * input.
3501             *
3502             * This is not too bad for a non-cryptographic hash function, especially with
3503             * only 64 bit outputs.
3504             *
3505             * The 128-bit variant (which trades some speed for strength) is NOT affected
3506             * by this, although it is always a good idea to use a proper seed if you care
3507             * about strength.
3508             */
3509             XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input,
3510             const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64)
3511             {
3512             #if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
3513             && defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */ \
3514             && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable like XXH32 hack */
3515             /*
3516             * UGLY HACK:
3517             * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in
3518             * slower code.
3519             *
3520             * By forcing seed64 into a register, we disrupt the cost model and
3521             * cause it to scalarize. See `XXH32_round()`
3522             *
3523             * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600,
3524             * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on
3525             * GCC 9.2, despite both emitting scalar code.
3526             *
3527             * GCC generates much better scalar code than Clang for the rest of XXH3,
3528             * which is why finding a more optimal codepath is an interest.
3529             */
3530             __asm__ ("" : "+r" (seed64));
3531             #endif
3532             { xxh_u64 const input_lo = XXH_readLE64(input);
3533             xxh_u64 const input_hi = XXH_readLE64(input+8);
3534 0           return XXH3_mul128_fold64(
3535 0           input_lo ^ (XXH_readLE64(secret) + seed64),
3536 0           input_hi ^ (XXH_readLE64(secret+8) - seed64)
3537             );
3538             }
3539             }
3540              
3541             /* For mid range keys, XXH3 uses a Mum-hash variant. */
3542             XXH_FORCE_INLINE XXH64_hash_t
3543             XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
3544             const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
3545             XXH64_hash_t seed)
3546             {
3547             XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
3548             XXH_ASSERT(16 < len && len <= 128);
3549              
3550 0           { xxh_u64 acc = len * XXH_PRIME64_1;
3551 0 0         if (len > 32) {
    0          
    0          
3552 0 0         if (len > 64) {
    0          
    0          
3553 0 0         if (len > 96) {
    0          
    0          
3554 0           acc += XXH3_mix16B(input+48, secret+96, seed);
3555 0           acc += XXH3_mix16B(input+len-64, secret+112, seed);
3556             }
3557 0           acc += XXH3_mix16B(input+32, secret+64, seed);
3558 0           acc += XXH3_mix16B(input+len-48, secret+80, seed);
3559             }
3560 0           acc += XXH3_mix16B(input+16, secret+32, seed);
3561 0           acc += XXH3_mix16B(input+len-32, secret+48, seed);
3562             }
3563 0           acc += XXH3_mix16B(input+0, secret+0, seed);
3564 0           acc += XXH3_mix16B(input+len-16, secret+16, seed);
3565              
3566             return XXH3_avalanche(acc);
3567             }
3568             }
3569              
3570             #define XXH3_MIDSIZE_MAX 240
3571              
3572             XXH_NO_INLINE XXH64_hash_t
3573 0           XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
3574             const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
3575             XXH64_hash_t seed)
3576             {
3577             XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
3578             XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
3579              
3580             #define XXH3_MIDSIZE_STARTOFFSET 3
3581             #define XXH3_MIDSIZE_LASTOFFSET 17
3582              
3583 0           { xxh_u64 acc = len * XXH_PRIME64_1;
3584 0           int const nbRounds = (int)len / 16;
3585             int i;
3586 0 0         for (i=0; i<8; i++) {
3587 0           acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed);
3588             }
3589             acc = XXH3_avalanche(acc);
3590             XXH_ASSERT(nbRounds >= 8);
3591             #if defined(__clang__) /* Clang */ \
3592             && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
3593             && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */
3594             /*
3595             * UGLY HACK:
3596             * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86.
3597             * In everywhere else, it uses scalar code.
3598             *
3599             * For 64->128-bit multiplies, even if the NEON was 100% optimal, it
3600             * would still be slower than UMAAL (see XXH_mult64to128).
3601             *
3602             * Unfortunately, Clang doesn't handle the long multiplies properly and
3603             * converts them to the nonexistent "vmulq_u64" intrinsic, which is then
3604             * scalarized into an ugly mess of VMOV.32 instructions.
3605             *
3606             * This mess is difficult to avoid without turning autovectorization
3607             * off completely, but they are usually relatively minor and/or not
3608             * worth it to fix.
3609             *
3610             * This loop is the easiest to fix, as unlike XXH32, this pragma
3611             * _actually works_ because it is a loop vectorization instead of an
3612             * SLP vectorization.
3613             */
3614             #pragma clang loop vectorize(disable)
3615             #endif
3616 0 0         for (i=8 ; i < nbRounds; i++) {
3617 0           acc += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
3618             }
3619             /* last bytes */
3620 0           acc += XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
3621 0           return XXH3_avalanche(acc);
3622             }
3623             }
3624              
3625              
3626             /* ======= Long Keys ======= */
3627              
3628             #define XXH_STRIPE_LEN 64
3629             #define XXH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */
3630             #define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64))
3631              
3632             #ifdef XXH_OLD_NAMES
3633             # define STRIPE_LEN XXH_STRIPE_LEN
3634             # define ACC_NB XXH_ACC_NB
3635             #endif
3636              
3637             XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64)
3638             {
3639             if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
3640             memcpy(dst, &v64, sizeof(v64));
3641             }
3642              
3643             /* Several intrinsic functions below are supposed to accept __int64 as argument,
3644             * as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ .
3645             * However, several environments do not define __int64 type,
3646             * requiring a workaround.
3647             */
3648             #if !defined (__VMS) \
3649             && (defined (__cplusplus) \
3650             || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
3651             typedef int64_t xxh_i64;
3652             #else
3653             /* the following type must have a width of 64-bit */
3654             typedef long long xxh_i64;
3655             #endif
3656              
3657             /*
3658             * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized.
3659             *
3660             * It is a hardened version of UMAC, based off of FARSH's implementation.
3661             *
3662             * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD
3663             * implementations, and it is ridiculously fast.
3664             *
3665             * We harden it by mixing the original input to the accumulators as well as the product.
3666             *
3667             * This means that in the (relatively likely) case of a multiply by zero, the
3668             * original input is preserved.
3669             *
3670             * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve
3671             * cross-pollination, as otherwise the upper and lower halves would be
3672             * essentially independent.
3673             *
3674             * This doesn't matter on 64-bit hashes since they all get merged together in
3675             * the end, so we skip the extra step.
3676             *
3677             * Both XXH3_64bits and XXH3_128bits use this subroutine.
3678             */
3679              
3680             #if (XXH_VECTOR == XXH_AVX512) \
3681             || (defined(XXH_DISPATCH_AVX512) && XXH_DISPATCH_AVX512 != 0)
3682              
3683             #ifndef XXH_TARGET_AVX512
3684             # define XXH_TARGET_AVX512 /* disable attribute target */
3685             #endif
3686              
3687             XXH_FORCE_INLINE XXH_TARGET_AVX512 void
3688             XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc,
3689             const void* XXH_RESTRICT input,
3690             const void* XXH_RESTRICT secret)
3691             {
3692             XXH_ALIGN(64) __m512i* const xacc = (__m512i *) acc;
3693             XXH_ASSERT((((size_t)acc) & 63) == 0);
3694             XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
3695              
3696             {
3697             /* data_vec = input[0]; */
3698             __m512i const data_vec = _mm512_loadu_si512 (input);
3699             /* key_vec = secret[0]; */
3700             __m512i const key_vec = _mm512_loadu_si512 (secret);
3701             /* data_key = data_vec ^ key_vec; */
3702             __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec);
3703             /* data_key_lo = data_key >> 32; */
3704             __m512i const data_key_lo = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1));
3705             /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
3706             __m512i const product = _mm512_mul_epu32 (data_key, data_key_lo);
3707             /* xacc[0] += swap(data_vec); */
3708             __m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2));
3709 0           __m512i const sum = _mm512_add_epi64(*xacc, data_swap);
3710             /* xacc[0] += product; */
3711 0           *xacc = _mm512_add_epi64(product, sum);
3712             }
3713             }
3714              
3715             /*
3716             * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing.
3717             *
3718             * Multiplication isn't perfect, as explained by Google in HighwayHash:
3719             *
3720             * // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to
3721             * // varying degrees. In descending order of goodness, bytes
3722             * // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32.
3723             * // As expected, the upper and lower bytes are much worse.
3724             *
3725             * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291
3726             *
3727             * Since our algorithm uses a pseudorandom secret to add some variance into the
3728             * mix, we don't need to (or want to) mix as often or as much as HighwayHash does.
3729             *
3730             * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid
3731             * extraction.
3732             *
3733             * Both XXH3_64bits and XXH3_128bits use this subroutine.
3734             */
3735              
3736             XXH_FORCE_INLINE XXH_TARGET_AVX512 void
3737             XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3738             {
3739             XXH_ASSERT((((size_t)acc) & 63) == 0);
3740             XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
3741             { XXH_ALIGN(64) __m512i* const xacc = (__m512i*) acc;
3742             const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1);
3743              
3744             /* xacc[0] ^= (xacc[0] >> 47) */
3745 0           __m512i const acc_vec = *xacc;
3746             __m512i const shifted = _mm512_srli_epi64 (acc_vec, 47);
3747             __m512i const data_vec = _mm512_xor_si512 (acc_vec, shifted);
3748             /* xacc[0] ^= secret; */
3749             __m512i const key_vec = _mm512_loadu_si512 (secret);
3750             __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec);
3751              
3752             /* xacc[0] *= XXH_PRIME32_1; */
3753             __m512i const data_key_hi = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1));
3754             __m512i const prod_lo = _mm512_mul_epu32 (data_key, prime32);
3755             __m512i const prod_hi = _mm512_mul_epu32 (data_key_hi, prime32);
3756 0           *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32));
3757             }
3758             }
3759              
3760             XXH_FORCE_INLINE XXH_TARGET_AVX512 void
3761             XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
3762             {
3763             XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0);
3764             XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64);
3765             XXH_ASSERT(((size_t)customSecret & 63) == 0);
3766             (void)(&XXH_writeLE64);
3767             { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i);
3768 0           __m512i const seed = _mm512_mask_set1_epi64(_mm512_set1_epi64((xxh_i64)seed64), 0xAA, -(xxh_i64)seed64);
3769              
3770             XXH_ALIGN(64) const __m512i* const src = (const __m512i*) XXH3_kSecret;
3771             XXH_ALIGN(64) __m512i* const dest = ( __m512i*) customSecret;
3772             int i;
3773 0 0         for (i=0; i < nbRounds; ++i) {
    0          
3774             /* GCC has a bug, _mm512_stream_load_si512 accepts 'void*', not 'void const*',
3775             * this will warn "discards ‘const’ qualifier". */
3776             union {
3777             XXH_ALIGN(64) const __m512i* cp;
3778             XXH_ALIGN(64) void* p;
3779             } remote_const_void;
3780 0           remote_const_void.cp = src + i;
3781 0           dest[i] = _mm512_add_epi64(_mm512_stream_load_si512(remote_const_void.p), seed);
3782             } }
3783             }
3784              
3785             #endif
3786              
3787             #if (XXH_VECTOR == XXH_AVX2) \
3788             || (defined(XXH_DISPATCH_AVX2) && XXH_DISPATCH_AVX2 != 0)
3789              
3790             #ifndef XXH_TARGET_AVX2
3791             # define XXH_TARGET_AVX2 /* disable attribute target */
3792             #endif
3793              
3794             XXH_FORCE_INLINE XXH_TARGET_AVX2 void
3795             XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc,
3796             const void* XXH_RESTRICT input,
3797             const void* XXH_RESTRICT secret)
3798             {
3799             XXH_ASSERT((((size_t)acc) & 31) == 0);
3800             { XXH_ALIGN(32) __m256i* const xacc = (__m256i *) acc;
3801             /* Unaligned. This is mainly for pointer arithmetic, and because
3802             * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
3803             const __m256i* const xinput = (const __m256i *) input;
3804             /* Unaligned. This is mainly for pointer arithmetic, and because
3805             * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
3806             const __m256i* const xsecret = (const __m256i *) secret;
3807              
3808             size_t i;
3809 0 0         for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
3810             /* data_vec = xinput[i]; */
3811 0           __m256i const data_vec = _mm256_loadu_si256 (xinput+i);
3812             /* key_vec = xsecret[i]; */
3813 0           __m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
3814             /* data_key = data_vec ^ key_vec; */
3815             __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);
3816             /* data_key_lo = data_key >> 32; */
3817             __m256i const data_key_lo = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3818             /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
3819             __m256i const product = _mm256_mul_epu32 (data_key, data_key_lo);
3820             /* xacc[i] += swap(data_vec); */
3821             __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
3822 0           __m256i const sum = _mm256_add_epi64(xacc[i], data_swap);
3823             /* xacc[i] += product; */
3824 0           xacc[i] = _mm256_add_epi64(product, sum);
3825             } }
3826             }
3827              
3828             XXH_FORCE_INLINE XXH_TARGET_AVX2 void
3829             XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3830             {
3831             XXH_ASSERT((((size_t)acc) & 31) == 0);
3832             { XXH_ALIGN(32) __m256i* const xacc = (__m256i*) acc;
3833             /* Unaligned. This is mainly for pointer arithmetic, and because
3834             * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
3835             const __m256i* const xsecret = (const __m256i *) secret;
3836             const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1);
3837              
3838             size_t i;
3839 0 0         for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
3840             /* xacc[i] ^= (xacc[i] >> 47) */
3841 0           __m256i const acc_vec = xacc[i];
3842             __m256i const shifted = _mm256_srli_epi64 (acc_vec, 47);
3843             __m256i const data_vec = _mm256_xor_si256 (acc_vec, shifted);
3844             /* xacc[i] ^= xsecret; */
3845 0           __m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
3846             __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);
3847              
3848             /* xacc[i] *= XXH_PRIME32_1; */
3849             __m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3850             __m256i const prod_lo = _mm256_mul_epu32 (data_key, prime32);
3851             __m256i const prod_hi = _mm256_mul_epu32 (data_key_hi, prime32);
3852 0           xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
3853             }
3854             }
3855             }
3856              
3857             XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
3858             {
3859             XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0);
3860             XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6);
3861             XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64);
3862             (void)(&XXH_writeLE64);
3863 0           XXH_PREFETCH(customSecret);
3864 0           { __m256i const seed = _mm256_set_epi64x(-(xxh_i64)seed64, (xxh_i64)seed64, -(xxh_i64)seed64, (xxh_i64)seed64);
3865              
3866             XXH_ALIGN(64) const __m256i* const src = (const __m256i*) XXH3_kSecret;
3867             XXH_ALIGN(64) __m256i* dest = ( __m256i*) customSecret;
3868              
3869             # if defined(__GNUC__) || defined(__clang__)
3870             /*
3871             * On GCC & Clang, marking 'dest' as modified will cause the compiler:
3872             * - do not extract the secret from sse registers in the internal loop
3873             * - use less common registers, and avoid pushing these reg into stack
3874             * The asm hack causes Clang to assume that XXH3_kSecretPtr aliases with
3875             * customSecret, and on aarch64, this prevented LDP from merging two
3876             * loads together for free. Putting the loads together before the stores
3877             * properly generates LDP.
3878             */
3879 0           __asm__("" : "+r" (dest));
3880             # endif
3881              
3882             /* GCC -O2 need unroll loop manually */
3883 0           dest[0] = _mm256_add_epi64(_mm256_stream_load_si256(src+0), seed);
3884 0           dest[1] = _mm256_add_epi64(_mm256_stream_load_si256(src+1), seed);
3885 0           dest[2] = _mm256_add_epi64(_mm256_stream_load_si256(src+2), seed);
3886 0           dest[3] = _mm256_add_epi64(_mm256_stream_load_si256(src+3), seed);
3887 0           dest[4] = _mm256_add_epi64(_mm256_stream_load_si256(src+4), seed);
3888 0           dest[5] = _mm256_add_epi64(_mm256_stream_load_si256(src+5), seed);
3889             }
3890             }
3891              
3892             #endif
3893              
3894             /* x86dispatch always generates SSE2 */
3895             #if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH)
3896              
3897             #ifndef XXH_TARGET_SSE2
3898             # define XXH_TARGET_SSE2 /* disable attribute target */
3899             #endif
3900              
3901             XXH_FORCE_INLINE XXH_TARGET_SSE2 void
3902             XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc,
3903             const void* XXH_RESTRICT input,
3904             const void* XXH_RESTRICT secret)
3905             {
3906             /* SSE2 is just a half-scale version of the AVX2 version. */
3907             XXH_ASSERT((((size_t)acc) & 15) == 0);
3908             { XXH_ALIGN(16) __m128i* const xacc = (__m128i *) acc;
3909             /* Unaligned. This is mainly for pointer arithmetic, and because
3910             * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
3911             const __m128i* const xinput = (const __m128i *) input;
3912             /* Unaligned. This is mainly for pointer arithmetic, and because
3913             * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
3914             const __m128i* const xsecret = (const __m128i *) secret;
3915              
3916             size_t i;
3917 0 0         for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
3918             /* data_vec = xinput[i]; */
3919 0           __m128i const data_vec = _mm_loadu_si128 (xinput+i);
3920             /* key_vec = xsecret[i]; */
3921 0           __m128i const key_vec = _mm_loadu_si128 (xsecret+i);
3922             /* data_key = data_vec ^ key_vec; */
3923             __m128i const data_key = _mm_xor_si128 (data_vec, key_vec);
3924             /* data_key_lo = data_key >> 32; */
3925             __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3926             /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
3927             __m128i const product = _mm_mul_epu32 (data_key, data_key_lo);
3928             /* xacc[i] += swap(data_vec); */
3929             __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
3930 0           __m128i const sum = _mm_add_epi64(xacc[i], data_swap);
3931             /* xacc[i] += product; */
3932 0           xacc[i] = _mm_add_epi64(product, sum);
3933             } }
3934             }
3935              
3936             XXH_FORCE_INLINE XXH_TARGET_SSE2 void
3937             XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3938             {
3939             XXH_ASSERT((((size_t)acc) & 15) == 0);
3940             { XXH_ALIGN(16) __m128i* const xacc = (__m128i*) acc;
3941             /* Unaligned. This is mainly for pointer arithmetic, and because
3942             * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
3943             const __m128i* const xsecret = (const __m128i *) secret;
3944             const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1);
3945              
3946             size_t i;
3947 0 0         for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
3948             /* xacc[i] ^= (xacc[i] >> 47) */
3949 0           __m128i const acc_vec = xacc[i];
3950             __m128i const shifted = _mm_srli_epi64 (acc_vec, 47);
3951             __m128i const data_vec = _mm_xor_si128 (acc_vec, shifted);
3952             /* xacc[i] ^= xsecret[i]; */
3953 0           __m128i const key_vec = _mm_loadu_si128 (xsecret+i);
3954             __m128i const data_key = _mm_xor_si128 (data_vec, key_vec);
3955              
3956             /* xacc[i] *= XXH_PRIME32_1; */
3957             __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3958             __m128i const prod_lo = _mm_mul_epu32 (data_key, prime32);
3959             __m128i const prod_hi = _mm_mul_epu32 (data_key_hi, prime32);
3960 0           xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
3961             }
3962             }
3963             }
3964              
3965             XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
3966             {
3967             XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
3968             (void)(&XXH_writeLE64);
3969             { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i);
3970              
3971             # if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900
3972             // MSVC 32bit mode does not support _mm_set_epi64x before 2015
3973             XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, -(xxh_i64)seed64 };
3974             __m128i const seed = _mm_load_si128((__m128i const*)seed64x2);
3975             # else
3976 0           __m128i const seed = _mm_set_epi64x(-(xxh_i64)seed64, (xxh_i64)seed64);
3977             # endif
3978             int i;
3979              
3980             XXH_ALIGN(64) const float* const src = (float const*) XXH3_kSecret;
3981             XXH_ALIGN(XXH_SEC_ALIGN) __m128i* dest = (__m128i*) customSecret;
3982             # if defined(__GNUC__) || defined(__clang__)
3983             /*
3984             * On GCC & Clang, marking 'dest' as modified will cause the compiler:
3985             * - do not extract the secret from sse registers in the internal loop
3986             * - use less common registers, and avoid pushing these reg into stack
3987             */
3988 0           __asm__("" : "+r" (dest));
3989             # endif
3990              
3991 0 0         for (i=0; i < nbRounds; ++i) {
    0          
3992 0           dest[i] = _mm_add_epi64(_mm_castps_si128(_mm_load_ps(src+i*4)), seed);
3993             } }
3994             }
3995              
3996             #endif
3997              
3998             #if (XXH_VECTOR == XXH_NEON)
3999              
4000             XXH_FORCE_INLINE void
4001             XXH3_accumulate_512_neon( void* XXH_RESTRICT acc,
4002             const void* XXH_RESTRICT input,
4003             const void* XXH_RESTRICT secret)
4004             {
4005             XXH_ASSERT((((size_t)acc) & 15) == 0);
4006             {
4007             XXH_ALIGN(16) uint64x2_t* const xacc = (uint64x2_t *) acc;
4008             /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
4009             uint8_t const* const xinput = (const uint8_t *) input;
4010             uint8_t const* const xsecret = (const uint8_t *) secret;
4011              
4012             size_t i;
4013             for (i=0; i < XXH_STRIPE_LEN / sizeof(uint64x2_t); i++) {
4014             /* data_vec = xinput[i]; */
4015             uint8x16_t data_vec = vld1q_u8(xinput + (i * 16));
4016             /* key_vec = xsecret[i]; */
4017             uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16));
4018             uint64x2_t data_key;
4019             uint32x2_t data_key_lo, data_key_hi;
4020             /* xacc[i] += swap(data_vec); */
4021             uint64x2_t const data64 = vreinterpretq_u64_u8(data_vec);
4022             uint64x2_t const swapped = vextq_u64(data64, data64, 1);
4023             xacc[i] = vaddq_u64 (xacc[i], swapped);
4024             /* data_key = data_vec ^ key_vec; */
4025             data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec));
4026             /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF);
4027             * data_key_hi = (uint32x2_t) (data_key >> 32);
4028             * data_key = UNDEFINED; */
4029             XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
4030             /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */
4031             xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi);
4032              
4033             }
4034             }
4035             }
4036              
4037             XXH_FORCE_INLINE void
4038             XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
4039             {
4040             XXH_ASSERT((((size_t)acc) & 15) == 0);
4041              
4042             { uint64x2_t* xacc = (uint64x2_t*) acc;
4043             uint8_t const* xsecret = (uint8_t const*) secret;
4044             uint32x2_t prime = vdup_n_u32 (XXH_PRIME32_1);
4045              
4046             size_t i;
4047             for (i=0; i < XXH_STRIPE_LEN/sizeof(uint64x2_t); i++) {
4048             /* xacc[i] ^= (xacc[i] >> 47); */
4049             uint64x2_t acc_vec = xacc[i];
4050             uint64x2_t shifted = vshrq_n_u64 (acc_vec, 47);
4051             uint64x2_t data_vec = veorq_u64 (acc_vec, shifted);
4052              
4053             /* xacc[i] ^= xsecret[i]; */
4054             uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16));
4055             uint64x2_t data_key = veorq_u64(data_vec, vreinterpretq_u64_u8(key_vec));
4056              
4057             /* xacc[i] *= XXH_PRIME32_1 */
4058             uint32x2_t data_key_lo, data_key_hi;
4059             /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF);
4060             * data_key_hi = (uint32x2_t) (xacc[i] >> 32);
4061             * xacc[i] = UNDEFINED; */
4062             XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
4063             { /*
4064             * prod_hi = (data_key >> 32) * XXH_PRIME32_1;
4065             *
4066             * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will
4067             * incorrectly "optimize" this:
4068             * tmp = vmul_u32(vmovn_u64(a), vmovn_u64(b));
4069             * shifted = vshll_n_u32(tmp, 32);
4070             * to this:
4071             * tmp = "vmulq_u64"(a, b); // no such thing!
4072             * shifted = vshlq_n_u64(tmp, 32);
4073             *
4074             * However, unlike SSE, Clang lacks a 64-bit multiply routine
4075             * for NEON, and it scalarizes two 64-bit multiplies instead.
4076             *
4077             * vmull_u32 has the same timing as vmul_u32, and it avoids
4078             * this bug completely.
4079             * See https://bugs.llvm.org/show_bug.cgi?id=39967
4080             */
4081             uint64x2_t prod_hi = vmull_u32 (data_key_hi, prime);
4082             /* xacc[i] = prod_hi << 32; */
4083             xacc[i] = vshlq_n_u64(prod_hi, 32);
4084             /* xacc[i] += (prod_hi & 0xFFFFFFFF) * XXH_PRIME32_1; */
4085             xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime);
4086             }
4087             } }
4088             }
4089              
4090             #endif
4091              
4092             #if (XXH_VECTOR == XXH_VSX)
4093              
4094             XXH_FORCE_INLINE void
4095             XXH3_accumulate_512_vsx( void* XXH_RESTRICT acc,
4096             const void* XXH_RESTRICT input,
4097             const void* XXH_RESTRICT secret)
4098             {
4099             xxh_u64x2* const xacc = (xxh_u64x2*) acc; /* presumed aligned */
4100             xxh_u64x2 const* const xinput = (xxh_u64x2 const*) input; /* no alignment restriction */
4101             xxh_u64x2 const* const xsecret = (xxh_u64x2 const*) secret; /* no alignment restriction */
4102             xxh_u64x2 const v32 = { 32, 32 };
4103             size_t i;
4104             for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
4105             /* data_vec = xinput[i]; */
4106             xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i);
4107             /* key_vec = xsecret[i]; */
4108             xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i);
4109             xxh_u64x2 const data_key = data_vec ^ key_vec;
4110             /* shuffled = (data_key << 32) | (data_key >> 32); */
4111             xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32);
4112             /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */
4113             xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled);
4114             xacc[i] += product;
4115              
4116             /* swap high and low halves */
4117             #ifdef __s390x__
4118             xacc[i] += vec_permi(data_vec, data_vec, 2);
4119             #else
4120             xacc[i] += vec_xxpermdi(data_vec, data_vec, 2);
4121             #endif
4122             }
4123             }
4124              
4125             XXH_FORCE_INLINE void
4126             XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
4127             {
4128             XXH_ASSERT((((size_t)acc) & 15) == 0);
4129              
4130             { xxh_u64x2* const xacc = (xxh_u64x2*) acc;
4131             const xxh_u64x2* const xsecret = (const xxh_u64x2*) secret;
4132             /* constants */
4133             xxh_u64x2 const v32 = { 32, 32 };
4134             xxh_u64x2 const v47 = { 47, 47 };
4135             xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 };
4136             size_t i;
4137             for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
4138             /* xacc[i] ^= (xacc[i] >> 47); */
4139             xxh_u64x2 const acc_vec = xacc[i];
4140             xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
4141              
4142             /* xacc[i] ^= xsecret[i]; */
4143             xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i);
4144             xxh_u64x2 const data_key = data_vec ^ key_vec;
4145              
4146             /* xacc[i] *= XXH_PRIME32_1 */
4147             /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF); */
4148             xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime);
4149             /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32); */
4150             xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime);
4151             xacc[i] = prod_odd + (prod_even << v32);
4152             } }
4153             }
4154              
4155             #endif
4156              
4157             /* scalar variants - universal */
4158              
4159             XXH_FORCE_INLINE void
4160             XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc,
4161             const void* XXH_RESTRICT input,
4162             const void* XXH_RESTRICT secret)
4163             {
4164             XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */
4165             const xxh_u8* const xinput = (const xxh_u8*) input; /* no alignment restriction */
4166             const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */
4167             size_t i;
4168             XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0);
4169             for (i=0; i < XXH_ACC_NB; i++) {
4170             xxh_u64 const data_val = XXH_readLE64(xinput + 8*i);
4171             xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + i*8);
4172             xacc[i ^ 1] += data_val; /* swap adjacent lanes */
4173             xacc[i] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32);
4174             }
4175             }
4176              
4177             XXH_FORCE_INLINE void
4178             XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
4179             {
4180             XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */
4181             const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */
4182             size_t i;
4183             XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0);
4184             for (i=0; i < XXH_ACC_NB; i++) {
4185             xxh_u64 const key64 = XXH_readLE64(xsecret + 8*i);
4186             xxh_u64 acc64 = xacc[i];
4187             acc64 = XXH_xorshift64(acc64, 47);
4188             acc64 ^= key64;
4189             acc64 *= XXH_PRIME32_1;
4190             xacc[i] = acc64;
4191             }
4192             }
4193              
4194             XXH_FORCE_INLINE void
4195             XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
4196             {
4197             /*
4198             * We need a separate pointer for the hack below,
4199             * which requires a non-const pointer.
4200             * Any decent compiler will optimize this out otherwise.
4201             */
4202             const xxh_u8* kSecretPtr = XXH3_kSecret;
4203             XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
4204              
4205             #if defined(__clang__) && defined(__aarch64__)
4206             /*
4207             * UGLY HACK:
4208             * Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are
4209             * placed sequentially, in order, at the top of the unrolled loop.
4210             *
4211             * While MOVK is great for generating constants (2 cycles for a 64-bit
4212             * constant compared to 4 cycles for LDR), long MOVK chains stall the
4213             * integer pipelines:
4214             * I L S
4215             * MOVK
4216             * MOVK
4217             * MOVK
4218             * MOVK
4219             * ADD
4220             * SUB STR
4221             * STR
4222             * By forcing loads from memory (as the asm line causes Clang to assume
4223             * that XXH3_kSecretPtr has been changed), the pipelines are used more
4224             * efficiently:
4225             * I L S
4226             * LDR
4227             * ADD LDR
4228             * SUB STR
4229             * STR
4230             * XXH3_64bits_withSeed, len == 256, Snapdragon 835
4231             * without hack: 2654.4 MB/s
4232             * with hack: 3202.9 MB/s
4233             */
4234             __asm__("" : "+r" (kSecretPtr));
4235             #endif
4236             /*
4237             * Note: in debug mode, this overrides the asm optimization
4238             * and Clang will emit MOVK chains again.
4239             */
4240             XXH_ASSERT(kSecretPtr == XXH3_kSecret);
4241              
4242             { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
4243             int i;
4244             for (i=0; i < nbRounds; i++) {
4245             /*
4246             * The asm hack causes Clang to assume that kSecretPtr aliases with
4247             * customSecret, and on aarch64, this prevented LDP from merging two
4248             * loads together for free. Putting the loads together before the stores
4249             * properly generates LDP.
4250             */
4251             xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i) + seed64;
4252             xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64;
4253             XXH_writeLE64((xxh_u8*)customSecret + 16*i, lo);
4254             XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi);
4255             } }
4256             }
4257              
4258              
4259             typedef void (*XXH3_f_accumulate_512)(void* XXH_RESTRICT, const void*, const void*);
4260             typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*);
4261             typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64);
4262              
4263              
4264             #if (XXH_VECTOR == XXH_AVX512)
4265              
4266             #define XXH3_accumulate_512 XXH3_accumulate_512_avx512
4267             #define XXH3_scrambleAcc XXH3_scrambleAcc_avx512
4268             #define XXH3_initCustomSecret XXH3_initCustomSecret_avx512
4269              
4270             #elif (XXH_VECTOR == XXH_AVX2)
4271              
4272             #define XXH3_accumulate_512 XXH3_accumulate_512_avx2
4273             #define XXH3_scrambleAcc XXH3_scrambleAcc_avx2
4274             #define XXH3_initCustomSecret XXH3_initCustomSecret_avx2
4275              
4276             #elif (XXH_VECTOR == XXH_SSE2)
4277              
4278             #define XXH3_accumulate_512 XXH3_accumulate_512_sse2
4279             #define XXH3_scrambleAcc XXH3_scrambleAcc_sse2
4280             #define XXH3_initCustomSecret XXH3_initCustomSecret_sse2
4281              
4282             #elif (XXH_VECTOR == XXH_NEON)
4283              
4284             #define XXH3_accumulate_512 XXH3_accumulate_512_neon
4285             #define XXH3_scrambleAcc XXH3_scrambleAcc_neon
4286             #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
4287              
4288             #elif (XXH_VECTOR == XXH_VSX)
4289              
4290             #define XXH3_accumulate_512 XXH3_accumulate_512_vsx
4291             #define XXH3_scrambleAcc XXH3_scrambleAcc_vsx
4292             #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
4293              
4294             #else /* scalar */
4295              
4296             #define XXH3_accumulate_512 XXH3_accumulate_512_scalar
4297             #define XXH3_scrambleAcc XXH3_scrambleAcc_scalar
4298             #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
4299              
4300             #endif
4301              
4302              
4303              
4304             #ifndef XXH_PREFETCH_DIST
4305             # ifdef __clang__
4306             # define XXH_PREFETCH_DIST 320
4307             # else
4308             # if (XXH_VECTOR == XXH_AVX512)
4309             # define XXH_PREFETCH_DIST 512
4310             # else
4311             # define XXH_PREFETCH_DIST 384
4312             # endif
4313             # endif /* __clang__ */
4314             #endif /* XXH_PREFETCH_DIST */
4315              
4316             /*
4317             * XXH3_accumulate()
4318             * Loops over XXH3_accumulate_512().
4319             * Assumption: nbStripes will not overflow the secret size
4320             */
4321             XXH_FORCE_INLINE void
4322             XXH3_accumulate( xxh_u64* XXH_RESTRICT acc,
4323             const xxh_u8* XXH_RESTRICT input,
4324             const xxh_u8* XXH_RESTRICT secret,
4325             size_t nbStripes,
4326             XXH3_f_accumulate_512 f_acc512)
4327             {
4328             size_t n;
4329 0 0         for (n = 0; n < nbStripes; n++ ) {
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
4330 0           const xxh_u8* const in = input + n*XXH_STRIPE_LEN;
4331 0           XXH_PREFETCH(in + XXH_PREFETCH_DIST);
4332 0           f_acc512(acc,
4333             in,
4334 0           secret + n*XXH_SECRET_CONSUME_RATE);
4335             }
4336             }
4337              
4338             XXH_FORCE_INLINE void
4339             XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc,
4340             const xxh_u8* XXH_RESTRICT input, size_t len,
4341             const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
4342             XXH3_f_accumulate_512 f_acc512,
4343             XXH3_f_scrambleAcc f_scramble)
4344             {
4345 0           size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
4346 0           size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
4347 0           size_t const nb_blocks = (len - 1) / block_len;
4348              
4349             size_t n;
4350              
4351             XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
4352              
4353 0 0         for (n = 0; n < nb_blocks; n++) {
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
    0          
4354 0           XXH3_accumulate(acc, input + n*block_len, secret, nbStripesPerBlock, f_acc512);
4355 0           f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN);
4356             }
4357              
4358             /* last partial block */
4359             XXH_ASSERT(len > XXH_STRIPE_LEN);
4360 0           { size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
4361             XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
4362             XXH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, f_acc512);
4363              
4364             /* last stripe */
4365 0           { const xxh_u8* const p = input + len - XXH_STRIPE_LEN;
4366             #define XXH_SECRET_LASTACC_START 7 /* not aligned on 8, last secret is different from acc & scrambler */
4367 0           f_acc512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START);
4368             } }
4369             }
4370              
4371             XXH_FORCE_INLINE xxh_u64
4372             XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret)
4373             {
4374 0           return XXH3_mul128_fold64(
4375 0           acc[0] ^ XXH_readLE64(secret),
4376 0           acc[1] ^ XXH_readLE64(secret+8) );
4377             }
4378              
4379             static XXH64_hash_t
4380 0           XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start)
4381             {
4382             xxh_u64 result64 = start;
4383             size_t i = 0;
4384              
4385 0 0         for (i = 0; i < 4; i++) {
4386 0           result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i);
4387             #if defined(__clang__) /* Clang */ \
4388             && (defined(__arm__) || defined(__thumb__)) /* ARMv7 */ \
4389             && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
4390             && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */
4391             /*
4392             * UGLY HACK:
4393             * Prevent autovectorization on Clang ARMv7-a. Exact same problem as
4394             * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b.
4395             * XXH3_64bits, len == 256, Snapdragon 835:
4396             * without hack: 2063.7 MB/s
4397             * with hack: 2560.7 MB/s
4398             */
4399             __asm__("" : "+r" (result64));
4400             #endif
4401             }
4402              
4403 0           return XXH3_avalanche(result64);
4404             }
4405              
4406             #define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \
4407             XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 }
4408              
4409             XXH_FORCE_INLINE XXH64_hash_t
4410             XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len,
4411             const void* XXH_RESTRICT secret, size_t secretSize,
4412             XXH3_f_accumulate_512 f_acc512,
4413             XXH3_f_scrambleAcc f_scramble)
4414             {
4415 0           XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
4416              
4417             XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc512, f_scramble);
4418              
4419             /* converge into final hash */
4420             XXH_STATIC_ASSERT(sizeof(acc) == 64);
4421             /* do not align on 8, so that the secret is different from the accumulator */
4422             #define XXH_SECRET_MERGEACCS_START 11
4423             XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
4424 0           return XXH3_mergeAccs(acc, (const xxh_u8*)secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1);
4425             }
4426              
4427             /*
4428             * It's important for performance that XXH3_hashLong is not inlined.
4429             */
4430             XXH_NO_INLINE XXH64_hash_t
4431             XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len,
4432             XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
4433             {
4434             (void)seed64;
4435             return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate_512, XXH3_scrambleAcc);
4436             }
4437              
4438             /*
4439             * It's important for performance that XXH3_hashLong is not inlined.
4440             * Since the function is not inlined, the compiler may not be able to understand that,
4441             * in some scenarios, its `secret` argument is actually a compile time constant.
4442             * This variant enforces that the compiler can detect that,
4443             * and uses this opportunity to streamline the generated code for better performance.
4444             */
4445             XXH_NO_INLINE XXH64_hash_t
4446             XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len,
4447             XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
4448             {
4449             (void)seed64; (void)secret; (void)secretLen;
4450             return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate_512, XXH3_scrambleAcc);
4451             }
4452              
4453             /*
4454             * XXH3_hashLong_64b_withSeed():
4455             * Generate a custom key based on alteration of default XXH3_kSecret with the seed,
4456             * and then use this key for long mode hashing.
4457             *
4458             * This operation is decently fast but nonetheless costs a little bit of time.
4459             * Try to avoid it whenever possible (typically when seed==0).
4460             *
4461             * It's important for performance that XXH3_hashLong is not inlined. Not sure
4462             * why (uop cache maybe?), but the difference is large and easily measurable.
4463             */
4464             XXH_FORCE_INLINE XXH64_hash_t
4465             XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len,
4466             XXH64_hash_t seed,
4467             XXH3_f_accumulate_512 f_acc512,
4468             XXH3_f_scrambleAcc f_scramble,
4469             XXH3_f_initCustomSecret f_initSec)
4470             {
4471 0 0         if (seed == 0)
    0          
    0          
4472             return XXH3_hashLong_64b_internal(input, len,
4473             XXH3_kSecret, sizeof(XXH3_kSecret),
4474             f_acc512, f_scramble);
4475             { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
4476             f_initSec(secret, seed);
4477             return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret),
4478             f_acc512, f_scramble);
4479             }
4480             }
4481              
4482             /*
4483             * It's important for performance that XXH3_hashLong is not inlined.
4484             */
4485             XXH_NO_INLINE XXH64_hash_t
4486             XXH3_hashLong_64b_withSeed(const void* input, size_t len,
4487             XXH64_hash_t seed, const xxh_u8* secret, size_t secretLen)
4488             {
4489             (void)secret; (void)secretLen;
4490             return XXH3_hashLong_64b_withSeed_internal(input, len, seed,
4491             XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret);
4492             }
4493              
4494              
4495             typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t,
4496             XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t);
4497              
4498             XXH_FORCE_INLINE XXH64_hash_t
4499             XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len,
4500             XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
4501             XXH3_hashLong64_f f_hashLong)
4502             {
4503             XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
4504             /*
4505             * If an action is to be taken if `secretLen` condition is not respected,
4506             * it should be done here.
4507             * For now, it's a contract pre-condition.
4508             * Adding a check and a branch here would cost performance at every hash.
4509             * Also, note that function signature doesn't offer room to return an error.
4510             */
4511 0 0         if (len <= 16)
    0          
    0          
4512             return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
4513 0 0         if (len <= 128)
    0          
    0          
4514             return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
4515 0 0         if (len <= XXH3_MIDSIZE_MAX)
    0          
    0          
4516 0           return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
4517             return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen);
4518             }
4519              
4520              
4521             /* === Public entry point === */
4522              
4523             /*! @ingroup xxh3_family */
4524             XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* input, size_t len)
4525             {
4526             return XXH3_64bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default);
4527             }
4528              
4529             /*! @ingroup xxh3_family */
4530             XXH_PUBLIC_API XXH64_hash_t
4531             XXH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
4532             {
4533             return XXH3_64bits_internal(input, len, 0, secret, secretSize, XXH3_hashLong_64b_withSecret);
4534             }
4535              
4536             /*! @ingroup xxh3_family */
4537             XXH_PUBLIC_API XXH64_hash_t
4538             XXH3_64bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
4539             {
4540             return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed);
4541             }
4542              
4543              
4544             /* === XXH3 streaming === */
4545              
4546             /*
4547             * Malloc's a pointer that is always aligned to align.
4548             *
4549             * This must be freed with `XXH_alignedFree()`.
4550             *
4551             * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte
4552             * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2
4553             * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON.
4554             *
4555             * This underalignment previously caused a rather obvious crash which went
4556             * completely unnoticed due to XXH3_createState() not actually being tested.
4557             * Credit to RedSpah for noticing this bug.
4558             *
4559             * The alignment is done manually: Functions like posix_memalign or _mm_malloc
4560             * are avoided: To maintain portability, we would have to write a fallback
4561             * like this anyways, and besides, testing for the existence of library
4562             * functions without relying on external build tools is impossible.
4563             *
4564             * The method is simple: Overallocate, manually align, and store the offset
4565             * to the original behind the returned pointer.
4566             *
4567             * Align must be a power of 2 and 8 <= align <= 128.
4568             */
4569             static void* XXH_alignedMalloc(size_t s, size_t align)
4570             {
4571             XXH_ASSERT(align <= 128 && align >= 8); /* range check */
4572             XXH_ASSERT((align & (align-1)) == 0); /* power of 2 */
4573             XXH_ASSERT(s != 0 && s < (s + align)); /* empty/overflow */
4574             { /* Overallocate to make room for manual realignment and an offset byte */
4575             xxh_u8* base = (xxh_u8*)XXH_malloc(s + align);
4576             if (base != NULL) {
4577             /*
4578             * Get the offset needed to align this pointer.
4579             *
4580             * Even if the returned pointer is aligned, there will always be
4581             * at least one byte to store the offset to the original pointer.
4582             */
4583             size_t offset = align - ((size_t)base & (align - 1)); /* base % align */
4584             /* Add the offset for the now-aligned pointer */
4585             xxh_u8* ptr = base + offset;
4586              
4587             XXH_ASSERT((size_t)ptr % align == 0);
4588              
4589             /* Store the offset immediately before the returned pointer. */
4590             ptr[-1] = (xxh_u8)offset;
4591             return ptr;
4592             }
4593             return NULL;
4594             }
4595             }
4596             /*
4597             * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass
4598             * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout.
4599             */
4600             static void XXH_alignedFree(void* p)
4601             {
4602             if (p != NULL) {
4603             xxh_u8* ptr = (xxh_u8*)p;
4604             /* Get the offset byte we added in XXH_malloc. */
4605             xxh_u8 offset = ptr[-1];
4606             /* Free the original malloc'd pointer */
4607             xxh_u8* base = ptr - offset;
4608             XXH_free(base);
4609             }
4610             }
4611             /*! @ingroup xxh3_family */
4612             XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void)
4613             {
4614             XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64);
4615             if (state==NULL) return NULL;
4616             XXH3_INITSTATE(state);
4617             return state;
4618             }
4619              
4620             /*! @ingroup xxh3_family */
4621             XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr)
4622             {
4623             XXH_alignedFree(statePtr);
4624             return XXH_OK;
4625             }
4626              
4627             /*! @ingroup xxh3_family */
4628             XXH_PUBLIC_API void
4629             XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state)
4630             {
4631             memcpy(dst_state, src_state, sizeof(*dst_state));
4632             }
4633              
4634             static void
4635             XXH3_reset_internal(XXH3_state_t* statePtr,
4636             XXH64_hash_t seed,
4637             const void* secret, size_t secretSize)
4638             {
4639             size_t const initStart = offsetof(XXH3_state_t, bufferedSize);
4640             size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart;
4641             XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart);
4642             XXH_ASSERT(statePtr != NULL);
4643             /* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */
4644             memset((char*)statePtr + initStart, 0, initLength);
4645             statePtr->acc[0] = XXH_PRIME32_3;
4646             statePtr->acc[1] = XXH_PRIME64_1;
4647             statePtr->acc[2] = XXH_PRIME64_2;
4648             statePtr->acc[3] = XXH_PRIME64_3;
4649             statePtr->acc[4] = XXH_PRIME64_4;
4650             statePtr->acc[5] = XXH_PRIME32_2;
4651             statePtr->acc[6] = XXH_PRIME64_5;
4652             statePtr->acc[7] = XXH_PRIME32_1;
4653             statePtr->seed = seed;
4654             statePtr->extSecret = (const unsigned char*)secret;
4655             XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
4656             statePtr->secretLimit = secretSize - XXH_STRIPE_LEN;
4657             statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
4658             }
4659              
4660             /*! @ingroup xxh3_family */
4661             XXH_PUBLIC_API XXH_errorcode
4662             XXH3_64bits_reset(XXH3_state_t* statePtr)
4663             {
4664             if (statePtr == NULL) return XXH_ERROR;
4665             XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
4666             return XXH_OK;
4667             }
4668              
4669             /*! @ingroup xxh3_family */
4670             XXH_PUBLIC_API XXH_errorcode
4671             XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
4672             {
4673             if (statePtr == NULL) return XXH_ERROR;
4674             XXH3_reset_internal(statePtr, 0, secret, secretSize);
4675             if (secret == NULL) return XXH_ERROR;
4676             if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
4677             return XXH_OK;
4678             }
4679              
4680             /*! @ingroup xxh3_family */
4681             XXH_PUBLIC_API XXH_errorcode
4682             XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
4683             {
4684             if (statePtr == NULL) return XXH_ERROR;
4685             if (seed==0) return XXH3_64bits_reset(statePtr);
4686             if (seed != statePtr->seed) XXH3_initCustomSecret(statePtr->customSecret, seed);
4687             XXH3_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE);
4688             return XXH_OK;
4689             }
4690              
4691             /* Note : when XXH3_consumeStripes() is invoked,
4692             * there must be a guarantee that at least one more byte must be consumed from input
4693             * so that the function can blindly consume all stripes using the "normal" secret segment */
4694             XXH_FORCE_INLINE void
4695             XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc,
4696             size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock,
4697             const xxh_u8* XXH_RESTRICT input, size_t nbStripes,
4698             const xxh_u8* XXH_RESTRICT secret, size_t secretLimit,
4699             XXH3_f_accumulate_512 f_acc512,
4700             XXH3_f_scrambleAcc f_scramble)
4701             {
4702             XXH_ASSERT(nbStripes <= nbStripesPerBlock); /* can handle max 1 scramble per invocation */
4703             XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock);
4704 0 0         if (nbStripesPerBlock - *nbStripesSoFarPtr <= nbStripes) {
    0          
    0          
    0          
    0          
    0          
4705             /* need a scrambling operation */
4706             size_t const nbStripesToEndofBlock = nbStripesPerBlock - *nbStripesSoFarPtr;
4707 0           size_t const nbStripesAfterBlock = nbStripes - nbStripesToEndofBlock;
4708 0           XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripesToEndofBlock, f_acc512);
4709 0           f_scramble(acc, secret + secretLimit);
4710 0           XXH3_accumulate(acc, input + nbStripesToEndofBlock * XXH_STRIPE_LEN, secret, nbStripesAfterBlock, f_acc512);
4711 0           *nbStripesSoFarPtr = nbStripesAfterBlock;
4712             } else {
4713 0           XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, f_acc512);
4714 0           *nbStripesSoFarPtr += nbStripes;
4715             }
4716             }
4717              
4718             /*
4719             * Both XXH3_64bits_update and XXH3_128bits_update use this routine.
4720             */
4721             XXH_FORCE_INLINE XXH_errorcode
4722             XXH3_update(XXH3_state_t* state,
4723             const xxh_u8* input, size_t len,
4724             XXH3_f_accumulate_512 f_acc512,
4725             XXH3_f_scrambleAcc f_scramble)
4726             {
4727 0 0         if (input==NULL)
    0          
    0          
4728             #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
4729             return XXH_OK;
4730             #else
4731             return XXH_ERROR;
4732             #endif
4733              
4734 0           { const xxh_u8* const bEnd = input + len;
4735 0 0         const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
    0          
    0          
4736              
4737 0           state->totalLen += len;
4738             XXH_ASSERT(state->bufferedSize <= XXH3_INTERNALBUFFER_SIZE);
4739              
4740 0 0         if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) { /* fill in tmp buffer */
    0          
    0          
4741 0           XXH_memcpy(state->buffer + state->bufferedSize, input, len);
4742 0           state->bufferedSize += (XXH32_hash_t)len;
4743             return XXH_OK;
4744             }
4745             /* total input is now > XXH3_INTERNALBUFFER_SIZE */
4746              
4747             #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN)
4748             XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0); /* clean multiple */
4749              
4750             /*
4751             * Internal buffer is partially filled (always, except at beginning)
4752             * Complete it, then consume it.
4753             */
4754 0 0         if (state->bufferedSize) {
    0          
    0          
4755 0           size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
4756 0           XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
4757 0           input += loadSize;
4758 0           XXH3_consumeStripes(state->acc,
4759             &state->nbStripesSoFar, state->nbStripesPerBlock,
4760             state->buffer, XXH3_INTERNALBUFFER_STRIPES,
4761             secret, state->secretLimit,
4762             f_acc512, f_scramble);
4763 0           state->bufferedSize = 0;
4764             }
4765             XXH_ASSERT(input < bEnd);
4766              
4767             /* Consume input by a multiple of internal buffer size */
4768 0 0         if (input+XXH3_INTERNALBUFFER_SIZE < bEnd) {
    0          
    0          
4769 0           const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE;
4770             do {
4771 0           XXH3_consumeStripes(state->acc,
4772             &state->nbStripesSoFar, state->nbStripesPerBlock,
4773             input, XXH3_INTERNALBUFFER_STRIPES,
4774             secret, state->secretLimit,
4775             f_acc512, f_scramble);
4776 0           input += XXH3_INTERNALBUFFER_SIZE;
4777 0 0         } while (input
    0          
    0          
4778             /* for last partial stripe */
4779 0           memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
4780             }
4781             XXH_ASSERT(input < bEnd);
4782              
4783             /* Some remaining input (always) : buffer it */
4784 0           XXH_memcpy(state->buffer, input, (size_t)(bEnd-input));
4785 0           state->bufferedSize = (XXH32_hash_t)(bEnd-input);
4786             }
4787              
4788             return XXH_OK;
4789             }
4790              
4791             /*! @ingroup xxh3_family */
4792             XXH_PUBLIC_API XXH_errorcode
4793             XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len)
4794             {
4795             return XXH3_update(state, (const xxh_u8*)input, len,
4796             XXH3_accumulate_512, XXH3_scrambleAcc);
4797             }
4798              
4799              
4800             XXH_FORCE_INLINE void
4801             XXH3_digest_long (XXH64_hash_t* acc,
4802             const XXH3_state_t* state,
4803             const unsigned char* secret)
4804             {
4805             /*
4806             * Digest on a local copy. This way, the state remains unaltered, and it can
4807             * continue ingesting more input afterwards.
4808             */
4809             memcpy(acc, state->acc, sizeof(state->acc));
4810             if (state->bufferedSize >= XXH_STRIPE_LEN) {
4811             size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN;
4812             size_t nbStripesSoFar = state->nbStripesSoFar;
4813             XXH3_consumeStripes(acc,
4814             &nbStripesSoFar, state->nbStripesPerBlock,
4815             state->buffer, nbStripes,
4816             secret, state->secretLimit,
4817             XXH3_accumulate_512, XXH3_scrambleAcc);
4818             /* last stripe */
4819             XXH3_accumulate_512(acc,
4820             state->buffer + state->bufferedSize - XXH_STRIPE_LEN,
4821             secret + state->secretLimit - XXH_SECRET_LASTACC_START);
4822             } else { /* bufferedSize < XXH_STRIPE_LEN */
4823             xxh_u8 lastStripe[XXH_STRIPE_LEN];
4824             size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize;
4825             XXH_ASSERT(state->bufferedSize > 0); /* there is always some input buffered */
4826             memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize);
4827             memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
4828             XXH3_accumulate_512(acc,
4829             lastStripe,
4830             secret + state->secretLimit - XXH_SECRET_LASTACC_START);
4831             }
4832             }
4833              
4834             /*! @ingroup xxh3_family */
4835             XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state)
4836             {
4837             const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
4838             if (state->totalLen > XXH3_MIDSIZE_MAX) {
4839             XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
4840             XXH3_digest_long(acc, state, secret);
4841             return XXH3_mergeAccs(acc,
4842             secret + XXH_SECRET_MERGEACCS_START,
4843             (xxh_u64)state->totalLen * XXH_PRIME64_1);
4844             }
4845             /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */
4846             if (state->seed)
4847             return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
4848             return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen),
4849             secret, state->secretLimit + XXH_STRIPE_LEN);
4850             }
4851              
4852              
4853             #define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x))
4854              
4855             /*! @ingroup xxh3_family */
4856             XXH_PUBLIC_API void
4857             XXH3_generateSecret(void* secretBuffer, const void* customSeed, size_t customSeedSize)
4858             {
4859             XXH_ASSERT(secretBuffer != NULL);
4860             if (customSeedSize == 0) {
4861             memcpy(secretBuffer, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
4862             return;
4863             }
4864             XXH_ASSERT(customSeed != NULL);
4865              
4866             { size_t const segmentSize = sizeof(XXH128_hash_t);
4867             size_t const nbSegments = XXH_SECRET_DEFAULT_SIZE / segmentSize;
4868             XXH128_canonical_t scrambler;
4869             XXH64_hash_t seeds[12];
4870             size_t segnb;
4871             XXH_ASSERT(nbSegments == 12);
4872             XXH_ASSERT(segmentSize * nbSegments == XXH_SECRET_DEFAULT_SIZE); /* exact multiple */
4873             XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0));
4874              
4875             /*
4876             * Copy customSeed to seeds[], truncating or repeating as necessary.
4877             */
4878             { size_t toFill = XXH_MIN(customSeedSize, sizeof(seeds));
4879             size_t filled = toFill;
4880             memcpy(seeds, customSeed, toFill);
4881             while (filled < sizeof(seeds)) {
4882             toFill = XXH_MIN(filled, sizeof(seeds) - filled);
4883             memcpy((char*)seeds + filled, seeds, toFill);
4884             filled += toFill;
4885             } }
4886              
4887             /* generate secret */
4888             memcpy(secretBuffer, &scrambler, sizeof(scrambler));
4889             for (segnb=1; segnb < nbSegments; segnb++) {
4890             size_t const segmentStart = segnb * segmentSize;
4891             XXH128_canonical_t segment;
4892             XXH128_canonicalFromHash(&segment,
4893             XXH128(&scrambler, sizeof(scrambler), XXH_readLE64(seeds + segnb) + segnb) );
4894             memcpy((char*)secretBuffer + segmentStart, &segment, sizeof(segment));
4895             } }
4896             }
4897              
4898              
4899             /* ==========================================
4900             * XXH3 128 bits (a.k.a XXH128)
4901             * ==========================================
4902             * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant,
4903             * even without counting the significantly larger output size.
4904             *
4905             * For example, extra steps are taken to avoid the seed-dependent collisions
4906             * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
4907             *
4908             * This strength naturally comes at the cost of some speed, especially on short
4909             * lengths. Note that longer hashes are about as fast as the 64-bit version
4910             * due to it using only a slight modification of the 64-bit loop.
4911             *
4912             * XXH128 is also more oriented towards 64-bit machines. It is still extremely
4913             * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
4914             */
4915              
4916             XXH_FORCE_INLINE XXH128_hash_t
4917             XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4918             {
4919             /* A doubled version of 1to3_64b with different constants. */
4920             XXH_ASSERT(input != NULL);
4921             XXH_ASSERT(1 <= len && len <= 3);
4922             XXH_ASSERT(secret != NULL);
4923             /*
4924             * len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
4925             * len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
4926             * len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
4927             */
4928 0           { xxh_u8 const c1 = input[0];
4929 0           xxh_u8 const c2 = input[len >> 1];
4930 0           xxh_u8 const c3 = input[len - 1];
4931 0           xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24)
4932 0           | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
4933 0           xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13);
4934 0           xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
4935 0           xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed;
4936 0           xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl;
4937 0           xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph;
4938             XXH128_hash_t h128;
4939             h128.low64 = XXH64_avalanche(keyed_lo);
4940             h128.high64 = XXH64_avalanche(keyed_hi);
4941             return h128;
4942             }
4943             }
4944              
4945             XXH_FORCE_INLINE XXH128_hash_t
4946             XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4947             {
4948             XXH_ASSERT(input != NULL);
4949             XXH_ASSERT(secret != NULL);
4950             XXH_ASSERT(4 <= len && len <= 8);
4951 0           seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
4952             { xxh_u32 const input_lo = XXH_readLE32(input);
4953 0           xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
4954 0           xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32);
4955 0           xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed;
4956 0           xxh_u64 const keyed = input_64 ^ bitflip;
4957              
4958             /* Shift len to the left to ensure it is even, this avoids even multiplies. */
4959 0           XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2));
4960              
4961 0           m128.high64 += (m128.low64 << 1);
4962 0           m128.low64 ^= (m128.high64 >> 3);
4963              
4964             m128.low64 = XXH_xorshift64(m128.low64, 35);
4965 0           m128.low64 *= 0x9FB21C651E98DF25ULL;
4966             m128.low64 = XXH_xorshift64(m128.low64, 28);
4967             m128.high64 = XXH3_avalanche(m128.high64);
4968             return m128;
4969             }
4970             }
4971              
4972             XXH_FORCE_INLINE XXH128_hash_t
4973             XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4974             {
4975             XXH_ASSERT(input != NULL);
4976             XXH_ASSERT(secret != NULL);
4977             XXH_ASSERT(9 <= len && len <= 16);
4978 0           { xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed;
4979 0           xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed;
4980             xxh_u64 const input_lo = XXH_readLE64(input);
4981 0           xxh_u64 input_hi = XXH_readLE64(input + len - 8);
4982 0           XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1);
4983             /*
4984             * Put len in the middle of m128 to ensure that the length gets mixed to
4985             * both the low and high bits in the 128x64 multiply below.
4986             */
4987 0           m128.low64 += (xxh_u64)(len - 1) << 54;
4988 0           input_hi ^= bitfliph;
4989             /*
4990             * Add the high 32 bits of input_hi to the high 32 bits of m128, then
4991             * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to
4992             * the high 64 bits of m128.
4993             *
4994             * The best approach to this operation is different on 32-bit and 64-bit.
4995             */
4996             if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */
4997             /*
4998             * 32-bit optimized version, which is more readable.
4999             *
5000             * On 32-bit, it removes an ADC and delays a dependency between the two
5001             * halves of m128.high64, but it generates an extra mask on 64-bit.
5002             */
5003             m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2);
5004             } else {
5005             /*
5006             * 64-bit optimized (albeit more confusing) version.
5007             *
5008             * Uses some properties of addition and multiplication to remove the mask:
5009             *
5010             * Let:
5011             * a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
5012             * b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
5013             * c = XXH_PRIME32_2
5014             *
5015             * a + (b * c)
5016             * Inverse Property: x + y - x == y
5017             * a + (b * (1 + c - 1))
5018             * Distributive Property: x * (y + z) == (x * y) + (x * z)
5019             * a + (b * 1) + (b * (c - 1))
5020             * Identity Property: x * 1 == x
5021             * a + b + (b * (c - 1))
5022             *
5023             * Substitute a, b, and c:
5024             * input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
5025             *
5026             * Since input_hi.hi + input_hi.lo == input_hi, we get this:
5027             * input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
5028             */
5029 0           m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1);
5030             }
5031             /* m128 ^= XXH_swap64(m128 >> 64); */
5032 0           m128.low64 ^= XXH_swap64(m128.high64);
5033              
5034             { /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */
5035             XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2);
5036 0           h128.high64 += m128.high64 * XXH_PRIME64_2;
5037              
5038             h128.low64 = XXH3_avalanche(h128.low64);
5039             h128.high64 = XXH3_avalanche(h128.high64);
5040             return h128;
5041             } }
5042             }
5043              
5044             /*
5045             * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
5046             */
5047             XXH_FORCE_INLINE XXH128_hash_t
5048             XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
5049             {
5050             XXH_ASSERT(len <= 16);
5051 0 0         { if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed);
    0          
    0          
5052 0 0         if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed);
    0          
    0          
5053 0 0         if (len) return XXH3_len_1to3_128b(input, len, secret, seed);
    0          
    0          
5054             { XXH128_hash_t h128;
5055 0           xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72);
5056 0           xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88);
5057 0           h128.low64 = XXH64_avalanche(seed ^ bitflipl);
5058 0           h128.high64 = XXH64_avalanche( seed ^ bitfliph);
5059             return h128;
5060             } }
5061             }
5062              
5063             /*
5064             * A bit slower than XXH3_mix16B, but handles multiply by zero better.
5065             */
5066             XXH_FORCE_INLINE XXH128_hash_t
5067             XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2,
5068             const xxh_u8* secret, XXH64_hash_t seed)
5069             {
5070 0           acc.low64 += XXH3_mix16B (input_1, secret+0, seed);
5071 0           acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8);
5072 0           acc.high64 += XXH3_mix16B (input_2, secret+16, seed);
5073 0           acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8);
5074             return acc;
5075             }
5076              
5077              
5078             XXH_FORCE_INLINE XXH128_hash_t
5079             XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
5080             const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
5081             XXH64_hash_t seed)
5082             {
5083             XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
5084             XXH_ASSERT(16 < len && len <= 128);
5085              
5086             { XXH128_hash_t acc;
5087 0           acc.low64 = len * XXH_PRIME64_1;
5088             acc.high64 = 0;
5089 0 0         if (len > 32) {
    0          
    0          
5090 0 0         if (len > 64) {
    0          
    0          
5091 0 0         if (len > 96) {
    0          
    0          
5092 0           acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed);
5093             }
5094 0           acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed);
5095             }
5096 0           acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed);
5097             }
5098 0           acc = XXH128_mix32B(acc, input, input+len-16, secret, seed);
5099             { XXH128_hash_t h128;
5100 0           h128.low64 = acc.low64 + acc.high64;
5101 0           h128.high64 = (acc.low64 * XXH_PRIME64_1)
5102 0           + (acc.high64 * XXH_PRIME64_4)
5103 0           + ((len - seed) * XXH_PRIME64_2);
5104             h128.low64 = XXH3_avalanche(h128.low64);
5105 0           h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
5106             return h128;
5107             }
5108             }
5109             }
5110              
5111             XXH_NO_INLINE XXH128_hash_t
5112 0           XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
5113             const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
5114             XXH64_hash_t seed)
5115             {
5116             XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
5117             XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
5118              
5119             { XXH128_hash_t acc;
5120 0           int const nbRounds = (int)len / 32;
5121             int i;
5122 0           acc.low64 = len * XXH_PRIME64_1;
5123             acc.high64 = 0;
5124 0 0         for (i=0; i<4; i++) {
5125 0           acc = XXH128_mix32B(acc,
5126             input + (32 * i),
5127 0           input + (32 * i) + 16,
5128 0           secret + (32 * i),
5129             seed);
5130             }
5131             acc.low64 = XXH3_avalanche(acc.low64);
5132             acc.high64 = XXH3_avalanche(acc.high64);
5133             XXH_ASSERT(nbRounds >= 4);
5134 0 0         for (i=4 ; i < nbRounds; i++) {
5135 0           acc = XXH128_mix32B(acc,
5136             input + (32 * i),
5137 0           input + (32 * i) + 16,
5138 0           secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)),
5139             seed);
5140             }
5141             /* last bytes */
5142 0           acc = XXH128_mix32B(acc,
5143 0           input + len - 16,
5144 0           input + len - 32,
5145             secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
5146             0ULL - seed);
5147              
5148             { XXH128_hash_t h128;
5149 0           h128.low64 = acc.low64 + acc.high64;
5150 0           h128.high64 = (acc.low64 * XXH_PRIME64_1)
5151 0           + (acc.high64 * XXH_PRIME64_4)
5152 0           + ((len - seed) * XXH_PRIME64_2);
5153             h128.low64 = XXH3_avalanche(h128.low64);
5154 0           h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
5155 0           return h128;
5156             }
5157             }
5158             }
5159              
5160             XXH_FORCE_INLINE XXH128_hash_t
5161             XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len,
5162             const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
5163             XXH3_f_accumulate_512 f_acc512,
5164             XXH3_f_scrambleAcc f_scramble)
5165             {
5166 0           XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
5167              
5168             XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc512, f_scramble);
5169              
5170             /* converge into final hash */
5171             XXH_STATIC_ASSERT(sizeof(acc) == 64);
5172             XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
5173             { XXH128_hash_t h128;
5174 0           h128.low64 = XXH3_mergeAccs(acc,
5175             secret + XXH_SECRET_MERGEACCS_START,
5176             (xxh_u64)len * XXH_PRIME64_1);
5177 0           h128.high64 = XXH3_mergeAccs(acc,
5178             secret + secretSize
5179 0           - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
5180 0           ~((xxh_u64)len * XXH_PRIME64_2));
5181             return h128;
5182             }
5183             }
5184              
5185             /*
5186             * It's important for performance that XXH3_hashLong is not inlined.
5187             */
5188             XXH_NO_INLINE XXH128_hash_t
5189             XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len,
5190             XXH64_hash_t seed64,
5191             const void* XXH_RESTRICT secret, size_t secretLen)
5192             {
5193             (void)seed64; (void)secret; (void)secretLen;
5194             return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret),
5195             XXH3_accumulate_512, XXH3_scrambleAcc);
5196             }
5197              
5198             /*
5199             * It's important for performance that XXH3_hashLong is not inlined.
5200             */
5201             XXH_NO_INLINE XXH128_hash_t
5202             XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len,
5203             XXH64_hash_t seed64,
5204             const void* XXH_RESTRICT secret, size_t secretLen)
5205             {
5206             (void)seed64;
5207             return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen,
5208             XXH3_accumulate_512, XXH3_scrambleAcc);
5209             }
5210              
5211             XXH_FORCE_INLINE XXH128_hash_t
5212             XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len,
5213             XXH64_hash_t seed64,
5214             XXH3_f_accumulate_512 f_acc512,
5215             XXH3_f_scrambleAcc f_scramble,
5216             XXH3_f_initCustomSecret f_initSec)
5217             {
5218 0 0         if (seed64 == 0)
    0          
    0          
5219             return XXH3_hashLong_128b_internal(input, len,
5220             XXH3_kSecret, sizeof(XXH3_kSecret),
5221             f_acc512, f_scramble);
5222             { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
5223             f_initSec(secret, seed64);
5224             return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret),
5225             f_acc512, f_scramble);
5226             }
5227             }
5228              
5229             /*
5230             * It's important for performance that XXH3_hashLong is not inlined.
5231             */
5232             XXH_NO_INLINE XXH128_hash_t
5233             XXH3_hashLong_128b_withSeed(const void* input, size_t len,
5234             XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen)
5235             {
5236             (void)secret; (void)secretLen;
5237             return XXH3_hashLong_128b_withSeed_internal(input, len, seed64,
5238             XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret);
5239             }
5240              
5241             typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t,
5242             XXH64_hash_t, const void* XXH_RESTRICT, size_t);
5243              
5244             XXH_FORCE_INLINE XXH128_hash_t
5245             XXH3_128bits_internal(const void* input, size_t len,
5246             XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
5247             XXH3_hashLong128_f f_hl128)
5248             {
5249             XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
5250             /*
5251             * If an action is to be taken if `secret` conditions are not respected,
5252             * it should be done here.
5253             * For now, it's a contract pre-condition.
5254             * Adding a check and a branch here would cost performance at every hash.
5255             */
5256 0 0         if (len <= 16)
    0          
    0          
5257             return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
5258 0 0         if (len <= 128)
    0          
    0          
5259             return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
5260 0 0         if (len <= XXH3_MIDSIZE_MAX)
    0          
    0          
5261 0           return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
5262             return f_hl128(input, len, seed64, secret, secretLen);
5263             }
5264              
5265              
5266             /* === Public XXH128 API === */
5267              
5268             /*! @ingroup xxh3_family */
5269             XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len)
5270             {
5271             return XXH3_128bits_internal(input, len, 0,
5272             XXH3_kSecret, sizeof(XXH3_kSecret),
5273             XXH3_hashLong_128b_default);
5274             }
5275              
5276             /*! @ingroup xxh3_family */
5277             XXH_PUBLIC_API XXH128_hash_t
5278             XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
5279             {
5280             return XXH3_128bits_internal(input, len, 0,
5281             (const xxh_u8*)secret, secretSize,
5282             XXH3_hashLong_128b_withSecret);
5283             }
5284              
5285             /*! @ingroup xxh3_family */
5286             XXH_PUBLIC_API XXH128_hash_t
5287             XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
5288             {
5289             return XXH3_128bits_internal(input, len, seed,
5290             XXH3_kSecret, sizeof(XXH3_kSecret),
5291             XXH3_hashLong_128b_withSeed);
5292             }
5293              
5294             /*! @ingroup xxh3_family */
5295             XXH_PUBLIC_API XXH128_hash_t
5296             XXH128(const void* input, size_t len, XXH64_hash_t seed)
5297             {
5298             return XXH3_128bits_withSeed(input, len, seed);
5299             }
5300              
5301              
5302             /* === XXH3 128-bit streaming === */
5303              
5304             /*
5305             * All the functions are actually the same as for 64-bit streaming variant.
5306             * The only difference is the finalization routine.
5307             */
5308              
5309             /*! @ingroup xxh3_family */
5310             XXH_PUBLIC_API XXH_errorcode
5311             XXH3_128bits_reset(XXH3_state_t* statePtr)
5312             {
5313             if (statePtr == NULL) return XXH_ERROR;
5314             XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
5315             return XXH_OK;
5316             }
5317              
5318             /*! @ingroup xxh3_family */
5319             XXH_PUBLIC_API XXH_errorcode
5320             XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
5321             {
5322             if (statePtr == NULL) return XXH_ERROR;
5323             XXH3_reset_internal(statePtr, 0, secret, secretSize);
5324             if (secret == NULL) return XXH_ERROR;
5325             if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
5326             return XXH_OK;
5327             }
5328              
5329             /*! @ingroup xxh3_family */
5330             XXH_PUBLIC_API XXH_errorcode
5331             XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
5332             {
5333             if (statePtr == NULL) return XXH_ERROR;
5334             if (seed==0) return XXH3_128bits_reset(statePtr);
5335             if (seed != statePtr->seed) XXH3_initCustomSecret(statePtr->customSecret, seed);
5336             XXH3_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE);
5337             return XXH_OK;
5338             }
5339              
5340             /*! @ingroup xxh3_family */
5341             XXH_PUBLIC_API XXH_errorcode
5342             XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len)
5343             {
5344             return XXH3_update(state, (const xxh_u8*)input, len,
5345             XXH3_accumulate_512, XXH3_scrambleAcc);
5346             }
5347              
5348             /*! @ingroup xxh3_family */
5349             XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state)
5350             {
5351             const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
5352             if (state->totalLen > XXH3_MIDSIZE_MAX) {
5353             XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
5354             XXH3_digest_long(acc, state, secret);
5355             XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
5356             { XXH128_hash_t h128;
5357             h128.low64 = XXH3_mergeAccs(acc,
5358             secret + XXH_SECRET_MERGEACCS_START,
5359             (xxh_u64)state->totalLen * XXH_PRIME64_1);
5360             h128.high64 = XXH3_mergeAccs(acc,
5361             secret + state->secretLimit + XXH_STRIPE_LEN
5362             - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
5363             ~((xxh_u64)state->totalLen * XXH_PRIME64_2));
5364             return h128;
5365             }
5366             }
5367             /* len <= XXH3_MIDSIZE_MAX : short code */
5368             if (state->seed)
5369             return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
5370             return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen),
5371             secret, state->secretLimit + XXH_STRIPE_LEN);
5372             }
5373              
5374             /* 128-bit utility functions */
5375              
5376             #include /* memcmp, memcpy */
5377              
5378             /* return : 1 is equal, 0 if different */
5379             /*! @ingroup xxh3_family */
5380             XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2)
5381             {
5382             /* note : XXH128_hash_t is compact, it has no padding byte */
5383             return !(memcmp(&h1, &h2, sizeof(h1)));
5384             }
5385              
5386             /* This prototype is compatible with stdlib's qsort().
5387             * return : >0 if *h128_1 > *h128_2
5388             * <0 if *h128_1 < *h128_2
5389             * =0 if *h128_1 == *h128_2 */
5390             /*! @ingroup xxh3_family */
5391             XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2)
5392             {
5393             XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1;
5394             XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2;
5395             int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
5396             /* note : bets that, in most cases, hash values are different */
5397             if (hcmp) return hcmp;
5398             return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
5399             }
5400              
5401              
5402             /*====== Canonical representation ======*/
5403             /*! @ingroup xxh3_family */
5404             XXH_PUBLIC_API void
5405             XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash)
5406             {
5407             XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
5408             if (XXH_CPU_LITTLE_ENDIAN) {
5409             hash.high64 = XXH_swap64(hash.high64);
5410             hash.low64 = XXH_swap64(hash.low64);
5411             }
5412             memcpy(dst, &hash.high64, sizeof(hash.high64));
5413             memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
5414             }
5415              
5416             /*! @ingroup xxh3_family */
5417             XXH_PUBLIC_API XXH128_hash_t
5418             XXH128_hashFromCanonical(const XXH128_canonical_t* src)
5419             {
5420             XXH128_hash_t h;
5421             h.high64 = XXH_readBE64(src);
5422             h.low64 = XXH_readBE64(src->digest + 8);
5423             return h;
5424             }
5425              
5426             /* Pop our optimization override from above */
5427             #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
5428             && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
5429             && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
5430             # pragma GCC pop_options
5431             #endif
5432              
5433             #endif /* XXH_NO_LONG_LONG */
5434              
5435             /*!
5436             * @}
5437             */
5438             #endif /* XXH_IMPLEMENTATION */
5439              
5440              
5441             #if defined (__cplusplus)
5442             }
5443             #endif